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       This book is dedicated to Pandit Madan Mohan Malaviya, 
founder of Banaras Hindu University, the largest residential 
university in Asia and one of the largest in the world.      



              



     India is not a country of the Hindus only. It is a country of the 
Muslims, the Christians and the Parsees too. The country can 
gain strength and develop itself only when the people of the 
different communities in India live in mutual goodwill and 
harmony. It is my earnest hope and prayer that this centre 
of life and light which is coming into existence, will produce 
students who will not only be intellectually equal to the best 
of their fellow students in other parts of the world, but will 
also live a noble life, love their country and be loyal 
to the Supreme ruler.  

  Pt. Madan Mohan Malaviya  
  (1861–1946)  

 Founder, Banaras Hindu University         



              



        Take up one idea. Make that one idea your life-think of it, 
dream of it, live on that idea. Let the brain, muscles, nerves, 
every part of your body, be full of that idea, and just leave 
every other idea alone. This is the way to success that 
is the way great spiritual giants are produced. 

 −Swami Vivekananda 

 World’s most respected Vedanta thinker (1863–1902) 
 Vedanta Philosophy: Lectures by Swami Vivekananda, Kessinger 

Publishing, USA, 1996, Page 70    
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    I am delighted in writing a foreword on this very special achievement of 
Dr. Vijay Verma in the form of this book that contains innovative information 
about endophytic research. Microbial biodiversity is an ultimate source that 
may be utilized and applied to modern biology and biotechnology and has the 
potential to be developed as innovative and sustainable solutions to a wide 
range of problems of human beings. Microbes are omnipresent from normal 
to extreme to the tune of 10 13  per mm 2     of our skin and natural to man-made 
environments, but what surprises me is their presence within the healthy 
internal tissues of higher plants. Being in medical science and working on 
plants of medicinal importance, I am well aware of the fascinating specifi cs 
of plant sciences but amazed by such vast information on endophytes and 
their biotechnological applications. Endophytes represent almost unlimited 
and sustainable sources of bioactive and chemically novel natural products 
with the potential for utilization in an array of medical, agricultural, and 
industrial applications. Since the discovery of the anticancer molecule 
“Taxol” from symbiotic endophytes as an alternative source to the host, the 
endophytes have become of core interest for drug discovery expedition. It is my 
pleasure to endorse Dr. Verma’s long experience of working with endophytes 
and his collaborative interactions with the world leaders in this particular 
fi eld. As a result of this effort as a book, not only Dr. Verma but the institution 
is also enriched and privileged to have opportunity of working with such 
international laureates. I am delighted to see that contributors of this 
book have several years of collaborative experience and have signatory 
status in endophytic research. I specially would like to mention Prof. Bacon, 
Prof. White Jr., Prof. Omacini, and Prof. Osono, who are international icons 
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of this fi eld. The information provided by them would be really benefi cial to 
young researchers and will generate interest among them about these fasci-
nating microbes. The potential importance of benefi cial endophytes to plants 
and biotechnology really did not become clear until 1975, when Prof. Bacon 
discovered fungal endophytes in the family Clavicipitaceae growing systemi-
cally in pasture grasses. The contribution of Prof. Bacon about the future 
challenges of endophytic research is highlighted well in this book. As a book, 
I strongly feel that it is a gold mine of information about recent developments 
in the fi eld of endophytic research and demonstrates a wealth of interesting 
details. This will surely enlighten the new minds and become a source of 
inspiration and information for those who wish to work in this fascinating 
area of research. In short, Dr. Verma’s book is unique and surely a work to 
treasure for anyone who is interested in endophytic research. My heartiest 
congratulations and wishes are always with Dr. Verma for producing such a 
nice piece of work that will guide young minds for a long time to come.

    

    MD, DM (Nep), MNAMS (Nep), FICA, FFIM 
 FIMAAMS, FIACM, FICN, FGSI, FMM, FICP, FIASM 

 FIAY, FISH, FICAAI, FAMS 

 Director 
 Varanasi, UP, India   Institute of Medical Sciences

Banaras Hindu University  
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 Microbial biodiversity is a continuing problem in the estimates of overall 
biodiversity. A great extent of our knowledge about microbes results from the 
approximately 1 % of culturable microbes present on our planet. Thus, we are 
relatively unfamiliar with a vast magnitude of unculturable microbes that 
represent a signifi cant part of microbial diversity. With recent revolutionary 
developments in different domains of “-omics” to which an appropriate term 
might be “Revolomics” that includes metagenomic and next-generation 
sequencing technologies, we are beginning to understand microbial diversity 
and the exploration of novel genes and metabolic products. Another aspect of 
diversity is to search for new microbial habitats that may possess hidden 
culturable microbes that may add to estimated and discovered microbial 
diversity. Many such unconventional habitats such as marine ecosystems, 
thermal vents, and ice caps are now being explored for novel microbes, and 
one result is that microbes in these habitats can provide new chemical diversity 
with the potential to be exploited as drug leads for many human pathogens. 
Since most of the planet is covered with marine ecosystems, it is reasonable 
to accept that a huge microbial diversity remains to be discovered from deep 
sea and from marine organisms. Regarding the land mass of our planet, 9.4 % 
is covered by the forests with a wealth of associated microbes. Forest vegeta-
tion not only has microbes on the surface (phyllosphere, epiphytes, rhizosphere, 
etc.) but also has symbiotic microbes within (endophytes, mycorrhizas, dark 
septate endophytes). All higher plants on this planet have a form of symbiotic 
association with microbes called “endophytic” symbiosis. A single plant may 
contain hundreds of microbes, and thus, the diversity of endophytes is likely 
to be many times greater than plant diversity. Mutualistic endophytic microbes 
with an emphasis on the relatively understudied fungal endophytes are the 
focus of this special book. Plants are associated with microorganisms, 
endophytic bacteria and fungi, which live inter- and intracellularly without 
inducing pathogenic symptoms, but have active biochemical and genetic 
interactions with their host. Endophytes play vital roles as plant growth 
promoters, biocontrol agents, biosurfactant producers, and enzymes and 
secondary metabolite producers, as well as in providing a new hidden repertoire 
of bioactive natural products with uses in pharmaceutical, agrochemical, and 
other biotechnological applications. Apart from these virtues, the microbial 
endophytes may be adapted to the complex metabolism of many desired 
molecules that can be of signifi cant industrial applications. These microbes 
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can be a useful alternative for sustainable solutions for ecological control of 
pests and diseases and can reduce the burden of excess of chemical fertilizers 
for this purpose. 

 This book is an attempt to review the recent development in the under-
standing of microbial endophytes and their potential biotechnological 
applications. We have tried to recognize several research domains of endo-
phytic research in which signifi cant progress has been made such as ecology 
and biodiversity, host-endophyte interactions, bioactive compounds from 
endophytes, and future challenges. Attempts have been made to summarize 
the development achieved so far and future prospects for further research in 
this fascinating area of research. 

 Varanasi, UP, India    Vijay Chandra Verma  
 Egham, Surrey, UK    Alan Christopher Gange     
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    Abstract  

  The phyllosphere is the living leaf as a whole and is colonized by  endophytic and 
epiphytic fungi in the interior and on the surface of leaves, respectively. In 
this chapter, I summarize studies on the diversity and ecology of endophytic 
and epiphytic phyllosphere fungi on live leaves of trees in Japan. Studies to 
date have detected endophytes and epiphytes on leaves of at least 255 conif-
erous and broad-leaved tree species in 69 plant families, according to 45 
papers published since 1990. These studies have recorded 24 endophytic 
and 22 epiphytic genera of fungi. Major trees used in the ecological studies 
of phyllosphere fungi include pines ( Pinus ), beech ( Fagus ), and dogwood 
( Swida ). Focal topics include (1) the infection and colonization of 
leaves; (2) seasonal and leaf age-dependent patterns of temporal changes; 
(3) spatial distribution at various scales, from within-leaf, to within- 
canopy, to altitudinal and geographic distributions; (4) direct and indirect 
roles in decomposition of dead leaves; and (5) interaction with pathogens 
and herbivores and effects of simulated acid rain. Future research direc-
tions in Japan are suggested and discussed with  reference to international 
literature on the ecology of endophytic and epiphytic phyllosphere fungi.  

        T.   Osono      (*) 
  Center for Ecological Research ,  Kyoto University , 
  2-509-3 Hirano ,  Otsu, Shiga   520-2113 ,  Japan   
 e-mail: tosono@ecology.kyoto-u.ac.jp  

 1      Diversity and Ecology 
of Endophytic and Epiphytic Fungi 
of Tree Leaves in Japan: 
A Review 

           Takashi     Osono    

1          Introduction 

 The phyllosphere is the living leaf as a whole 
(including the interior and surface), which provides 
habitats for a variety of microorganisms, such 
as fungi, bacteria, and algae. Phyllosphere fungi 

include endophytes and epiphytes that colonize 
the interior or surface of leaves, respectively 
(Petrini  1991 ). Although the presence of phyllo-
sphere fungi on tree leaves was known as early as 
the 1960s, studies of phyllosphere fungi increased 
in the 1980s, and a number of useful reviews have 
been published on their diversity and ecology 
(Hudson  1968 ; Carroll  1988 ,  1995 ; Petrini  1986 , 
 1991 ; Boddy and Griffi th  1989 ; Stone et al.  1996 ; 
Stone and Petrini  1997 ; Lindow and Brandl  2003 ; 
Arnold  2005 ,  2007 ; Saikkonen  2007 ), functional 
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roles (Rodriguez and Redman  1997 ; Saikkonen 
et al.  1998 ; Wilson  2000 ; Sieber  2007 ), ecophysi-
ology (Petrini et al.  1992 ; Petrini  1996 ), and 
interactions with herbivores (Carroll  1991a ,  b ). 

 Japan is an elongated island country located in 
the middle latitudes from 20 to 46°N, consisting 
of four main islands (Hokkaido, Honshu, Shikoku, 
and Kyushu) and a number of small islands. 
Approximately 66 % of the land is covered with 
a variety of forest types ranging from subboreal 
to temperate and subtropical forests (Fig.  1.1 ). 
More than 1,200 woody plants grow natively on 
the Japanese Archipel-ago (Biodiversity Center 
of Japan  2010 ) and merit the exploration of the 
diversity and ecology of endophytic and epiphytic 
fungi of their tree leaves. Accordingly, studies 
on the diversity and ecology of phyllosphere 
fungi of trees have been actively pursued in 
Japan since the 1990s. The purpose of this chapter 
is to review the major fi ndings of these studies. 
First, I outline the richness of tree species 
examined and the genera of phyllosphere fungi 
reported in Japan. A variety of phyllosphere 
fungi have been detected on a variety of tree 
species, but ecological studies of phyllosphere 
fungi have concentrated on pine ( Pinus , Pinaceae), 
beech ( Fagus , Fagaceae), and dogwood ( Swida , 
Cornaceae) as model systems. Focal topics of 
the ecological studies include (1) the infection 
and colonization of leaves; (2) seasonal and leaf 
 age- dependent patterns of temporal changes; 
(3) spatial distribution at various scales, from 
within-leaf, to within-canopy, to altitudinal and 
geographic scales; (4) direct and indirect roles in 
decomposition of dead leaves; and (5) interaction 
with pathogens and herbivores and effects of sim-
ulated acid rain. Regarding topic (4), a large 
amount of information has already been included 
in the reviews of Osono    ( 2006b ,  2007 ) and Osono 
and Hirose ( 2009b ). However, I realized that sig-
nifi cant progress has been made in the last 
3 years, especially on the roles of endophytic 
ascomycetes in lignin decomposition, which is 
summarized in this chapter. Finally, future research 
directions are suggested and discussed with 
reference to international literature about 
phyllosphere fungi. The potential applicability 
of molecular techniques, especially that of 

pyrosequencing using next-generation sequencers, 
is worth mentioning in this regard.

2        The Diversity of Endophytic 
and Epiphytic Fungi 

2.1      Host Tree Species 

 To my knowledge, 45 papers have been published 
from 1990 to 2013 (as of January 2013) about 
the diversity and ecology of endophytic and epi-
phytic phyllosphere fungi in Japan   . 1     Phyllosphere 
fungi have been detected on at least 255 tree 
 species in 68 families in these studies (Table  1.1 ), 
including 202 broad-leaved and 53 coniferous 
species, 118 evergreen and 137 deciduous species, 
and 185 domestic and 70 exotic species. The 
majority (253 of 255) of tree species studied were 
examined for the detection of endophytic fungi, 
whereas only seven tree species were targeted 
for epiphytes:  Abies fi rma  (Pinaceae) (Aoki et al. 
 1990 ),  Bruguiera gymnorrhiza  (Rhizophoraceae) 
(Nakagiri et al.  1997 ),  Camellia japonica  (Theaceae) 
(Osono  2008 ),  Castanopsis sieboldii  (Osono 
et al.  2008 ),  Fagus crenata  (Osono  2002 ; Osono 
and Mori  2003 ),  Quercus myrsinaefolia  (Fagaceae) 
(Shirouzu et al.  2008 ), and  Swida controversa  
(Cornaceae) (Osono and Mori  2004 ,  2005 ). Only 
four tree species were examined for both 
endophytes and epiphytes (see Sect.  2.2 ). The 
locations where these studies were conducted 
ranged from Hokkaido to Tohoku, Kanto, Chubu, 
Kinki, Kyushu, and Okinawa (Fig.  1.1 ). Reports 
from Kyoto and Mie Prefectures were especially 
notable in terms of the number of publications.

1   Aoki et al. ( 1990 ), Asai et al. ( 1998 ), Hashizume et al. 
( 2008 ,  2010 ), Hata and Futai ( 1993 ,  1995 ,  1996 ), Hata 
and Sone ( 2008 ), Hata et al. ( 1998 ,  2002 ), Ikebe et al. 
( 2004 ), Ito et al. ( 2007 ), Kaneko and Kakishima ( 2001 ), 
Kaneko and Kaneko ( 2004 ), Kaneko et al. ( 2003 ), Koide 
et al. ( 2005a ), Makisaka et al. ( 2005 ), Naito et al. ( 2002 ), 
Nakagiri et al. ( 1997 ), Nomura et al. ( 2003 ), Okane 
( 2003 ), Okane et al. ( 1996 ,  1997 ,  1998 ,  2001a ,  b ,  2003 ), 
Osono ( 2002 ,  2003 ,  2006a ,  b ,  2008 ,  2012 ), Osono and 
Masuya ( 2012 ), Osono and Mori ( 2004 ,  2005 ), Osono 
et al. ( 2004a ,  2008 ,  2013 ), Sahashi et al. ( 1999 ,  2000 ), 
Shirouzu et al. ( 2008 ), Suzuki et al. ( 2003 ), Tomita ( 2003 ), 
and Yoshihashi et al. ( 2000 ,  2001 ). 

T. Osono
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  Fig. 1.1    Location of 
major islands and districts 
in Japan       

    Table 1.1    Family and number of tree species examined for endophytic and epiphytic phyllosphere fungi in Japan   

 Family 
 No. of tree 
species  Family 

 No. of tree 
species  Family 

 No. of tree 
species 

 Pinaceae  47  Theaceae  5  Araliaceae  2 
 Fagaceae  17  Anacardiaceae  4  Berberidaceae  2 
 Ericaceae  16  Magnoliaceae  4  Calophyllaceae  2 
 Aceraceae  12  Rutaceae  4  Cupressaceae  2 
 Betulaceae  12  Celastraceae  3  Daphniphyllaceae  2 
 Rosaceae  11  Cornaceae  3  Juglandaceae  2 
 Oleaceae  8  Euphorbiaceae  3  Pandanaceae  2 
 Fabaceae  7  Hamamelidaceae  3  Podocarpaceae  2 
 Lauraceae  7  Rhizophoraceae  3  Rubiaceae  2 
 Caprifoliaceae  6  Ulmaceae  3  Styracaceae  2 
 Moraceae  6  Verbenaceae  3  Symplocaceae  2 
 Aquifoliaceae  5  Actinidiaceae  2  Taxodiaceae  2 
 Saxifragaceae  5  Apocynaceae  2 

  Families with one tree species: Boraginaceae, Cercidiphyllaceae, Clethraceae, Combretaceae, Coriariaceae, Davidiaceae, 
Ebenaceae, Ginkgoaceae, Goodeniaceae, Hippocastanaceae, Hypericaceae, Lardizabalaceae, Lecythidaceae, Liliaceae, 
Melastomataceae, Myricaceae, Pittosporaceae, Platanaceae, Punicaceae, Salicaceae, Sapindaceae, Scrophulariaceae, 
Simaroubaceae, Sonneratiaceae, Stachyuraceae, Sterculiaceae, Thymelaeaceae, Tiliaceae, Trochodendraceae, and 
Urticaceae  
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   Pinaceae is the plant family that included the 
greatest number of tree species examined for phyl-
losphere fungi (47 species), followed by Fagaceae 
(17), Ericaceae (16), Aceraceae (12), Betulaceae 
(12), and Rosaceae (11) (Table  1.1 ). Less than 10 
tree species each have been examined for the 
remaining 63 plant families. Hata and Futai 
( 1996 ) compared endophytic mycobiota of 
needles of 45  Pinus  species collected in a nursery 
in Kyoto and contributed greatly to the number of 
pinaceous trees examined. Four to fi ve tree 
species in Fagaceae were chosen for the studies 
of foliar endophytes in Yoshihashi et al. ( 2000 ), 
Naito et al. ( 2002 ), Okane et al. ( 2003 ), Osono 
( 2012 ), and Osono et al. ( 2013 ). A suite of publi-
cations by Dr. I. Okane and colleagues used 
leaves of Ericaceae for the study of endophytic 
fungi. Okane et al. ( 1996 ) described a new genus, 
 Discostroma , as a major endophyte in ericaceous 
trees. Okane et al. ( 1998 ) found that species in 
 Guignardia ,  Phomopsis , and  Colletotrichum  are 
dominant components of endophytic mycobiota 
of eight tree species in the Ericaceae planted in 
Kyoto. Okane et al. ( 2001a ) then identifi ed a 
 Guignardia  species ( G. endophyllicola , the teleo-
morph of  Phyllosticta capitalensis ) frequently 
isolated from leaves of multiple ericaceous and 
other trees. Osono ( 2012 ), Osono and Masuya 
( 2012 ), and Osono et al. ( 2013 ) contributed to the 
study of endophytic fungi associated with leaves 
of tree species in Aceraceae and Betulaceae. 

 Several studies have compared endophytic fungi 
between multiple tree species at single locations. 
For example, Yoshihashi et al. ( 2000 ) compared 
29 tree species found on the campus of Mie 
University for endophytic fungi. Okane et al. ( 2003 ) 
tested leaves of 94 tree and herb species for the 
detection of  Guignardia  in a botanical garden 
in Kyoto. Okane et al. ( 1997 ) compared 21 ever-
green tree species for endophytic mycobiota in 
Iriomote Island, located in the subtropical region 
in southern Japan. Okane et al. ( 2001b ) described 
a new genus, new species,  Surculiseries rugispora , 
isolated from leaves of a mangrove tree  Bruguiera 
gymnorrhiza.  Recently, Osono ( 2012 ) studied 
patterns of occurrence of endophytic fungal 
genera for leaves of 73 deciduous tree species 
in a cool temperate forest in Kyoto. In the same 

forest, Osono et al. ( 2013 ) examined 94 tree 
species (38 families) for the diversity and ubiq-
uity of xylariaceous endophytes in live leaves. 

 The latent infection of endophytic fungi in 
healthy-looking tissues or the presence of epiphytic 
fungi (i.e., phylloplane fungi) on the surface 
(i.e., phylloplane) of tree leaves was already 
noted in Japan before 1990. For example, Soma 
and Saito ( 1979 ) observed fungi on live needles 
of  Pinus thunbergii . Terashita ( 1973 ) detected 
 Colletotrichum  species on live leaves of 61 
(88 %) out of 67 broad-leaved trees. Carroll 
( 1990 ) detected endophytic fungi in needles of 
 Cryptomeria japonica  (Cupressaceae). However, 
studies published before 1990 are not included in 
this chapter, mainly because methods of isolation 
and presentation of results were somewhat differ-
ent from those published after 1990.  

2.2      Genera of Endophytic 
and Epiphytic Fungi 

 The 45 papers analyzed in this chapter include 
not only exhaustive surveys of phyllosphere 
mycobiota but also targeted studies that aimed at 
the detection of fungal taxa of particular interest. 
Fungi were identifi ed to species in some papers 
but to genus in others. Moreover, methods of 
isolation of phyllosphere fungi differed among 
the studies (see below). These differences make it 
diffi cult to compare the richness and species 
composition of phyllosphere fungal assemblages 
reported from different papers. Instead, qualitative 
comparisons are made in this chapter to summa-
rize the pattern of occurrence of fungal genera on 
tree leaves in Japan. 

 Twenty-three genera have been reported as 
endophytes of tree leaves in Japan (Table  1.2 ). 
These genera are divided into two groups in 
terms of the host specifi city. The fi rst group 
includes  Colletotrichum ,  Pestalotiopsis ,  Phomo-
psis ,  Phyll os ticta , and genera in the Xylariaceae 
( Geniculosporium ,  Nodulisporium , and  Xylaria ) 
that were isolated from a variety of host tree 
species and have low host specifi city. It should be 
noted that host specifi city at the level of fungal 
genus does not necessarily assure the specifi city 
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at species level. However, molecular phylogenetic 
analyses demonstrated the identity as single 
species and the low host specifi city of  Phyllosticta  
and  Xylaria  isolated from multiple hosts (Okane 
et al.  2001a ; Okane  2003 ; Wei et al.  2007 ; Osono 
et al.  2013 ). The second group includes fungal 
genera that show some degree of host specifi city. 
Examples are  Lophodermium ,  Phialocephala , 
and  Cenangium  in  Pinus  spp. (Kowalski  1982 ; 
Legault et al.  1989a ; Hata and Futai  1996 ; Sieber 
et al.  1999 ),  Ascochyta  in  Fagus crenata  (Wei and 
Harada  1998 ; Sahashi et al.  1999 ,  2000 ; Kaneko 
and Kaneko  2004 ), and  Discula  and  Tubakia  in 
fagaceous trees (Sieber and Hugentobler  1987 ; 
Halmschlager et al.  1993 ; Wilson and Carroll 
 1994 ; Gennaro et al.  2003 ; Cohen  2004 ; Kaneko 
and Kaneko  2004 ; Shirouzu et al.  2008 ).

   Twenty-two genera are reported as epiphytes 
of tree leaves in Japan (Table  1.2 ). These genera 
are generally known to have low host specifi city 
and to be reported from a wide variety of tree spe-
cies. Major epiphytes include  Alternaria alternata , 

 Apiospora montagnei ,  Aureobasidium pullulans , 
 Cladosporium cladosporioides ,  Clono-stachys 
rosea ,  Colletotrichum gloeosporioides ,  Pestalo-
tiopsis  spp.,  Phoma  spp.,  Phomopsis  spp., 
 Trichoderma  spp., and  Tripospermum  spp. These 
fungi have been reported not only from Japan but 
also from  distant continents, such as Europe and 
North and South America (e.g., Hudson  1968 ). 

 Ten genera are reported as both endophytes 
and epiphytes of tree leaves (asterisks in Table  1.2 ). 
 Ascochyta fagi  on leaves of  Fagus crenata  (Osono 
 2002 ),  A. montagnei  and  C. gloeosporioides  on 
leaves of  Swida controversa  (Osono and Mori  2004 , 
 2005 ; Osono et al.  2004a ), and  C. gloeosporioides  
on leaves of  Camellia japonica  (Osono  2008 ) are 
examples of fungal species isolated frequently 
from both the interior and surface of leaves of single 
tree species. Previous studies showed a consistent 
trend that the number of species of endophytes 
is lower than that of epiphytes (Table  1.3 ). The 
similarity of species composition between endo-
phytes and epiphytes varied among tree species, 

     Table 1.2    Genera of fungi isolated from tree leaves in Japan   

 Genus  Endophyte  Epiphyte  Genus  Endophyte  Epiphyte 

  Acremonium   −  +   Periconiella   +  − 
  Alternaria*   +  +   Pestalotiopsis*   +  + 
  Arthrinium (Apiospora)*   +  +   Phialocephala   +  − 
  Ascochyta*   +  +   Phoma   −  + 
  Aureobasidium*   +  +   Phomopsis*   +  + 
  Cenangium   +  −   Phyllosticta  ( Guignardia )*  +  + 
  Cladosporium   −  +   Pseudocercospora  

( Mycosphaerella ) 
 +  − 

  Clonostachys   −  +   Rhamichloridium   −  + 
  Coccomyces   +  −   Septonema   −  + 
  Colletotrichum*   +  +   Sporobolomyces   −  + 
  Coniothyrium   −  +   Stachybotrys   −  + 
  Discostroma   +  −   Stenella   −  + 
  Discula   +  −   Surculiseries   +  − 
  Epicoccum   −  +   Trichoderma   −  + 
  Geniculosporium 
(Nemania)  

 +  −   Tritirachium*   +  + 

  Leptostroma 
(Lophodermium)  

 +  −   Tubakia*   +  + 

  Nigrospora   +  −   Xylocoremium  ( Xylaria )  +  − 
  Nodulisporium  
( Biscogniauxia ) 

 +  − 

  *Indicates that the genus is known as both an endophyte and an epiphyte. Teleomorphs in parentheses. 
+ present, − absent  
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with Sørensen’s index of similarity ranging from 
0.12 to 0.79 (Table  1.3 ). The values for Japanese 
tree species are at the lower end to middle of this 
range (0.15–0.38).

2.3        Methods of Isolation 
and Incubation 

 The results of estimating fungal diversity using 
culture-dependent methods depend strongly on 
the methods of isolation because these are gener-
ally selective for some fungal species but not for 
others. Major factors affecting the selectivity are 
disinfectant (especially in the case of isolating 
endophytic fungi), type and composition of nutrient 
medium, incubation temperature, and incubation 
period. Methodological considerations are thus 
necessary to optimize the method of isolation 
and incubation for particular research purposes. 
Here, I summarize the methods of isolation and 
incubation adopted in the 45 papers. 

 Some authors isolated and incubated endophytic 
fungi using the method of Hata ( 1997 ), which 
basically follows the surface disinfection proce-
dure of Kinkel and Andrews ( 1988 ) and utilizes 
15 % hydrogen peroxide (v/v) as a disinfectant. 
Sodium hypochlorite solutions at various con-
centrations, and less frequently mercury (II) 
chloride (HgCl 2 ), are also used as disinfectants. 
Nutrient media used included potato dextrose 
agar (PDA), 1 or 2 % malt extract agar (MA) (w/v), 
and modifi ed lignocellulose agar (LCA, Miura 
and Kudo  1970 ). The three media differ markedly 
in sugar content, resulting in differences in the iso-
lation of endophytic (Hata  1997 ) and epiphytic 
(Osono and Takeda  1999 ) fungi. Incubation of 
leaf materials was done at constant temperature 
of 15, 17, 20, or 25 °C or variable room tempera-
tures (18–25 °C), the commonest being constant 
temperature of 15, 17, or 20 °C. The duration of 
incubation varied from 0.5 to 3 months depend-
ing on the publication, the commonest being 1, 2, 
or 3 months. 

