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    Abstract  

  Generally, all endophytes should be considered as a community that 
interacts with other symbiotic organisms, such as mycorrhiza. Even 
though an endophyte may colonize the plant systematically, communi-
ties colonizing the plant shoots normally differ to a degree from the 
root-associated endophytes. Meristem-associated shoot endophytic 
bacteria are often found as contaminants in plant tissue cultures started 
from shoot tips (buds) or embryos. Whereas root endophytic bacteria 
are reasonably well studied with respect to location and interactions 
with the host, not much is known about endophytes associated with 
shoot meristems. Endophytic bacteria have been localized in the meri-
stematic tissues of buds and flowers by in situ hybridization and 
transmission electron microscopy. Meristem-associated endophytes 
may share some growth-promoting traits with the root endophytes, but 
likely additional mechanisms of actions exist. For example, such endo-
phytes can produce adenine derivatives that induce growth of the host 
tissue. These endophytes may also affect the plant development by 
various ways. Some of them can co-synthesize secondary metabolites 
together with the plant host. Many more mechanisms remain to be 
determined by methods such as genomics and metabolomics, which 
are valuable tools for characterizing the interactions between the plant 
and endophytic bacteria.  
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1         Introduction 

 The studies on endophytic bacteria are often 
done on the plant root tissues (Rosenblueth and 
Martinez-Romero  2006 ). However, the root- 
associated communities typically differ from the 
shoot-associated ones on their diversity and func-
tion (Moore et al.  2006 ; Mano et al.  2006 ,  2007 ; 
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Izumi et al.  2008 ; Yrjälä et al.  2010 ; Compant 
et al.  2011 ). The study by Yrjälä et al. ( 2010 ) on 
hybrid aspen seedlings showed that the most 
frequently cultured leaf endophyte was  Methylo-
bacterium fujisawaense , whereas the roots mainly 
contained bacterial species of  Burkholderia fungo-
rum, Pseudomonas koreensis , and  Rahnella aqua-
tilis . Izumi et al. ( 2008 ) compared the endophytic 
populations of pine, birch, and rowan in the below- 
and aboveground tissues using cultivation-dependent 
and cultivation- independent analyses. They found 
a clear difference between the bacterial communities 
and also showed that a higher number of strains 
are found in the roots than in the stem and leaf 
tissues, whereas there was no difference between 
stem and leaf communities. Cultivation- dependent 
analyses of grape vine (Compant et al.  2011 ) and 
rice (Mano et al.  2006 ,  2007 ) have given similar 
results. In this chapter, the shoot tissues, especially 
the meristematic tissues in shoot tips (buds), fl owers, 
seeds, and seedlings, are discussed with respect to 
endophytic bacteria and their interactions with 
the plant host, possibly affecting plant growth 
and development. A number of growth-promoting 
traits are shared between epiphytes and endo-
phytes, as some of the species do occupy both 
niches. However, most endophytes inhabit only 
the specifi c niche of the plant interior (Izumi et al. 
 2008 ; Yrjälä et al.  2010 ), and more than likely, 
they have specifi c traits and roles within the plant 
tissue. In this chapter, we discuss the role of 
bacterial endophytes in the plant shoot tissues in 
the light of the most recent discoveries.  

2     Plant Shoot-Associated 
Endophytes 

 The endophytic bacteria of shoot tissues are often 
isolated from plant tissue cultures, which are 
started from the meristems of the shoot tips, or 
seed embryos. For example, endophytic bacteria 
have been detected in the tissue cultures of 
papaya (Thomas et al.  2007 ), banana (Thomas 
et al.  2008 ), hazelnut (Reed et al.  1998 ), sour 
cherry (Kamoun et al.  1998 ), various species of 
poplar, larch, black locust and Norway spruce 

(Van Aken et al.  2004 ; Ulrich et al.  2008 ), and 
Scots pine (Laukkanen et al.  2000 ; Pirttilä et al. 
 2000 ). The range of bacterial species isolated 
from plant tissue cultures is wide,  Paenibacillus, 
Bacillus, Pseudomonas , and  Methylobacterium  
probably being the most commonly reported 
genera (Pirttilä et al.  2000 ; Ulrich et al.  2008 ). 

