
A Novel Hardware/Software Partitioning
Technique for System-on-Chip in Dynamic
Partial Reconfiguration Using Genetic
Algorithm

Janakiraman N. and Nirmal Kumar P.

Abstract Hardware/software partitioning is a common method used to reduce the
design complexity of a reconfigurable system.Also, it is amajor critical issue in hard-
ware/software co-design flow and high influence on the system performance. This
paper presents a novel method to solve the hardware/software partitioning problems
in dynamic partial reconfiguration of system-on-chip (SoC) and observes the com-
mon traits of the superior contributions using genetic algorithm (GA). This method
is stochastic in nature and has been successfully applied to solve many non-trivial
polynomial hard problems. It is based on the appropriate formulation of a gen-
eral system model, being therefore independent of either the particular co-design
problem or the specific partitioning procedure. These algorithms can perform de-
composition and scheduling of the target application among available computational
resources at runtime. The former have been entirely proposed by the authors in
previous works, while the later have been properly extended to deal with system-
level issues. The performance of all approaches is compared using benchmark data
provided by MCNC standard cell placement benchmark netlists. This paper has
shown the solution methodology in the basis of quality and convergence rate. Con-
sequently, it is extremely important to choose the most suitable technique for the
particular co-design problem that is being confronted.

Keywords Hardware/software partitioning · Genetic algorithm · Dynamic partial
reconfiguration · System-on-chip

N. Janakiraman (B)
Anna University, Chennai, India
e-mail: janakiramanforu@yahoo.com

P. N. Kumar
Anna University, Chennai, India
e-mail: nirmal.p@annauniv.edu

B. V. Babu et al. (eds.), Proceedings of the Second International Conference on Soft Computing 83
for Problem Solving (SocProS 2012), December 28–30, 2012, Advances in Intelligent Systems
and Computing 236, DOI: 10.1007/978-81-322-1602-5_10, © Springer India 2014

84 N. Janakiraman and P. N. Kumar

1 Introduction

Hardware/software partitioning is a method of dividing a complex heterogeneous
system into hardware co-processor functions and its compatible software programs.
It is a prominent practice that can realize results greater than the software-only or
hardware-only solutions in system-on-chip (SoC) design. This technique can im-
prove the system performance [1] and reduce the total energy consumption [2]. The
proposed partial dynamic reconfiguration method does not depend on any tool. It
uses a set of algorithms to detect crucial code regions, compilation/synthesize of
hardware/software modules, and updating of communication logic. Hence, it could
tune up the system to give full efficiency without disruption of other SoC-related
operations. Here, the genetic algorithm (GA) is used for optimization process. This
is essential in system-level design, since decision-making process affects the total
performance of system. This paper presents a novel system partitioning technique
with in-depth analysis. The paper is organized as follows. Section 2 briefs about the
previous works in this field. Section 3 presents the proposed system model for parti-
tioning problem. Section 4 gives the results and its analysis. Section 5 concludes the
paper and discusses about the futurework. Last section provides the list of references.

2 Related Works

When compared to dynamic partitioning using standard software, the run-time (or)
partial dynamic reconfigurable systems had attained superior performancewithman-
ually specified predetermined hardware regions. Multiple choices of preplanned
reconfigurations were rapidly executed in a run-time reconfigurable system using
PipeRench architecture [3] and dynamically programmable gate arrays (DPGA) [4].
The binary-level partitioning technique [5]was provided a good solution compared to
source-level partitioning methods due to the functionality of any high-level language
and software compiler. Since the satisfaction of performance was not considered for
the cost function of this system, it may be failed to find out local minima. A mapping
technique for nodes and hardware/software components was developed in [6] called
GCLP algorithm. The hardware cost was minimized by the incorporation of hill-
climbing heuristic algorithm with the hardware/software partitioning algorithm [7].

3 System Model for Partitioning

The problem resolution requires the system model definition to represent the impor-
tant issues in the hardware/software co-design for a specific problem [8]. The system
partitioning problem model is represented by the task graph (TG) flow diagram. TG
is a model of directed and acyclic graph (DAG) flow with weight vectors. Formally,

A Novel Hardware/Software Partitioning Technique 85

Fig. 1 System model for partitioning

it is defined as G = (V, E), where ‘V ’ represents the nodes and ‘E’ represents the
edges. The flow direction is represented by each edge. Due to reducing the complex-
ity of TG, it can be modified as one starting node and one ending node. Figure 1
represents the overview of the partitioning procedure. Design constraints and design
specifications are given as the input to the partitioning process as a high-level spec-
ification language. The nodes can act as giant pieces of information like tasks and
processes of coarse granularity or tiny types like instructions and operations of fine
granularity approach.