    Table 1.3    Comparison of endophytic and epiphytic mycobiota on leaves of tree species   

 Tree species  Region 

 Number of species 

 QS a   References  Total 
 Endophyte 
( a  +  b ) 

 Epiphyte 
( a  +  c )  Common ( a ) 

  Nothofagus 
truncata  

 New Zealand  20  14  19  13  0.788  Ruscoe ( 1971 ) 

  Eucalyptus 
viminalis  

 Argentine  37  16  32  11  0.458  Cabral ( 1985 ) 

  Populus 
tremuloides  

 Canada  28  22  20  14  0.400  Wildman and Parkinson 
( 1979 ) 

  Swida 
controversa  

 Kyoto, Japan  39  15  33  9  0.375  Osono and Mori ( 2005 ) 

  Camellia 
japonica  

 Kyoto, Japan  79  44  52  17  0.354  Osono ( 2008 ) 

  Castanopsis 
sieboldii  

 Okinawa, Japan  19   6  16  3  0.273  Osono et al. ( 2008 ) 

  Swida 
controversa  

 Kyoto, Japan  40  13  33  6  0.261  Osono et al. ( 2004a ) 

  Fagus crenata   Kyoto, Japan  60  18  47  5  0.154  Osono ( 2002 ) 

  Pinus 
banksiana  

 Canada  31   8  25  2  0.121  Legault et al. ( 1989a ,  b ) 

  Pinus 
resinosa  

 Canada  47  13  37  3  0.120  Legault et al. ( 1989a ,  b ) 

  Modifi ed from Osono and Mori ( 2004 ) 
  QS  Sørensen’s index of similarity 
  a QS = 2 a /(2 a  +  b  +  c ), where  a  is the number of common species and  b  and  c  are the number of species specifi cally 
isolated as endophytes or epiphytes, respectively  

T. Osono



9

 The modifi ed washing method of Tokumasu 
( 1980 ) was consistently used to isolate epiphytic 
fungi from live leaves. Tokumasu ( 1980 ) described 
the procedure for washing leaf materials with 
0.005 %    Aerosol-OT (di-2-ethylhexyl sodium 
sulfosuccinate) solution (w/v) to isolate micro-
fungi from dead pine needles and tested the effect 
of number of washes and incubation period. 
Osono and Takeda ( 1999 ) confi rmed the applica-
bility of the washing procedures of Tokumasu 
( 1980 ) to dead leaves of  Fagus crenata . The washing 
method developed for dead leaves is undoubtedly 
applicable to live leaves, which generally bear 
less microbial contaminants attached to the surface 
to be washed than dead leaves. 

 Micromorphological observations were com-
monly used to identify fungal isolates of endo-
phytes and epiphytes. Several endophytes and 
epiphytes, however, cannot be thus identifi ed due 
to the lack of sporulation despite efforts to 
promote sporulation. The proportions of non- 
sporulating endophytes can be as high as 54 % of 
total isolates (summarized in Promputtha et al. 
 2005 ). Recently, molecular methods are used to 
confi rm the identity of not only non-sporulating 
“morphotaxa” but also sporulating fungal iso-
lates (e.g., Okane et al.  2001a ; Osono and Masuya 
 2012 ; Osono et al.  2013 ). Fungal isolates are then 
clustered into operational taxonomic units (OTUs) 
at given similarity thresholds of base sequences 
that are different among studies (Osono  2013 ).   

3     Infection and Colonization 
of Leaves 

 Infection of leaves by endophytic and epiphytic 
phyllosphere fungi is generally thought to occur 
by (1) progressive growth of hyphae from buds 
and twigs, (2) attachment of airborne spores, 
and (3) transmission of propagules by insects 
(Petrini  1991 ). It is possible that phyllosphere 
fungi infect leaves by a combination of these 
routes. Successful colonization of leaves by 
phyllosphere fungi can then depend on microen-
vironmental conditions of the phyllosphere, such 
as light intensity and moisture, and structural 
and chemical properties of leaves, such as leaf 

thickness and nutrient contents. The infection 
and colonization of leaves by fungi were examined 
in Japan using the phyllosphere of pine, beech, 
and dogwood as model systems. 

3.1       Infection from Twigs and Buds 

 Fungi frequently infect twigs and buds (e.g., 
Wildman and Parkinson  1979 ; Johnson and 
Whitney  1992 ; Toti et al.  1993 ). It is hence postu-
lated that endophytic fungi are able to extend 
their mycelia from twigs and buds to infect 
leaves. This is especially true when endophytes 
occupy petioles of leaves and the basal part 
of needles proximate to twigs. For example, 
 Phialocephala  sp., an endophyte of pine needles, 
was detected more frequently on the basal than 
the apical portions and was also isolated frequently 
from current-year twigs, suggestive of infection 
via mycelia from current-year twigs to needles 
(Hata et al.  1998 ). Similarly,  Phomopsis  sp., an 
endophyte of beech ( Fagus crenata ), was isolated 
frequently from not only petioles but also current- 
and 1st- to 5th-year twigs, but not from lamina, 
suggesting the infection of petioles from twigs 
(Sahashi et al.  1999 ). Kaneko and Kaneko ( 2004 ) 
also demonstrated the mycelial colonization of 
beech leaves by two endophytic fungi in the 
Kanto district:  Periconiella  sp. from immature 
twigs within the winter buds and  Tritirachium  
sp. from current- and 1st-year twigs. Osono and 
Mori ( 2003 ) in Kyoto reported results consistent 
with those of Sahashi et al. ( 1999 ) and Kaneko 
and Kaneko ( 2004 ), namely, that  Phomopsis  
sp. was isolated from both lamina and current-year 
twigs of beech, and demonstrated a possibility 
that  Tritirachium oryzae  on leaves originated 
from twigs.  

3.2      Airborne Spores 
and “Bagged” Leaves 

 No spore dispersal of  Discula  sp. was detected 
in the presence of snow cover in a beech forest in 
the Tohoku district, but the density of airborne 
spores of this fungus increased rapidly in late 
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May when the snow cover disappeared from the 
forest fl oor (Sahashi et al.  2000 ). The frequency 
of occurrence (FO) of  Discula  sp. on leaves just 
after budbreak on the canopy started to increase 
at the same time, suggesting that  Discula  
sp. overwinters on fallen leaves under the snow 
and sporulates just after snow melt to infect 
expanded leaves via dispersed spores (Sahashi 
et al.  1999 ). Sahashi et al. ( 1999 ) confi rmed that 
this fungus was not isolated from rolled-up leaves 
enclosed in winter buds. Another observation 
supports the idea that  Discula  sp. infects leaves 
via airborne spores. That is, Sahashi et al. ( 2000 ) 
found a delay of infection of live leaves by this 
fungus, probably because of the inhibition of 
spore discharge from the forest fl oor, in one 
study site (Asahimura) where the snowmelt was 
delayed compared to that at other sites. This type 
of lifecycle (sporulation on dead leaves and 
infection of live leaves via airborne spora) is also 
reported in some endophytic fungi, for example, 
 Mycosphaerella buna  on beech (Kaneko and 
Kakishima  2001 ; Kaneko et al.  2003 ) and 
 Lophodermium piceae  on  Picea abies  (Osorio 
and Stephan  1991a ). Colonization by airborne 
spora was considered to be the major route of infec-
tion for epiphytes (e.g., Kinkel  1991 ; Levetin and 
Dorsey  2006 ). 

 “Branch-bagging” experiments have been 
performed in the fi eld to manipulate the level of 
horizontal transfer of phyllosphere fungi via air-
borne spores. In manipulation experiments, winter 
buds were covered with well-ventilated vinyl 
bags before budbreak to exclude the infection 
of airborne spores onto expanded leaves and to 
examine the invasion of fungi from buds and 
twigs (Wilson  1996 ). In an experiment carried 
out in the Kanto district, Kaneko and Kaneko 
( 2004 ) reported that  M. buna  and  Ascochyta fagi , 
major endophytes of beech, were not isolated at 
all from bagged leaves, whereas these fungi were 
isolated frequently from leaves that were not 
bagged or leaves on saplings in pots experimen-
tally placed in the study forest, suggesting that 
these endophytes infect leaves via airborne spores. 
This result is consistent with the report of Osono 
and Mori ( 2003 ) that in Kyoto the FOs of  A. fagi , 
 Xylaria  sp., and  Geniculosporium  sp. on bagged 
beech leaves were lower than those on leaves that 

were not bagged. Infection of leaves by airborne 
spores was also probable in  Xylaria  endophytes 
of tropical trees (Bayman et al.  1998 ). Branch-
bagging treatments resulted in a reduction in the 
FO of endophytic  Phoma  sp. in leaves of  Quercus 
serrata  (Ito et al.  2007 ). 

 Recognition and attachment of spores of phyl-
losphere fungi to the host leaf surface was exam-
ined for  Aureobasidium pullulans  and  Discula 
umbrinella  (Toti et al.  1992 ; Viret et al.  1993 , 
 1994 ; Andrews et al.  1994 ; Viret and Petrini  1994 ). 
The mode of latent infection of endophytes within 
leaf tissues was investigated with micromorpho-
logical techniques (Suske and Acker  1987 ,  1989 ; 
Stone  1988 ; Johnson and Whitney  1989b ; Viret 
et al.  1993 ; Deckert et al.  2001 ). No such studies 
have been performed for endophytic or epiphytic 
phyllosphere fungi of Japanese trees.  

3.3       Effects of Microenvironments 
and Leaf Traits on Fungal 
Colonization 

 The tree canopy is heterogeneous in physical 
microenvironments, such as sunlight intensity 
and moisture, which can lead to phenotypic 
changes in physical and chemical traits of leaves. 
The heterogeneity of micro-microenvironments 
and properties of leaves is expected to infl uence 
the colonization of endophytic and epiphytic 
phyllosphere fungi and result in patterns of within-
canopy distribution. Factors affecting the within-
canopy distribution of phyllosphere fungi include 
height (Bernstein and Carroll  1977 ; Carroll  1979 ; 
Wildman and Parkinson  1979 ; Andrews et al. 
 1980 ; Johnson and Whitney  1989a ), distance 
from the trunk (Andrews et al.  1980 ; Petrini and 
Carroll  1981 ), sun leaves versus shade leaves 
from different parts of the canopy (Wilson et al. 
 1997 ; Wilson and Faeth  2001 ), and compass 
direction (Johnson and Whitney  1989a ; Petrini 
and Fisher  1990 ). 

 Osono and Mori ( 2003 ) compared the phyllo-
sphere mycobiota of beech between sun leaves at 
the periphery of the canopy and shade leaves near 
the main trunk and suppressed by leaves in the 
upper canopy. The sun and shade leaves were 
collected at about 2 m height. Frequencies of 
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occurrence of  Ascochyta fagi  and epiphytic 
 Apiospora montagnei  (anamorph:  Arthrinium ) 
were higher in shade than in sun leaves, whereas 
those of three epiphytic species,  Pestalotiopsis  
sp.,  Cladosporium cladosporioides , and  Alternaria 
alternata,  were higher in sun leaves. Because sun 
and shade leaves of beech differed in the intensity 
of sunlight that leaf surfaces received, it is 
postulated that hyaline hyphae of  A. fagi  were 
sensitive to the higher sunlight intensity and 
possibly to severer desiccation on the surface of 
sun leaves. Conversely, the dematiaceous species 
 C. cladosporioides  and  A. alternata  were probably 
resistant to severe sunlight and desiccation and 
survived on the surface of sun leaves due to the 
dark pigmentation (melanization) of the hyphal 
wall (Butler and Day  1998 ). Hyphal tips of 
 C. cladosporioides  and  A. alternata  also showed 
high tolerance to desiccation (Park  1982 ). 

 Osono and Mori ( 2004 ) collected leaves from 
different positions of the canopy of giant dogwood 
( Swida controversa ) to examine phyllosphere 
fungi and relate these to the height and openness 
(as an index of light environment) of the leaf 
positions and to the leaf properties, such as leaf 
mass per area (an index of leaf thickness) and 
contents of nitrogen and total polyphenols (Fig.  1.2 ). 
The canopy of giant dogwood in open sites was 
characterized by a multilayered distribution of 

leaves; that is, the distribution of leaves was dis-
crete in relation to height, making the tree species 
suitable for the examination of the pattern of 
occurrence of fungi within the canopy. With respect 
to the openness, the FO of  Aureobasidium  sp.2 
was higher on leaves collected at open positions 
at the periphery of canopy than on suppressed 
leaves near the trunk. In contrast, the FO of 
 Colletotrichum gloeosporioides  was higher on 
suppressed leaves. Alternatively, FOs of  Epicoccum 
nigrum ,  Clonostachys rosea , and  C. gloeosporioides  
were negatively correlated with leaf mass per area 
and/or contents of nitrogen and total polyphenol, 
suggesting possible effects of leaf properties.

   The studies cited above indicated that the infec-
tion and colonization of leaves by endophytic 
phyllosphere fungi are affected by various factors, 
including physical microenvironments of the 
phyllosphere, physical and chemical properties 
of leaves, and possibly interactions with other 
microbes. More studies are needed to evaluate 
the ecological importance of individual factors 
and the relative importance of multiple factors. 
Useful in this regard is the sampling of leaves 
using “natural experiments,” like that within 
the canopy of giant dogwood, as in the study of 
Osono and Mori ( 2004 ) (Fig.  1.2 ), and manipula-
tion experiments that control individual factors of 
interest, such as bagging and shading of leaves.   

  Fig. 1.2    Schematic diagram of canopy of giant dogwood ( Swida controversa , Cornaceae) and frequency of occurrence of 
major phyllosphere fungi on leaves collected at different canopy positions (Data after Osono and Mori  2004 )       
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4     Seasonal and Leaf Age- 
Dependent Variations 

 Seasonal and leaf age-dependent changes in 
endophytic and epiphytic phyllosphere fungi are 
among the major topics of ecological studies and 
were already summarized in previous reviews 
(e.g., Petrini  1991 ). Related studies using beech, 
birch, and pine leaves are available in Japan, and 
relative importance of season and leaf age on the 
occurrence of phyllosphere fungi was examined 
on both evergreen (camellia) and deciduous 
(dogwood) trees. 

4.1     Seasonal and Leaf  Age- 
Dependent Changes 

 Two patterns of temporal changes were recog-
nized over the growing season for endophytic 
fungi associated with deciduous leaves of beech 
in the Tohoku district (Sahashi et al.  1999 ,  2000 ). 
Frequency of occurrence of  Discula  sp. was highest 
at leaf emergence in May to June, decreased 
temporarily in August and September, and then 
increased slightly at leaf senescence in October. 
In contrast,  Ascochyta fagi  was fi rst isolated in 
late June and remained at a high FO (over 80 %) 
until the end of the growing season. Sahashi et al. 
( 1999 ) postulated that the temporary decrease of 
 Discula  sp. during the summer might be caused 
by the hot, dry conditions, by defense responses 
of the host plant, and/or by interaction with 
another endophyte ( A. fagi ) that increased rapidly 
during that period. Differences in the phenology 
of spore discharge and/or of hyphal ingrowth 
from buds, as discussed in the previous section, 
may also account for the difference in temporal 
patterns between the endophytic fungal species. 
In another study conducted in the Kanto district 
(Kaneko et al.  2003 ; Kaneko and Kaneko  2004 ), 
the FOs of  Mycosphaerella buna ,  A. fagi , 
 Periconiella  sp., and  Tritirachium  sp. in beech 
leaves increased from May and June to October, 
consistent with the results of Sahashi et al. ( 1999 , 
 2000 ). In Kyoto, the FOs of  Geniculosporium  sp.1 
and  Cladosporium cladosporioides  on beech leaves 

also increased over the growing season, whereas 
those of  A. fagi  and  Phoma  sp. showed no such 
changes (Fig.  1.3a ; Osono  2002 ). Studies in Mie 
prefecture showed similar patterns of increasing 
endophytic fungi from April to August in leaves 
of several deciduous tree species (Yoshihashi 
et al.  2001 ; Naito et al.  2002 ; Ikebe et al.  2004 ).

   Recently, Osono and Masuya ( 2012 ) examined 
seasonal changes in endophytic fungal assem-
blages in leaves of Betulaceae in subalpine and 
temperate forests. Endophytic fungal assemblages 
on leaves of  Betula ermanii  in subalpine forest 
showed relatively minor seasonal changes, com-
pared to those of three tree species ( Alnus fi rma , 
 Betula grossa , and  Carpinus laxifl ora ) in a cool 
temperate forest. The lower mean temperature 
and the lower variation in air temperature during 
the growing season in subalpine forest may partly 
account for the less marked changes in fungal 
composition than those in cool temperate forest 
(Osono and Masuya  2012 ). 

 Hata and Futai ( 1993 ) and Hata et al. ( 1998 ) 
studied seasonal and leaf age-dependent changes 
of endophytic mycobiota on middle and basal 
segments of pine needles in Kyoto. The longevity 
of needles used in these studies was 2 years for 
 Pinus densifl ora  and 3 years for  P. thunbergii . 
Virtually no endophytes were detected in needles 
just after emergence. The FO of  Leptostroma  sp. 
(an anamorph of  Lophodermium pinastri ) con-
tinuously increased with needle aging, with a 
rapid increase in current-year needles from 
September to December. Conversely, the FO of 
 Phialocephala  sp. on basal parts of needles 
slowly decreased with needle aging after a mas-
sive emergence in current-year needles. Another 
two major endophytes,  Cenangium ferruginosum  
and unidentifi ed sterile mycelium named BrS in 
Hata et al. ( 1998 ), were frequent on 1- and 
2-year-old needles with negligible seasonal or 
leaf age-dependent variations. The continuous 
increase in FO of  Leptostroma  sp. with needle 
aging may be due to (1) cumulative infection 
with the time after needle fl ush, (2) improved 
habitat condition for the endophyte with the 
change in the physiology of needles with needle 
aging, and (3) increase in microscopic wounds or 
changes in the physical conditions of needles, 
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which may facilitate fungal infection, according 
to Hata et al. ( 1998 ). Hata et al. ( 1998 ) suggested 
possible factors contributing to the decrease in 
the FO of  Phialocephala  sp. with needle aging to 
include (1) earlier fall of needles colonized by this 

endophyte, (2) aggravation of habitat conditions for 
the endophyte with the changes in the physiology 
of needles with needle aging, and (3) competition 
with other fungi, such as  Leptostroma  sp., whose 
FO increased with needle aging.  

  Fig. 1.3    Examples of seasonal and leaf age-dependent 
changes in frequency of occurrence of endophytic and 
epiphytic phyllosphere fungi. ( a ) Beech ( Fagus crenata , 
Fagaceae; data after Osono  2002 ), ( b ) dogwood ( Swida 
controversa , Cornaceae; modifi ed from Osono and Mori 

 2005 ), and ( c ) camellia ( Camellia japonica , Theaceae; 
modifi ed from Osono  2008 ).  Open squares  and  fi lled circles  
of ( b ) indicate the data of dogwood leaves on the fi rst- and 
second-order shoots that produced leaves in May and June, 
respectively. Longevity of camellia leaves ( c ) was 4 years       
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4.2     Relative Importance 
of Season and Leaf Age 

 The studies mentioned in the previous section 
demonstrated the effects of season and leaf age 
on the occurrence of endophytic and epiphytic 
phyllosphere fungi. It is generally diffi cult, 
however, to separate the relative importance of 
effects of season and leaf age on phyllosphere 
fungi. This is because leaf aging proceeds 
simultaneously with seasonal changes in climatic 
 conditions during the growing season in temper-
ate regions. Examining the relative importance 
of these factors, therefore, requires sampling 
procedures, such as the simultaneous harvest of 
leaves of different ages at different times during 
the growing season. 

 The longevity of evergreen leaves exceeds 
1 year, so that leaves of different ages are attached 
on the same twigs at the same time. The leaf age 
of evergreen trees can be estimated by counting 
annual bud scars if bud scars can be clearly rec-
ognized. Osono ( 2008 ) used camellia ( Camellia 
japonica ) on twigs of which annual bud scars are 
readily recognizable to examine the relative 
effects of season and leaf age on the occurrence 
of endophytes and epiphytes. New leaves of 
camellia emerge and senescent leaves fall in 
May, and the leaf longevity is 4 years, at the 
study site in Kyoto. Twigs were harvested in May, 
August, November, and February, corresponding 
to spring, summer, autumn, and winter, respec-
tively. Healthy-looking leaves on twigs were 
then classified into four leaf ages: current 
(age 0), 1st (age 1), 2nd (age 2), and 3rd (age 3) 
years. This yielded an orthogonal sampling 
design of four seasons and four leaf ages. Of the 
resulting eight major phyllosphere fungal species, 
six showed signifi cant seasonal variations, one 
( Geniculo-sporium  sp.) showed a leaf age- 
dependent variation, and one ( Cladosporium 
cladosporioides ) showed both seasonal and leaf 
age-dependent variations (Fig.  1.3c ). 

 Studies were also conducted on evergreen 
trees  Nothofagus truncata  (Ruscoe  1971 ) and 
 Eucalyptus viminalis  (Cabral  1985 ) using the 
same sampling design as Osono ( 2008 ), demon-

strating consistent patterns that endophytic and 
epiphytic fungi generally were infl uenced more 
frequently by seasonal variation than by leaf age. 
However, predictable patterns were still diffi cult 
to infer from the results of these case studies. For 
example,  C. cladosporioides  and  Aureobasidium 
pullulans  were commonly detected on the three 
host trees but showed different patterns of seasonal 
and leaf age-dependent variations on different 
hosts. Osono ( 2008 ) considered that more detailed 
analyses of the seasonal and leaf age- dependent 
changes in leaf environmental conditions might 
provide further insights into the dynamics of 
endophytic and epiphytic phyllosphere fungi on 
forest trees. 

 The longevity of deciduous leaves is less than 
1 year, but leaves of different ages are often 
observed on the same twigs at the same time for 
some tree species that have a succeeding type 
of leaf emergence (Kikuzawa  1983 ). In giant 
dogwood ( Swida controversa ), for example, winter 
buds develop in May to fi rst-order shoots, whose 
axillary buds sometimes elongate second-order 
shoots and produce new leaves in June. Such a 
shoot elongation pattern can give rise to higher- 
order shoots and new leaves under open con-
ditions until September (Kodani and Togashi 
 1992 ,  1995 ). Therefore, current-year shoots of 
dogwood in the middle of the growing season 
include leaves of different ages. Dogwood can 
thus be a suitable material to examine the 
seasonal and leaf age-dependent changes of 
phyllosphere fungi because the effect of leaf age 
can be (partly) separated from that of season by 
focusing on the phenological patterns of leaf 
emergence on current- year shoots. Accordingly, 
Osono and Mori ( 2005 ) examined phyllosphere 
fungal assemblages on dogwood leaves of different 
age monthly over the growing season. The resulting 
seven major phyllosphere fungal species showed 
increasing patterns of occurrence from May to 
October. Osono and Mori ( 2005 ) then compared 
the FOs of these fungal species between leaves 
on the fi rst-order shoots that elongated in May 
and those on the higher-order shoots that elongated 
from June to September. The results showed that 
the FOs of  Phomopsis  sp.,  Pestalotiopsis  sp., and 
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 Trichoderma viride  were higher in fi rst-order 
than in higher-order shoots, suggesting that their 
colonization was proportional to leaf age and/or 
that their potential to colonize leaves was lower 
later in the growing season. In contrast, the FOs 
of  Colletotrichum gloeosporioides ,  Clonostachys 
rosea ,  Cladosporium cladosporioides , and  Phoma  
sp. were not different between fi rst- and higher-
order shoots, suggesting the negligible effect of 
leaf age and the high potential to colonize leaves 
over the growing season. These patterns repre-
sented by  Phomopsis  sp. and  C. cladosporioides  
are shown in Fig.  1.3b . Further studies are needed 
that compare the temporal patterns of phyllo-
sphere fungi on deciduous trees with different 
types of leaf emergence to test the general validity 
of the fi ndings of Osono and Mori ( 2005 ) on 
giant dogwood.   

5     Spatial Variations 

 Assemblages of endophytic and epiphytic phyl-
losphere fungi show spatial patterns at various 
scales (Petrini  1991 ). Within-leaf, within-canopy, 
altitudinal, and geographic distributions have 
been demonstrated for phyllosphere fungi of tree 
species in Japan. 

5.1     Within-Leaf Distribution 

 Frequencies of occurrence of three major endo-
phytes,  Discula  sp.,  Ascochyta fagi , and  Phomopsis  
sp. on beech leaves, were not signifi cantly differ-
ent between the edge, midrib, and lamina within 
single leaves (Sahashi et al.  1999 ). Similarly, 
the FO of  Mycosphaerella buna  on beech leaves 
was not signifi cantly different between the top, 
middle, and base parts of midrib and lamina 
(Kaneko et al.  2003 ). It should be noted, however, 
that these results are not always the case, because 
a few studies performed outside Japan reported 
within-leaf differences in FOs of endophytes 
associated with broad-leaved tree species (e.g., 
Sieber and Hugentobler  1987 ; Wilson and Carroll 
 1994 ). The FO of major endophytes differed 

between the apical and basal portions of pine 
needles (Hata and Futai  1996 ; Hata et al.  1998 ), 
probably due to the difference in the route of 
infection (see Sect.  3.1 ). This is consistent with 
the fi nding of Dobranic et al. ( 1995 ) about the 
difference in FO of endophytes within positions 
of  Larix laricina  needles.  

5.2     Within-Canopy Distribution 

 Trees of giant dogwood in open sites have cano-
pies characterized by a multilayered distribution 
of leaves and are suitable for the examination of 
the within-canopy distribution of endophytic 
and epiphytic phyllosphere fungi (see Sect.  3.3 ). 
Major phyllosphere fungi of giant dogwood 
occurred either evenly or unevenly according to 
the positions within the canopy and the twigs 
examined. The latter included  Aureobasidium  sp. 
and  Epicoccum nigrum , whose FOs on leaves 
were higher on upper than on lower canopy, and 
 Phoma  sp. and  Clonostachys rosea , whose FOs 
were higher on lower canopy. The higher FOs 
in the lower canopy can be partly ascribed to 
the high density of airborne inoculum near the 
ground, because litter is another major habitat of 
 Phoma  sp. and  C. rosea  (Osono et al.  2004a ). 
Moreover,  Aureobasidium  sp. had higher FO in 
leaves of the canopy periphery than near the main 
trunk, whereas  Colletotrichum gloeosporioides  
had higher FO in leaves near the main trunk. 
Possible explanations for the observed differ-
ences in within-canopy distribution could include 
the different sensitivity of fungal species to micro-
environments of the phyllosphere, as discussed 
in Sect.  3.3 .  

5.3     Altitudinal and Geographic 
Distributions 

 Hashizume et al. ( 2008 ) studied altitudinal dis-
tributions of endophytic fungi on leaves of an 
evergreen oak,  Quercus acuta , on two mountains, 
Mt. Takao and Mt. Osuzu, located in eastern 
Honshu and Kyushu, respectively, 1,000 km 
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apart. Fungi were isolated from healthy-looking 
leaves collected at 400 and 600 m on Mt. Takao 
and at 900, 1,100, and 1,300 m on Mt. Osuzu. 
The frequency of occurrence of  Tubakia  sp. was 
higher at lower altitude on both mountains. In 
contrast, FO of  Phomopsis  sp. on Mt. Takao and 
FO of  Discula  sp. on Mt. Osuzu were higher at 
higher altitude. Under pure culture conditions, 
the optimum temperature of hyphal extension 
was higher, and the lowest temperature at which 
hyphal growth ceased was higher for isolates of 
 Tubakia  sp. than for those of  Phomopsis  sp. and 
 Discula  sp. Based on the results of pure culture 
tests, Hashizume et al. ( 2008 ) attributed the higher 
FO of  Phomopsis  sp. and  Discula  sp. at higher 
altitudes to the adaptation to lower temperatures. 

 The species composition of major endophytic 
fungi was generally similar when a single host 
tree species from geographically separated forest 
stands was examined.  Tubakia  sp. from  Q. acuta  
leaves is a typical example, as mentioned in the 
previous paragraph (Hashizume et al.  2008 ). 
Sahashi et al. ( 2000 ) examined endophytic myco-
biota of beech leaves at fi ve locations in the Tohoku 
district, approximately 250 km apart at the maxi-
mum, and found no signifi cant difference in the 
composition of fungal species. Nevertheless, a 
delay of infection by  Discula  sp. was observed 
at one study site (Asahimura), probably due to 
the delayed snowmelt at that site compared to the 
other sites (see Sect.  3.2 ). On beech leaves,  Ascochyta 
fagi  and  Phomopsis  sp. were commonly isolated 
in Tohoku (Sahashi et al.  1999 ,  2000 ), Kanto 
(Kaneko and Kaneko  2004 ), Kyoto (Osono  2002 ; 
Osono and Mori  2003 ), and Kyushu (Hashizume 
et al.  2010 ), despite differences in the method of 
isolation. Hashizume et al. ( 2010 ) investigated 
endophytic fungi in beech leaves collected from 
pure beech stands at four locations with different 
summer temperatures, covering the range of nat-
ural distribution of the tree species.  Ascochyta 
fagi  was dominant at every site, and FO of this 
fungus was higher at sites with lower maximum 
air temperature, suggesting that its occurrence 
was infl uenced primarily by summer temperature 
rather than geographic distance. 