2.1     Shoot Tissues as a Niche 
for Endophytic Bacteria 

 Compared to roots, plant shoot tissues are 
exposed to UV radiation, rapidly fl uctuating 
temperatures and alternations in relative humidity. 
Shoot tissues contain more methanol, as methanol 
is mostly produced by the shoot tissues, contrib-
uting to methanol emissions to the atmosphere 
(Nemecek-Marshall et al.  1995 ). When exoge-
nously applied to shoots, methanol induces plant 
growth, whereas root application results in toxic 
effects for the plant (Ramírez et al.  2006 ). Another 
signifi cant difference between the shoot and 
root tissues as a niche for endophytes is 
photosynthesis, which exclusively occurs in the 
shoots. The few studies performed suggest that 
photosynthetic products are not consumed by 
endophytic bacteria, neither is photosynthetic 
effi ciency affected by them. For example, the 
poplar endophyte  Enterobacter  sp. 638 has no 
effect on photosynthesis, stomatal conductance, 
photosynthetic water use effi ciency or the 
maximum and operating effi ciency of photosys-
tem II (Rogers et al.  2012 ). Another example is 
the endophyte  Methylobacterium extorquens  
DSM13060, isolated from shoot tips of Scots 
pine, which cannot utilize glucose or fructose as 
the energy source (Pirttilä et al.  2000 ). It is not 
well understood how the endophytes of shoot 
tissues enter the plant. Likely, some strains enter 
from the leaf surface through the epiderm or 
stomatal cells. In this case, their origin would 
be the water or air (wind). A number of shoot 
endophytes can be vertically transmitted, that is, 
through the seeds, although this has not exclusively 
been proved. Endophytes have been isolated from 
the seeds and even pollen (Cankar et al.  2005 ; 
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Madmony et al.  2005 ; Pirttilä  2011 ), and a seed-
inoculated endophyte has been shown to colonize 
the seedling tissues in  Eucalyptus  (Ferreira et al. 
 2008 ). A third likely source is the soil. When 
endophytes colonize plant shoots through the 
roots, they need to fi nd a way to transfer further 
to the shoot tissues, and xylem has been proposed 
in several studies as the means of transportation 
after the fi rst discovery of bacteria inhabiting 
xylem vessels (Bell et al.  1995 ). Our recent studies 
on colonization of Scots pine seedlings by the 
GFP-tagged  M. extorquens  DSM13060 indicate 
that all three routes can occur (Fig.  5.1 ; Koskimäki 
et al. unpublished).

2.2        Detection and Localization 
of Endophytic Bacteria in 
Shoot Meristematic Tissues 

 The traditional methods developed for the detection 
of endophytes relied on techniques dependent 
on plating of the bacteria. For example, surface-
sterilized plant tissue was plated and the colonies 
growing on the medium after a specifi c incubation 
time were studied further. The endophytic bacte-
ria associated with meristematic tissues were 
often isolated from plant tissue cultures, which 
had been started from surface- sterilized plant 
material. As a result, only cultivable strains were 
typically studied further, and the methods were also 

selective for species that preferred the growth 
conditions used. However, most endophytes are 
likely not cultivable (Koskimäki et al.  2010 ; 
Tejesvi et al.  2010 ) and a higher number of endo-
phytes have been found by culture-independent 
methods than by culture- dependent ones (Yang 
et al.  2001 ;    Podolich et al.  2007 ; Tejesvi et al.  2010 ; 
   Yashiro et al.  2011 ). Therefore, culture-independent 
techniques, such as in situ hybridization (Pirttilä 
et al.  2000 ), and PCR-based methods, for example, 
denaturing gradient gel electrophoresis (DGGE) 
(Yang et al.  2001 ; Izumi et al.  2008 ), restriction 
fragment length polymorphism (RFLP) (Ardanov 
et al.  2012 ), and direct sequencing (Koskimäki 
et al.  2010 ), have been developed and applied for 
the study of single endophytic bacterial strains or 
whole communities. However, the methods based 
on amplifi cation of bacterial 16S rDNA are often 
hampered by the similarity between bacterial, 
plant mitochondrial, and chloroplast sequences 
and need careful designing of primers specifi c 
for the bacteria (Sessitsch et al.  2002 ; Ardanov 
et al.  2012 ). Endophytes can be localized in the 
plant tissue by various microscopic methods. 
Transmission electron microscopy (TEM) 
enables very high magnifi cation of the plant tis-
sue and study of the location of bacteria in the 
cellular compartments, although distinguishing 
the bacterial cells in the sample requires specifi c 
expertise. Another weakness of the method is that 
TEM gives no information on the species of the 

