
Implementation of Intelligent Water Drops
Algorithm to Solve Graph-Based Travelling
Salesman Problem

Roli Bansal, Hina Agrawal, Hifza Afaq and Sanjay Saini

Abstract The travelling salesman problem (TSP) is one of the most sought out
NP-hard, routing problems in the literature. TSP is important with respect to some
real-life applications, especially when tour is generated in real time. The objective
of this paper is to apply the intelligent water drops algorithm to solve graph-based
TSP (GB-TSP). The intelligent water drops (IWD) algorithm is a newmeta-heuristic
approach belonging to a class of swarm intelligence-based algorithm. It is inspired
from observing natural water drops that flow in rivers. The idea of path finding of
rivers is used to find the near-optimal solution of the travelling salesman problem
(TSP).

Keywords Intelligent water drops (IWD) · Travelling salesman problem (TSP) ·
Swarm intelligence · Graph-based TSP (GB-TSP)

1 Introduction

Soft computing is a term applied to a field within computer science which is used to
obtain near-optimal solutions to NP-complete problems in polynomial time. Swarm
intelligence is a relatively new field of soft computing [1] which is inspired by
nature. Swarm intelligence is based on the collective behavior of decentralized, self-

R. Bansal (B) · H. Agrawal · H. Afaq · S. Saini
Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, India
e-mail: dei.rolibansal@gmail.com

H. Agrawal
e-mail: hinaagrawal29@gmail.com

H. Afaq
e-mail: hifza.afaq@gmail.com

S. Saini
e-mail: sanjay.s.saini@gmail.com

B. V. Babu et al. (eds.), Proceedings of the Second International Conference on Soft Computing 137
for Problem Solving (SocProS 2012), December 28–30, 2012, Advances in Intelligent Systems
and Computing 236, DOI: 10.1007/978-81-322-1602-5_15, © Springer India 2014

138 R. Bansal et al.

organized systems. It refers to algorithms such as ant colony optimization (ACO) [9],
particle swarm optimization (PSO) [4], artificial bee colony [3], bat algorithm [11],
and many more. Intelligent water drops (IWD) is an upcoming swarm intelligence-
based algorithm. IWD was proposed by Hamed Shah-Hosseini [7] in 2007. IWD
algorithm is based on the dynamics of river system, action, and reactions that takes
place among the water drops in rivers [6]. A water drop prefers the path having low
soil to the path having high soil. In this way, it finds best possible path for itself. This
behavior of IWD is used to optimize the tour for travelling salesman problem (TSP).

In the TSP [2], a map of cities is given to the salesman and he is required to visit
all the cities to complete his tour such that no city is visited twice except the city
it starts with, which it has to visit in the end again to complete its tour. In real-life
situation, all cities may not be completely interconnected with direct paths and so
paths may not exist between some of the cities, so the map of cities is not completely
interconnected. The goal in the TSP is to find the tour with the minimum total length,
among all possible tours for the given map.

2 Behavior of Intelligent Water Drops

The behavior of the natural water drop is observed with some properties such as

• Velocity (with which a drop moves)
• Soil (which is carried by the drop)

IWD is based on these two properties of water drops. These properties change
with time according to the environment of water drop when IWD flows from source
to destination. Initially, IWD has zero amount of soil and nonzero velocity. It carries
more soil with high velocity and unloads the soil with low velocity of IWD.

A water drop prefers an easier path to a harder path in an obvious way when it has
to choose between several paths that exist in the path from source to destination. Each
IWD has a number of possible paths to choose from when it goes from one position
to another position. It chooses the path with the low soil and maximum probability.

Every IWD flows in finite length steps from one location to another location.
The IWD’s velocity depends on the soil between two locations. The IWD’s velocity
increases on less soil path and decreases on high soil path. Thus, IWD’s velocity
is inversely proportional to the soil between two locations. An IWD removes some
amount of soil from the path and carries it while travelling through that path. It
removes the soil from the path depending upon the time it takes to cover the distance
between two locations. More soil is removed from the path if the time taken by IWD
is high and vice versa. Thus, IWD’s soil is inversely proportional to time taken in
travelling from current location to next location. This time is calculated by the simple
laws of physics linear motion.

Implementation of Intelligent Water Drops Algorithm 139

3 Solving GB-TSP Using IWD

In this section, steps for solving the graph-based TSP (GB-TSP) are discussed. For
geographical problems, where location of cities is given by their Cartesian coordi-
nates and path from any node to any other node exists necessarily (which is simply
the Euclidean distance between the two nodes), solution using IWD to such TSP
has been given by Hamed Shah-Hosseini as MIWD [5]. In our case, a GB-TSP is
represented by a graph (N , E), where the node set N denotes the n cities of the TSP,
and the edge set E denotes the paths between the two cities. The considered graphs
are non-complete, i.e., it is not necessary that a direct edge exists between every pair
of nodes. In fact, we consider graphs where a direct edge may not exist between
certain two nodes. This formulation of the problem is much more realistic than the
earlier problems. The cost associated with the edges represents distance between
cities. However, for the sake of simplicity and similarity with earlier problems, in
this paper, the location of cities is given by their Cartesian coordinates and the dis-
tance between them is their Euclidean distance. For GB-TSP, we start with a graph
which is not completely interconnected. For this, we create an adjacency matrix
depicting distances between cities, and then, we remove the edges where there is no
path between the cities. In this way, we have a subset of edge set which represent a
graph which is not completely interconnected. A solution of the GB-TSP having the
graph (N , E) is then an ordered set of n distinct cities.