 Similarly, Suzuki et al. ( 2003 ) found the dominant 
occurrence of a single unidentifi ed morphotype 

(coded as Ds) from leaves of a deciduous oak 
 Quercus serrata  collected at four locations in the 
Chubu and Kinki districts, approximately 200 km 
apart at the maximum. Nomura et al. ( 2003 ) studied 
endophytic fungi of  Pinus thunbergii  at coastal 
and inland stands in Mie prefecture and found 
similar species composition but differences in 
FOs of major fungal species. In a survey of endo-
phytic fungi of  Pasania edulis  (Fagaceae), Hata 
et al. ( 2002 ) isolated  Phyllosticta  sp. frequently 
from leaves collected at a nursery (3 m asl), whereas 
FO of this fungus was lower, and FO of  Phomopsis  
sp. was higher, on Mt. Takakuma (550 m asl), 30 km 
away from the nursery. Hata and Sone ( 2008 ) 
isolated endophytes from leaves of  Neolitsea 
sericea  (Lauraceae) in broad-leaved and conif-
erous forest stands located 200 m apart and 
found generally minor effects of canopy vegeta-
tion on the endophytic fungal assemblages. 
Exceptionally,  Cytosphaera  sp. in petiole segments 
was more frequently isolated from broad-leaved 
than coniferous stands, the reason for the difference 
being unclear. 

 A few studies have compared endophytic 
fungal assemblages across different climatic 
regions. Osono and Masuya ( 2012 ) found that the 
similarities in composition of endophytic fungal 
assemblages were generally low in 11 tree species 
in Betulaceae collected from subalpine, versus 
cool temperate, versus subtropical forests. The low 
similarity among the different climatic regions 
can be attributed to the difference in climatic 
conditions as well as difference in tree species. 
 Nemania diffusa  and  Xylaria cubensis  in the 
Xylariaceae, major components of endophytic 
fungal assemblages in tropical forests in Asia 
(Okane et al.  2008 ,  2012 ), were also common 
to subtropical and temperate forests in Japan 
(Osono et al.  2013 ; Ikeda et al.  2013 ).   

6     Direct and Indirect Roles 
in Decomposition 

 As noted in the Sect.  1 , the roles of endophytic 
and epiphytic phyllosphere fungi have been 
reviewed thoroughly in Osono ( 2006b ,  2007 ) and 
Osono and Hirose ( 2009b ). Here, recent progress 
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in our understanding of the roles of endophytic 
ascomycetes in lignin decomposition is briefl y 
summarized. 

 Some endophytic fungi on live leaves persist 
in dead leaves and grow saprobically. A few 
of these endophytes have ligninolytic and/or 
cellulolytic activity and participate in the decom-
position of structural components, such as lignin 
and holocellulose (Osono and Hirose  2009b ). 
Ligninolytic activity of endophytic fungi was 
demonstrated for species in the Xylariaceae asso-
ciated with leaves of beech (Osono  2002 ) and 
dogwood (Osono et al.  2004a ; Osono  2005 ) and 
in the Rhytismataceae associated with camellia 
leaves (Koide et al.  2005a ,  b ). Osono et al. ( 2013 ) 
showed the ubiquity of xylariaceous endophytes 
on live leaves for more than 80 tree species in 
a cool temperate forest in Kyoto. In that study, 
 Xylaria  sp., detected as an endophyte on live leaves 
of 68 tree species, was shown to be associated 
with the bleached portions of dead leaves for 12 
tree species, which were produced due to the 
selective decomposition of lignin by the fungal 
colonizer. Pure culture decomposition tests indi-
cated that ligninolytic activity of  Xylaria  sp. was 
enhanced above 25 °C at the expense of cellulo-
lytic activity (Osono et al.  2011 ).  Lophodermium 
pinastri  (Rhytismataceae), a dominant endophyte 
of pine needles, was shown to have ligninolytic 
activity in the pure culture and to reduce lignin 
content in needle portions colonized in the fi eld 
(Osono and Hirose  2011 ; Hirose and Osono  2006 ). 
 Coccomyces sinensis  (Rhytismataceae) is the 
fi rst to colonize recently dead leaves of camellia 
and takes part in selective delignifi cation in leaf 
portions (Koide et al.  2005a ). Osono and Hirose 
( 2009a ) recently demonstrated in pure culture 
tests that the prior decomposition of leaves by 
 C. sinensis  stimulated the subsequent decompo-
sition by other fungi. This was partly owing 
to the selective delignifi cation by  C. sinensis  and 
the concomitant increase in the availability of 
delignifi ed holocellulose. The ligninolytic activity 
of  C. sinensis  appears to be sensitive to environ-
mental changes: clear-cutting of a temperate 
secondary forest resulted in a decrease of the 
leaf area colonized and bleached by this fungus 
(Hagiwara et al.  2012 ). These recent fi ndings 

suggest that ligninolytic endophytes are major 
components of decomposer fungal assemblages 
and play defi nite and unique roles in fungal 
succession and decomposition of dead leaves. 
The sensitivity of ligninolytic activity to temper-
ature and environmental changes is of particular 
interest and deserves further analyses.  

7     Interaction with Pathogens 
and Herbivores and Effects 
of Environmental Stress 

7.1     Effects of Pathogens 

 Zonate leaf blight is a foliar disease of various 
evergreen and deciduous woody plant species 
caused by  Haradamyces foliicola  (Masuya et al. 
 2009 ). It is characterized by zonate necrosis, 
leading to defoliation during the early growing 
season (Osono et al.  2004b ) and sometimes the 
death of the tree (Fig.  1.4 ). In particular, tree 
species in the Cornaceae, including the giant 
dogwood  Swida controversa , are highly sus-
ceptible to the disease. Osono ( 2006a ) studied 
endophytic fungi associated with leaves infested 
with zonate leaf blight.  Haradamyces foliicola  
was exclusively isolated from zonate parts, and 
both endophytic fungi that were frequent on 
uninfected parts and  H. foliicola  were isolated 
from rim parts of symptomatic regions (Fig.  1.4 ). 
The FO of endophytic fungi was lower in leaf 
disks from which  H. foliicola  was detected 
than in those from which it was not detected, 
suggesting that endophytic fungi were excluded 
from leaf tissues as symptoms developed. 
Osono ( 2006a ) then examined mycelial inter-
actions between  H. foliicola  and nine species 
of endophytic and epiphytic phyllosphere fungi 
in dual culture tests on a nutrient medium. All 
phyllosphere fungi showed overgrowth, contact 
inhibition, or inhibition at a distance against 
isolates of  H. foliicola . It is not likely, however, 
that the phyllosphere fungi have such antagonistic 
effects in vivo as observed in vitro, because the 
isolation experiment suggested the exclusion 
of phyllosphere fungi as symptom development 
proceeded.
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   Induced resistance against pathogens in 
response to the infection by endophytic fungi was 
demonstrated for grass host (e.g., Clarke et al. 
 2006 ), but there are few known examples for tree 
hosts. Results of laboratory tests have shown 
inhibitory effects of epiphytic fungi on spore 
germination, germ tube elongation, and mycelial 
growth of pathogenic fungi (Dickinson and 
Skidmore  1976 ; Omar and Heather  1979 ; Fiss 
et al.  2000 ). Arnold et al. ( 2003 ) reported that the 
infection of leaves of cacao ( Theobroma cacao , 
Malvaceae) seedlings by endophytic fungi reduced 
leaf mortality by a pathogen,  Phytophthora  sp. 
Future studies will be needed to explore the inter-
action between pathogens and endophytic and 
epiphytic phyllosphere fungi in the fi eld.  

7.2     Effects of Herbivores 

 The pine needle gall midge,  Thecodiplosis japo-
nensis , is an important forest pest of many pine 

species. Gall midges normally infest basal 
regions of needle fascicles that fuse to form galls. 
Hata and Futai ( 1995 ) isolated  Phialocephala  
sp.,  Phomopsis  sp., and  Pestalotiopsis  sp. as endo-
phytes of the galls formed on  Pinus densifl ora  
and the F2 hybrid pine ( P. thunbergii  × ( P. thun-
bergii  ×  P. densifl ora )).  Phialocephala  sp. was 
also isolated frequently from basal parts of healthy 
needles (see Sect.  3.1 ) but not from middle parts 
of healthy needles or galls formed at middle 
parts of needles, indicating that this fungus was 
position specifi c rather than gall specifi c. In con-
trast,  Phomopsis  sp. and  Pestalotiopsis  sp. were 
found to be gall specifi c, opportunistic colonizers 
of galls. No endophytic or opportunistic fungi 
were isolated in the early stages of gall formation, 
suggesting that no fungi are carried into the galls 
by the midge. Moreover, midge larvae collected 
from galls were almost free from fungi, indicating 
that larvae in the galls had probably not been in 
contact with endophytic fungi. Taking the quite 
low larval mortality of gall midges at the study 

  Fig. 1.4    Frequency of occurrence of fungi isolated from 
leaves infested by zonate leaf blight of giant dogwood ( Swida 
controversa , Cornaceae). Fungi were isolated from zonate 

(Z), rim (R), and uninfected (U) positions of infested live 
leaves. Bar = 1 cm.  Haradamyces foliicola  is the causal 
agent of the disease (Data after Osono  2006a ,  b )       
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site into account, Hata and Futai ( 1995 ) considered 
that the gall midge does not seem to have mutual-
istic or antagonistic associations with endophytic 
fungi. Faeth ( 2002 ) in his review of the three-
way symbiosis of plant, herbivores, and endo-
phytes showed that few reports are available 
demonstrating that fungal endophytes act as 
mutualistic symbionts of trees by functioning 
as antagonists against herbivores.  

7.3     Effects of Simulated Acid Rain 

 Asai et al. ( 1998 ) experimentally treated living 
needles of 10-year-old  Pinus thunbergii  with 
simulated acid rain (SAR, pH 3) or tap water 
(control, pH 6.3) to examine the occurrence of an 
endophyte,  Lophodermium pinastri . The SAR 
treatment resulted in increased needle fall, a 
decrease of FO of  L. pinastri  in live needles, and 
a decrease of FO of fruiting bodies on dead 
needles. These results were consistent with those 
of previous studies of SAR application (Helander 
and Rantio-Lehtimäki  1990 ; Helander et al. 
 1993a ,  b ,  1994 ; Magan et al.  1995 ).   

8     Future Directions 

 Most of our current knowledge on the diversity 
and ecology of endophytic and epiphytic phyllo-
sphere fungi on tree leaves comes from original 
studies carried out in temperate regions of Europe 
and North America. Consequently, it is generally 
the case that a limited number conifers and broad- 
leaved trees (e.g., species in  Quercus  (oak) and 
 Betula  (birch)) have been used for the study of 
phyllosphere fungi, because a relatively limited 
number of tree species are available in these 
regions. In contrast, a rich number of tree species 
is distributed in Japan, and as many as 250 tree 
species have been explored for the diversity of 
phyllosphere fungi (see Sect.  2.1 ). Still, however, 
many tree species are yet to be examined for the 
occurrence and diversity of phyllosphere fungi. 
Besides, most of the ecological studies of phyl-
losphere fungi in Japan used as materials a few 
tree species (e.g., pines, beech, and dogwood) in 

temperate forests. Further studies are needed in 
less-studied climatic regions, that is, in subtropical, 
subalpine, and subboreal forests. This especially 
holds true for subtropical and tropical forests 
in southern Japan and Southeast Asia that are 
considered to harbor magnifi cent richness of 
phyllosphere fungi and are regarded as one of the 
“hotspots” of fungal diversity (Arnold et al.  2000 ; 
Arnold and Lutzoni  2007 ). 

 Studies on the diversity and ecology of phyllo-
sphere fungi in Japan cover a wide range of topics, 
as is summarized in this chapter. Fields of research 
yet to be fully examined for phyllosphere fungi 
in Japan include trophic interactions. The interac-
tion between trees, phyllosphere fungi, and herbi-
vores and pathogens has been actively investigated 
for the grass-endophyte symbiosis (Cheplick and 
Faeth  2009 ) and for phyllosphere fungi of trees, 
relating to the activity of toxic substances derived 
from endophytes against herbivores (Miller et al. 
 1985 ,  2002 ; Miller  1986 ; Clark et al.  1989 ; Calhoun 
et al.  1992 ; Johnson and Whitney  1994 ), the 
association of foliar endophytes of oaks with gall- 
forming insects and leaf miners (Weis  1982 ; Lasota 
et al.  1983 ; Petrini et al.  1989 ; Butin  1992 ; Wilson 
 1995 ; Faeth and Hammon  1996 ,  1997a ,  b ; Gaylord 
et al.  1996 ; Wilson and Carroll  1997 ; Wilson 
and Faeth  2001 ), the interaction between foliar 
endophytes and herbivores of birch (Lappalainen 
and Helander  1997 ; Lappalainen et al.  1999 ; 
Ahlholm et al.  2002a ; Valkama et al.  2005 ), and 
the relationship between aphids and endophytes 
and epiphytes (Gange  1996 ; Stadler and Müller 
 1996 ,  2000 ). Regarding the physiological response 
of plants to fungal infection, phyllosphere fungi 
can accelerate the senescence of leaves (Skidmore 
and Dickinson  1973 ,  1976 ; Jachmann and 
Fehrmann  1989 ). Considering the record of over 
1,200 species of trees and over 30,000 species 
of insects in Japan (Biodiversity Center of Japan 
 2010 ), future research will possibly reveal new 
and interesting interactions among trees, phyllo-
sphere fungi, and insects. Another research fi eld 
that remains to be investigated is the histochemical 
observation of latent infection by endophytic 
fungi (Suske and Acker  1987 ,  1989 ; Johnson and 
Whitney  1989b ; Osorio and Stephan  1991b ; 
Deckert et al.  2001 ). 
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 Molecular biological methods are promising 
to identify, detect, and study the diversity of 
endophytic and epiphytic phyllosphere fungi. 
A growing number of publications have become 
available worldwide in this regard since around 
2000. Isolates of phyllosphere fungi, especially 
endophytic ones, are often sterile and diffi cult 
to identify morphologically, which makes the 
evaluation of species richness diffi cult. Recent 
progress in molecular bar coding of fungi indicates 
its remarkable potential as a tool to facilitate iden-
tifying fungal species (Osono  2013 ). For example, 
molecular biological methods were used to 
characterize the taxa of isolates of endophytes 
and “sterile mycelia” in Japan (Okane et al. 
 2001a ,  2003 ; Hashizume et al.  2008 ; Osono et al. 
 2013 ) and in other countries (e.g., Promputtha 
et al.  2005 ; Santamaria and Bayman  2005 ; Wang 
et al.  2005 ). Moreover, molecular tools are used 
in the evaluation of genetic diversity of endophytes 
(Guo et al.  2004 ; Lu et al.  2004 ; Cohen  2006 ) 
and in population genetics studies of endophytes 
(Burgess et al.  2004 ). More recently, environ-
mental DNA was extracted directly from leaves 
and analyzed as clone libraries (Duong et al.  2006 ; 
Arnold et al.  2007 ; Yan et al.  2008 ). In Japan, 
fungal diversity on  Camellia japonica  leaves and 
the endophytic lifestyle of  Coccomyces sinensis  
was successfully examined using an environmental 
clone library (Hirose et al.  2013 ). Such culture-
independent methods will become popular and 
standard as a result of the development of next-
generation sequencing technologies that have 
revolutionized large-scale sequencing of environ-
mental fungal DNA (Jumpponen and Jones  2009 , 
 2010 ; Osono  2013 ). This metagenomic approach 
will be essential for future explorations of yet-to-
be-discovered hyper-diversity of phyllosphere 
fungi in subtropical and tropical forests (Sakaguchi 
et al. unpublished). 

 Molecular biological methods also throw light 
upon the functional aspects of endophytic fungi 
of trees. For example, the majority of endophytes 
of  Pinus monticola  (90 % of 2019 isolates) belonged 
to the Rhytismataceae, but not a single rhytisma-
taceous endophyte was found to be most closely 
related to known rhytismataceous parasites of 
the host tree (Ganley et al.  2004 ). This study 

demonstrated that endophytes of  P. monticola  are 
merely cryptic or in a latent state of known para-
sites of the tree, and that endophytes are a unique 
functional group distinct from parasites of the 
same tree species. In contrast, Baayen et al. ( 2002 ) 
used molecular biological analysis and showed the 
identity of a cosmopolitan endophyte,  Guignardia 
mangiferae , with nonpathogenic isolates of the 
citrus black spot fungus  G. citricarpa . Similarly, 
the identity of endophytes in live leaves and 
saprobes in dead leaves of single tree species was 
confi rmed by DNA sequence analyses (Müller 
et al.  2001 ; Deckert et al.  2002 ; Promputtha et al. 
 2007 ; Osono et al.  2013 ). Host (birch) genotypes 
infl uenced the probability of infection by, and 
the genotypes and genetic diversity of, an endo-
phyte,  Venturia ditricha  (Ahlholm et al.  2002b ). 
Undoubtedly, molecular biological methods will 
be a powerful tool for future studies on the diver-
sity and ecology of endophytic and epiphytic 
phyllosphere fungi of trees in Japan.     
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    Abstract  

  Actinobacteria are a group of Gram- positive microorganisms with a high 
G+C content in their DNA and belong to the phylum  Actinobacteria , one of 
the largest phyla within bacteria. Some of these actinobacteria have an endo-
phytic lifestyle which occurs abundantly in most plants. The abundance and 
diversity of endophytic actinobacterial colonisation depend on plant species, 
type of soils and other associated environmental conditions.  Streptomyces  
spp. were reported as the most predominant species, and  Microbispora , 
 Micromonospora ,  Nocardioides ,  Nocardia  and  Streptosporangium  are other 
common genera of endophytic actinobacteria isolated from a diverse range of 
plant species, including those found in estuarine/mangrove ecosystems and 
algae and seaweeds of marine ecosystems. Over the years, isolation media 
have been devised and numerous methods have been standardised for the iso-
lation, identifi cation and characterisation of these endophytic actinobacteria. 
Recent advances in molecular tools have revealed the ‘not yet cultured’ 
diversity within this group. Therefore, a combination of both culture-
based and molecular techniques is essential to describe the diversity and 
ecology of endophytic actinobacteria. The quest for actinobacteria and 
their metabolic capabilities is ongoing, as they represent the largest ecologi-
cal resource for secondary metabolites (plant hormones, antibiotics and other 
bioactive compounds), with potential biotechnological applications in agri-
culture, industry and medicine.  
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       1  Introduction 

 Plants are naturally associated with microorgan-
isms both externally and internally in various 
ways. On the exterior surface of plants, diverse 
microbial interactions occur mostly in the root 
zone (rhizosphere) and on aerial parts, especially 
the leaves (phyllosphere) (Hiltner  1904 ; Yang 
et al.  2001 ; Lindow and Brandl  2003 ; Gray 
and Smith  2005 ). Some of the rhizosphere- and 
phyllosphere- derived microorganisms, which 
are either bacteria or fungi, are able to penetrate 
the interior of the plant and colonise intercellular 
spaces and vascular tissues, where they reside at 
least part of their lives showing benefi cial/sym-
biotic, neutral or pathogenic interactions (Tervet 
and Hollis  1948 ; Hallman et al.  1997 ; Araujo 
et al.  2002 ; Rosenblueth and Martínez-Romero 
 2006 ).    In the well-studied endosymbiotic benefi -
cial interactions, like the root nodule symbiosis 
of legumes with rhizobia or the formation of 
arbuscular mycorrhiza with fungi, the formation 
of organised symbiotic structures is a common 
phenomenon, where the microsymbionts reside 
intracellularly surrounded by a host membrane 
(Fisher and Long  1992 ; Downie  1994 ; Wang and 
Qiu  2006 ). On the other hand, there are patho-
genic interactions, in which bacteria or fungi 
often produce effector molecules/proteins inside 
plant host cells that elicit symptoms of plant dis-
ease, causing deleterious effects (Montesinos 
et al.  2002 ). In contrast to these interactions, 
another kind of benefi cial interaction exists 
within the interior of the plant, which is poorly 
understood at the molecular level. The microor-
ganisms involved in these interactions are com-
monly referred to as ‘endophytes’ (Wilson  1995 ). 
By defi nition, endophytes are bacteria or fungi 
that colonise the host tissues internally, some-
times in high numbers, without damaging the 
host or harming the host through symptoms of 
plant disease (Wilson  1995 ; Compant et al. 
 2005 ). Unlike endosymbionts, they do not reside 
inside the host cells or surrounded by a mem-
brane compartment. Endophytes are distributed 
throughout the host in all plant organs roots, 
stems, leaves, fl owers, fruits and seeds. 

 Plants are endophytically colonised by a variety 
of bacteria belonging to different phylogenetic 
groups (Chelius and Triplett  2001 ; Reiter and 
Sessitsch  2006 ; Berg et al.  2005 ). Among them, 
endophytic bacteria are mostly  Proteobacteria , but 
also  Firmicutes ,  Actinobacteria  and  Bacteroidetes  
(Rosenblueth and Martínez-Romero  2006 ). 
However, the structural composition of endophytic 
bacterial communities depends on the host plant 
genotype, the plant organ as well as on the vege-
tative stage, and may be signifi cantly infl uenced 
by plant stress (Sturz et al.  1997 ; Sessitsch et al. 
 2002 ; Reiter et al.  2002 ; Rasche et al.  2006a ,  b ) 
and soil type (Conn and Franco  2004a ). The 
 Actinobacteria  are of interest as they are a primary 
source of secondary metabolites which include 
bioactive compounds with biotechnological sig-
nifi cance. The actinobacteria mainly inhabit the 
soil, and a large number of actinobacteria have 
already been isolated and described. Recently, 
the rate of discovery of new actinobacteria isolated 
from soils has decreased. Therefore, researchers 
have examined other ecological niches, such as 
plant surfaces and interior tissues of plants, and 
also estuarine and marine ecosystems. 

 The actinobacteria represent a large portion of 
the rhizosphere microbial community (Lundberg 
et al.  2012 ). Early studies have demonstrated 
that some actinobacteria can form intimate asso-
ciations with plants, such as the endosymbiotic 
association of  Frankia  species in nonleguminous 
plants and the pathogenic association of a narrow 
range of  Streptomyces  species on potato (Benson 
and Silvester  1993 ; Doumbou et al.  1998 ). Recent 
studies have revealed a diverse group of endophytic 
actinobacterial species with different functions 
from various plant species (Araujo et al.  2002 ; 
Coombs and Franco  2003a ; Ryan et al.  2008 ; 
Bascom-Slack et al.  2009 ). Some of them can act 
as biological control agents (Coombs et al.  2004 ; 
Cao et al.  2005 ; Misk and Franco  2011 ), and some 
act as plant growth promoters (Igarashi et al. 
 2002 ; Hasegawa et al.  2006 ). However, the geno-
type, physiological status of the host plants and its 
surrounding environment (soil type, including its 
physicochemical properties, microbial load and 
diversity) have a major impact on species rich-
ness and diversity of endophytic actinobacterial 
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populations and their related functions (Conn 
and Franco  2004b ; Franco et al.  2007 ). Due to 
their ability to colonise the interior of plants cou-
pled with their antimicrobial activities, many ini-
tial studies tested endophytic actinobacteria for 
biological control of plant diseases. In recent 
years, endophytic actinobacterial research has 
received special attention mainly as a result of 
their many other plant growth-promoting prop-
erties. In addition, actinobacteria cultured from 
different endophytic habitats are considered as a 
potential source for many novel secondary metabo-
lites (Guo et al.  2008 ). 

 The aim of this chapter is to describe the recent 
taxonomy, ecology and diversity of endophytic 
actinobacteria and to summarise recent fi ndings 
on isolation of novel endophytic actinobacteria 
from cultivated crops and also other unexplored 
plant sources from different ecosystems. Recent 
advances in the methods to study uncultured/not 
yet cultured endophytic actinobacterial diversity 
will also be covered.  

   2  Taxonomy and Molecular 
Phylogeny of Endophytic 
Actinobacteria 

 Taxonomically the endophytic actinobacteria are 
a group of Gram-positive bacteria belonging to 
the phylum  Actinobacteria.  With 6 classes, 25 
orders, 52 families and 232 genera (Table  2.1 ), 
the phylum  Actinobacteria  represents one of 
the largest taxonomic units among the 18 major 
lineages currently recognised within the domain 
 Bacteria , including 5 subclasses and 14 subor-
ders (Stackebrandt and Schumann  2000 ). The 
phylum  Actinobacteria  comprises Gram stain- 
positive bacteria with a high G+C content in 
their DNA.

      The species that constitute the  Actinobacteria  
have morphologies that include a range of cell 
types, i.e. coccoid, rod-coccoid and hyphae, that 
fragment or are highly differentiated. In some 
genera the spores are formed from aerial mycelia, 
and may be motile, or may be contained in 
 sporangia or other unusual spore-bearing structures. 
They have a diverse range of physiological 

properties and are sought after because of their 
production of extracellular enzymes but primarily 
for the production of secondary metabolites and 
increasingly for applications in agriculture. 

 Notably, many such secondary metabolites are 
antibiotics of medical importance (Lechevalier and 
Lechevalier  1967 ; Schrempf  2001 ).  Actinobacteria  
play a crucial role in the recycling of biomaterials 
by organic matter decomposition and humus forma-
tion (Goodfellow and Williams  1983 ; Schrempf 
 2001 ; Stach and Bull  2005 ).    This phylum includes 
human pathogens, e.g.  Mycobacterium  spp., 
 Nocardia  spp.,  Tropheryma  spp.,  Corynebacterium  
spp. and  Propionibacterium  spp.; plant commen-
sals, e.g.  Leifsonia  spp.; nitrogen-fi xing plant 
symbionts, e.g.  Frankia  spp.; plant endophytes 
(many genera); plant pathogens, e.g.  Streptomyces  
spp.; and inhabitants of the human gastrointestinal 
tract, e.g.  Bifi dobacterium  spp. 

 Although  Actinobacteria  form a distinct cluster 
in the 16S rRNA phylogenetic trees, the only 
‘shared derived character’ is a homologous inser-
tion of ~100 nucleotides between helices 54 and 
55 of the 23S rRNA gene (Ventura et al.  2007 ). 
Recent analysis has identifi ed conserved indels 
and proteins that can be used to distinguish this 
important group of bacteria (Gao and Gupta 
 2005 ; Gao et al.  2006 ; Ventura et al.  2007 ; 
Hayward et al.  2009 ). 