  Fig. 5.1    Colonization of Scots pine seedling by GFP-tagged 
 Methylobacterium extorquens  DSM13060. ( a ) A longitudinal 
section of the pine root epiderm and cortex highly colonized 

by the bacteria 12 days after inoculation. ( b ) A cross 
section of the shoot, showing bacteria inside the cortex 
tissue 7 months after inoculation (scale bar = 10 μm)       
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endophytic organism. By TEM, endophytic bac-
teria have been detected in ultrathin sections of 
buds of linden ( Tilia cordata  L.) and needles of 
blue spruce (Doronina et al.  2004 ; Pirttilä et al. 
 2008 ). 

 In situ hybridization can be used for localization 
of endophytic bacteria by species, genus, class, 
or phylum. Pirttilä et al. ( 2000 ,  2003 ) developed 
oligonucleotide probes to detect endophytes in 
pine tissues. Using probes specifi c for eubacteria, 
 Methylobacterium  spp., a  Pseudomonas fl uorescens  
subgroup, and  Mycobacterium  spp., the corre-
sponding endophytes were identifi ed in the cells 
of scale primordia, the meristems, and around the 
resin ducts of Scots pine buds (Pirttilä et al.  2000 , 
 2003 ,  2005 ) and in the cells of growing callus 
culture (Pirttilä et al.  2002 ). The advantage of using 
the in situ hybridization method is that besides 
localizing the microbes, it refl ects the changes in 
the metabolic activity of the microbes when the 
probes are hybridized to transcripts such as 
ribosomal RNA (DeLong et al.  1989 ). Therefore, 
the location and metabolic activity of endophytes 
in the Scots pine shoot tips were dependent on 
the growth season when studied by in situ hybrid-
ization throughout the year. Endophytes were not 
detected at all during pine dormancy and rarely 
found in the elongating shoot tips during growth 
season. The highest endophytic metabolic rates 
were detected in tissues of spring and autumn, 
prior to growth or differentiation of the bud (Pirttilä 
et al.  2005 ). In addition to buds, endophytic bacteria 
are detected in reproductive organs. Madmony 
et al. ( 2005 ) isolated  Enterobacter cloacae  from 
pollen and fertilized ovules of different  Pinus  
sp., and Pirttilä ( 2011 ) detected endophytes in 
infl orescences and seed embryos of  Pinus sylvestris . 
Bacteria in the genera  Pseudomonas  and  Rahnella  
were found in seeds of Norway spruce (Cankar 
et al.  2005 ). Furthermore, several endophytic 
bacterial species in the taxa  Gammaproteobacteria  
(relatives of  Pseudomonas  sp.) and  Firmicutes  
(relatives of  Bacillus pumilus  and  B. cereus  group 
members) have been isolated from fl owers, fruits, and 
seeds of grapevine (Compant et al.  2011 ). In 
another recent study, species of  Kocuria , 
 Acinetobacter ,  Enterobacter , and  Staphylococcus  