Now, the following IWD strategy for the GB-TSP is used. Each link of the edge
set E has an amount of soil. An IWD visits nodes of the graph through the links.
The IWD is able to change the amount of soil on the links. An IWD starts its tour
from a random node. The IWD changes the soil of each link that it flows on while
completing its tour.

Since there are no standard problems availablewhere the graph is not complete,we
have created such test graphs for our experiments. For this, we convert a completely
connected graph into a non-complete graph. This conversion of complete graph into
non-complete graph is done using the X nearest neighbor (XNN) algorithm [8]. In
this method, the links, depicting distances, from one node to all other nodes are
taken, and then, a certain percentage of those links are dropped. The dropped links
are those which are the largest in that set of links. We repeat the same process for
all the nodes in our graph. By converting the complete graph into a non-complete
graph, the search space of the problem is reduced.

This algorithm takes a complete graph and drops a given percentage of links from
it. For our experiments, a few standard problems are considered and 20% links are
dropped from it.

The IWD algorithm that is used for the GB-TSP is as follows:

1. Initialization of static parameters:

• Set the number of water drops NIWD, the number of cities NC , and the Carte-
sian coordinate of each city i such that c(i) = [xi , yi]T to their chosen constant
values. The number of cities and their coordinate values depends on the prob-

140 R. Bansal et al.

lem at hand, while the NIWD is set by the user. We choose NIWD to be equal
to or greater than the number of cities.

• Set the parameter number of neighbor cities called neighbor_city. For instance,
if we have to drop 20% links from each node, then neighbor_city is 80% of
NC – 1.

• Parameters for velocity updating: av = cv = 1 and bv = 0.01.
• Parameters for soil updating: as = cs = 1 and bs = 0.01.
• Initial soil on each link is denoted by the constant InitSoil such that the soil of
the link between every two cities i and j is set by soil (i, j) = InitSoil. Here,
we choose InitSoil = 10,000.

• Initial velocity of IWD is denoted by the constant InitVel. Velocity of each
drop with which they start their tour. Here, InitVel = 200.

• The best tour with minimum tour length (Len(TB)) is denoted by TB . Initially,
it is set as Len(TB) = infinity.

• The termination condition is met when maximum number of iterations is
reached.

2. Initialization of dynamic parameters:

• For every IWD, we create an empty visited city list Vc(IWD) = {}.
• Initially, each IWD has velocity equal to InitVal and soil equal to zero.

3. Non-complete graph is generated using XNN algorithm [8] along with its adja-
cency matrix.

• Initialize the number of neighbors of each citywith the constant neighbor_city.
• Create the adjacency matrix for new city links.

4. For every IWD, select a city randomly and place that IWD on that city.
5. Update the visited city lists of all IWDs to include the cities just visited.
6. Select the next city:

• For each IWD, choose the next city j to be visited by IWD when it is in city
i with the probability P IWD

i (j) as given in (1).

P IWD
i (j) = f (soil(i, j))

∑
k /∈vc f (soil (i, k))

(1)

such that f (soil (i, j)) = 1/εs + g (soil (i, j))
where

g (soil(i, j)) =
⎧
⎨

⎩

soil (i, j) if minl /∈vc(IWD) (soil (i, j)) ≥ 0
soil (i, j) − minl /∈vc(IWD)(soil (i, j)) else

Here, εs = 0.01. Where vc(IWD) is the visited city list of the IWD.

Implementation of Intelligent Water Drops Algorithm 141

The probability depends on the soil between the path. IWD selects the city with
maximum probability.

7. Update the soil and velocity:

• An IWD in city i wants to go to next city j; then, the amount of soil on this
path, i.e., soil (i, j) is used to update the velocity as given by (2).

velIWD (t + 1) = velIWD (t) + av

bv + cv · soil(i, j)
(2)

• Each IWD, carries some amount of the soil, �soil(i, j), that the current IWD
alters in its current path while travelling between the cities i and j is given by
(3).