 The initial genome sequencing results con-
fi rmed that, unlike most bacterial genomes, 
many  Streptomyces  genomes are linear (Dyson 
 2011 ) and so too are genomes of  Rhodococcus  
spp., but the other genera have circular genomes 
(Bentley et al.  2002 ) with sizes ranging from 7.7 
to 9.7 Mb (Redenbach et al.  2000 ) for the fi la-
mentous actinobacteria. In addition, large ‘linear 
plasmids’ typically possessing short inverted 
repeats at their termini and protein- bound 5′ends, 
are also reported to be present in the various gen-
era of  Actinobacteria  (Kalkus et al.  1998 ; 
Redenbach et al.  2000 ). The fi rst actinobacterial 
genome to be sequenced was that of the human 
tuberculosis agent,  M. tuberculosis  H37Rv (Cole 
et al.  1998 ). In the last few years, genomes 
of different  Actinobacteria  (including plant 
benefi cial  Frankia ,  Leifsonia  and  Streptomyces  
species) have been sequenced to completion 
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 Systematic position/taxonomic 
hierarchy  Orders 

 No. of 
families 

 No. of 
genera 

 Key genera reported 
to contain endophytes 

 Phylum XXVI.  Actinobacteria  
 Class I.  Actinobacteria   Order I.  Actinomycetales   1  5   Actinomyces  

 Order II.  Actinopolysporales   1  1   Actinopolyspora  c  
 Order III.  Bifi dobacteriales   1  7  ND 
 Order IV.  Catenulisporales   2  2  ND 
 Order V.  Corynebacteriales   6  13   Corynebacterium  

  Dietzia  c  
  Gordonia  c  
  Mycobacterium  
  Nocardia  
  Rhodococcus  
  Tsukamurella  c  
  Williamsia  c  

 Order VI.  Frankiales   6  11 b    Blastococcus  c  
  Frankia  
  Jatrophihabitans  a  
  Modestobacter  c  

 Order VII.  Glycomycetales   1  2   Glycomyces  c  
 Order VIII.  Jiangellales   1  2   Jiangella  c  
 Order IX.  Kineosporiales   1  3   Kineococcus  c  
 Order X.  Micrococcales   15  84   Arthrobacter  

  Brachybacterium  c  
  Citricoccus  c  
  Herbiconiux  a  
  Janibacter  c  
  Kocuria  c  
  Koreibacter  a  
  Leifsonia  
  Microbacterium  
  Micrococcus  
  Oerskovia  c  
  Promicromonospora  c  
  Rathayibacter  c  

 Order XI.  Micromonosporales   1  23   Actinoplanes  c  
  Dactylosporangium  
  Jishengella  a  
  Micromonospora  
  Phytohabitans  a  
  Phytomonospora  a  
  Planosporangium  c  
  Plantactinospora  c  
  Polymorphospora  c  

 Order XII.  Propionibacteriales   2  18   Actinopolymorpha  c  
  Flindersiella  a  
  Kribbella  c  
  Nocardioides  

 Order XIII.  Pseudonocardiales   1  22   Actinomycetospora  c  
  Actinophytocola  a  
  Amycolatopsis  c  
  Kibdelosporangium  c  
  Pseudonocardia  
  Saccharomonospora  
  Saccharopolyspora  c  
  Saccharothrix  

(continued)

   Table 2.1    Taxonomy    of the phylum  Actinobacteria  
and genera with endophytic life style as per  Bergey’s 
Manual of Systematic Bacteriology  (Volume 5, Part A; 

2nd  edition, 2012) and ‘List of Prokaryotic Names with 
Standing in Nomenclature’   (Euzeby   http://www.bacterio.
cict.fr/    )   
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(Bentley et al.  2002 ; Monteiro- Vitorello et al. 
 2004 ; Normand et al.  2007 ), while sequencing of 
genomes from representatives of 43 or more 
actinobacteria are still in progress (  http://www.
ncbi.nlm.nih.gov/genomes/lproks.cgi    ). 

 In the recently published 2nd edition of 
 Bergey’s Manual of Systematic Bacteriology  
(Whitman et al.  2012 ), the polyphasic approach 
was followed for actinobacterial systematics. This 
taxonomic characterisation is inferred from many 
parameters, namely, its branching pattern in the 
16S rRNA phylogenetic tree (Garrity and Holt 
 2001 ; Ludwig and Klenk  2005 ), taxon- specifi c 
16S rRNA gene sequence signatures (Zhi et al. 
 2009 ), as well as chemotaxonomical, physiologi-
cal and biochemical properties. The separation of 
this phylum from other bacterial taxa is supported 
by conserved indels in some proteins (e.g. cyto-
chrome  c  oxidase subunit 1, CTP synthetase and 
glutamyl-tRNA synthetase   ), by the  presence of a 
large insert in the 23S rRNA gene (Gao and Gupta 
 2005 ; Gao et al.  2006 ) and by distinctive gene 
arrangements (   Kunisawa  2007 ).  

   3  Recent Advances 
in the Isolation 
and Characterisation 
of Endophytic 
Actinobacterial Diversity 

   3.1  Culture-Based Approaches 

 The method of isolation is one of the most crucial 
steps in obtaining pure cultures of endophytes; 
therefore, consideration should be given to the 
implementation of a plant-specifi c isolation pro-
tocol. Some detailed isolation methods and pro-
cedures, including plant sampling, surface 
sterilisation and media relevant for endophytic 
actinobacteria, were assessed by Hallmann et al. 
( 2006 ), Qin et al. ( 2009 ) and recently by Kaewkla 
and Franco ( 2013a ). 

   3.1.1  Plant Sampling, Surface 
Sterilisation and Processing 

 After the choice of host plant is made, the next 
decision is the age of the sample and the plant organ. 

 Systematic position/taxonomic 
hierarchy  Orders 

 No. of 
families 

 No. of 
genera 

 Key genera reported 
to contain endophytes 

 Order XIV.  Streptomycetales   1  3 b    Kitasatospora  c  
  Streptacidiphilus  c  
  Streptomyces  

 Order XV.  Streptosporangiales   3  22 b    Actinoallomurus  c  
  Actinocorallia  c  
  Actinomadura  c  
  Allonocardiopsis  a  
  Microbispora  
  Nocardiopsis  
  Nonomuraea  c  
  Planotetraspora  
  Streptomonospora  
  Streptosporangium  

 Order  Incertae sedis  b   0  1 b   ND 
 Class II. Acidimicrobiia  Order I.  Acidimicrobiales   2  5  ND 
 Class III. Coriobacteriia  Order I.  Coriobacteriales   1  13  ND 
 Class IV. Nitriliruptoria  Order I.  Nitriliruptorales   1  1  ND 

 Order II.  Euzebyales   1  1  ND 
 Class V. Rubrobacteria  Order I.  Rubrobacterales   1  1  ND 
 Class VI. Thermoleophilia  Order I.  Thermoleophilales   1  1  ND 

 Order II.  Solirubrobacterales   3  3  ND 

   a  New genus discovered as an endophyte
 b  Includes genus  Incertae sedis  
  c  Contains recently identifi ed/discovered endophytic species (after 2010); ND—no type strain identifi ed as an endophyte  

Table 2.1 (continued)
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In most studies, sampling is a one-off event and 
the description of the endophytes obtained is 
provided with little or no acknowledgement of 
the possibility that the diversity can change with 
plant age and season or soil type (Conn and Franco 
 2004a ). Very few studies are hypothesis driven, 
especially if the aim is to maximise the number 
and diversity of actinobacteria isolated. Sampling 
decisions should include the age or stage of 
the plant, the soil and climate and the parts of the 
plant (Zhang et al.  2006 ). In the case of trees, 
depending on the size, the location of the sample 
and the number of samples are likely to infl uence 
the outcomes. To date, there are no reports on the 
spatial diversity within a branch or root of a tree. 
However, as the abundance of endophytes is low 
(Kaewkla and Franco  2013a ), it is recommended 
that a large amount of plant sample is collected 
to be able to increase the number and diversity of 
the strains cultivated. 

 Surface sterilisation of plant material is an 
obligatory step for endophytic actinobacterial 
isolation in order to kill all the surface microbes. 
It is usually accomplished by treating the plant 
tissues with an oxidising agent or general steril-
ant for a specifi c period, followed by repeated 
sterile water rinses. Commonly used surface 
sterilants include ethanol (70–95 %), sodium 
hypochlorite (3–10 %) and also hydrogen perox-
ide (3 %). Some surfactants such as Tween 20, 
Tween 80 and Triton X-100 can also be added to 
enhance the effectiveness of surface sterilisation 
(Sturz  1995 ; Hallmann et al.  2006 ). A general 
protocol involves a three-step procedure similar 
to that described by Coombs and Franco ( 2003a ). 
It was recommend that a fi ve-step procedure is 
optimum, and addition of sodium thiosulfate 
solution following the sodium hypochlorite 
treatment will improve cultivation effi ciency 
because thiosulfate can neutralise the detrimen-
tal effects of residual NaOCl on the growth of 
microorganisms emerging from within the tissue 
(Qin et al.  2009 ). After this treatment, plant tis-
sues can be soaked in 10 % NaHCO 3  solution to 
inhibit any endophytic fungi, which can outgrow 
the actinobacteria on isolation medium plates 
(Nimnoi et al.  2010a ). The effectiveness of sur-

face sterilisation should be checked to confi rm 
the isolates are true endophytes. In general, the 
sterilisation procedure should be standardised 
for each plant type and tissue, especially the ster-
ilisation time, as the sensitivity varies with plant 
species, age and tissue type. The concentration 
of the hypochlorite and the length of exposure 
should be adjusted to the type of plant tissue. For 
example, many leaves are more ‘porous’ than 
their root or stem surfaces and are prone to infi l-
tration by the sterilant. 

 Samples containing extraneous material such 
as soil can be sonicated before sterilisation to 
remove any attached soil or microorganisms. 
Surface-sterilised plant samples are routinely 
air- dried or heated at 80 or 100 °C for 15–30 min 
to kill bacteria, resulting in a lowering of vegeta-
tive bacterial number if present. Commonly, 
plant materials are septically sectioned into 
small fragments of about 0.2 × 1.0 cm size 
(Coombs and Franco  2003a ; Cao et al.  2004 ; 
Verma et al.  2009 ; Fialho de Oliveira et al.  2010 ) 
and then placed/distributed into various actino-
bacterial isolation media. In another method, 
surface-sterilised plant tissues can be aseptically 
crumbled into smaller fragments by commercial 
blender (Qin et al.  2008a ,  b ; Li et al.  2009 ), to 
expose organisms from within the plant material 
and increase their recovery. These two preferred 
methods could recover a higher number of less 
commonly detected genera among the endo-
phytic actinobacteria. One of the main objectives 
is to release the endophytes from the inner parts 
of plant tissue material and expose them to the 
growth medium. Some sterile samples were 
mixed in a mortar with 0.5 g of sterile powdered 
calcium carbonate and then placed in a Petri 
dish, and two millilitres of sterilised tap water 
was added to the sample to create a moist envi-
ronment. After 2 weeks at 28 °C, the samples 
were air-dried at room temperature and placed in 
media plates, or samples were also placed in a 
glass dish and fl ooded with 50 ml of 10 mmol 
phosphate buffer containing 10 % plant or soil 
extract at 28 °C to liberate actinobacterial spores 
(Qin et al.  2009 ). Endophytes can also be sepa-
rated from plant tissue using the method of Jiao 
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et al. ( 2006 ) by grinding the plant material and 
subjecting it to enzymes that break down plant 
cell walls. The bacterial pellet is separated out 
by differential centrifugation, diluted and plated 
onto isolation media. 

 All the methods examined gave different 
populations, and none of them was recommended 
as being superior to any other.  

   3.1.2  Composition and Combination 
of Culture Media and 
Incubation Conditions 

 Successful culturing of microorganisms on lab-
oratory media is dependent on the nutritional 
composition of the media and the incubation 
conditions. The use of a medium composition 
that mimics the micro-environments of inner 
part of the plants is a good strategy for isolation 
of endophytic actinobacteria.    Some of the 
established media for isolation of actinobacte-
ria from soil samples include humic acid vita-
min B (HV) (Hayakawa  1990 ), International 
 Streptomyces  Project media 2 and 5 (Shirling 
and Gottlieb  1966 ), raffi nose-histidine agar 
(Vickers et al.  1984 ) and starch casein agar 
(Küster and Williams  1964 ). Low-nutrient 
medium TWYE was found effective for isola-
tion of endophytic actinobacteria from many 
plant species (Coombs    and Franco  2003a ; Qin 
et al.  2009 ; Li et al.  2009 ), due to the fact that 
high nutrient concentration allowed fast-grow-
ing bacteria to overgrow slower growing acti-
nobacteria. Inside the plant, amino acids are the 
major source of nitrogen, and cellulose and 
xylan are the primary sources of carbon.    Media 
containing amino acids (proline, arginine and 
asparagine) as nitrogen sources and cellulose, 
xylan, sodium propionate and sodium succinate 
as carbon sources improved isolation effective-
ness and yielded uncommon and rare endo-
phytic actinobacterial genera (Qin et al.  2009 ). 
Similarly, addition of plant or soil extracts into 
the isolation medium could help meet specifi c 
requirements of actinobacteria from plant tis-
sues and soil environments (Okazaki  2003 ). 
Janso and Carter ( 2010 ) used arginine vitamin 
agar supplemented with 3 % soil extract to iso-

late several phylogenetically unique endophytic 
actinobacteria such as  Sphaerisporangium  and 
 Planotetraspora  from tropical plants of Papua 
New Guinea and Mborokua Island, Solomon 
Islands. In another example, the use of media 
with low concentrations of plant polymers (gel-
lan gum, xylan and pectin), their constituent 
sugars (glucose, galactose, xylose, arabinose, 
glucuronate, galacturonate   , ascorbate, gluco-
nate and carboxymethylcellulose), and 17 
amino acids improved the isolation of 16 rare 
actinobacterial genera including a new genus 
 Flindersiella  in the family  Nocardioides , while 
other 11 strains were accepted as new species 
of endophytic actinobacteria (Kaewkla and 
Franco  2013a ). 

 Kaewkla and Franco ( 2013a ) recommend 
incubation of isolation plates under moist condi-
tions for up to 16 weeks with removal of colonies 
every week, as they found that the majority of 
non-streptomycetes emerged after 6 weeks of 
incubation. 

 A list of isolation protocols and media used to 
study the diversity of endophytic actinobacteria 
is shown in Table  2.2 .

        4  Diversity of Endophytic 
Actinobacteria in Plants 
of Terrestrial Ecosystems 

   4.1  Agricultural/Field Crops 

 Early studies on endophytic actinobacterial asso-
ciations in agricultural crop plants were reported 
from Italy by Sardi et al. ( 1992 ) who isolated 499 
strains from surface-sterilised root samples of 28 
plant species including different fi eld crops such 
as barley, rye, oats and soybean, with the majority 
of the isolates belonging to the genus  Streptomyces.  
Okazaki et al. ( 1995 ) isolated endophytic actino-
bacteria from other part of crop plants, e.g. leaves 
and leaf litter, with the majority belonging to 
the genera  Streptomyces  and  Microbispora . 
 Microbispora  spp. was the most common actino-
bacteria isolated from the surface- sterilised 
roots and leaves of fi eld-grown maize plants 
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   Table 2.2    Methodology used in culture-based studies for the isolation of endophytic actinobacteria from different 
plant species   

 Plant type  Methods  Media used 
 List of reported/cultured 
genera  References 

 Australian endemic 
trees ( Callitris preissii , 
 Eucalyptus 
camaldulensis , 
 Eucalyptus microcarpa , 
 Pittosporum 
phylliraeoides ) 

 Surface sterilisation 
and prolonged 
incubation at 27 °C 
up to 16 weeks 

 Mannitol mung bean 
yeast extract mineral 
salt agar (MMYA), 
yeast extract casamino 
acid glucose agar 
(YECG), humic acid 
vitamin B agar (HVA), 
HVA with gellan gum 
(HVG), VL 70 gellan 
gum with different 
combinations of sugar, 
amino acid mixtures 

  Actinomadura , 
 Actinomycetospora , 
 Actinopolymorpha , 
 Amycolatopsis ,  Flindersiella , 
 Gordonia ,  Kribbella , 
 Micromonospora ,  Nocardia , 
 Nocardioides ,  Nocardiopsis , 
 Nonomuraea , 
 Polymorphospora , 
 Promicromonospora , 
 Pseudonocardia  and 
 Williamsia  

 Kaewkla 
and 
Franco 
( 2013a ) 

 Cabbage ( Brassica 
campestris , China) 

 Surface sterilisation 
and incubation at 
30 °C up to 3 weeks 

 Humic acid vitamin B 
agar (HV) and corn 
meal agar (CMA) 

  Microbispora ,  Streptomyces , 
 Micromonospora ,  Nocardia , 
 Verrucosispora , 
 Nonomuraea ,  Actinomadura  
and  Thermonospora  

 Lee et al. 
( 2008b ) 

 Ethanobotanical trees 
( Cinnamomum 
zeylanicum ,  Zingiber 
spectabile ,  Elettariopsis 
curtisii  and  Labisia 
pumila ) Thailand 

 Four different surface 
sterilisation 
procedures and 
incubation at 28 °C 
up to 3 weeks 

 Starch yeast casein 
agar (SYCA), 
actinomycetes isolation 
agar (AIA), HV agar, 
tap water yeast extract 
agar (TWYA) and coal 
vitamin agar 

  Streptomyces  and one 
unknown genus 

 Zin et al. 
( 2010 ) 

 Lentil, chickpea, pea, 
faba bean and rye 
(Parksville, South 
Australia) 

 Surface sterilisation 
and incubation at 27 
and 37 °C up to 
4 weeks 

 HV agar, starch casein 
medium and TWYA 

  Streptomyces  and 
 Microbispora  

 Misk and 
Franco 
( 2011 ) 

 Medicinal plants 
(Hainan, China) 

 Surface sterilisation 
and incubation at 
28 °C up to 3 weeks 

 ATCC 172 agar, 
Gauze’s No. 2 agar, 
glucose-asparagine 
agar, HV agar and 
starch-casein- mineral 
salts agar 

  Amycolatopsis , 
 Micromonospora ,  Nocardia , 
 Nonomuraea  and 
 Streptomyces  

 Huang 
et al. 
( 2012 ) 

 Medicinal plants 
(Xishuangbanna, 
China) 

 Surface sterilisation 
followed by four 
different selective 
isolation procedures 
and incubation at 
28 °C for 2–8 weeks 

 TWYE, modifi ed 
TWYE with plant 
extract, glycerol- 
asparagine agar (ISP 
5), HV agar, M5 
inorganic salts-starch 
agar (ISP 4), YIM 38 
medium, raffi nose- 
histidine agar, sodium 
propionate agar, 
cellulose- proline agar, 
trehalose-proline 
medium, xylan- 
arginine agar 

  Actinocorallia ,  Blastococcus , 
 Dactylosporangium ,  Dietzia , 
 Jiangella ,  Oerskovia , 
 Promicromonospora  and 
 Saccharopolyspora  

 Qin et al. 
( 2009 ) 

(continued)
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 Plant type  Methods  Media used 
 List of reported/cultured 
genera  References 

 Medicinal tree 
( Maytenus 
austroyunnanensis ) 
(Xishuangbanna, 
China) 

 Surface sterilisation 
followed by 
enzymatic 
homogenisation, 
diluted supernatant 
used for isolation and 
incubation at 28 °C 
for 2–8 weeks 

 Same as above   Amycolatopsis , 
 Cellulosimicrobium , 
 Glycomyces ,  Jiangella , 
 Micromonospora , 
 Mycobacterium ,  Nocardia , 
 Nocardiopsis , 
 Polymorphospora , 
 Pseudonocardia , 
 Saccharopolyspora  and 
 Streptosporangium  

 Qin et al. 
( 2012a ,  b , 
 2013a ) 

 Native herbaceous 
plants (South Korea) 

 Surface sterilisation 
followed by isolation 
from homogenised 
solution of plant 
materials and 
incubation at 30 °C 
for 2 weeks 

 Starch casein agar   Arthrobacter ,  Dietzia , 
 Herbiconiux ,  Kitasatospora , 
 Microbacterium , 
 Microbispora ,  Micrococcus , 
 Micromonospora , 
 Mycobacterium ,  Nocardia , 
 Rathayibacter ,  Rhodococcus , 
 Streptacidiphilus , 
 Streptomyces  and 
 Tsukamurella  

 Kim 
et al. 
( 2012 ) 

 Neem tree ( Azadirachta 
indica ) (India) 

 Surface sterilisation 
and incubation at 
28 °C for 3–4 weeks 

 S-agar and water agar   Microbispora ,  Nocardia , 
 Streptomyces , 
 Streptosporangium , 
 Streptoverticillium  and 
 Saccharomonospora  

 Verma 
et al. 
( 2009 ) 

 Rice ( Oryza sativa ) 
(China) 

 Surface sterilisation 
and incubation at 
26 °C for 1 week 

 S ( Streptomyces ) 
medium 

  Streptomyces  and 
 Nocardioides  

 Tian 
et al. 
( 2007 ) 

 Tomato ( Lycopersicon 
esculentum ) (Murray 
Bridge, South 
Australia) 

 Surface sterilisation 
and incubation at 
27 °C up to 4 weeks 

 TWYE agar, HV agar 
and yeast extract, 
casamino acid medium 

  Microbispora ,  Nonomurae  
and  Streptomyces  

 Inderiati 
and 
Franco 
( 2008 ) 

 Tropical native plants 
(Papua New Guinea, 
Mborokua and 
Solomon Islands) 

 Surface sterilisation 
and incubation at 
23–25 °C up to 
8 weeks 

 Arginine vitamin agar 
supplemented with soil 
extract from organic 
humus 

  Actinoplanes ,  Amycolatopsis , 
 Dactylosporangium , 
 Kibdelosporangium , 
 Kitasatospora ,  Lechevalieria , 
 Lentzea ,  Microbispora , 
 Nonomuraea , 
 Planotetraspora , 
 Pseudonocardia , 
 Sphaerisporangium , 
 Streptomyces  and 
 Streptosporangium  

 Janso 
and 
Carter 
( 2010 ) 

 Wattle tree ( Acacia 
auriculiformis ) 
(Thailand) 

 Surface sterilisation 
followed by isolation 
from solution of 
crushed plant 
materials and 
incubation at 28 °C 
up to 4 weeks 

 Starch Casein agar 
containing 100 g/ml 
ampicillin, 2.5 U/ml 
penicillin G, 50 g/ml 
amphotericin B and 
50 g/ml cyclohexamide    

  Actinoallomurus , 
 Amycolatopsis ,  Kribbella , 
 Microbispora  and 
 Streptomyces  

 Bunyoo 
et al. 
( 2009 ) 

 Wheat ( Triticum 
aestivum ) (South 
Australia) 

 Sonication followed 
by surface 
sterilisation and 
incubation at 27 °C 
up to 4 weeks 

 TWYE agar, HV agar, 
fl our-yeast extract-
sucrose- casein 
hydrolysate agar, 
fl our-calcium carbonate 
agar 

  Microbispora , 
 Micromonospora , 
 Nocardioides  and 
 Streptomyces  

 Coombs 
and 
Franco 
( 2003a ) 

Table 2.2 (continued)
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( Zea mays  L.) (de Araujo et al.  2000 ), although 
 Streptomyces  and  Streptosporangium  spp. were 
also represented and some of them showed anti-
microbial activity against one or more tested bac-
teria and yeast. 

 Coombs and Franco ( 2003a ) reported the 
isolation of fi lamentous actinobacteria from 
surface- sterilised root tissues of healthy wheat 
plants ( Triticum aestivum  L.) (Fig.  2.1 ). Of the 49 
endophytic isolates that belonged to  Strep-
tomyces ,  Microbispora ,  Micromonospora  and 
 Nocardioides  were strains found to be similar to 
 S. caviscabies  and  S. setonii  that had been 
isolated originally from potato scabs. Therefore, 
detection of pathogenicity was required as the 
endophytic isolates were potential biocontrol 
agents. The isolates were found to be nonpatho-
genic, as they neither had  nec1 , a pathogenicity- 
associated gene, nor produced the toxin thaxtomin. 
In other studies, they visually demonstrated the 
colonisation of germinating wheat seed embryo, 
endosperm and emerging radicle with one of these 
endophytic actinobacteria,  Streptomyces  sp. strain 
EN27, tagged with the  egfp  gene. These observations 
show that the endophytic actinobacterium was 
able to associate with its host at a very early stage 
in the development of the plant (Coombs and 
Franco  2003b ). Similarly, in pea plants, Tokala 
et al. ( 2002 ) showed a remarkable degree of pref-
erential colonisation of pea nodules relative to 
roots by  Streptomyces lydicus  strain WYEC108 
that was isolated from a rhizosphere soil. This 
observation and other studies indicated that 

actinobacteria isolated from soil could be  capable 
of endophytic colonisation.

   Tian et al. ( 2007 ) identifi ed actinobacterial 
strains from the surface-sterilised stems and roots 
of rice and described differences in endophytic 
populations from these plant parts.    Strains similar 
to  Streptomyces cyaneus ,  S. aurantiacus  and 
 S. paresii  were also isolated from roots and 
stems, whereas  Nocardioides thermolilacinus , 
 S. exfoliates ,  S. glauciniger  and  S. kathirae  were 
only isolated from roots and  S. caviscabies  and 
 S. scabies  were isolated from stems only, indicating 
that more diverse actinobacteria were isolated 
from roots than stems. Their results also suggest 
the presence of more diverse communities of 
uncultured actinobacteria within stems and roots 
of rice. Velazquez et al. ( 2008 ) selected the 
apoplastic sap of the medullary parenchyma of 
the stem of healthy sugarcane plants to identify 
endophytic isolates belonging to the genera  Micro-
bacterium, Micrococcus  and  Kokuria . Root nodules 
of the grain legume  Lupinus angustifolius  yielded 
136 different orange-pigmented actinobacterial 
colonies from surface-sterilised nodules which 
belonged to the genus  Micromonospora,  and a 
detailed taxonomic study on six of these isolates 
identifi ed two novel species,  Micromonospora 
lupini  and  M. saelicesensis  (Trujillo et al.  2007 ). 
Misk and Franco ( 2011 ) found a physiologically 
diverse group of endophytic actinobacteria from 
grain legume plants such as lentil, chickpea, pea 
and faba bean. Some of the biotic activities 
observed included siderophore and cyanogen 

  Fig. 2.1    Identifi cation of endophytic actinobacterial 
colonisation in surface-sterilised wheat plants. ( a ) SEM 
image of  Streptomyces  aerial hyphal growth on a surface-
sterilised root fragment from an isolation agar plate 

(Coombs and Franco  2003a ). ( b ) SEM image showing the 
endophytic colonisation in a lateral root junction of a 
wheat plant by  Streptomyces  sp. EN27 (Courtesy V Conn 
and C Franco)       
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production, antifungal activity and phosphate 
solubilisation. These studies exemplify the value 
of using different approaches to characterise the 
culturable diversity of endophytic isolates 
obtained from a few crop plants. A large number 
of studies have since been reported from most 
crop plants confi rming their ubiquitous presence. 
This group of microbes can colonise the internal 
tissue of crop plants and are capable of producing 
plant growth-promoting chemicals, enhancing 
nutrient uptake as well as producing secondary 
metabolites that can inhibit microbial pathogens 
and induce systemic resistance. Therefore, their 
functions have been a major factor for their 
isolation as they promise to offer an advantage in 
terms of reliability and effi cacy as inoculants 
due their endophytic nature. A summary of these 
benefi cial functions is shown in Table  2.3 .

      4.2  Horticultural Crops 

 Cao et al. ( 2004 ) compared the endophytic actino-
bacteria from roots and leaves of healthy and 
wilting banana plants. Community analysis of the 
242 isolates demonstrated increased  actino-
bacterial diversity in wilting leaves compared to 
that in healthy leaves, although actinobacterial 
communities in roots were similar. The same 
laboratory tested a total of 131 strains, identifi ed 
as  Streptomyces ,  Streptoverticillium  and  Streptos-
porangium  spp., that were successfully isolated 
from surface-sterilised banana roots (Cao et al. 
 2005 ). About 18.3 % of these isolates inhibited 
the growth of pathogenic  Fusarium oxysporum  f. 
sp.  cubense , the causal organism of Panama wilt 
disease of banana, on banana tissue extract 
medium. About 37.5 % of the most frequently 
isolated  S. griseorubiginosus  strains were antag-
onistic to this pathogen, but the antagonism was 
lost when FeCl 3  was introduced into the inhibition 
zone. These fi ndings indicate the potential of 
developing siderophore-producing  Streptomyces  
endophytes for the biological control of  Fusarium  
wilt (Panama) disease of banana (Cao et al.  2005 ). 

 Actinobacteria were reported for the fi rst time 
as endophytes of grapevines, with a number of 
other isolates identifi ed as  Streptomyces  spp. and 

also the rare actinobacterium  Curtobacterium  
spp. (Bulgari et al.  2009 ; West et al.  2010 ). 