were isolated from seeds, endocarp, and mesocarp 
of different  Carica papaya  variety fruits (Krishnan 
et al.  2012 ). Johnston-Monje and Raizada ( 2011 ) 
studied recently the endophytic microbes in the 
seeds of various  Zea  sp. and by culture-independent 
methods identifi ed  Clostridium  and  Paenibacillus  
spp., and by culturing, bacteria in the genera 
 Enterobacter ,  Methylobacterium ,  Pantoea , and 
 Pseudomonas . Molecular methods provide addi-
tional tools for studying bacterial colonization 
and localization. These methods have commonly 
been used for studying microbes in the rhizosphere. 
Genetic tagging of endophytic bacteria with 
genes encoding for fl uorescent reporter proteins 
allows detailed monitoring of the colonization 
process inside the plant tissues by using laser scan-
ning confocal microscopy (LSCM) (Poonguzhali 
et al.  2008 ; Prieto et al.  2011 ). Broad host-range 
plasmid vectors and transposon systems with 
stable site-directed insertions to bacterial chro-
mosome provide several alternatives suitable for 
transformation of most bacterial species (Koch 
et al.  2001 ; Ramos et al.  2011 ). Advances in the 
development of novel reporter protein derivates, 
which are brighter and more photostable than the 
conventional ones, have supplied new means to 
overcome the extensive autofl uorescence of plant 
tissues, which often hinders the colonization 
studies by LSCM (Shaner et al.  2007 ; Lagendijk 
et al.  2010 ). Combination of LSCM with advanced 
genetic tagging methods presents a valid, nonin-
vasive alternative for complex endophyte-host 
interaction studies to be performed with live or 
fi xed plant tissues. In our recent interaction study, 
a dual labeling strategy was used to monitor 
simultaneously the endophytic colonization and 
gene expression of  Methylobacterium extorquens  
DSM13060 in Scots pine ( Pinus sylvestris  L.) 
seedlings.  M. extorquens  DSM13060 was tagged 
chromosomally with green fl uorescent protein 
(eGFP) under constantly active promoter by using 
Tn5 transposon. To assess the bacterial gene 
activity during the endophytic lifestyle, another 
reporter protein “mCherry” regulated by a selected 
promoter region was subsequently transformed 
to the same bacterial strain. Activation of the 
mCherry reporter verified that the selected 
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promoter and the gene regulated by it were func-
tioning in the endophytic conditions. At the same 
time, the dual reporter experiment provided 
detailed information about methylobacterial 
colonization and localization in the pine tissues 
(Fig.  5.1 , Koskimäki et al. unpublished).   

3     Interactions of Shoot 
Meristem-Associated 
Endophytes with 
Plant Host 

 Methanol present in the shoot tissues creates a 
good carbon source specifi cally for methylo-
trophs, which can utilize methanol and methane 
as the energy source (Fall  1996 ; Fall and Benson 
 1996 ). Because methanol is toxic for the plant, 
the removal by methylotrophs may already have 
signifi cant benefi ts for the plant. Methanol applied 
to the plant surface increases plant shoot growth 
(Nonomura and Benson  1991 ; Ramírez et al. 
 2006 ), which suggests that methylotrophic bacte-
ria transform methanol to products benefi cial 
for the plant. For example,  Methylobacterium  
spp. can participate in the biosynthesis of com-
pounds commonly known as plant products 
(Zabetakis  1997 ; Koutsompogeras et al.  2007 ). 
Endophytic bacteria were recently detected in the 
receptacle vascular tissue and in the cells of 
achenes of raw strawberry. This study indicated 
that the biosynthesis of the strawberry fl avor 
compounds DHMF and mesifuran is aided by 
the bacterial methanol dehydrogenase, as the 
bacterial methanol dehydrogenase and plant 
DMHF biosynthesis genes were localized by in 
situ hybridization in the same tissues or cells of 
the strawberry receptacle (Nasopoulou  2012 ). 
Independent of methylotrophy, many studies 
have reported the positive effect of shoot endo-
phytic bacteria on tissue organogenesis and 
embryogenesis (Visser et al.  1994 ; Murthy et al. 
 1999 ; Pirttilä et al.  2004 ; Pohjanen et al.  2013 ). 
However, rarely specifi c, individual compounds 
are identifi ed responsible for such effects. Phyto-
hormones produced by endophytes are the most 
popular compounds suggested responsible for the 
morphological effects on plant host. 