�soil (i, j) = as

bs + cs · time(i, j; velIWD)
(3)

where time taken to travel from city i to city j with velocity velIWD is given
by time(i, j; velIWD) = c (i) − c (j)/max(εv, velIWD)

• For each IWD, update the soil of the path traversed by that IWD by removing
certain soil from the path as in (4)

soil (i, j) = (1 − ρ) · soil (i, j) − ρ · �soil(i, j) (4)

Here, ρ = 0.9.
Update the soil of each IWD by adding soil removed from the path in present
soil of the IWD

soilIWD = soilIWD + �soil(i, j) (5)

soil(i, j) represents the soil of the path between i and j . �soil (i, j) represents
the soil that IWD carries from that path, and soilIWD represents total soil carried
by the drop.

8. Each IWD completes its tour by using steps 5 to 8 repeatedly. Then, length of the
tour (TourIWD) traversed by the IWD is calculated. Then, the tour with minimum
length among all IWD tours in this iteration is found. Test the correctness of the
minimum path from the adjacency matrix.

9. If iteration best tour (current minimum tour) exists then:

• Update the soil of the paths included in the current minimum tour of the IWD
denoted by TM by (6).

soil (i, j) = (1 − ρ) · soil (i, j) + ρ · 2 · soilsIWD

Nc(Nc − 1)
∀(i, j) ∈ TM (6)

142 R. Bansal et al.

• If the minimum tour TM is shorter than the best tour TB found so far, then TB

is updated by (7).

TB = TMand Len (TB) = Len (TM) (7)

10. Otherwise discard the current minimum tour.
11. Go to step 2 unless the maximum number of iterations is reached.
12. If the maximum number of iterations is reached, then the algorithm stops with

the best tour TB with tour length Len(TB).

4 Experimental Result

In this section, we present computational results obtained. We evaluated the perfor-
mance of IWD algorithm for some TSP benchmark problems form TSPLIB [10].
We applied IWD algorithm on self-generated network like a pentagon. Firstly, a five
node layout is taken as a complete graph, which then is converted to a non-complete
graph using XNN algorithm. This network and its optimal path are shown in Fig. 1.

We also apply this on some benchmark problems such as eil51, eil76, st70, and
kroA100 after converting them to non-complete graphs.

The experimental result of benchmark problem is shown in the Table 1.

Table 1 Experimental results
for benchmark problems (10
run)

Problems Optimum length Average length by IWD

Eil51 426 445
Eil76 538 550
St70 675 748
Kroa100 21,282 24,344

Fig. 1 Left the non-complete
graph and right the optimal
path

Implementation of Intelligent Water Drops Algorithm 143

5 Conclusion

The intelligent water drops algorithm or the IWD algorithm is one of the recent
bio-inspired swarm-based optimization algorithms. It gives the optimal solution to
various optimization problems. The experimental results show that this algorithm is
capable of finding the near-optimal solution. In this paper, we apply IWD on graph-
based TSP (non-complete graphs) which gives the near-best optimal solution. We
used XNN algorithm to convert the complete TSP graph to non-complete graph.
GB-TSP represents the real-life transportation problem.

The IWD algorithm can also be used for solving multiple knapsack problem,
n-Queen problem, multilevel thresholding problem, etc.

References

1. Bonabeau, E., Dorigo, M., Theraultz, G.: Swarm Intelligence: From Natural to Artificial Sys-
tems. Oxford University Press, New York (1999)

2. Greco, F.: Travelling Salesman Problem. In-Teh is Croatian Branch of I-Tech Education and
Publishing KG, Vienna, Austria (2008)

3. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math.
Comput 214(1), 108–132 (2009)

4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization, pp. 1942–1948. Proceedings of the
Fourth IEEE International Conference on Neural Networks, IEEE Service Center, Perth, Aus-
tralia (1995)

5. Shah-Hosseini, H.: Optimization with the Nature-Inspired Intelligent Water Drops Algorithm.
In: Sentos E.W (ed.) Evolutionary Computation, p. 572. I-Tech, Vienna, Austria (2009).

6. Shah-Hosseini, H.: Problem solving by intelligent water drops. Proceedings on IEEE Congress
on Evolutionary Computation, pp. 3226–3231. Singapore (2007).

7. Shah-hosseini, H.: The intelligent water drops algorithm : a nature-inspired swarm-based opti-
mization algorithm. Compu. Eng. 1(1), 71–79 (2009)

8. Taba, M.S.: Solving Traveling Salesman Problem With a Non-complete Graph. Waterloo,
Ontario, Canada (2009)

9. Toksari, M.D.: Ant colony optimization for finding the global minimum. Appl. Math. Comput.
176(1), 308–316 (2006)

10. TSPLIB. (n.d.). Retrieved 08 23, 2012, from http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/

11. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010) 284, 65–74 (2010).

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

	15 Implementation of Intelligent Water Drops Algorithm to Solve Graph-Based Travelling Salesman Problem
	1 Introduction
	2 Behavior of Intelligent Water Drops
	3 Solving GB-TSP Using IWD
	4 Experimental Result
	5 Conclusion
	References