 In a survey of endophytic bacteria colonising 
roots of processing carrot cultivars (Carochoice, 
Red Core Chantenay) grown at two locations in 
Nova Scotia, Surette et al. ( 2003 ) reported the 
association of  Arthrobacter ,  Kokuria  and 
 Microbacterium  as endophytes. In a similar study 
on potato-associated bacteria, the  Streptomyces  
spp. had the highest antagonistic activity among 
endophytic actinobacteria against most of the 
fungal as well as bacterial pathogens (Sessitsch 
et al.  2004 ). A total of 619 actinobacteria, all 
 Streptomyces  spp., were isolated from different 
cultivars of tomato. The  aureus  group of 
 Streptomyces  was the most frequent isolate group, 
but the population composition of  Streptomyces  
varied according to tomato cultivars, physiological 
status and soil types (Tan et al.  2006 ).  Microbispora  
spp. (67 %) were the most common isolates of 
the 81 endophytic actinobacteria from Chinese 
cabbage roots (Lee et al.  2008b ), followed by 
 Streptomyces  spp. (12 %) and  Micromonospora  
spp. (11 %). The three antagonistic isolates were 
identifi ed as  Microbispora rosea  subsp.  rosea  
(A004 and A011) and  Streptomyces olivochro-
mogenes  (A018), which effectively suppressed 
the disease club root of cabbage caused by 
 Plasmodiophora brassicae . Recently, Khan and 
Doty ( 2009 ) reported a diverse array of endophytic 
bacteria associated with sweet potato plants 
( Ipomoea batatas  L.) which included the actino-
bacterial genus  Arthrobacter . 

 Shimizu et al. ( 2000 ) explored endophytic 
actinobacteria from the fl owering plant Rhodo-
dendron. Nine, six and two isolates, with distin-
guishing characteristics based on the macroscopic 
appearance of colonies, were obtained from 
roots, stems and leaves, respectively, and shown 
to have antagonism against two major fungal 
pathogens of rhododendron,  Phytophthora cin-
namomi  and  Pestalotiopsis sydowiana . Similarly, 
Nishimura et al. ( 2002 ) isolated a total of 73 
actinobacteria from leaves, stems and roots of the 
other  Ericaceae  plant called mountain laurel 
( Kalmia latifolia  L.), and most of them were 
 Streptomyces  spp. with a broad and intense anti-
microbial spectrum against various yeasts and 
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   Table 2.3    Functional aspects of endophytic actinobacteria isolated from different plant species and habitats   

 Plant type  Endophytic actinobacterial genera 
 Functional role 
established  References 

  Arabidopsis    Micromonospora  sp. strain 
EN43 and  Streptomyces  sp. 
strain EN27 

 Induction of defence 
through SAR 
and JA/ET pathways 

 Conn et al. ( 2008 ) 

 Banana   Streptomyces   Siderophore production 
and antibiosis 

 Cao et al. ( 2004 ,  2005 ) 

 Cabbage   Microbispora  and  Streptomyces   Antibiosis  Lee et al. ( 2008a ,  b ) 
 Cucumber   Actinoplanes campanulatus, 

Micromonospora chalcea and 
Streptomyces spiralis    

 Antibiosis and 
glucanolytic activity 

 El-Tarabily et al. ( 2009 ) 

 Eaglewood tree   Actinomadura ,  Nocardia , 
 Nonomuraea ,  Pseudonocardia  
and  Streptomyces  

 Ammonia, indole 
acetic acid (IAA) and 
siderophore production 

 Nimnoi et al. ( 2010a ) 

 Epiphytic vine   Streptomyces   Antibiosis  Ezra et al. ( 2004 ) 
 Foliose lichens   Nocardia ,  Nocardiopsis  and 

 Streptomyces  
 Antibiosis  da Silva et al. ( 2011 ) 

 Herbaceous and woody 
plants 

  Microbispora ,  Micromonospora , 
 Nocardia  and  Streptomyces  

 Antibiosis  Taechowisan et al. ( 2003 ) 

 Lentil, chickpea, pea, 
faba bean and rye 
(South Australia) 

  Microbispora  and  Streptomyces   Siderophore and 
cyanogen production; 
phosphate solubilisation 
and antibiosis 

 Misk and Franco ( 2011 ) 

 Lichens   Amycolatopsis ,  Actinomadura , 
 Micromonospora ,  Streptomyces  
and  Streptosporangium  

 Antibiotic biosynthetic 
genes detected and 
antibiosis 

 González et al. ( 2005 ) 

 Madagascar periwinkle   Streptomyces   Antibiosis  Kafur and Khan ( 2011 ) 
 Mangrove plants in 
China 

  Micromonospora  and  
Streptomyces  

 Antibiosis and 
inhibition of anticancer 
protein synthesis 

 Hong et al. ( 2009 ) 

 Marine sponges 
and soft corals 

  Streptomyces   Antibiosis  EI-Bondkly et al. ( 2012 ) 

 Medicinal plants   Amycolatopsis ,  Micromonospora , 
 Nocardia ,  Nonomuraea  and 
 Streptomyces  

 Antitumour activity 
and antibiosis 

 Huang et al. ( 2012 ) 

 Medicinal plants in 
Panxi plateau, China 

 560 isolates belonging to different 
genera 

 Antibiotic biosynthetic 
genes detected and 
antibiosis 

 Zhao et al. ( 2010b ) 

 Medicinal plants in 
Xishuangbanna, China 

 2174 isolates belonging to 
different genera 

 Antibiosis  Qin et al. ( 2009 ,  2012a ,  b , 
 2013a ) 

 Native herbaceous 
plants in Korea 

 21 straining belong to different 
genera 

 Antibiosis, IAA and 
hydrolytic enzyme 
production; phosphatase 
activity 

 Kim et al. ( 2012 ) 

 Neem tree   Nocardia ,  Streptomyces  and 
 Streptosporangium  

 Antibiosis  Verma et al. ( 2009 ) 

 Rhododendron   Streptomyces   Antibiosis  Shimizu et al. ( 2000 ) 
 Snakevine   Streptomyces   Antibiosis  Castillo et al. ( 2006 ) 
 Tomato   Microbispora ,  Nonomuraea  

and  Streptomyces  
 Siderophore production 
and antibiosis 

 Tan et al. ( 2006 ), Inderiati 
and Franco ( 2008 ) 

 Tropical native plants 
in Papua New Guinea, 
Mborokua and Solomon 
Islands 

  Micromonospora ,  Nonomuraea , 
 Pseudonocardia , 
 Sphaerisporangium ,  Streptomyces , 
 Streptosporangium  and 
 Thermomonospora  

 Detection of bioactive 
extracts and biosynthetic 
genes for PKS-I, PKS-II 
and NRPS 

 Janso and Carter ( 2010 ) 

 Wattle tree   Amycolatopsis  and  Streptomyces   Antibiosis  Bunyoo et al. ( 2009 ) 
 Wheat   Microbispora ,  Nocardioides  and 

 Streptomyces  
 Antibiosis and plant 
growth promotion 

 Coombs and Franco ( 2003a ), 
Coombs et al. ( 2004 ) 
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fungal pathogens of  Ericaceae . In recent years, 
members of the genus  Micromonospora  have 
also been recovered from diverse plant tissues, 
especially nitrogen-fi xing root nodules (Valdes 
et al.  2005 ; Trujillo et al.  2010 ). A new species 
 Streptosporangium oxazolinicum  sp. nov. in the 
genus  Streptosporangium  was isolated from 
the roots of a variety of orchids collected in the 
subtropical Okinawa prefecture by Inahashi et al. 
( 2011 ) which was shown to produce a new group 
of antitrypanosomal antibiotics, spoxazomicins.  

   4.3  Medicinal Plants 

 It is believed that the greatest diversity of bacterial 
endophytes is likely to occur in the plant species 
of tropical and temperate regions (Strobel 
and Daisy  2003 ). From 36 medicinal plant 
species in Thailand, Taechowisan et al. ( 2003 ) 
isolated 330 strains belonging to four genera of 
endophytic actinobacteria, namely,  Streptomyces , 
 Microbispora ,  Nocardia  and  Micromonospora . 
Medicinal plants in Xishuangbanna tropical 
 rainforest of China were subjected to diverse 
pretreatment methods and selective media, 
resulting in an unexpected variety of 10 different 
suborders and 32 genera, including at least 19 
new taxa (Qin et al.  2009 ,  2010b ). Huang et al. 
( 2012 ) carried out the isolation of endophytic 
actinobacteria from the surface-sterilised tissues 
of 12 medicinal plants in Hainan, China, using 
different media.    Of the 280 isolates recovered, 
154 were from roots, 73 from stems and 53 from 
leaves, and they were identifi ed as  Streptomyces, 
Micromonospora, Nocardia, Nonomuraea  and 
 Amycolatopsis  spp. 

 A total of 38 endophytic actinobacteria 
were isolated from surface-sterilised leaves of 
 Catharanthus roseus  (L.) (Kafur and Khan  2011 ). 
Similarly, from the medicinal plant  Artemisia 
annua , a total of 228 isolates representing at least 
19 different genera of actinobacteria were obtained 
and several of them were novel taxa (Li et al. 
 2012 ). From the plant  Maytenus austroyunnanen-
sis  alone, a total of 312 endophytic actinobacteria 
were obtained and they were affi liated with the 
order  Actinomycetales  (distributed into 21 gen-
era). Notably, a new genus  Polymorphospora  and 

seven new species were also isolated (Qin    et al. 
 2012a ). 

 Similarly, Kim et al. ( 2012 ) reported on the 
diversity of endophytic actinobacteria and their 
physiological properties in various Korean native 
plant species. Using a culture-based approach, 
the members of the genus  Rhodococcus  and the 
family  Streptomycetaceae  were found to be 
the main constituents of the endophytic actino-
bacterial community.    In addition,  Arthrobacter , 
 Dietzia, Herbiconiux ,  Mycobacterium ,  Nocardia , 
 Rathayibacter ,  Tsukamurella, Streptacidiphilus  
and  Kitasatospora  were reported for the fi rst time 
as endophytes. 

 Higashide et al. (    1977 ) isolated an actinomycete 
 Actinosynnema pretiosum  that produces mayta-
sinoid compounds. These compounds are usually 
found in the Chinese medicinal tree  M. austroyun-
nanensis,  but no endophytic actinobacteria produc-
ing this compound were  isolated from this plant 
(Qin    et al.  2012a ). Similar is the case with  Artemisia 
annua , where many endophytic  actinobacteria 
were reported, but none of them produced the com-
pound artemisinin, an antimalarial drug.  

    4.4 Perennial Trees 

 Recent studies suggest that many of the perennial 
trees are an untapped source of endophytic acti-
nobacteria of the non- Frankia  type. Eleven 
strains of endophytic actinobacteria were isolated 
from the healthy roots of wattle trees  Acacia 
auriculiformis , collected from Bangkok and 
Nakhonpathom, Thailand. Analysis of 16S rRNA 
sequences of those strains revealed that they belong 
to the genera  Streptomyces ,  Actinoallomurus , 
 Amycolatopsis ,  Kribbella  and  Microbispora  
(Bunyoo et al.  2009 ). Similarly, Verma et al. ( 2009 ) 
reported the isolation of endophytic actinobacteria 
from a neem tree  Azadirachta indica . A total of 
55 separate isolates were obtained from 20 plants, 
and 60 % of these showed inhibitory activity 
against one or more pathogenic fungi and bacteria. 
Actinobacteria were most commonly recovered 
from roots (54.5 % of all isolates), followed by 
stems (23.6 %) and leaves (21.8 %). The domi-
nant genus was  Streptomyces  (49.09 % of all 
isolates), while  Streptosporangium  (14.5 %), 
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 Microbispora  (10.9 %),  Streptoverticillium  (5.5 %), 
 Saccharomonospora  (5.5 %) and  Nocardia  
(3.6 %) were also recovered. 

 Zin et al. ( 2010 ) carried out the isolation 
of endophytic actinobacteria from the root and 
stem samples of ethanobotanical trees, namely, 
 Cinnamomum zeylanicum ,  Zingiber spectabile , 
 Elettariopsis curtisii  and  Labisia pumila , in the 
northern part of the Malay Peninsula. Sixty six 
 Streptomyces  spp., and one unidentifi ed isolate 
were successfully isolated. Of the total isolates 
obtained, 61.2 % were isolated from root and 
38.8 % from the stem. Of these 56.7 % of the 
endophytic actinobacteria were isolated from the 
outermost parts of the surface-sterilised plants 
and 43.3 % were from the internal part of the 
plants. 

 Chen et al. ( 2011 ) revealed species diversity 
of endophytic actinobacteria from cinnamon 
trees  Elaeagnus angustifolia , mainly distributed 
in northwest of China and western inner parts 
of Mongolia. Eight strains of endophytic actino-
bacteria were successfully isolated from root 
nodules of  Elaeagnus angustifolia  by the method 
of nodule slicing, and the result showed that 
fi ve of these strains belonged to  Micromonospora  
and the other three strains were  Nonomuraea , 
 Pseudonocardia  and  Planotetraspora , respectively. 

 Recently, Kaewkla and Franco ( 2013a ) reported 
the presence of a wide range of actinobacterial gen-
era as endophytes by incubating plates for up to 
16 weeks, but removing emerging colonies as soon 
as they were 1 mm in diameter. The majority of 576 
actinobacterial isolates from leaf, stem and root 
samples of four Australian endemic trees— Calli-
tris preissii  (native pine tree),  Eucalyptus camaldu-
lensis  (red gum),  Eucalyptus microcarpa  (Grey 
Box) and  Pittosporum phylliraeoides  (native apri-
cot tree)—were  Streptomyces  spp., and the others 
belonged to 16 other actinobacterial genera, 
namely,  Actinomadura ,  Actinomycetospora , 
 Actinopolymorpha ,  Amycolatopsis ,  Gordonia , 
 Kribbella ,  Micromonospora ,  Nocardia , 
 Nocardioides ,  Nocardiopsis ,  Nonomuraea , 
 Polymorphospora ,  Promicromonospora ,  Pseu-
donocardia ,  Williamsia  and a novel genus 
 Flindersiella . One of the strains represented a 
novel genus in the family Nocardioides and the 

other 11 strains were accepted as novel species. 
The literature from the limited number of studies 
with a limited number of trees has indicated the 
need for more research and the strong prospect for 
the culturing of diverse endophytic actinobacteria, 
including novel and rare genera residing in peren-
nial trees. 

 The majority of agricultural crops, or other 
small medicinal, herbaceous weeds, are mostly 
seasonal, annual or biennial plants. In comparison, 
trees are perennial and growing for many years 
and exposed to varying soil conditions (with 
depth) and changing environmental conditions 
over many growth cycles. Both belowground and 
above-ground parts of perennial trees are exposed 
to continuous changes which occur with respect 
to climatic and environmental conditions. These 
spatio- temporal interactions may lead to the 
enrichment of many rare bacterial groups or more 
fastidious actinobacteria in their interior as 
endophytes.       

   5  Diversity of Endophytic 
Actinobacteria in Mangrove 
Ecosystems, Lichens 
and Mosses 

   5.1  Mangrove Ecosystems 

 Mangroves are the coastal wetland forests mainly 
found in the intertidal zone of estuaries, backwa-
ters, deltas, creeks, lagoons, marshes and also 
mudfl ats of the tropical and subtropical latitudes. 
It is estimated that mangrove forests cover a total 
area of over one fourth of the world’s coastline 
(Spalding et al.  1997 ; Alongi  2002 ). Mangroves 
are highly productive ecosystems, and little is 
known about the microbial communities living 
therein. Mangrove sediments contain populations 
of  Streptomyces ,  Micromonospora  (Eccleston 
et al.  2008 ) and other novel actinobacteria, as 
illustrated by the isolation of  Asanoa iriomotensis  
(Han et al.  2007 ),  Nonomuraea maheshkhaliensis  
(Ara et al.  2007 ) and  Micromonospora rifamycinica  
(Huang et al.  2008 ). Hong et al. ( 2009 ) isolated 
over 2,000 bioactive actinobacteria from both 
rhizosphere soil and plant materials (including 
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endophytes) of 23 plant species collected from 
8 mangrove sites in China. The highest number 
of bioactive strains was observed from the plant 
tissues of  Bruguiera . Taxonomic diversity of 
these bioactive actinobacteria assigned most of 
them to the genera  Micromonospora  and 
 Streptomyces  and less to the other genera 
 Actinomadura, Nocardia, Nonomuraea, 
Rhodococcus  and  Verrucosispora . 

 A study of 19 different mangrove plant species 
in Bhitarkanika, Orissa, India, revealed that three 
species of  Streptomyces , namely,  S. halstedii , 
 S. longisprofl avus  and  S. albidofl avus , were found 
to be associated with  Kandelia candel . Similarly, 
 S. atroolivaceous  was found in phyllosphere of 
 Sonneratia apetala  and  S .  caseolaris  of Dangmal 
and Khola region respectively. Two species 
 S. exfoliates  and  S. aurantiacus  were found to be 
associated with almost all mangrove plants stud-
ied (Gupta et al.  2009 ). An endophytic actinobac-
terial strain  Nocardiopsis  sp. A00203 isolated 
from the leaves of mangrove plant  Aegiceras cor-
niculatum  collected from Jimei, Fujian Province, 
China, was shown to produce three biologically 
active 2-pyranone compounds (Lin et al.  2010 ). 
In another study, Mangamuri et al. ( 2012 ) iso-
lated a rare actinobacterium closely related to 
 Pseudonocardia endophytica  from a mangrove 
ecosystem of Nizampatnam, India, which produced 
bioactive metabolites with broad-spectrum inhibi-
tory effects on Gram-positive, Gram-negative 
bacteria and fungi. Baskaran et al. ( 2012 ) reported 
a higher proportion of actinobacterial endophytes 
in the mangrove plant  B. gymnorrhiza  of the 
Andaman Islands. However, the ecto- and endo- 
rhizosphere of plants in the mangrove ecosys-
tems are still largely an unexplored source for 
screening and isolation of novel endophytic acti-
nobacteria with rich potential to produce active 
secondary metabolites.    

   5.2  Lichens and Mosses 

 As pioneers of the colonisation of terrestrial hab-
itats, lichens are found from the Arctic to tropi-
cal regions and are present on stones, in arid 
soils or as epiphytes on plants (Ahmadjian 

 1993 ). About 10 % of lichen-forming fungi are 
associated with nitrogen-fi xing cyanobacteria 
(e.g.  Peltigerales  and  Lichinomycetes ); however, 
the remaining 90 % of lichen-forming fungi are 
not known for their  intimate association with 
many other bacteria (Richardson and Cameron 
 2004 ; Liba et al.  2006 ). Studies have described 
the isolation of different  species of the actino-
bacteria of the genera  Micromonospora  and 
 Streptomyces  from this environment (Hirsch 
et al.  2004 ). González et al. ( 2005 ) reported on 
the diversity in actinobacterial population from 
three regions: Within tropical lichens studied, 
 Micromonospora  strains were isolated with sim-
ilar frequencies from different types of lichens, 
whereas arboricolous lichens from Hawaii were 
richer in  Streptomyces  than saxicolous samples. 
In addition, members tentatively assigned to the 
order Pseudonocardiaceae and the genera 
 Actinoplanes  and  Actinomadura  were isolated. 
Other genera  isolated from lichens collected in 
Alaska belonged to  Rhodococcus  spp., from 
Hawaii belonged to  Saccharopolyspora  spp. and 
 Geodermatophilus  spp. and from Reunion 
Island belonged to  Planobispora  spp. and 
 Streptosporangium  sp.    Two lichen-derived acti-
nobacteria identifi ed as new species of 
 Streptomyces   produced novel angucycline and 
butenolide compounds having cytotoxic activi-
ties against cancer cells and antibacterial 
activity. Two novel actinobacterial strains 
 Actinomycetospora iriomotensis  and  Actinomy-
cetospora rishiriensis  were isolated from a 
lichen sample from Iriomote Island and Rishiri 
Island of Japan, respectively (Yamamura et al. 
 2011a ,  b ). Recently, da Silva et al. ( 2011 ) iso-
lated 71 isolates of actinobacteria associated 
with the foliose lichens from an Amazonian eco-
system in Brazil. The morphological characteris-
tics and characterisation of cell wall amino acid 
of actinobacteria isolated from foliose lichens 
indicated that from the total of 71 actinobacteria, 
91.5 % were  Streptomyces , 4 %  Nocardia  and 
1.5 %  Nocardiopsis  (1.5 %). Janso and Carter 
( 2010 ) isolated 123 endophytic actinobacteria 
from tropical native plants including ferns and 
club mosses collected from several locations in 
Papua New Guinea and Mborokua Island, 
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Solomon Islands. 16S rRNA gene sequence 
analysis revealed that 17 different genera 
were represented and rare genera such as 
 Sphaerisporangium  and  Planotetraspora , which 
have never been previously reported to be endo-
phytic, were prevalent. 

 There are approximately 12,000 species of 
moss distinguished by their multicellular rhi-
zoids (Theissen et al.  2001 ). Mosses are abun-
dant on the forest fl oor in a broad range of boreal 
forest types (Bach et al.  2009 ). A high diversity 
and complexity in phyllosphere bacterial com-
munities was recently described for the sphag-
num moss (Opelt et al.  2007 ). Park et al. ( 2013 ) 
studied the endophytic bacterial diversity of an 
Antarctic moss  Sanionia uncinata  through 
pyrosequencing of amplifi ed 16S rRNA genes 
and showed that  Proteobacteria  was the most 
dominant phylum with 65.6 %, followed by 
 Bacteroidetes  (29.1 %) and  Actinobacteria  
(11.7 %).   

   6  Diversity of Endophytic 
Actinobacteria in Aquatic 
Ecosystem 

 Aquatic ecosystems contribute to a large proportion 
of the planet’s biotic productivity, and aquatic 
plants are largely an unexplored environment for 
endophytic actinobacterial diversity and their 
biotic potential. 

 Freshwater ecosystems cover 0.80 % of the 
Earth’s surface and inhabit 0.009 % of its total 
water. They generate nearly 3 % of its net primary 
production (Alexander and Fairbridge  1999 ). 
Three basic types of freshwater ecosystems are 
lentic (include pools, ponds and lakes), lotic 
(streams and rivers) and wetlands. In the littoral 
zone of lakes, where rooted plants occur, ponds 
are typically small lakes of shallow water with 
abundant marsh and aquatic plants. Food webs 
are based both on free-fl oating algae and upon 
aquatic plants (Sculthorpe  1985 ; Chapman and 
Reiss  1998 ). However, the diversity of the microbial 
community, in particular endophytes, associated 
with planktons and aquatic plants in the freshwater 
ecosystems is poorly understood. 

 Wetlands are the most productive natural 
freshwater ecosystems in the world because of the 
proximity/availability of water and fertile (nutrient 
rich) soil. Hence, they support large numbers of 
plant and animal species. Wetlands are dominated 
by vascular plants that have adapted to saturated 
soil (Keddy  2010 ). Among the wetlands, the rice 
ecosystem microbial communities have been 
extensively studied due to its importance both 
for food production and also for its anaerobic 
methanogenesis causing global climate change 
(Bernstein et al.  2007 ). 

 Marine ecosystems cover approximately 71 % 
of the Earth’s surface and contain approximately 
97 % of the planet’s water and an exceptional 
biological diversity, accounting for more than 
95 % of the whole biosphere (Qasim  1999 ). 
Recent studies have identifi ed a diverse commu-
nity of actinobacteria associated with marine 
sponges and soft corals (Lee et al.  1998 ; Dharmaraj 
et al.  2010 ; Webster et al.  2001 ; EI-Bondkly et al. 
 2012 ; Nithyanand et al.  2011 ). However, as they 
are not considered to be plants, they are not 
included in this chapter. 

 Most of the research on seagrass root- associated 
microbiology includes communities present on the 
outside and inside of the root material; hence, the 
fi ndings are not specifi c for endophytes only. 
Similar to results from terrestrial plants, actinobac-
teria were found to be one of the most abundant 
groups of bacteria in the roots of seagrass, such as 
 Zostera marina  (Jensen et al.  2007 ). Lee et al. 
( 2008b ) isolated  Phycicolagilvus  from living sea-
weed collected along the coast of Jeju, Republic of 
Korea, which represented a novel species of a new 
genus within the family  Microbacteriaceae . From 
the seaweeds of the Gulf of Mannar, Saravanakumar 
et al. ( 2010 ) isolated 12 strains of actinobacteria, of 
which 9 represented the genus  Streptomyces  and 3 
belonged to the genus  Micromonospora , which 
showed strong antagonism against bacterial fi sh 
pathogens  Vibrio harveyi, V. fi sheri, Aeromonas 
hydrophila  and  A. sobria . Recently, Wu et al. ( 2012 ) 
reported that most of the 110 actinobacterial 
isolates from the seagrass,  Thalassia hemprichii , 
harboured polyketide synthetase (PKS) and nonri-
bosomal peptide synthetase (NRPS) gene sequences 
indicating their bioactive potential. Most of them 
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belonged to ten genera of actinobacteria including 
 Streptomyces ,  Micromonospora ,  Saccharomono-
spora ,  Mycobacterium ,  Actinomycetospora , 
 Nonomuraea ,  Verrucosispora ,  Nocardiopsis , 
 Microbacterium and Glycomyces . 

 As indicated before, the chemicals (e.g. NaCl 
and hypochlorite) used and the timing of treat-
ment may vary depending upon the plant and 
organ type (Kaewkla and Franco  2013a ), and a 
proper standardisation of sterilisation and isola-
tion procedures appropriate for aquatic plants is 
essential for discovering the true diversity of 
their endophytes.  

      7  Methods for Diversity 
Analysis of Culturable 
Endophytic Actinobacteria 

 In the last 4 years alone, more than 50 new taxa 
have been identifi ed from various terrestrial 
plants (Table  2.4 ). The identifi cation of a pure 
actinobacterial culture is achieved with a poly-
phasic approach using techniques described in 
Fig.  2.2 . However, not all of these techniques 
offer the discrimination required for the rapid 
characterisation of a large number of freshly iso-
lated strains. In order to achieve this in an eco-
nomical way, a combination of morphological, 
chemo-taxonomical and molecular fi ngerprinting 
methods are available for the characterisation 
and diversity analyses of actinobacteria (Embley 
and Stackebrandt  1994 ; Rademaker et al.  2000 ; 
Cook and Meyers  2003 ; Brusetti et al.  2008 ; 
Yuan et al.  2008 ).

   Some of these methods can be employed to 
reduce the number of strains sent for sequencing 
and still be able to identify all the isolates. 
Culture morphology can be used to distinguish a 
number of genera such as  Micromonospora , 
 Microbispora ,  Rhodococcus, Streptosporangium  
and  Strepto-myces  spp., as well as a basis to form 
groupings of strains with similar morphological 
features. Representatives of each groups are sub-
jected to molecular fi ngerprinting techniques 
such as RAPD (Mehling et al.  1995 ), AFLP, 
BOX or REP-PCR (Savelkoul et al.  1999 ; 
Rademaker et al.  2000 ) or the analysis of restric-

tion patterns of PCR products of rRNA genes or 
ARDRA (Vaneechoutte et al.  1993 ) to identify 
strains that are similar to each other. Tian et al. 
( 2007 ) used RFLP technique to characterise 
actinobacterial- specifi c 16S rRNA gene clone 
libraries constructed from the roots and stems of 
rice. RFLP analysis based on single digestion 
with restriction enzymes  Sma1  and  Pst1  grouped 
clones with similar patterns together.    Clones 
from each RFLP group were chosen for further 
identifi cation by 16S rRNA gene sequencing. 
Amplifi ed rDNA (Ribosomal DNA) Restriction 
Analysis (ARDRA) was originally developed by 
Vanee-choutte et al. ( 1993 ) to characterise 
 Mycobac-terium  species. 

 ARDRA has been used successfully in identi-
fying several species of endophytic actinobacteria 
belonging to the genera  Actinomadura ,  Gordonia , 
 Nocardia ,  Rhodococcus ,  Saccharomonospora ,  Sa
ccharopolyspora ,  Streptomyces  and  Tsukamurella  
(Steingrube et al.  1997 ; Wilson et al.  1998 ; Laurent 
et al.  1999 ; Harvey et al.  2001 ). Cook and Meyers 
( 2003 ) identifi ed four restriction endonucleases, 
 Sau 3AI,  Asn I,  Kpn I and  Sph I, that signifi cantly 
differentiated the genus  Streptomyces  from all 
other actinobacteria genera by using ARDRA. 
ARDRA can be useful in reducing ambiguity in 
isolate similarities based on morphological char-
acterisations. Kaewkla and Franco ( 2013a ) used 
ARDRA of partial 16S rRNA genes to distinguish 
both non-streptomycete- and streptomycete- like 
isolates obtained from Australian native trees. 
In this study, initial ARDRA with  Hha1 digestion 
yielded 13 ARDRA patterns for the total 579 iso-
lates. However, second ARDRA patterns based on 
a second digestion with the enzymes  Rsa1  and 
 Pst1  more effectively differentiated the genera 
within the ARDRA patterns based on single 
enzyme digestion, indicating the necessity to use 
more than one restriction enzyme and judicious 
selection of isolates for identifi cation by 16S 
rRNA gene sequencing. 