After the system space estimation, every node is tagged with some attributes.
Giant pieces of data for a node (Vi,j) are represented by 5 attributes as follows:

(1) Hardware area (HAi,j).

(2) Hardware implementation time (HTi,j).

(3) Software memory size (SSi,j).
(4) Software execution time (STi,j).

86 N. Janakiraman and P. N. Kumar

(5) The average execution time in numbers (Ni,j).

Shortly,

Hardware module
(
HMi,j

) = (
HAi,j

) + (
HTi,j

) + (Ni,j)

Software module
(
SMi,j

) = (
SSi,j

) + (
STi,j

) + (Ni,j)

Communication values (Ci,j) of every node are represented by three
components as follows:

(1) Transfer time (TTi,j)

(2) Synchronization time (SynTi,j)

(3) The average communication time in numbers (Mi,j)

Shortly,

Communication value of node
(
Ci,j

) = (
TTi,j

) +
(
SynTi,j

)
+ (Mi,j)

Ci,j = (Ni ∗ �TTi) + (
N j ∗ �TT j

) + (SynTi,j)

(HTi) + (HT j)

where (�TTi) = (STi) − (HTi) and (�TT j) = (
ST j

) − (
HT j

)
.

Efficiency of the hardware/software system partitioning process is based on
the target architecture and its mapping technique. Hence, this work considers the
‘Dynamically Reconfigurable Architecture for Mobile Systems’ (DReAM) as target
architecture. Execution of hardware and software processes should be concurrently
in the standard processor and the application-specific co-processor. This partitioning
process concludes the assignment of modules to implement the hardware and soft-
ware stages, implementation schedule (timing), and the communication interface
between software and hardware modules. In general, this partitioning solution can
be validated by the measurement of eminent attributes like performance and cost pa-
rameters. Hence, this paper used as three quality attributes related to design elements
as follows:

(1) The estimated hardware area is AE , and the maximum available area is A.
(2) The estimated design latency is TE , and the maximum allowed latency is T.
(3) The estimated software (or) memory space is ME , and the maximum available

space is M.

Static-list scheduling method is used for the scheduling process [9]. It is a subtype
of resource-constrained scheduling algorithm. This scheduler considers the timing
estimation of every vertex and its interconnections. This scheduler unit provides the
design latency (TE) and the cost of communication for hardware–software co-design.
Based on the hardware and software implementations, another four parameters are
considered for co-design realization.

When the entire system is implemented in hardware,

(1) The minimum design latency is MinT.
(2) The maximum hardware area is MaxA.

A Novel Hardware/Software Partitioning Technique 87

When the entire system is implemented in software,

(1) The maximum design latency is MaxT.
(2) The maximum memory space is MaxM.

These parameters are used to create the bounding constraints for the design space.
0 ≤ A ≤ MaxA; 0 ≤ M ≤ MaxM; MinT ≤ T ≤ MaxT.

3.1 System Operations

The design specifications are given in the format of ISPD98 benchmark suite [10]
circuit netlist. This partitioning process has three stages.

In first stage, the processing of design specifications is divided into three subtasks.
The first subtask is the separation of hardware (HAi and HTi) and software (SSi and
STi) estimations from the design specifications. The second subtask is to translate
the design specifications into a hypergraph-based control data flow graph (CDFG)
representation G = (V, E). The third subtask is scheduling (Ni and Ni,j) of each
operations in the CDFG with satisfaction of the design constraints and the priority
of operations.

In second stage, the outputs of these three tasks are given into the system-level par-
titioning module through the registers. It has three functionalities. The operational-
level analysis is the first process, used to classify the tasks whether it is suitable for
hardware realization or software execution. Next, the allocation process is used to
allocate the required supporting entities like functional units, interconnections, and
storage elements for the scheduled hardware and software systems. This allocation
is based on the speed constraint (i.e., parallel processing) and the area constraint
(i.e., dynamic partial reconfiguration). Finally, an absolute data path is generated
by integrating components in the basis of hardware and software partitions. Then,
the partitioning data are given to the specific hardware (HMi) and software (SMi)

models.
In third stage, the hardware and software models are executed separately and the

outcomes are compared with their estimated values (i.e., first stage). If any con-
troversy arises, the feedbacks are given to the second-stage process. This looping
process is continued till the satisfaction of all criterions.

Next, the performance (Ci,j) of hardware–software co-design is estimated and
compared with target performance metrics. If any misalignment arises, the feedback
is indicated to the system-level partitioning stage. Then, the entire second and third
stages are recompiled, till the achievement of target performance measures. Finally,
the hardware/software co-simulation and co-verification is performed, and then, the
SoC is realized.