3.1     Endophytic Products 

 Production of plant growth hormones is typical 
for all plant-associated microbes. However, 
even though a microbe can produce plant growth 
hormones, it cannot be generalized to promote 
growth on all plant hosts, but the result depends 
on mutual interactions, as was discovered on 
 Solanum nigrum  endophytic bacteria (Long 
et al.  2008 ). Whereas gibberellin production can 
be considered a typical trait for root-associated 
bacteria, epiphytic and root endophytic bacteria 
most typically synthesize and secrete auxins 
(Brandl and Lindow  1996 ; Bastián et al.  1998 ; 
Costacurta et al.  1998 ; Doronina et al.  2002 ; 
Gamalero et al.  2003 ; Ivanova et al.  2001 ,  2008 ; 
Merzaeva and Shirokikh  2010 ). However, IAA 
has been identifi ed as a product of a few endo-
phyte species isolated from shoots. For exam-
ple, the shoot endophytic  Pseudomonas stutzeri  
strain producing IAA has been isolated from 
 Echinacea  tissue culture (Lata et al.  2006 ). The 
endophyte of poplar,  M. populi , and the endo-
phyte of pollen grains of  Pinus  spp.,  Enterobacter 
cloacae , are reported to produce IAA (Madmony 
et al.  2005 ; Taghavi et al.  2009 ). A number of 
pathogenic and benefi cial plant-associated bac-
teria synthesize cytokinins (Akiyoshi et al. 
 1987 ; Timmusk et al.  1999 ; Garcia de Salamone 
et al.  2001 ). Methylotrophic epiphytic bacteria 
such as  Methylovorus mays  and 
 Methylobacterium mesophilicum  JCM 2829 
also synthesize cytokinins (Ivanova et al.  2000 , 
 2008 ). These results would indicate a signifi cant 
role for plant growth hormones such as cytoki-
nins in the plant growth promotion by plant- 
associated microbes. However, when cytokinin 
production and plant growth promotion were 
studied in the type strain  Methylobacterium 
extorquens  AM1, results indicated that cytoki-
nin production might not be the factor contribut-
ing to plant growth (Koenig et al.  2002 ).  M. 
extorquens  was reported to produce tRNA-
derived trans- zeatin, but when cytokinin-null 
( miaA ) mutants incapable of cytokinin synthesis 
were generated, they stimulated germination of 
the heat-treated soybean seeds at the same level 
as the wild-type bacteria (Koenig et al.  2002 ). 
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 Plant growth hormone production is not 
common to all endophytes, especially those 
associated with meristematic tissues. Even in the 
strains producing plant growth hormones, the levels 
vary greatly (Ivanova et al.  2008 ). These results 
indicate that other possibly more prominent 
methods of growth promotion by endophytes 
exist. The endophytes isolated from Scots pine shoot 
tips,  Methylobacterium extorquens  DSM13060 
and  Pseudomonas synxantha  DSM13080, produce 
compounds that extend the viability and affect 
the morphology of callus tissues in vitro (Pirttilä 
et al.  2004 ). The most common plant growth 
hormones were not identifi ed responsible for 
these effects, but adenine and adenine ribosides 
were produced by  M. extorquens  DSM13060 
(Pirttilä et al.  2004 ). Adenine induces plant 
growth in tissue culture, but the mode of action is 
unknown (George and Sherrington  1984 ). 
Adenine riboside is the metabolite of adenine 
(Baumann et al.  1994 ) and found abundant in the 
vascular cambial region of  Pinus sylvestris  
(Moritz and Sundberg  1996 ). Therefore, adenine 
and adenine riboside are potential plant-growth-
promoting products of shoot endophytes. A trait 
often associated with endophytic bacteria is 
production of the enzyme aminocyclopropane-
1-carboxylate (ACC) deaminase. This enzyme 
transforms the ethylene precursor ACC to ammonia 
and 2-oxobutanoate, preventing ethylene signaling. 
Ethylene is a plant hormone acting in seed germi-
nation and various stresses, such as bacterial 
colonization. It has been suggested that ACC 
deaminase increases plant growth and develop-
ment in stressful conditions by decreasing plant 
ethylene levels (Glick  2005 ). For example, the 
root endophyte  Burkholderia phytofi rmans  PsJN 
carries a gene encoding ACC deaminase, and 
inactivation of this gene results in loss of the ability 
to promote root elongation in canola seedlings 
(Sun et al.  2009 ). Whereas the ACC deaminase- 
carrying endophytes are often isolated and studied 
in the rhizosphere or roots, a recent study performed 
on cut fl owers indicates that bacteria were able 
to colonize the shoot where ACC deaminase 
prolonged fl owering (Ali et al.  2012 ). However, 
an analysis of sequenced endophyte genomes 
suggests that ACC deaminase is less important than 