 Nimnoi et al. ( 2010a ) employed random 
amplifi cation of polymorphic DNA (RAPD) to 
determine the genetic relatedness up to the genus 
level for the endophytic actinobacterial isolates 
obtained from healthy shoots and roots of 
 Aquilaria crassna.  Though RAPD is a simple, 
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   Table 2.4    New genera and species isolated as endophytic actinobacteria (from 2010 to till date)   

 Endophytic actinobacterial 
species  Name of the host plant  Plant types 

 Plant 
part  References 

  Actinoallomurus acacia    Acacia auriculiformis   Wattle tree  Leaves  Thamchaipenet et al. ( 2010 ) 
  Actinoallomurus oryzae    Oryza sativa   Rice  Roots  Indananda et al. ( 2011 ) 
  Actinomycetospora 
iriomotensis  

  –   Lichens  –  Yamamura et al. ( 2011a ) 

  Actinomycetospora 
rishiriensis  

  –   Lichens  –  Yamamura et al. ( 2011b ) 

  Actinophytocola oryzae    Oryza sativa   Rice  Roots  Indananda et al. ( 2010 ) 
  Actinoplanes rishiriensis    –   Lichens  –  Yamamura et al. ( 2012 ) 
  Actinopolymorpha pittospori    Pittosporum 

phylliraedoies  
 Australian 
apricot tree 

 Leaves  Kaewkla and Franco ( 2011b ) 

  Allonocardiopsis opalescens    Lonicera maackii   Medicinal plant  Fruit  Du et al. ( 2013a ) 
  Amycolatopsis endophytica    Jatropha curcas   Oil-seed  Seeds  Miao et al. ( 2011 ) 
  Amycolatopsis jiangsuensis    Dendranthema indicum   Coastal salt 

marsh plant 
 –  Xing et al. ( 2013 ) 

  Amycolatopsis samaneae    Samanea saman   Medicinal plant  Roots  Duangmal et al. ( 2011 ) 
  Brachybacterium 
saurashtrense  

  Salicornia brachiata   Extreme 
halophyte 

 Roots  Gontia et al. ( 2011 ) 

  Dietzia maris    Viola mandshurica   Manchurian 
violet 

 Roots  Kim et al. ( 2012 ) 

  Flindersiella endophytica    Eucalyptus microcarpa   Grey Box 
eucalyptus tree 

 Roots  Kaewkla and Franco ( 2011a ) 

  Herbiconiux ginsengi    Artemisia princeps var. 
orientalis  

 Mugwort  Roots  Kim et al. ( 2012 ) 

  Jatrophihabitans 
endophyticus  

  Jatropha curcas   Oil-seed  Stem  Madhaiyan et al. ( 2013 ) 

  Jishengella endophytica    Acanthus illicifolius   Holy mangrove  Roots  Xie et al. ( 2010 ) 
  Kibdelosporangium 
phytohabitans  

  Jatropha curcas   Oil-seed  Roots  Xing et al. ( 2012a ) 

  Kineococcus endophytica    Limonium sinense   Coastal 
halophyte 

 Roots  Bian et al. ( 2012b ) 

  Kitasatospora viridis    Lamium purpureum   Purple henbit  Roots  Kim et al. ( 2012 ) 
  Kribbella endophytica    Pittosporum 

phylliraedoies  
 Australian 
apricot tree 

 Leaves  Kaewkla and Franco ( 2013b ) 

  Micromonospora pisi    Pisum sativum   Pea  Root 
nodules 

 Garcia et al. ( 2010 ) 

  Micromonospora tulbaghiae    Tulbaghia violacea   Wild garlic  Leaves  Kirby and Meyers ( 2010 ) 
  Modestobacter roseus    Salicornia europea   Coastal 

halophyte 
 Roots  Qin et al. ( 2013a ) 

  Nocardia callitridis    Callitris preissii   Pine tree  Roots  Kaewkla and Franco ( 2010c ) 
  Nocardia endophytica    Jatropha curcas   Oil-seed  Roots  Xing et al. ( 2011 ) 
  Nocardioides caricicola    Carex scabrifolia   Halophyte  Roots  Song et al. ( 2011 ) 
  Nocardioides panzhihuaensis    Jatropha curcas   Oil-seed  Stem  Qin et al. ( 2012a ) 
  Nocardioides perillae    Perilla frutescens   Medicinal plant  Roots  Du et al. ( 2013b ) 
  Nonomuraea endophytica    Artemisia annua   Medicinal plant  Roots  Li et al. ( 2011b ) 
  Phytohabitans fl avus    –   Orchids  Roots  Inahashi et al. ( 2012 ) 
  Phytohabitan shouttuyneae    Houttuynia cordata   Orchids  Roots  Inahashi et al. ( 2012 ) 
  Phytohabitans rumicis    Rumex acetosa   Orchids  Roots  Inahashi et al. ( 2012 ) 
  Phytohabitans suffuscus    –   Orchids  Roots  Inahashi et al. ( 2010 ) 
  Phytomonospora endophytica    Artemisia annua   Medicinal plant  Roots  Li et al. ( 2011a ) 

(continued)
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 Endophytic actinobacterial 
species  Name of the host plant  Plant types 

 Plant 
part  References 

  Plantactinospora endophytica    Camptotheca acuminata   Happy tree  Leaves  Zhu et al. ( 2012 ) 
  Promicromonospora 
endophytica  

  Eucalyptus microcarpa   Grey Box 
eucalyptus tree 

 Roots  Kaewkla and Franco ( 2012 ) 

  Promicromonospora 
xylanilytica  

  Maytenus 
austroyunnanensis  

 Medicinal plant  Leaves  Qin et al. ( 2012b ) 

  Pseudonocardia adelaidensis    Eucalyptus microcarpa   Grey Box 
eucalyptus tree 

 Stem  Kaewkla and Franco ( 2010a ) 

  Pseudonocardia artemisiae    Artemisia annua   Medicinal plant  Roots  Zhao et al. ( 2011a ) 
  Pseudonocardia bannensis    Artemisia annua   Medicinal plant  Roots  Zhao et al. ( 2011b ) 
  Pseudonocardia eucalypti    Eucalyptus 

camaldulensis  
 Red gum tree  Roots  Kaewkla and Franco ( 2010b ) 

  Pseudonocardia 
kunmingensis  

  Artemisia annua   Medicinal plant  Roots  Zhao et al. ( 2011d ) 

  Pseudonocardia nantongensis    Tamarix chinensis   Coastal 
halophyte 

 Leaves  Xing et al. ( 2012b ) 

  Pseudonocardia serianimatus    Artemisia annua   Medicinal plant  leaves  Zhao et al. ( 2011c ) 
  Pseudonocardia sichuanensis    Jatropha curcas   Oil-seed  Roots  Qin et al. ( 2011 ) 
  Pseudonocardia tropica    Maytenus 

austroyunnanensis  
 Medicinal plant  Stem  Qin et al. ( 2010b ) 

  Pseudonocardia xishanensis    Artemisia annua   Medicinal plant  Roots  Zhao et al. ( 2012a ) 
  Rathayibacter festucae    Conyza canadensis   Horseweed  Roots  Kim et al. ( 2012 ) 
  Rhodococcus artemisiae    Artemisia annua   Medicinal plant  Roots  Zhao et al. ( 2012b ) 
  Saccharopolyspora 
dendranthemae  

  Dendranthema indicum   Coastal salt 
marsh plant 

 –  Zhang et al. ( 2013 ) 

  Saccharopolyspora gloriosae    Gloriosa superba   Medicinal plant  Stem  Qin et al. ( 2010a ) 
  Saccharothrix yanglingensis    Cucumis sativus   Cucumber  Roots  Yan et al. ( 2012 ) 
  Streptacidiphilus 
anmyonensis  

  Chelidonium majus  var. 
 asiaticum  

 Greater 
celandine 

 Roots  Kim et al. ( 2012 ) 

  Streptomyces artemisiae    Artemisia annua   Medicinal plant  Roots  Zhao et al. ( 2010a ) 
  Streptomyces endophyticus    Artemisia annua   Medicinal plant  Roots  Li et al. ( 2013 ) 
  Streptomyces halophytocola    Tamarix chinensis   Coastal 

halophyte 
 Stem  Qin et al. ( 2013b ) 

  Streptomyces phytohabitans    Curcuma phaeocaulis   Medicinal plant  Roots  Bian et al. ( 2012a ) 
  Streptosporangium 
oxazolinicum  

  –   Orchids  Roots  Inahashi et al. ( 2011 ) 

  Tsukamurella suncheonensis    Iris rossii  var.  rossii   Caudate-bracted 
iris 

 Roots  Kim et al. ( 2012 ) 

Table 2.4 (continued)

inexpensive and useful typing method for genetic 
studies of bacteria, it has low resolving power, 
limited applicability in species-specifi c compari-
sons and variable experimental reproducibility. 

 BOX-PCR is a version of the rep-PCR tech-
niques that uses the BOX-A1R primer targeting 
the BOX dispersed-repeat motif, common in a 
number of actinobacterial groups (Van Belkum 
et al.  1998 ). The BOX-PCR genomic fi nger-
prints generated from culturable isolates of 

endophytic actinobacteria permit identifi cation, 
classifi cation and differentiation to the species, 
subspecies and strain level. Yuan et al. ( 2008 ) 
characterised the endophytic actinobacteria iso-
lated from medicinal plants through BOX-PCR 
fi ngerprinting and revealed more genetic diver-
sity among the closely related strains belonging 
to the two genera,  Streptomyces  and 
 Micromonospora.  Endophytic actinobacterial 
isolates obtained from  Lupinus angustifolia  
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were analysed using BOX-PCR fi ngerprinting 
technique, and results revealed on unexpectedly 
high genetic diversity among the strains belong-
ing to the genus  Micromonospora  (Trujillo et al. 
 2010 ). BOX- PCR patterns are not affected by 
the culture age of the strain to be analysed and 
have a similar or even better strain differentia-
tion power than other molecular techniques 
(Kang and Dunne  2003 ). BOX-PCR is easier to 
perform and fi ngerprinting outputs can be easily 
analysed by computer- assisted methods. 
Recently, Brusetti et al. ( 2008 ) developed a fl uo-

rescent BOX-PCR, in which the amplifi ed fl uo-
rescent-labelled products can be separated in an 
automated DNA sequencer which helps over-
come limitations from poor band resolution on 
agarose gel electrophoresis. 

 Chemotaxonomical methods are more labour 
intensive, but the identifi cation of the LL- or  meso-
 form of the cell wall compound 2,6‐diaminopi-
melic acid (DAP) can be effective in discriminating 
between  Streptomyces  and non- Streptomyces  
strains. The amino acid and sugar composition of 
cell walls provide information suitable for the 

  Fig. 2.2    Relative applicability of different molecular biological techniques used in the taxonomic identifi cation and 
diversity analysis of endophytic actinobacteria (Modifi ed from the Rademaker and De Bruijn  1997 )       
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classifi cation of pure isolates of actinobacteria 
but are not diagnostic. 

 The fatty acid composition is another unique 
chemotaxonomic marker used for the identifi ca-
tion and diversity characterisation of major gen-
era of actinobacteria (Vestal and White  1989 ; 
Embley and Wait  1994 ). However, it is labour 
intensive and better suited to discriminating 
between species within a genus, although it can 
also be used to identify specifi c genera that are 
present in the Sherlock Microbial ID System 
(  www.midi-inc.com    ), or when a small number of 
genera are present (González et al.  2005 ). 

   7.1  New Molecular Approaches 
for Strain Characterisation 

 In the last two decades, the whole genome 
sequence of number of bacteria has been 
decoded, and attempts are underway to test 
whether the data from whole genome compari-
son can be used for diversity characterisation 
and taxonomy of culturable bacteria. For exam-
ple, pairwise comparison of complete whole 
genome sequences showed that the ‘average 
nucleotide identity’ (ANI) of all conserved genes 
between any two genomes correlated well with 
16S rRNA sequence identity and DNA-DNA 
similarity values. It has also been shown that 
70 % DNA-DNA similarity corresponds to 95 % 
ANI (Konstantinidis and Tiedje  2005 ). Moreover, 
all pairs of genomes showing 95 %, or higher, 
ANI also showed at least 98.5 % 16S rRNA gene 
identity (Goris et al.  2007 ). This approach of 
comparative genomics information has also been 
generated from the available whole genome 
sequences of well-known actinobacterial taxa 
including some of the endophytic actinobacterial 
genera like  Frankia, Leifsonia, Streptomyces  and 
 Nocardia  (Ventura et al.  2007 ). 

    Multilocus sequence analysis (MLSA), a phy-
logenetic characterisation based on sequence 
comparison of multiple housekeeping genes in 
bacterial genome, has been proposed as a replace-
ment for DDH technique in the classifi cation of 
prokaryotes (Gevers et al.  2006 ). In the recent 
 Bergey’s Manual of Systematic Bacteriology , the 

MLSA has been used in redefi ning phylogeny of 
actinobacterial genera like  Mycobacterium  and 
 Bifi dobacterium  (Ventura et al.  2007 ) .  The con-
catenation of four gene fragments encompassing 
the 16S rRNA gene,  hsp65 ,  rpoB  and  sod  has 
been used to create a supertree of the 
 Mycobacterium  genus, and species such as 
 Mycobacterium fortuitum  and  M. avium  are well 
separated by a super tree approach than using a 
single gene-based tree, i.e. 16S rRNA gene-based 
tree (Devulder et al.  2005 ). In the super tree of 
the genus  Bifi dobacterium , concatenation of 
seven conserved genes, i.e.  clpC ,  dnaB ,  dna G, 
 dnaJ1 ,  purF ,  rpoC  and  xfp , has been used to infer 
its phylogeny (Ventura et al.  2006 ). Several 
recent MLSA studies showed that in addition to 
16S rRNA gene, the concatenation of four genes 
such as  gyrB ,  rpoB ,  recA  and  atpD  genes has 
found useful in phylogeny of other actinobacte-
rial genera like  Micromonospora  and  Steptomyces  
(Rong et al.  2009 ; Rong and Huang  2010 ; Carro 
et al.  2012 ). More recently, Curtis and Meyers 
( 2012 ) included the  relA  gene for the fi rst time in 
MLSA of actinobacteria and generated the con-
catenated sequence super tree to examine the 
phylogenetic relationships of 17 type strains 
within the genus  Kribbella , one of the known 
endophytic actinobacterial genus.   

   8  Culture-Independent 
Approaches for Diversity 
Analysis 

 Studies of diversity and functions of plant- 
associated microbes, especially prokaryotes, are 
impeded by diffi culties in cultivating most of 
them, and endophytes inside host tissues are not 
easily amenable to biochemical or genetic anal-
yses. Recent advances in methods for endo-
phytic bacterial enrichment and direct 
applications of 16S rRNA gene-based culture-
independent molecular techniques are helping 
to unravel the complex endophytic actinobacte-
rial community (Table  2.5 ). Some of these 
methods include polymerase chain reaction 
(PCR)-based denaturing gradient gel electro-
phoresis (DGGE), terminal restriction fragment 
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length polymorphism (T-RFLP) analysis, con-
struction and sequencing of 16S rRNA gene 
clone libraries and next- generation sequencing/
pyrosequencing. A combination of culturable 

and culture-independent approaches may be 
needed for in-depth understanding of the diver-
sity and functional relevance of endophytic acti-
nobacteria (Fig.  2.2 ).

   Table 2.5    Endophytic actinobacteria from different plants identifi ed using culture-independent methods   

 Plant species/
habitats 

 Method and source of 
microbial community DNA 

 Molecular 
techniques used 

 List of endophytic 
actinobacterial genera 
identifi ed  References 

 Eaglewood tree 
( Aquilaria crassna ) 

 Extraction of total DNA of 
root materials 

 PCR-DGGE   Actinomadura ,  Nocardia , 
 Nonomuraea , 
 Pseudonocardia  and 
 Streptomyces  

 Nimnoi et al. 
( 2010b ) 

 Grape vine
( Vitis vinifera ) 

 Endophyte enrichment from 
both leaves and roots and DNA 
extraction 

 PCR-DGGE   Curobacterium  and 
 Streptomyces  

 West et al. 
( 2010 ) 

 Grape vine
( Vitis vinifera ) 

 Endophytes enrichment from 
whole plant and DNA 
extraction 

 16S rRNA gene 
clone libraries 

  Curtobacterium   Bulgari et al. 
( 2009 ) 

 Medicinal tree
( Maytenus 
austroyunnanensis ) 

 Endophytes enrichment from 
root, stem and leaves and DNA 
extraction 

 16S rRNA gene 
clone libraries 

  Actinokineospora , 
 Marmoricola , 
 Modestobacter , 
 Pseudokineococcus , 
 Pseudosporangium , 
 Sanguibacter  and 
 Serinibacter  

 Qin et al. 
( 2012a ,  b ,  c ) 

 Potato ( Solanum 
tuberosum ) 

 Bead beating of tubers and 
DNA extraction 

 PCR-DGGE 
(actinobacterial 
specifi c) 

 Mainly  Streptomyces   Sessitsch et al. 
( 2002 ) 

 Rice ( Oryza 
sativa ) 

 Extraction of total DNA of 
root and stem materials 

 16S rRNA gene 
clone libraries 

  Actinoplanes , 
 Amycolatopsis , 
 Corynebacterium , 
 Dactylosporangium , 
 Frankia , 
 Micromonospora , 
 Mycobacterium , 
 Nocardioides , 
 Rhodococcus , 
 Streptomyces  and other 
uncultured actinobacteria 

 Tian et al. 
( 2007 ) 

 Soybean
( Glycine max ) 

 Enrichment through 
homogenisation roots, root 
nodules, stem and leaves, 
fi ltration and DNA extraction 

 16S rRNA gene 
clone libraries 

 Wide range of 
actinobacteria genera 
belonging to three 
suborders, namely, 
Frankineae, 
Propionibacterineae and 
Micrococcineae 

 Ikeda et al. 
( 2009 ,  2010 ) 

 Wheat ( Triticum 
aestivum ) 

 Homogenisation of root 
samples with mini-bead beater 
and DNA extraction 

 PCR-TRFLP   Arthrobacter , 
 Kitasatospora , 
 Micromonospora , 
 Microbispora , 
 Mycobacterium , 
 Nocardia ,  Nocardioides , 
 Streptomyces  and 
 Tsukamurella  

 Conn and 
Franco 
( 2004a ) 
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     8.1  Methods for Enrichment 
of Endophytes and Community 
DNA Isolation from Plants 

 Endophytic bacteria reside inside the plant tis-
sues mainly in intercellular spaces, rarely in 
intracellular spaces and interior of vascular tis-
sues (Thomas and Graham  1952 ). They are 
tightly attached to host cells and are diffi cult to 
extract and separate from plant tissues and 
prone to contamination from surface-associated 
bacteria. Mechanical removal of rhizoplane 
populations by vigorous shaking with glass 
beads can help overcome the contamination 
from surface bacteria (Reinhold et al.  1986 ). 
Initial studies on the unculturable endophytic 
diversity were carried out with the extraction of 
total DNA using general CTAB procedure with 
certain modifi cations (Xie et al.  1999 ; Sessitsch 
et al.  2002 ) and subsequent PCR amplifi cation 
of 16S rRNA genes using prokaryotic universal 
primers (Dent et al.  2004 ; Sun et al.  2008 ). 
Since DNA obtained using such methods 
includes material from the plant nuclei, the 
plastids, the mitochondria and the plant-associ-
ated microbes, it is essential to design highly 
specifi c primers for endophytic bacteria alone. 
The high sequence homology between plant 
chloroplast 16S rRNA gene, mitochondrial 18S 
rRNA gene and bacterial 16S rRNA can cause 
interference with specifi c analysis of endo-
phytic bacteria (Sun et al.  2008 ). Therefore, 
enrichment of endophytic bacteria prior to PCR 
amplifi cation has been suggested to overcome 
the above-described problems and improve the 
sensitivity of analysis. 

 Jiao et al. ( 2006 ) enriched bacterial cells 
from plant tissues by enzymatic hydrolysis of 
the plant cell wall, followed by differential cen-
trifugation. Subsequently, a variety of mild and 
specifi c enzymatic treatments have been suc-
cessfully used to remove intact bacterial cells 
from the medicinal plant  Mallotus nudifl orus  
(Wang et al.  2008 ) and grapevine leaf tissues 
(Bulgari et al.  2009 ). This method of endophyte 
enrichment has also helped in the culturing of 
rare/novel endophytic actinobacteria (Qin et al. 
 2009 ; Ikeda et al.  2009 ). Another technique suit-

able for enriching bacterial cells from fresh 
plant tissues was developed by using a bacterial 
cell extraction buffer containing Triton X-100 
for tissue homogenisation with subsequent 
Nycodenz density gradient centrifugation. Here, 
the enrichment is based on the speculation that 
less green colour of the supernatant and inter-
face is an indication of less contamination of 
plastids in the bacterial fraction obtained from 
homogenised plant samples (Ikeda et al.  2009 ). 
This enrichment technique has been success-
fully applied to clarify the diversity of endo-
phytic actinobacterial communities in stems and 
leaves of soybean and rice (Ikeda et al.  2009 , 
 2010 ). Recently, Nikolic et al. ( 2011 ) cut steril-
ised potato plant material into small pieces and 
then the endophytic bacteria were dislodged by 
overnight shaking at room temperature in 0.9 % 
NaCl. Bacteria were separated from the plant 
material by fi ltration and collected by centrifu-
gation. The enrichment procedure allows the 
extraction of bacterial cells from large amounts 
of plant material thereby reducing variation 
associated with specifi c plant parts and collects 
rare members of the endophytic community. As 
a result next-generation sequencing operations 
which require large amounts of high-quality 
DNA can be conducted, e.g. for metagenomic 
analysis (Sessitsch et al.  2012 ).  

   8.2  Next-Generation Sequencing 
and Pyrosequencing 

 Recent developments in high-throughput 
sequencing (or next-generation sequencing) 
technologies enable rapid sequencing analysis 
of whole genomes and environmental DNA 
samples (Mardis  2008 ; Shendure and Ji  2008 ; 
Miller et al.  2009 ; Lauber et al.  2010 ; Robinson 
et al.  2010 ). Some of these methods include 
massively parallel signature sequencing or 
MPSS (Lynx Therapeutics), Polony sequencing 
(Agencourt Biosciences), 454 pyrosequencing 
(Life Sciences), Illumina (Solexa) sequencing 
(Illumina), SOLiD sequencing (Applied 
Biosystems), ion semiconductor sequencing 
(Ion Torrent Systems Inc.), DNA nanoball 
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sequencing and HeliScope single molecule 
sequencing. 

 In 2010, pyrosequencing was used for the 
fi rst time to examine the bacterial endophyte 
community in the roots of 12 different potato 
cultivars revealing an unprecedented level of 
diversity among the bacterial root endophytes. 
Interestingly, the presence of fi ve of the ten 
most common eubacterial genera ( Rheinheimera , 
 Dyadobacter ,  Devosia ,  Pedobacter  and  Pseudo-
xanthomonas ) revealed by pyrosequencing has 
not been previously reported as potato root 
endophytes (Manter et al.  2010 ). Analysis of 
endophytic bacterial diversity of an Antarctic 
moss,  Sanionia uncinata,  using 16S rRNA 
 pyrosequencing technology, indicated that 
 Proteobacteria  was the most dominant phylum 
with 65.6 %, followed by  Bacteroidetes  (29.1 %) 
and  Actinobacteria  (11.7 %) (Park et al.  2013 ). 
Actinobacteria were found to be in higher abun-
dance in the endophytic compartment (EC) of 
the  A. thaliana  rhizosphere microbiome, fol-
lowed by  Proteobacteria, Firmicutes  and other 
minor bacterial taxa (Bulgarelli et al.  2012 ; 
Lundberg et al.  2012 ). Lower-order taxonomic 
analysis demonstrated that enrichment of a low-
diversity actinobacteria community in the EC 
was driven by a subset of families, predomi-
nantly  Streptomy-cetaceae , and the selective 
enrichment of actinobacteria in the roots 
 community was suggested to depend on the col-
onisation cues from metabolically active host 
cells as well (Bulgarelli et al.  2012 ; Lundberg 
et al.  2012 ). These research advances in molecu-
lar biological techniques greatly improve our 
understanding of the complexity and ecological 
distributions of plant-associated actinobacteria. 
In spite of these advances, the true functional 
diversity and capabilities of actinobacteria in 
different endophytic habitats of various ecosys-
tems remain to be fully discovered.      
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    Abstract  

  Foliar fungal endophytes are widespread in herbaceous plants, although 
their interactions and ecological roles are little understood. They are phy-
logenetically and ecologically diverse, with the potential to be infl uential 
members of the biotic community. Compositionally, the endophyte com-
munity within a plant is determined by both the fungi (genotype, competi-
tive ability, tissue specifi city, infection location) and the host (genotype, 
variations in plant defences, geographical location). The plant–endophyte 
relationship is dynamic, as fungal composition varies temporally across 
months and seasons, with subsequent infections occurring after initial 
colonisation. Transmission generally occurs horizontally via air- or water-
borne spores, with hyphae entering the host through stomata or through 
direct penetration. Contrasting to extensive mycorrhizal fungal colonisa-
tion in roots, infection by any one endophyte in aerial parts appears to be 
limited, due to plant defences, intra- or interspecifi c competition between 
endophytes and other factors governing niche occupancy. Fungal endo-
phytes colonise host tissues for at least part of their life cycle, with no 
apparent outward pathology. Simultaneously, they can benefi t their hosts 
through improved tolerance to biotic stress such as drought, enhanced 
photosynthesis and transpiration, protection against pathogens through 
induced plant systemic resistance and the deterrence of phytophagous 
invertebrates (depending on their feeding guild and degree of specialism). 
These benefi ts arise directly from endophyte metabolism or indirectly 
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through the production of compounds that alter the host’s physiology. 
Thus, the infl uence of fungal endophytes may pervade beyond their 
host plant, potentially affecting the nature of plant communities and 
that of higher tropic levels.  

1         Introduction 

 Foliar fungal endophytes are widespread in 
herbaceous plants, although their interactions 
and ecological roles are little understood within 
these plants. They are phylogenetically and 
ecologically diverse, with the potential to be 
infl uential members of the biotic community. 
The role of microbes, especially those inhabiting 
the above- ground plant tissue, in shaping and 
altering plant communities has often been 
underestimated (Clay and Schardl  2002 ; van der 
Heijden  2004 ). Yet, only now, as techniques to 
sample, identify and subsequently monitor a 
plant’s endophytic community have advanced, is 
there an increasing awareness of the complex 
dynamics taking place within ecosystems at all 
levels (e.g. Schulz and Boyle  2005 ; Hoffman and 
Arnold  2008 ; Gibert et al.  2013 ). 

 Foliar fungal endophytes in the majority 
of herbaceous plants belong to the non- 
clavicipitalean group (generally non-grass inhab-
iting). In a review undertaken by Rodriguez    
et al. ( 2009a ), this group of endophytes was 
differentiated into Class II (infecting above- or 
belowground host tissues) and Class III (occur-
ring primarily or exclusively in above-ground 
host tissues) (Rodriguez et al.  2009a ). Class II 
endophytes are all members of the Dikarya 
(Ascomycota or Basidiomycota), most of which 
belong to the Ascomycota, as do the majority of 
endophytes in Class III, where they are common 
throughout the Pezizomycetes, Leotiomycetes, 
Eurotiomycetes, but especially the Sordario-
mycetes and Dothideomycetes. 