88 N. Janakiraman and P. N. Kumar

3.2 Hardware/Software Estimation

The CDFG file is given to the input of both hardware and software estimations with
the settings of target technology files and processor specifications. The hardware
execution is a parallel process since the specifications are modeled in VHDL library.
The software execution is a sequential process since the specifications aremodeled in
C code. TheGA technique is used to optimize these parallel and sequential processes.

Hardware estimation is based on the high-level synthesizable components, to
share the control and data path between hardware and software processes. GA is
used to optimize this resource sharing process [11]. The quality measures are closely
associated with performance metrics like execution, implementation, transfer, and
synchronization times commonly called reaction time. This reaction time is associ-
ated with each node in each execution of local DFG. For convenient, the CDFG is
split into several small DFGs called local DFGs.

The response times for
Routine statements, TRS = TDFG
Conditional statements, TCS = ∑

n
PnTDFGn ;

n—Number of iterations
Pn—Probabilities of iterations of outcomes

Looping statements, TLS = nTDFG ;

TCDFG = F(TDFG1, FDFG1, . . . , TDFGi, FDFGi)

+F(TDFG1, FDFG1, . . . , TDFGj, FDFGj)

MinT = α[(MaxA ∗ Ci,j) +
∑

i

Ti Ni,j]

Ti—Time delay for each node
α—Co-estimation factor

MaxT = MinT + β
∑

i

[Ti

Ri∑

j=1

Ni,j]

Ri—Required components of each node ‘i’
β—Constant, since MaxT is a higher-order term
Fi—Number of fixed components for each node ‘i’

TCDFG = MinT + β
∑

i

[Ti

Fi

Ri∑

j=Fi +1

Ni,j]

Register Estimation: [12]
Many input multiplexers = (i∗MUXs)

A Novel Hardware/Software Partitioning Technique 89

State machine-based control logic is used to control lines, log2i

ROM size, (STA∗[(1 + log2i
) (

REG + ∑

i
Fi

)
+ log2S])bits

STA—Number of states
REG—Number of registers

Software estimation is based on the calculation of memory space occupied by
instruction set and user-defined data types and data structures. The average queuing
time for each memory access can be modeled as Tq , and the number of access is

represented by Nmem. This calculation is necessary to estimate
(
TTi,j

)
and

(
SynTi,j

)
.

Hardware estimation (THM) = (
T(CDFG,HM)

) + αTq(Nmem,HM)

Software estimation (TSM) = (
T(CDFG,SM)

) + Tq(N(mem,SM))

Co-estimation
(
THM/SM

) = σ
(
Tq

) + ϕ(Nmem
Tq

); where σ andϕ are complex
structures.

4 Analyses of Results

All the hardware/software partitioning algorithms have been experimented in a set of
benchmark suites provided by ISPD’98, whose characterization is shown in Table 1.
Size and values of the system graph should bound within the design space. All these
examples are illustrated in the form of directed and acyclic graphs to specify the
certain coarse–grain tasks. Every example has been tested in different constraints,
but it always within the specified boundary conditions. The results are summarized
in Table 2. These results will be analyzed from both qualitative and quantitative
perspectives. The qualitative aspects will be mainly represented by the resulting
cost of the solutions obtained from each method, under different constraints. The
quantitative issues will be shown by means of the computation time resulting from
each technique.

Table 1 Design characteristics for ISPD’98 benchmark suite

Circuit # Cells # Pads # Modules # Nets # Pins

ibm01 12,506 246 12,752 14,111 50,566
ibm02 19,342 259 19,601 19,584 81,199
ibm03 22,853 283 23,136 27,401 93,573
ibm04 27,220 287 27,507 31,970 105,859
Ibm05 28,146 1,201 29,347 28,446 126,308

90 N. Janakiraman and P. N. Kumar

Table 2 Results acquired with the ISPD’98 examples

Example Constraints Genetic algorithm
Area (CLBs) Time (ns) Memory (Bytes) AE TE ME Fitness

ibm01 121,800 10,200 52,670 118,146 9,384 46,350 0.9233
103,080 8,670 44,770 101,637 8,020 41,189 0.9437

ibm02 154,700 12,600 55,980 140,170 11,230 49,823 1.0000
193,375 15,750 48,980 172,104 15,435 51,429 0.9733

ibm03 171,200 14,200 48,090 154,896 12,040 38,953 1.0000
111,280 9,230 57,708 103,521 8,769 54,823 1.0000

ibm04 182,200 15,900 56,460 173,090 14,469 62,106 0.9866
258,724 19,239 50,814 234,597 16,546 46,749 0.9600

ibm05 198,300 16,800 62,210 180,453 13,776 58,478 0.8900
97,167 12,432 81,495 92,309 10,940 84,755 0.9566