anticipated (Frank  2011 ). The  Methylobacterium 
extorquens  DSM13060 isolated from Scots 
pine buds carries the gene for ACC deaminase. 
When activation of this gene was studied by 
promoter fusion with a fl uorescent protein, it was 
rarely active during endophyte colonization of 
pine seedlings (Koskimäki et al. unpublished). This 
might indicate a smaller role of ACC deaminase 
in the plant shoot- colonizing endophytes. Epiphytic 
methylotrophs can synthesize vitamin B 12  (Nishio 
et al.  1977 ; Ivanova et al.  2006 ,  2008 ), which has 
been suggested a plant-growth-promoting product 
of endophytes, as well (Ivanova et al.  2008 ). 
Vitamin B 12  comprises a group of compounds that 
have trivalent cobalt as the cofactor. Generally, 
vitamin B 12  is the coenzyme for isomerization 
and transmethylation reactions in the biosynthesis 
of compounds containing methyl groups. Enzymes 
requiring vitamin B 12  as the coenzyme are found 
in many fl owering plants that cannot synthesize 
vitamin B 12  (Holland and Polacco  1994 ). In mosses, 
epiphytic methylotrophs increase the biomass, 
amount, length, and the degree of branching of 
gametophytes (Koopman and Kutschera  2005 ), 
which are also obtained by exogenously applied 
vitamin B 12  (Basile et al.  1985 ). However, our recent 
reporter gene studies on the shoot endophyte 
 M. extorquens  DSM13060 suggest a smaller role 
for bacterial vitamin B 12  production in the plant-
endophyte interaction, than previously suggested 
(Koskimäki et al. unpublished).  

3.2     Interaction Web in the Full 
Plant Microbiome 

 The interactions between various plant- associated 
microbes are often studied in isolated in vitro 
conditions using single strains. These studies are 
usually concentrated on the roots because of the 
well-known benefi ts of root fungal and bacterial 
symbionts, mycorrhiza, and rhizobia, respectively. 
Mutualistic interactions can be found between 
mycorrhizal fungi and a group of bacteria, called 
mycorrhizal helper bacteria (MHB; Garbaye  1994 ). 
Furthermore, interactions between different plant-
growth-promoting rhizobacteria (PGPR, Bashan 
and de-Bashan  2005 ) have been shown benefi cial 
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for the host plant (Madhaiyan et al.  2010 ). These 
microbes usually improve the growth and nutri-
tion of the plant and, in the case of MHB, also 
the growth and sporulation of the fungal partner. 
Similarly, the mycorrhizal fungus can promote 
growth of the bacterial partner. For example, in 
 Pinus halepensis  roots, the ectomycorrhizal 
fungus  Suillus granulatus  improved the survival 
of  Pseudomonas fl uorescens  in areas where the 
fungal colonization was the highest (Rincón et al. 
 2005 ). The interaction between microbes is often 
specifi c for the species or the strain. Studies 
combining epiphytic  Methylobacterium oryzae  
strains with different rhizobacteria (Madhaiyan 
et al.  2010 ) or with arbuscular mycorrhiza 
(Kim et al.  2010 ) showed that the positive growth 
effect was dependent on the combination of 
microbes. Similarly, the root endophytic bacteria 
 Pseudomonas aeruginosa  and  Burkholderia 
cepacia  of oil palm were shown to act as mycorrhizal 
helper bacteria on two arbuscular mycorrhizal 
fungi,  Glomus clarum  and  Glomus intraradices , 
but to exhibit antagonism on the pathogen 
 Ganoderma boninense  (Sundram et al.  2011 ). 
Although the microbial communities differ in the 
aerial parts from those of the roots (Izumi et al. 
 2008 ; Yrjälä et al.  2010 ) and there is a very low 
number of published examples of microorganisms 
interacting in the plant shoot tissues, a similar 
interaction between various members likely exists. 
For example, parallel to bacteria found in the 
hyphae of mycorrhizal fungi in the rhizosphere, 
Hoffman and Arnold ( 2010 ) revealed bacteria 
inhabiting the living hyphae of foliar endophytic 
fungi. Furthermore, Araújo et al. ( 2001 ) isolated 
several endophytic species from leaf tissues of 
citrus rootstocks and found that  Guignardia 
citricarpa , one of the most abundant fungi among 
the isolates, stimulated growth of the endophytic 
 P. agglomerans  but had an inhibitory effect on 
growth of some endophytic  Bacillus  species. 