 Endophytes from each class dominate a 
 particular host plant lineage or biome, e.g. 
endophytic Leotiomycetes are frequently isolated 
from conifers, whilst Sordariomycetes are found 
within woody tropical plants (Arnold et al.  2007 ; 
Higgins et al.  2007 ; Arnold and Lutzoni  2007 ; 

Rodriguez et al.  2009a ). Some species are 
also Basidiomycotina, Deuteromycotina and 
Oomy cetes, which are generally associated with 
woody plants (Petrini  1986 ; Chapela and Boddy 
 1988 ; Zheng and Jiang  1995 ; Sinclair and 
Cerkauskas  1996 ). Class III endophytes appear 
to be widespread in herbaceous plants, with the 
photosynthetic tissues of all plant species so far 
surveyed containing one or more endophytic 
species (Stone et al.  2000 ; Arnold  2007 ).    Class 
III endophytes have been isolated from tropical 
leaves and plants (Lodge et al.  1996 ; Arnold 
et al.  2000 ) but also from nonvascular and seed-
less plants and trees and woody and herbaceous 
angiosperms in all biomes (Carroll and Carroll 
 1978 ; Stone  1988 ; Cabral et al.  1993 ; Fisher et al. 
 1995 ; Barnes and Shaw  2002 ; Saikkonen et al. 
 2003 ; Higgins et al.  2007 ; Gange et al.  2007 ). 
Class II endophytes appear to show less diversity 
within a host compared to Class III endophytes, 
but they can confer habitat-specifi c stress toler-
ance to a range of genetically different host plants 
as a result of specific local environmental 
pressures such as pH, temperature or salinity. 
Rodriguez et al. ( 2009a ) suggests that Class II 
endophytes dramatically affect the ecophysiol-
ogy of plants, allowing and enhancing rapid 
adaptation of host plants to otherwise unsuitable 
high-stress habitats. Plants in these habitats 
usually have very high infection frequencies 
(90–100 %) (Redman et al.  2001 ,  2002a ; 
Rodriguez et al.  2008 ). Class III endophytes are 
known for their high diversity in host tissues, 
plants and populations. Examples of this are seen 
in tropical forests, where healthy leaves contain 
numerous infections (Lodge et al.  1996 ; Arnold 
and Herre  2003 ). 

    Class II endophytes have been found to 
enhance shoot and/or root biomass and improve 
growth and nutrient acquisition (Newsham  1994 ; 
Mucciarelli et al.  2003 ; Waller et al.  2005 ). This 
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may be due to the production of plant hormones, 
stimulated by the interaction between fungi and 
host, or by the biosynthesis of these hormones 
by the endophytes themselves (Tudzynski and 
Sharon  2002 ). They provide tolerance to disease 
and pathogens (Narisawa et al.  2002 ; Campanile 
et al.  2007 ) and enhance resistance in some hosts, 
genotypes and environmental conditions, to 
drought, desiccation, heat and salinity (Redman 
et al.  2001 ; Kloepper  2002 ; Marquez et al.  2007 ; 
Rodriguez et al.  2008 ).    Arnold et al. ( 2000 ) found 
that a range of Class III endophytes in a host 
plant had no infl uence on biomass, growth rate, 
root to shoot ratio or any other aspect to plant fi t-
ness. However, Webber ( 1981 ) showed that bark 
endophytes protected trees against Dutch elm 
disease, yet Schulz et al. ( 1998 ) demonstrated 
that some Class III endophytes impaired plant 
growth. Petrini ( 1991 ) suggests that unlike those 
in the clavicipitalean group, these endophytes 
may cause disease in a host plant after a period of 
latency, whilst others may only reproduce upon 
or after the onset of senescence or death of the 
host (Sinclair and Cerkauskas  1996 ). Host senes-
cence often results in Class II and Class III endo-
phytes rapidly emerging and sporulating, 
resulting in horizontal transmission of spores via 
wind and/or rain (Weber et al.  2004 ; Herre et al. 
 2005 ). Vertical transmission also occurs via the 
seed coat, seed or rhizomes (Redman et al.  2002a ) 
in Class II endophytes and those in Class III 
(Posada and Vega  2005 ; Ganley and Newcombe 
 2006 ). Spores from Class III endophytes can also 
be dispersed in animal faeces or on their bodies 
(Monk and Samuels  1990 ; Arnold  2008 ; Fledman 
et al.  2008 ; Selosse et al.  2008 ). 

 How these foliar endophytes affect herbivorous 
insects and other invertebrates has received 
limited attention. Other fungal–plant–insect inter-
actions have shown that feeding preferences by 
invertebrates can be infl uenced by the presence 
of certain endophytic fungi (Vicari et al.  2002 ; 
Roger et al.  2013 ) and that invertebrate fecundity 
(Gange et al.  1999 ) and survival are also affected 
(Currie et al.  2011 ; Nishida et al.  2010 ). These 
multitrophic interactions are an important aspect 
of community ecology that needs to be further 
investigated.  

2     Relative Abundance 
and Sampling Effi ciency 

 A review of the literature covering foliar fungal 
endophytes since 1979, combined with unpub-
lished data from Hodgson ( 2010 ), showed that 69 
species of herbaceous host plants from 47 genera 
across 24 plant families had been investigated for 
their endophytic communities (Fig.  3.1 ). This 
equates to only 5 % of the total number of currently 
accepted vascular plant families and is evident 
that further investigation of herbaceous host–foliar 
fungal endophyte interactions is required. Most of 
the genera surveyed are represented by one species 
only. Therefore, attempts at investigation of host 
specifi city or patterns of endophyte distribution 
are limited by data currently available.

   Host plants examined varied from native British 
plants such as common dock ( Rumex acetosa ) 
(Hodgson  2010 ) to ten species of tropical orchids 
( Dendrobium  spp.) (Chen et al.  2011 ), as well as 
peanut ( Arachis hypogea ) (Suryanarayan and 
Murali  2006 ), and  Arabidopsis thaliana  (Junker 
et al.  2012 ). 

 Differences in endophyte isolation techniques 
may contribute to an unclear picture of endophyte 
abundance within herbaceous hosts. Cosmopolitan 
fungal species, which are isolated as endophytes 
from a wide variety of plants, are also charac-
teristic of leaf epiphytic communities. Examples 
include  Alternaria  spp. , Cladosporium  spp. and 
 Epicoccum  spp. (e.g. Petrini  1991 ; Cabral et al. 
 1993 ; Gange et al.  2007 ; Wearn et al.  2012 ). They 
are isolated frequently and could be ‘opportunis-
tic’ endophytes which have the ability to invade 
the plant more easily when it is under stress 
(Johnston  1998 ), possibly becoming pathogenic 
in these circumstances (Stone  1987 ; Carroll 
 1988 ; Schulz and Boyle  2005 ). Reviewing the 
literature showed that these opportunistic patho-
gens or saprobes were the most common endo-
phytic genera to be isolated (Fisher and Petrini 
 1992 ), with species of  Alternaria  and  Fusarium  
occurring in almost half of the hosts examined 
(Fig.  3.2 ). These generalist opportunistic spe-
cies may at the onset appear to dominate 
the community composition, but endophyte 

3 Foliar Fungal Endophytes in Herbaceous Plants: A Marriage of Convenience



64

 community structure is actually skewed by the 
large proportion of apparently rare species. 
Around 70–90 % of endophytes are cultured only 
once or with very low abundances from any one 
plant. The host ranges and tissue preferences of these 
fungal species remain little known. This is very 
clear from studies undertaken in both the tropics, 

where leaves of tropical trees are considered to 
be hotspots of fungal diversity (e.g. Arnold and 
Lutzoni  2007 ), and temperate habitats (e.g. 
Gange et al.  2007 ; Wearn et al.  2012 ).

   The literature survey revealed that approximately 
320 endophyte species from 117 genera were 
associated with the plants investigated, 47 % of 

  Fig. 3.1    Families of herbaceous plants appearing in the endophyte literature (World of Science)       

  Fig. 3.2    Endophyte genus occurrence in plant hosts       
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which occur in one host genus only, with 65 % of 
endophytic species recorded as occurring in only 
one plant host (Fig.  3.3 ). Moreover, new host and 
national records, as well as species (even new 
classes of fungi) new to science, have been recov-
ered as sampling effort has increased (e.g. Arnold 
and Lutzoni  2007 ; Wearn  2009 ; Gazis et al.  2012 ; 
Wearn et al.  2012 ) – but these fungi usually occur 
at very low levels of abundance in any given host 
plant or sampling regime.

   Endophytes have been shown to exhibit traits 
similar to those found within bacteria, e.g. 
 Pseudoalteromonas tunicate , where certain 
species are seemingly able to inhibit or facilitate 
the growth of others by the use of extracellular 
toxins and substances, with their presence ultimately 
changing the chemical composition of the substrate 
(Egan et al.  2000 ). Schulz et al. ( 2002 ) showed 
that 80 % of fungal endophytes tested exhibited 
at least one antibacterial, fungicidal, algicidal or 
herbicidal property. The metabolites produced 
by the endophytes depended upon the biotope in 
which they grew and to which they had adapted. 
Results from fungi growing in different biotopes 
showed they produced different metabolites 
with similar inhibitory functions. Gloer ( 1997 ) 
and Dreyfuss and Chapela ( 1994 ) found that the 
production of cyclosporin A, enchinocandin 
B, papulacandins and verrucarins varied with 

both habitat and substrate. Consequently, to avoid 
potential endophyte–endophyte competitive 
interactions, which could occur within a large 
piece of plant tissue during sampling and would 
result in the loss of one or more species when 
isolated on selective media, small segment sizes 
(ranging from 1 to 10 mm) of the selected plant 
tissue have been standard. 

 These very small segment sizes have been 
commonly used over the last 30+ years by a 
plethora of endophyte researchers around the 
globe. Moreover, this method was reinforced 
by a study completed by Carroll ( 1995 ) and 
Gamboa et al. ( 2002 ) who suggested that the 
optimal plant tissue segment size for endophyte 
isolation from tropical plants was less than 
2.5 mm by 2.5 mm. Nevertheless, since these 
studies, many researchers have used segment 
sizes far larger than the recommended size. 
This can be justifi ed given that temperate plants 
appear to harbour far fewer endophytes, which 
often exhibit a degree of organ and tissue speci-
fi city plus localised colonisation (Stone et al. 
 1994 ; Peláez et al.  1998 ; Carrol  1999 ; Deckert 
et al.  2001 ; Sieber  2002 ; Lu et al.  2004 ; 
Rodrigues et al.  2004 ). Therefore, a very small 
segment size may not be appropriate or optimal 
for all endophyte analyses, particularly those 
drawn from temperate hosts.  

  Fig. 3.3    Endophyte genera occurring in more than 5 % of plant species examined in papers published in Web of Science       
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3     Existing in Space and Time 

3.1     Symbiogenetics 
and Community Level Effects 
of Endophytes 

 As stated earlier, foliar fungal endophytes have 
the potential to be infl uential members of the biotic 
community. The role of microbes, especially 
those inhabiting the above-ground tissue, in 
shaping and altering plant communities has often 
been underestimated (Clay and Schardl  2002 ; 
Van der Heijden  2004 ). As sampling techniques, 
identifi cation and monitoring of a plant’s endophytic 
community have advanced, there is increasing 
awareness of the complex and dynamic interac-
tions taking place within ecosystems at all levels 
(e.g. Schulz and Boyle  2005 ; Hoffman and 
Arnold  2008 ; Gibert et al.  2013 ). Schulz and Boyle 
( 2005 ) published a review of the interactions 
between endophytes and their hosts, whilst more 
recently, Rodriguez et al. ( 2009b ) provided a 
summary of endophyte diversity and function. 
The functional roles of endophytic fungi, when 
inhabiting plant organs, vary along a continuum 
from mutualistic to parasitic. Some live in apparent 
harmony with their hosts, whilst others are in 
constant combat with their host and/or cohabitants. 
Our awareness of the complexity of these diverse 
relationships has increased considerably, but much 
work is still required to enable a complete 
understanding of physiological pathways and 
evolutionary processes which have shaped this 
continuum and are continuing to do so. 

 Non-mycorrhizal fungal endophytes (both 
foliar and in the rhizosphere) engage in critical 
roles affecting above-ground to belowground 
(AG–BG) interactions within ecosystems, yet 
this taxonomically diverse group is absent from a 
recent review of multitrophic interactions (van 
Dam and Heil  2011 ) – evidence that recognition 
of the presence and importance of endophytes 
remains poor, even within the ecological commu-
nity. Recent research has shown that herbaceous 
plant tissues infected with selected endophytic 
fungi can have positive or negative effects on 
invertebrate herbivore survival depending on 

the identities of all of the interacting organisms 
(Gange et al.  2012 ), whilst endophytic fungi can also 
host endohyphal bacteria (Hoffman and Arnold 
 2008 ), adding yet another layer of complexity. 

 The hologenome theory emphasises the role 
of microbes in the evolution of plants and animals, 
where genetic variation in the holobiont (host 
and symbiotic microbiotia   ) is able to occur in 
either or both genomes (hologenome) and can be 
passed to subsequent offspring.    Two mechanisms 
of variation are specifi c to the hologenome, ampli-
fi cation of existing microorganisms and acquisi-
tion of novel strains from the environment, which 
satisfy the Lamarckian principle of ‘inheritance 
of acquired characteristics’ within a Darwinian 
framework and highlight the cooperation and 
competition within and between holobionts 
(Rosenberg et al.  2009 ). Accordingly, many 
microbes, including fungal endophytes, have the 
ability to change and modify the host plant at 
the genotypic, physiological and ecological level. 
Lucero et al. ( 2006 ) showed dramatic differences 
in the morphology and biomass of endophyte-
infected  Bouteloua eripoda, Atriplex canescens  
and  Sporobolus cryptandrus  plants (Poaceae). 
Additionally, Rodriguez et al. ( 2009b ) noted 
that, traditionally, plant traits such as growth, 
stress tolerance and reproduction are ‘treated as 
if they were genetic processes exclusive to the 
plant genome (intragenomic)’. However, as they 
point out, this view overlooks the ubiquity of 
the plant–endophyte association and ignores the 
fact that endophytes can have marked effects on 
the ability of plants to adapt to environmental 
stresses and can infl uence plasticity and phenology, 
as well as seedling establishment. Accordingly, 
Rodriguez et al. ( 2009b ) assert that endophytes 
can affect population dynamics and reproductive 
success, stating: ‘endophytes represent an interge-
nomic epigenetic form of plant gene regulation’. 
This conclusion stems in part from their work on 
several subspecies of sagebrush ( Artemesia 
tridenta , Asteraceae) that occur in contiguous 
areas in North America, where the endophyte 
species associated with the sagebrush were habitat 
specifi c and transmitted on seed coats. These 
endophyte species interacted with the soils and 
different plant genotypes across the hybrid zones 
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‘to confer enhanced plant reproduction in soil 
native to the endophyte and reduced reproduction 
in soil alien to the endophyte’. This ‘intergenomic 
interaction provides a selective advantage, habitat 
specifi city, and the means of restricting gene fl ow 
thus potentially leading to plant speciation’. 

 Endophytes have recently been linked to plant 
persistence strategies under environmental change. 
Gibert et al. ( 2012 ) found that endophytic inter-
actions and water availability were linked to host 
plant survivorship (of  Lolium perenne ) and plant 
competition at population level. Gibert et al. 
( 2013 ) investigated the effects of endophytic fungi 
on grass ( Festuca eskia ) persistence strategies in 
an alpine habitat, in order to predict responses of 
alpine plants to environmental change. Plants 
engaged in endophytic symbiosis (with the non-
sexual form of  Epichloë festucae ) produced 
greater vegetative growth than non-endophytic 
plants and were able to shift their persistence 
strategy in response to increased levels of soil 
resources. The authors concluded that the presence 
of the fungal endophyte ‘fi ne- tuned host persis-
tence strategies according to soil resource level’. 
Rudgers et al. ( 2012 ) highlighted another level of 
complexity by modelling  Cinna arundinacea –
 Neotyphodium  interactions. They discovered that 
although an endophyte could negatively affect 
one aspect of grass plant fi tness, this could be offset 
by a positive effect on another aspect, thereby 
producing a net benefi t to the host. This can then 
be translated into population demographics. 
Thus, observation of single response parameters 
(in this case individual plant survival) could easily 
lead to incorrect conclusions from oversimplifi ca-
tion. By considering regeneration, Rudgers et al. 
( 2012 ) were able to elucidate the overall positive 
effect within their grass study system. Whether 
these outcomes occur throughout herbaceous 
host will need to be further investigated.  

3.2     Infl uences of Host and 
Endophyte Genotypes 

 The endophyte community within a plant is deter-
mined by both the fungi (genotype, competitive 
ability, tissue specifi city, infection location) and 

the host (genotype, variations in plant defences, 
geographical location). Numerous studies have 
shown that endophyte richness and diversity are 
infl uenced by a vast array of abiotic and biotic 
factors: the microclimate, microhabitat and geo-
graphic location (Carroll and Carroll  1978 ; Fisher 
et al.  1992 ; Rodrigues  1994 ; Higgins et al.  2007 ; 
and many others). More important, yet often 
overlooked, are the role of host and endophyte 
genotype and the complex interactions between 
the two, which shape plant and endophyte com-
munities. Saikkonen ( 2007 ) likened a forest to 
the theory of island biogeography (MacArthur 
and Wilson  1967 ), where a forest was an archipel-
ago, leaves were islands for endophyte infections 
arising from single-spore origin and trees could 
be monocormic, polycormic or clonal, which 
would infl uence the rate and pattern of infection 
and colonisation by endophytes. This analogy 
can easily be applied to any host plant species. 
A plant species may seem to be homogenous, but 
spatial and genetic differences can render some 
plants more, and others less, susceptible to endo-
phyte infection and subsequent colonisation. 
For example, changing environmental conditions 
can infl uence the level of host susceptibility. 
Ahlholm et al. ( 2002a ) observed this host–
endophyte interaction in birch tree ( Betula  spp.), 
where the tree genotype directly infl uenced the 
diversity of the fungal endophyte  Venturia ditricha . 
Host genotype- enhanced resistance or increased 
susceptibility has been studied extensively within 
the model organism  Arabidopsis thaliana , especially 
in relation to pathogens. The enhanced disease 
resistance 1 (edr1) mutant has increased resistance 
to powdery mildew  Golovinomyces cichoracearum  
(syn.  Erysiphe cichoracearum ) compared to 
wild type and other  Arabidopsis  genotypes 
(Wawrzynska et al.  2008 ,  2010 ; plus many others), 
whereas the enhanced disease susceptibility 1 (eds1) 
mutant is far more susceptible to  Hyaloperono-
spora parasitica  (syn.  Peronospora parasitica ), 
downy mildew (e.g. Parker et al.  1996 , and others). 

 New genetic combinations are constantly 
being produced by sexual reproduction undertaken 
by both the host plant and endophyte species. 
This will inevitably lead to a degree of genetic 
incompatibility between host and endophyte, 
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fuelling intensely complex interactions and an 
arms race between the two – the Red Queen 
hypothesis (Van Valen  1973 ). Furthermore as 
Saikkonen et al. ( 2004 ) suggested, these interac-
tions may partially explain the varying levels of 
diversity and endophyte infection seen between 
pioneering and established, managed and natural, 
plus perennial and annual vegetation types. 
These genotypic differences among host and 
endophyte are probably the reason why endophyte 
transience is so prevalent and diversity is so var-
ied within and between plants. Gundel et al. 
( 2012 ) looked at the effects of gene fl ow in grass 
plants ( Lolium multifl orum ) on an endophytic 
symbiosis (with  Neotyphodium occultans ), testing 
the hypothesis that whilst gene fl ow produces 
hybrid vigour, it could reduce compatibility with 
endophytes and therefore the benefi ts derived 
from any symbiosis. Their experiments demon-
strated an interaction between plant genotype and 
endophyte: the effects of the symbiosis at plant 
and population levels being controlled by the 
type and magnitude of environmental stress. 
Resistance to herbivory (by aphids) as a result of 
symbiosis in this case occurred independently 
of plant genotype, but resistance to herbicide dif-
fered between plant genotypes and was modifi ed 
by levels of chemical application. 

 The benefi ts and roles provided by endophytes 
to the host have been well documented, especially 
in agronomic grasses and to a much lesser extent 
in trees and angiosperms (Malinowski et al.  1997 ; 
Waller et al.  2005 ; Porras-Alfaro et al.  2008 ; 
Rodriguez et al.  2008 , and many others), with 
endophytes endowing the host with an extended 
phenotype (Yuan et al.  2010 ). Endophytes benefi t 
their hosts through improved tolerance to biotic 
stress such as drought, enhanced photosynthesis 
and transpiration, protection against pathogens 
through induced plant systemic resistance and the 
deterrence of phytophagous invertebrates (depen-
ding on their feeding guild and degree of specia-
lism). These benefi ts arise directly from endophyte 
metabolism or indirectly through the production of 
compounds that alter the host’s physiology. 

 Studies focusing on natural grass populations 
suggest that the interaction ranges from antagonistic 
to mutualistic depending upon host and endophyte 

genotype and the prevailing environment (Agee 
and Hill  1994 ; Saikkonen et al.  1999 ,  2006 ; Clay 
and Holah  1999 ). However, the infl uence of the 
host and its internal environment on endophytic 
communities remains relatively unstudied. For 
many endophyte species, the host is likely to have 
a large impact, because the fungi are completely 
reliant on the plant for nutrition, protection and in 
some cases survival (Pan and Clay  2004 ). Genetic 
variation of the host was shown to enhance 
endophyte species richness and community com-
position within maize (Pan et al.  2008 ), and 
the percentage of condensed tannins within the 
bark of different  Populus  (Salicaceae) hybrids 
directly infl uenced the composition of the colo-
nising endophyte community (Schweitzer et al. 
 2006 ). Likewise, host genotype has been shown 
to affect the richness and diversity of a wide range 
of other endophytic organisms, including mycor-
rhizal communities (Korkama et al.  2006 ), bacterial 
endophytes (Adams and Kloepper  2002 ), soil 
bacteria (Smith and Goodman  1999 ) and gut 
communities (Zoetendal et al.  2001 ; Vaahtovuo 
et al.  2003 ; Stewart et al.  2005 ). 

 Conversely, the plant does not always benefi t 
from the presence of endophytes, and in some 
cases, plant fi tness increased when the endophyte 
was absent (Faeth and Sullivan  2003 ; Ahlholm 
et al.  2002b ; Redman et al.  2002b ), and 
Christensen et al. ( 1997 ,  2002 ) found that host 
genotype strongly controlled the amount and 
distribution of fungal hyphae within leaf tissue. 
This suggests that the plant is often in control of 
the interaction and relationship. This genotypic 
control is not limited just to endophytes with 
studies by Rasche et al. ( 2006 ), Klerks et al. 
( 2007 ) and Correa et al. ( 2007 ), all showing that 
phylloplane communities comprised of bacteria, 
yeasts and fi lamentous fungi were also infl uenced 
by different host cultivars and genotypes. 
Therefore, considering that the infection route of 
most endophytes colonising the aerial parts of 
herbaceous hosts is thought to start with spores 
landing on the plant’s above-ground surfaces (see 
Sect.  3.4 ), infection, colonisation and diversity 
levels are being controlled and regulated by the 
host from the onset, often before the host tissue is 
even penetrated. If this is the case, it may be that 
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the host maintains the infection, colonisation 
and persistence of certain endophyte species that 
confer some form of benefi t. 

 As a result of the development of our under-
standing of the close linkages between multiple 
genomes across taxonomic boundaries, the disci-
pline of ‘symbiogenetics’ has been established 
as ‘a science studying the genetic control of inter-
species interactions’ (Tikhonovich and Provorov 
 2009 ). To view a plant in isolation is a gross 
oversimplifi cation – it is a phytological superor-
ganism. In order to unravel the complexity of 
the endophyte–plant system, we must ‘think of 
individual plants as ecosystems of interacting 
microbes’ (Wearn et al.  2012 ), which produce 
astounding chemical diversity and, in turn, ‘a 
platform for integrative research training spanning 
the biological and physical sciences’ (Bascom-
Slack et al.  2012 ). Furthermore, interdisciplinary 
recognition of the ‘phytological superorganism’ 
has widespread implications for plant transloca-
tion, conservation and restoration activities and 
also food security.  

3.3     Spatial Variability 
and Transience 

 Like most organisms, endophytic communities 
are affected by their geographic latitude and 
location (Carroll and Carroll  1978 ; Petrini et al. 
 1982 ; Frohlich and Hyde  1999 ; Gange et al. 
 2007 ; Higgins et al.  2007 ; Hoffman and Arnold 
 2008 ). However, endophytic fungal spore viability, 
 dispersal and subsequent infection are infl uenced 
by factors such as the topography of the site, 
ambient climatic conditions and the microclimate 
created by the host (Saikkonen et al.  1998 ; Collado 
et al.  1999 ; Higgins et al.  2007 ; Göre and Bucak 
 2007 ; and many others). Thus, the surrounding 
vegetation, plant density and architecture, along 
with plant identity, genotype and condition, all 
play a part in infl uencing the nature of endophytic 
colonisation. Wearn et al. ( 2012 ) showed that very 
different endophyte communities can be found in 
plants of the same species at a single locality, 
across different seasons, and that endophytes show 
organ specifi city within an individual host plant. 

Ganley and Newcombe ( 2006 ) found that several 
endophyte species appeared to be restricted to a 
specifi c area or tissue type within a plant, with 
highly localised endophyte infections being con-
fi ned to the intercellular space between several 
plant cells, often increasing towards the basal 
part of the midrib of a broad leaf (Helander et al. 
 1993 ; Cannon and Simmons  2002 ) or the needle 
base in conifers (Bernstein and Carroll  1977 ). 
In some cases, these specialist endophytes may 
be restricted to a single host species, as seen with 
 Colletotrichum phyllachoroides , which was 
confi ned to only the leafy tissue of  Suaeda 
fruiticosa  (Amaranthaceae) (Petrini  1986 ; Fisher 
and Petrini  1987a ,  b ), or a single genus or family. 
These fi ndings strongly indicate a fungal-host 
system that is in constant fl ux and where fungi 
come and go within space and time. 

 Endophyte composition of plants also differs 
spatially within and among sites. Arnold and Herre 
( 2003 ) identifi ed that higher endophyte infection 
levels occurred beneath a forest canopy when 
compared to hosts located in a clearing. Arnold 
et al. ( 2003 ) and Gange et al. ( 2007 ) both showed 
that endophyte assemblage differed with increasing 
distance between host plant localities. Morse 
et al. ( 2007 ) observed that the outcome of the 
endophyte–host interaction depended primarily 
upon the endophyte haplotype but was greatly 
affected by plant genotype and the local environ-
ment. Thus, the costs and benefi ts of harbouring 
endosymbionts shift when plants are subjected 
to varying environmental conditions (Faeth and 
Fagan  2002 ). Equally, Gange and Ayres ( 1999 ) 
showed that a mycorrhizal fungus could be 
mutualist, commensal or even parasitic depending 
upon soil chemistry or other prevailing environ-
mental factors. Similarly, Faeth ( 2002 ) stated 
that the magnitude and direction of the host–
endophyte interaction depended signifi cantly 
upon the plant and endophyte genotype and the 
abiotic–biotic local environment, which will vary 
greatly in both time and space. For instance, 
the levels of disturbance and stability in the land 
use history, e.g. whether intensively farmed or 
left as a natural grassland, will have a massive 
impact upon the soil microbial community and 
the vegetation pool (White and Pickett  1985 ). 
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This will infl uence the quantity of spore inoculum 
available and, consequently, the amount of 
endophyte infection and subsequent colonisa-
tion. Gamboa and Bayman ( 2001 ) found higher 
levels of endophyte diversity in leaves of  Guarea 
guidonia  (Meliaceae) in a forest preserve com-
pared to a disturbed forest area in Puerto Rico. 
Therefore, the cost of harbouring endophytes 
may be greater for plants in some localities, which 
would infl uence the level of endophyte diversity. 
As a result, it may be more benefi cial for these 
plants to restrict endophyte colonisation, thus 
ensuring that limited resources are used to sustain 
their own fi tness, because the true costs of accom-
modating endophytic fungi have yet to be eluci-
dated (Clay  2004 ).  