5 Conclusion and Future Work

In this paper, the commonly used biologically inspired optimization algorithm,which
addresses the hardware/software partitioning problem for SOC designs, is imple-
mented using clustering approach as well as their performance is evaluated. This
evaluation process does not have any constraints on the cluster size and the number
of clusters. Hence, this evaluation approach is quiet suitable to be used in reducing
the design complexity of systems. This paper had shown how this problem can be
solved by means of very different partitioning techniques at runtime of the system
(dynamic partial reconfiguration). The problem resolution has been based on the
definition of a common system model that allows the comparison of different pro-
cedures. These extensions have improved previous implementations, because they
include some issues previously not considered. The constraints of these algorithms
have been integrated into the cost function in a general and efficient way. This genetic
algorithm-based dynamic partitioning technique has produced an average of 16.19%
accuracy in hardware/software partitioning compared to [13] and [14].

A future study could extend the system model to encompass other quality at-
tributes, like power consumption, influence of communications, and the degree of
parallelism. Also, the hybrid algorithms of these biologically inspired algorithms
and their compilation are currently under study.

Acknowledgments This work was supported in part by All India Council for Technical Education
—Quality Improvement Programme scheme 2010. Access to research and computing facilities was
provided by the Anna University and K.L.N. College of Engineering.

A Novel Hardware/Software Partitioning Technique 91

References

1. Gajski, D.D., Vahid, F., Narayan, S., Gong, J.: SpecSyn—an environment supporting the
specify-explore-refine paradigm for Hardware/Software system design. IEEE Trans. VLSI
Syst. 6(1), 84–100 (1998)

2. Henkel, J.: A low power Hardware/Software partitioning approach for core-based embedded
systems. In: Proceedings of the 36th ACM/IEEE Conference on Design Automation, pp.
122–127 (1999)

3. Goldstein, S.C., Schmit, H., Budiu, M., Moe, M., Taylor, R.R.: PipeRench—a reconfigurable
architecture and compiler. IEEE Computer 33, 70–77 (2000)

4. DeHon, A.: DPGA-coupled microprocessors-commodity ICs for the early 21st century. In:
Proceedings of FCCM (1994)

5. Stitt, G., Vahid, F.: Hardware/Software partitioning of software binaries. In: IEEE/ACM In-
ternational Conference on Computer Aided Design, pp. 164–170 (2002)

6. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning—
application in VLSI domain. IEEE Trans. VLSI Syst. 20(1) (1999)

7. Alpert, C. J.: The ISPD98 circuit benchmark suite. In: Proceedings of the 1998 International
Symposium on Physical Design, pp. 80–85 (1998)

8. Jiang, Y., Zhang, H., Jiao, X., Song, X., Hung, W.N.N., Gu, M., Sun, J.: Uncertain model and
algorithm forHardware/Software partitioning. IEEEComp. Soc. Annu. Symp.VLSI 243–248
(2012)

9. Al-Wattar, A., Areibi, S., Saffih, F.: Efficient on-line Hardware/Software task scheduling
for dynamic run-time reconfigurable systems. In: 26th International Parallel and Distributed
Processing Symposium Workshops & PhD, Forum, pp. 401–406 (2012)

10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization andMachine Learning. Pearson
Education (2004)

11. Sheng, W., He, W., Jiang, J., Mao, Z.: Pareto optimal temporal partition methodology for
reconfigurable architectures based onmulti-objective genetic algorithm. In: 26th International
Parallel and Distributed Processing Symposium Workshops and PhD, Forum, pp. 425–430
(2012)

12. Mazumder, P., Rudnik, E.M.: Genetic Algorithms for VLSI Design, Layout and Test Automa-
tion. Pearson Education (2003)

13. Luo, L., He,H., Dou,Q., Xu,W.:Hardware/Software partitioning for heterogeneousmulticore
SoC using genetic algorithm. In: Second International Conference on Intelligent System
Design and Engineering Application, pp. 1267–1270 (2011)

14. Su, L., Zhang, X.: Research on an SOC Software/Hardware partition algorithm based on
undirected graphs theory. In: IEEE International Conference on Computer Science and Au-
tomation Engineering, pp. 274–278 (2012)

	10 A Novel Hardware/Software Partitioning Technique for System-on-Chip in Dynamic Partial Reconfiguration Using Genetic Algorithm
	1 Introduction
	2 Related Works
	3 System Model for Partitioning
	3.1 System Operations
	3.2 Hardware/Software Estimation

	4 Analyses of Results
	5 Conclusion and Future Work
	References