 Microbes can prevent or inhibit the growth of 
other strains by several ways. Direct growth inhi-
bition can occur through secreted compounds, 
but antagonism includes also the competition for 
colonization sites, nutrients, and minerals 
(reviewed by Berg  2009 ). Endophytic  Bacillus 
subtilis  strain from the stem of the giant hogweed 

( Heracleum sosnowskyi , Manden) produces 
antifungal lipopeptide antibiotics and is able to 
protect tomato against the fungal pathogen caus-
ing tomato foot and root rot (Malfanova et al. 
 2011 ,  2012 ).  Bacillus mojavensis  isolated from 
kernels of maize is able to inhibit growth of the 
pathogenic fungus  Fusarium verticillioides  and 
reduce mycotoxin production (Bacon et al.  2001 ; 
Bacon and Hinton  1999 ), and a number of  B. 
mojavensis  strains were shown to produce a mix-
ture of surfactins, which are toxic to several 
pathogens (Bacon and Hinton  2011 ). Another 
example comes from our study on shoot endo-
phytic  Methylobacterium  sp. IMBG290, which 
induced resistance against the pathogen 
 Pectobacterium atrosepticum  in potato. The 
resistance was not due to produced toxins but 
dependent on the inoculum density of 
 Methylobacterium  sp., which was associated 
with changes in the structure of the existing, 
innate endophyte community. The changes cor-
related with resistance or susceptibility, suggest-
ing that the whole endophytic community acted 
on the plant responses (Ardanov et al.  2012 ). 
Interaction between symbiotic microorganisms 
can also occur across various plant compartments 
(Novas et al.  2009 ; Liu et al.  2011 ), such as roots 
and shoot tips. These examples demonstrate that 
an endophyte strain isolated from the host plant 
should never be considered as an organism inter-
acting with the plant host alone, but as a member 
of the full plant microbiome.   

4     Conclusions 

 The plant shoot-colonizing bacterial endophytes 
are considerably less studied than bacteria living 
in the roots or in the rhizosphere. Due to easy 
access to culturable isolates in the root tissues, 
the great majority of studies worldwide are con-
centrated on root-colonizing endophytes 
(Rosenblueth and Martinez-Romero  2006 ). 
However, the shoot meristems can be considered 
one of the most important tissues of the plant, 
responsible for growth and development of new 
leaves and stems. The fi nding of bacterial endo-
phytes in these tissues suggests that a balanced 
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interaction is essential for their proper function. 
How is the plant regulating the endophytes colo-
nizing these tissues, and which role are the 
microbes playing in plant development? It is 
known that symbiotic microbes affect the devel-
opment of animals (Troll et al.  2009 ). As endo-
phytes have been occupying the plant interior for 
more than 400 million years (Krings et al.  2007 ), 
mutual evolution must have driven ways to sub-
sist, adapt, and eventually refi ne the interaction to 
a balanced state. Development of genomic tools 
is effectively opening the doors to the secret 
world of bacterial endophytes and allowing fur-
ther studies on their life inside the plant, as we 
have described in this chapter. Metabolomics is 
another tool that can provide a systemic view of 
the plant-microbe interaction at the level where 
genomics has no access (Scherling et al.  2009 ; 
Fester et al.  2011 ). Knowledge gained with these 
powerful methods will be helpful in defi ning the 
details of the plant-endophyte interaction in the 
plant shoot meristems.     
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