3.4      Transmission of Endophytes 

 Fungal endophytes colonise host tissues for at 
least part of their life cycle, with no apparent 
outward pathology. There are two main types of 
endophyte transmission route, vertical and hori-
zontal. Carroll ( 1988 ) split endophytes into two 
groups based upon their mode of transmission: 
type 1 endophytes, constitutive mutualists, which 
are systemic and vertically transmitted, and 
type 2 endophytes, inducible mutualists which 
are horizontally transmitted. Vertical transmis-
sion, systemically from parental plant to progeny 
via the seed, appears to be the dominant mode 
and is thought to be restricted to only a few 
endophyte species within the family Clavicipi-
taceae, which inhabit grasses (Poaceae), sedges 
(Cyperaceae) and rushes (Juncaceae).  Neotypho-
dium  is an asexual, anamorphic endophyte, which 
is vertically transmitted within plants in these 
taxa. The related, sexually reproducing teleo-
moph,  Epichloë , has the ability to be transmitted 
systemically and vertically via seeds or sexually 
and horizontally (airborne from plant to plant) 
via spores (Schardl et al.  1997 ). Vertically trans-
mitted endophyte species always provide a greater 
degree of host protection than those species that 
are able to alternate between vertical and hori-
zontal transmission (Bucheli and Leuchtmann 
 1996 ; Schardl and Clay  1997 ), probably because 
they are completely host dependent. 

 In contrast to the  Epichloë–Neotyphodium  
interactions within grasses and their allies, other 
plant groups (liverworts, mosses, ferns, gymno-
sperms and angiosperms) are infected by a pleth-
ora of horizontally transmitted endophyte species 
(Stone  1987 ; Saikkonen et al.  1998 ; Davis et al. 
 2003 ; Davis and Shaw  2008 ). It should be noted 
that grasses too are hosts to nonsystemic, horizon-
tally transmitted endophytes (Marquez et al.  2012 ). 

 Horizontal transmission generally occurs via 
air- or waterborne spores, with hyphae entering 
the host through stomata or through direct pene-
tration. Since the host seems to have most of the 
control in the host–endophyte interaction, it is not 
unreasonable to suggest that horizontal transmis-
sion of sexually selected spores would inevitably 
benefi t the endophyte species, allowing them to 
increase their genetic diversity and potentially 
stay one step ahead of the host in the ensuing 
arms race. This may explain why many endophyte 
species colonising most plants have undertaken 
this pathway. Nevertheless, vertical seed-borne 
transmission has also been identifi ed in several 
non-graminoid plant species, e.g. pine ( Pinus  spp.), 
cowpea ( Vigna unguiculata ), cocoa ( Theobroma 
cacao ), chestnut ( Castanea  spp.) and African 
mopane seeds ( Colophospermum mopane ), and, 
unlike grass seeds, in these cases multiple endo-
phyte species have been isolated (Washington 
et al.  1999 ; Posada and Vega  2005 ; Rodrigues 
and Menezes  2005 ; Ganley and Newcombe  2006 ; 
Jordaan et al.  2006 ). Several years earlier, Wilson 
and Carroll ( 1994 ) reported that endophytes had 
been found within acorns, suggestive of vertical 
transmission occurring alongside horizontal 
transmission. Similarly, Gallery et al. ( 2007 ) 
screened seeds from  Cecropia insignis  (Urticaceae) 
using culture- independent methods and recovered 
a diverse array of Ascomycota, which seemed to 
be consistent with the species isolated as foliar 
endophytes. It remains unknown how or why 
these endophytes have developed this systemic 
transmission route, but more importantly may be 
the question why does the host allow them to do 
so, unless they confer some benefi t to the embryo 
and seedling? 

 Faeth and Bultman ( 2002 ) predicted that alka-
loids produced by endophytes would be more 
benefi cial and prevalent at the seed and seedling 
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stage in grasses, when predation, pathogen attack 
and herbivory would have a direct effect on host 
fi tness, a theory supported by Siegel et al. ( 1990 ), 
Bush et al. ( 1993 ), Welty et al. ( 1994 ) and 
Leuchtmann et al. ( 2000 ). This is consistent with 
the meta-analysis fi ndings of Barton and Koricheva 
( 2010 ), who showed that within woody plants, 
chemical defences increase at the seedling stage 
augmented by physical defences during the 
juvenile stage. However, within herbaceous 
plants, the level of secondary chemicals increased 
signifi cantly throughout their entire ontogenetic 
trajectory.  

3.5     Endophyte Succession 

 The plant–endophyte relationship is dynamic, as 
fungal composition varies temporally across 
months and seasons, with subsequent infections 
occurring after initial colonisation. Contrasting to 
extensive mycorrhizal fungal colonisation in roots, 
infection by any one endophyte in aerial parts 
appears to be limited, due to plant defences, intra- 
or interspecifi c competition between endophytes 
and other factors governing niche occupancy. 
Thus, endophytes undergo a form of succes-
sion, as species communities change. Ganley and 
Newcombe ( 2006 ) using regression analysis 
showed that the endophyte assemblage in  Pinus 
monticola  (Pinaceae) was infl uenced by the age of 
the host tree. Correspondingly, Hodgson ( 2010 ) 
showed marked differences in endophyte species 
richness in the largest/oldest leaves compared to 
that found in the smallest leaf and the relationship 
between plant height and leaf richness in  Rumex 
acetosa  (Polygonaceae). Here endophytes were 
undergoing succession, as fungal communities 
changed over time with increasing leaf age/size.   

4     Foliar Endophytes 
and Abiotic Stress 

 Heat, drought and salt stress induce some similar 
plant responses including altered water relations, 
increased osmolyte production, production of 
signalling molecules such as abscisic acid (ABA) 
and the generation of reactive oxygen species 

(ROS) (Bohnert et al.  1995 ; Bray  1997 ; Wang 
et al.  2003 ; Apel and Hirt  2004 ). 

 Fungal endophytes may confer host protection 
against abiotic stresses, infl uence plant physiol-
ogy and therefore enhance plant growth (Franken 
 2012 ). According to Rodriguez et al. ( 2009a ), 
only Class II endophytes confer habitat-adapted 
stress tolerance to stresses such as pH, salinity or 
temperature and suggest that these endophytes 
are important for the survival of some plants in 
high-stress environments (Rodriguez et al.  2004 ) 
as mentioned earlier. Rodriguez et al. ( 2009a ) 
state that Class III and Class IV endophytes have 
not been examined for their ability to confer 
stress tolerance. Much work has been carried out 
on the effects of these stresses to host plants 
infected with endophytes from the clavicipitalean 
group, probably as a result of the economic 
importance of the host plants. 

4.1     Tolerance to Drought Stress 

 Plants respond to drought stress through a range 
of physiological and biochemical changes, and 
research has shown that fungal endophytes are 
able to increase a host plant’s tolerance to drought 
stress, possibly through the enhancement of root 
development and leaf growth, regulating the 
opening and closing of stomata (Elbersen and 
West  2006 ; Swarthout et al.  2009 ), osmotic 
regulation (Bacon  1993 ) and improvement of 
the anti-oxidation protection system (Hamilton 
et al.  2012 ). 

 Studies have demonstrated that endophyte- 
infected plants are able to survive under conditions 
of drought stress whilst maintaining high yields. 
Arachevaleta et al. ( 1989 ) reported that under 
conditions of heavy drought, the biomass of 
plants infected with endophytes was higher, sur-
vival was improved and there was a signifi cant 
increase in the ability to recover after drought, 
compared to endophyte-free plants, where 75 % 
of plants died. Conversely, Hesse et al. ( 2003 ) found 
that  Neotyphodium  spp. inoculating  L. perenne  
could either promote or reduce plant growth 
when drought stress was applied, depending on 
the habitat that the host plant originated from. 
Malinowski and Belesky ( 2000 ) showed that 
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 Neotyphodium  spp. infecting tall fescue induced 
mechanisms of drought avoidance (morphological 
adaptations), drought tolerance (physiological 
and biochemical adaptations) and drought recovery 
in infected grasses. 

 Much work has been carried out on the clavicipi-
taceous and Class II endophytes and how they 
infl uence drought tolerance in their host plants. 
There appears to be a paucity of knowledge on 
whether Class III foliar endophytes will similarly 
affect a host plant’s ability to withstand periods 
of drought.  

4.2     Tolerance to Salinity Stress 

 For crop plants, soil salinity is one of the most 
signifi cant abiotic stresses, as it reduces crop 
yield by more than 50 % (Boyer  1982 ; Bray et al. 
 2000 ).    An example of this is the root-inhabiting 
endophyte  Piriformospora indica  which is able 
to increase plant growth under both normal and 
stress conditions (Waller et al.  2005 ; Schäfer 
et al.  2007 ). Within non-graminoid herbaceous 
plants, there appears to be no examination of the 
effects of foliar fungal endophytes on the stress 
caused by high soil salinity. 

 Similarly, as with other aspects of the ecological 
roles these non-graminoid foliar endophytic fungi 
have, there is a general paucity of research 
carried out on the effects – if any – that these 
fungi will have on the ability of their hosts to 
tolerate abiotic stress in various forms.   

5     Invertebrates–Foliar 
Endophytes–Herbaceous 
Plants 

5.1     Direct Interactions Between 
Endophytes and Invertebrates 

 Within the herbaceous plant–foliar endophyte 
system, herbivorous invertebrates have received 
little attention in the literature, compared to the 
interactions observed with graminoid host spe-
cies (e.g. Lewis and Clements  1986 ; Clement 
et al.  2011 ; Crawford et al.  2010  and others). 

Endophytic fungi are important mediators of 
plant–herbivore interactions (Rajagopal and 
Suryanarayanan  2000 ; Omacini et al.  2001 ; 
Miller et al.  2002 ; Meister et al.  2006 ) and may 
enhance resistance to herbivorous insects (Breen 
 1994 ), by increasing the production of various 
alkaloid-based defence compounds within the 
host’s tissues (Clay and Holah  1999 ; Faeth  2002 ) 
or through a change in the nutritional quality (e.g. 
phytosterols) of the plant (Bernays  1993 ).    These 
changes to plant chemistry protect the host plant 
by deterring insect herbivores (Latch et al.  1985 ), 
reducing herbivory (Knoch et al.  1993 ), develop-
ment rate (Valenzuela-Soto et al.  2010 ) and sur-
vival (Lacey and Neven  2006 ) and oviposition 
(Clay  1990 ). Ahmad et al. ( 1985 ) reported 100 % 
mortality rate of house crickets ( Acheta domesti-
cus ) when they grazed perennial ryegrass ( Lolium 
perenne ) infected with the endophyte  Aremonium 
loliae . In contrast, Jani et al. ( 2010 ) found that 
high alkaloid levels in the native grass 
 Achnatherum robustum  were associated with 
increased arthropod herbivore abundance and 
species richness. They suggest that these high 
alkaloid levels in native grasses may not protect 
the host from arthropod herbivores. The Argentine 
stem weevil ( Listronotus bonariensis ) had sig-
nifi cantly higher feeding rates on perennial rye-
grass infected with a  Gliocladium -like endophyte 
compared to endophyte-free grass (Gaynor et al. 
 1983 ). Conversely, populations of this insect 
were negatively affected by the endophyte 
 Neotyphodium lolii  when it infected the same 
host grass (Prestidge et al.  1982 ). Gange et al. 
( 2012 ) suggest that the degree of insect- feeding 
specialism and insect-feeding guild (Hartley and 
Gange  2009 ) are important factors when investi-
gating the effect of foliar endophytes on insect 
herbivory. The majority of studies have focused 
on phloem feeders on grass hosts and their asso-
ciated endophytes, where negative effects on 
insect performance were recorded (Wilkinson 
et al.  2000 ; Clement et al.  2001 ; Bultman et al. 
 2004 ; Hunt and Newman  2005 ; Krauss et al. 
 2007 ; Lehtonen et al.  2005 ; Meister et al.  2006 ; 
Züst et al.  2008 ). Contrary to this fi nding are the 
results recorded for chewing insects where they 
were either unaffected or positively infl uenced by 
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the presence of foliar endophytes (Bultman and 
Bell  2003 ; Bultman et al.  2003 ; Davidson and 
Potter  1995 ; Williamson and Potter  1997 ). It is 
apparent that there is a continuum of endophyte 
effects on herbivorous invertebrates within the 
grass host system ranging from negative through 
null to positive outcomes. Table  3.1  shows the 
effects of various foliar endophytic fungi, infect-
ing herbaceous plants, on specialist and general-
ist insects. With so few studies undertaken 
involving endophyte-infected herbaceous hosts 
and herbivorous invertebrates, it is at present 
impossible to draw any conclusions with regard 
to feeding specialism.

5.2        Higher Trophic Levels 

 Foliar fungal endophytes appear to be able to 
drive the shaping of multitrophic community 
structure. Evidence for this has again come from 
studies involving grass host species with no 
research being carried out using herbaceous 
hosts and their associated invertebrate herbi-
vores. It appears that endophytes, and even indi-
vidual isolates of endophytes being investigated, 
affect various aspects of parasitoid development 
and survival (Bultman et al.  1997 ,  2003 ). 
Predators attacking herbivorous invertebrates 
may also be affected by endophyte presence 
(Omacini et al.  2001 ; de Sassi et al.  2006 ). 
Hartley and Gange ( 2009 ) make the point that 
most of the studies so far undertaken on the 
multitrophic effects of endophytes have been 
controlled laboratory experiment, suggesting 
that investigation in the fi eld may be diffi cult to 
carry out (Krauss et al.  2007 ). Gange et al. 
( 2003 ) was the fi rst to show that arbuscular 
mycorrhizal fungi can infl uence the perfor-
mance of higher trophic levels, by increasing 
host plant size and as a result reducing the 
searching effi ciency of the parasitoid for its host 
insect. This observation was also seen under 
fi eld conditions. If there is an indirect effect of a 
root-inhabiting mycorrhizal fungus on a parasit-
oid, it seems likely that this should also happen 
to parasitoids, whose host insects are feeding on 
herbaceous foliage infected with endophytes.    

 These multitrophic interactions are an important 
aspect of community ecology that needs to 
be further studied, both in the laboratory and 
preferably in the fi eld.   

6     Conclusion 

 As we have demonstrated above, foliar endo-
phytic fungi appear to be powerful, albeit under-
estimated, members of the biotic community. 
They are clearly infl uential in the performance 
of their host plants and should always be included 
in any plant performance investigation. As Wearn 
et al. ( 2012 ) suggest, plants themselves should 
be viewed as ‘ecosystems of interacting 
microbes’, so any research investigating plant 
parameters should always include an assessment 
of the endophyte community within the host 
plant. This reinforces Eriksen et al.’s ( 2002 ) 
study of traditionally managed boreal grass-
lands, which argues that ‘plant interactions 
above and below ground’ must be incorporated 
into management aimed at conserving species 
composition or restoration efforts aimed at the 
reintroduction of rare or vulnerable plant spe-
cies. Therefore, it is hoped that future endophytic 
studies will advance our understanding of the 
role played by microbial communities in 
enabling, preserving or restoring diversity in the 
wide array of plant communities imperilled in 
the Anthropocene. 

 The three-way relationship between foliar 
fungal endophytes, herbaceous plants and her-
bivorous invertebrates requires further investiga-
tion to elucidate the ecological roles each member 
plays within this association, but also their 
impacts on higher trophic levels and the wider 
plant community, including host plant choice by 
insects (Gange et al.  2007 ). Included in this 
should be the assessment of any mycorrhizas 
present, as arbuscular mycorrhizal fungi are 
known to affect both herbivorous insects as well 
as the parasitoids that have so far been investi-
gated (Gange et al.  2003 ). 

 Future research will need to take into account 
temporal variation of foliar endophytes and 
differences in geographical location even when 
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studying the same host plant, as well as endophyte 
specifi city of host plants and their site of colonisa-
tion within host tissues. 

 The difference between non-herbaceous and 
herbaceous host plants is likely to have an impact 
on the composition and structure of the endo-
phyte community infecting the host plant and, 
thus, their impact on herbivores and plant 
growth. However, as already stated, much more 
research is needed before any conclusions can be 
drawn in this area. 

 Endophytic research has the potential to offer 
insights into the complicated interactions of the 
natural world and may help to secure a better 
understanding of both the evolution and bioge-
ography of a variety of plant taxa and that of 
other trophic levels, as well as helping to ensure 
appropriate conservation management. It is 
hoped that future work in this area will therefore 
assist our developing understanding of other 
members of the biotic community and of ecosys-
tem function. 

 So is the relationship between foliar fungal 
endophytes and herbaceous plants a marriage of 
convenience? If the association is one of mutual-
ism, then it appears to be a match made in heaven, 
with both partners seemingly gaining benefi ts. 
With a history of a very long-lived affair (of 
approx. 400 million years    (Krings et al.  2007 ; 
Rodriguez and Redman  2008 )), the relationship 
between foliar fungal endophytes and herba-
ceous hosts could perhaps be a marriage of true 
love. Other associations between plants and 
endophytes, however, may not be so harmoni-
ous, with partners remaining in the relationship 
whilst it is advantageous, to then defect to live 
with another. The fungus, through switching 
host, or the plant controlling its endophyte 
assembly, could drive this situation. At the 
extreme end of the relationship spectrum, one 
partner could turn on and destroy the other, such 
as a plant excluding costly endophytes, which 
are not paying their way, or an endophyte could 
be a latent pathogen or saprobe awaiting its 
opportunity to strike. Thus, ‘true love’, mutual 
support and dependence, infi delity and murder, 
plant host–endophyte relationships in herba-
ceous plants probably run the full gamut.     
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    Abstract  

  Biological control agents have received a considerable amount of attention 
as alternatives to chemicals for the development of new control methods 
but also due to the disparate ecological niches occupied by them. 
Entomopathogenic (EF) and nematophagous fungi (NF) enter their hosts 
directly via the cuticle or natural openings, what makes them attractive 
agents for biological pest control. These fungi have been traditionally 
viewed simply as animal predators, but recent studies show that a consid-
erable number of fungal pathogens of invertebrates have an endophytic 
phase in their life cycles. Several taxa of EF and NF have been identifi ed 
as naturally occurring endophytes and could be artifi cially inoculated in 
agricultural plant species. In addition, symbioses with some endophytic 
species positively affect plant growth and resistance against fungal patho-
gens. These additional ecological roles give a new perspective to the study 
of these organisms, because they are part of tritrophic interactions where 
plants, invertebrates, and fungi are closely involved. Understanding 
fungal-plant, fungal-pest, fungal-pathogen, and fungal-plant- pest interac-
tions, plus the role of fungal viruses, that infect EF, could lead to the 
development of novel integrated crop production and protection tools.  
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1         Introduction 

 The advent of chemical insecticides in the 
mid- twentieth century led to the idea that inverte-
brate pests could be completely eliminated from 
crops. Since then, a succession of compounds 
with insecticidal and nematicidal activity has 
been developed. Many early chemical pesticides 
were toxic and environmentally damaging; how-
ever, in recent years, due to an increase in public 
sensitivity toward environmental pollution and 
problems derived from the side effects of early 
materials, alternative benign insecticides were 
developed. Arising from the idea of sustainable 
agriculture and its main tool, integrated pest man-
agement, as well as the notion of organic farming, 
there now exists a demand for crop protection 
strategies more compatible with these principles, 
which are adopted by the Common Agricultural 
Policy of the European Community (EC) and its 
member states (i.e., Directive 2009/128/EC). As a 
prelude of this directive, EU Regulation (EC) 
848/2008 led to a reduction of around 85 % of 
the registered pesticides (insecticides, fungicides, 
and herbicides). Thus, pest control has evolved to 
employ a variety of cultural, chemical, and bio-
logical tools for the management of pest invasions 
below an economic threshold.  

2     Entomopathogenic 
and Nematophagous Fungi 
and Their Unusual Roles 
in the Ecosystem 

 Microbial control is considered to be the most 
viable alternative to synthetic chemical pesti-
cides (Eilengberg and Hokkanen  2006 ). However, 
not all entomopathogenic microorganisms invade 
susceptible hosts in the same manner. For 
instance, viruses, bacteria, and protozoa must be 
ingested (Tanada and Kaya  1993 ), while entomo-
pathogenic (EF) and nematophagous (NF) fungi 
may enter their hosts directly through the cuticle 
or by natural openings (Shah and Pell  2003 ; 
Goettel et al.  2005 ; Nordbring-Hertz et al.  2006 ; 
Charnley and Collins  2007 ). The adhesion of 
conidia or specialized fungal structures to the 

cuticle is only the beginning of the invasion. 
Germination, penetration into the host, modula-
tion of cellular and humoral defenses, and fungal 
growth inside the hemocoel conclude with the 
death of the host, which is caused by nutrient 
depletion, the invasion of tissues and organs, and 
asphyxia due to the development of the fungus in 
the respiratory system and/or the production 
of toxic fungal metabolites. The life cycle of 
the fungus is completed with sporulation, when 
hyphae emerge from the cadaver and produce 
conidiophores and conidia, which allow for hori-
zontal transmission (Goettel et al.  2005 ; Charnley 
and Collins  2007 ). Due to their mode of action 
and their natural presence in the soil (Quesada- 
Moraga et al.  2007 ) and in insect populations 
(Quesada-Moraga and Santiago-Álvarez  2008 ), 
EF are polyvalent biocontrol agents and are the only 
alternative for the biocontrol, among others, of 
sap-sucking insect and mite pests (i.e., Thysanop-
tera and Hemiptera), locusts and grasshoppers, 
and soil-dwelling insect pests (Charnley and 
Collins  2007 ; Santiago-Álvarez et al.  2008 ). 

 According to Faria and Wraight ( 2007 ), 171 
mycoinsecticide products (fungus-based formu-
lations targeting insects and mites) were commer-
cially available in 2007. The fungi used in these 
products are primarily hypocrealean ascomycetes 
and include  Beauveria bassiana  (Bals.) Vuill., 
 B. brongniartii  (Sacc.) Petch,  Metarhizium aniso-
pliae  (Metsch.) Sorokin., sensu lato,  M. acridum  
(formerly  M. anisopliae  var. acridum) (Driver and 
Milner) J.F. Bischoff., Rehner, and Humber 
stat. nov.,  Isaria fumosorosea  Wize (formerly 
 Paecilomyces fumosoroseus ),  Lecanicillium 
longisporum  and  muscarium  (Petch) R. Zare and 
W. Gams (formerly  Verticillium lecanii ), and 
 Hirsutella thompsonii  F.E. Fisher. Meanwhile, 
three main groups of nematophagous fungi are 
known: the nematode- trapping and the endopara-
sitic fungi that attack vermiform living nematodes 
by using specialized structures and the egg- and 
cyst-parasitic fungi that attack these stages with 
their hyphal tips. The performance of these 
biological control agents have varied. 

 While it has been hypothesized that many 
endophytic taxa might have an important role in 
ecosystems as decomposers, by switching their 
life strategy from an endophytic to a saprobic 
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mode (Promputtha et al.  2007 ; Parfi tt et al.  2010 ; 
Purahong and Hyde  2011 ; Vázquez de Aldana 
et al.  2013 ), recent studies suggest that entomo-
pathogenic and nematophagous endophytes might 
play additional unusual roles in the ecosystem 
(Vega et al.  2009 ), protecting plants against 
diseases, warding off insect pests, and increasing 
the fi tness of plants by growth-promoting 
activities (Fig.  4.1 ).

   Some fungal entomopathogens are naturally 
occurring endophytes, while others have been 
artifi cially inoculated into plants using various 
techniques. Nonetheless, in the majority of the 
aforementioned studies, fungal entomopathogens 
were introduced into the plant to act as biological 
control agents against specifi c pests, and the method 
of EF colonization was not determined. These 
fungi had no adverse effect on the growth of the 
plants (Tefera and Vidal  2009 ) probably because, 
as it occurs in endophyte-grass associations, 

hyphal growth is closely coordinated with host 
growth or, alternatively, because fungal growth is 
restrained by plant defenses, achieving the plant 
and the fungus a situation of “balanced antago-
nism” (Schulz and Boyle  2005 ; Rodriguez et al. 
 2009 ). However, little is known about (1) how 
the plants acquire in nature the endophytic EF, 
(2) the growth pattern that entomo- and nemato-
pathogens display within the plant, and (3) the 
signaling pathways required for entry and growth 
in the plant and for the maintenance of a symbiotic 
interaction. 

 The implications for biological and agricultural 
science of the discovery of endophytic phases 
in many fungal species previously known as 
entomopathogenic and nematophagous are the 
main focus of this review.  

3     Presence of 
Entomopathogenic and 
Nematophagous Fungal 
Endophytes in Nature 

 Evidence of the capability of some entomopatho-
gens to have an endophytic phase in their life 
cycle comes from their isolation from surface- 
sterilized plant materials. In fact, surveys of fungal 
endophytes from several plant species indicate 
the presence of entomopathogenic and nematoph-
agous species inside plant tissues (Table  4.1 ). In 
most of these surveys of natural plant hosts, 
nemato- and entomopathogens occur at a low 
frequency in populations of particular host plant 
species (i.e., Vázquez de Aldana et al.  2013 ). 
However, exceptions to this occur, and a predom-
inance of some species of these fungi has been 
reported in the endophytic mycobiota of some 
plant hosts (Miles et al.  2012 ; Wearn et al.  2012 ).

   Some entomopathogenic taxa have been iden-
tifi ed as natural endophytes in more than one host 
plant species (i.e.,  B. bassiana ,  Lecanicillium 
lecanii ) (Table  4.1 ), what indicates that they are 
multi-host endophytes capable of infecting several 
plant species. Therefore, although entomopatho-
genic endophytes might not be very abundant in 
particular plant species, some taxa like  B. bassiana  
have a wide range of host plant species, becoming, 

  Fig. 4.1    Overview of the unusual ecological roles of 
entomopathogenic and nematophagous endophytic fungi. 
Growth promotion activities and their indirect effect on 
lower susceptibility to pest and diseases are represented in 
 green , while direct protection against pest, pathogens, and 
nematodes are represented in  red        
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in general terms, a relatively common endophyte. 
The occurrence of entomopathogens and 
nematophagous fungi as natural endophytes also 
indicates that these fungi have complex life 
cycles, which can be completed in soil, inverte-
brates, and plants. 

 After some pioneering studies showed that the 
entomopathogen  B. bassiana  could be artifi cially 
inoculated into leaves of corn plants and behave 
as an endophyte (Bing and Lewis  1992 ), artifi cial 
inoculation of other EF and NF has been achieved 
in numerous plant hosts (Table  4.2 ). This has 
corroborated the multi-host nature as an endo-
phyte of  B. bassiana  and other species and altered 
the rationale behind the use of entomopathogens 
as biocontrol agents in agriculture.

   Recently, PCR quantifi cation in parallel with 
confocal microscopy was used to monitor spatial 
and temporal patterns of leaf and stem colonization 

using a GFP-tagged transformant of the  B. bassiana  
strain EABb 04/01-Tip. This work demonstrated 
that after leaf spray inoculation,  B. bassiana  
effectively colonizes aerial tissues of opium 
poppy plants mainly through the intercellular 
space of the apoplast and is present even in the 
leaf trichomes, but fungal colonization was 
scarce and not uniform. A decline in endophytic 
colonization was also observed as time after the 
inoculation increased, although fungal structures 
still remained present in the leaf tissues (Landa 
et al.  2013 ). Hyphae were only observed at the 
leaf and stem intercellular spaces and circum-
scribed to determined zones of the parenchyma 
of the main leaf vein, but not reaching the vas-
cular tissues, whereas we have previously 
observed fungal growth into the xylem vessels 
by scanning electron microscopy (Quesada-
Moraga et al.  2006 ). 

     Table 4.1    Plant species where entomopathogens and nematophagous fungi have been identifi ed as natural 
endophytes   

 Fungus  Plant host  References 

  Beauveria bassiana    Abies beshanzuensis , a   Ammophila arenaria , 
 Carpinus caroliniana ,  Coffea arabica ,  Dactylis 
glomerata ,  Datura stramonium ,  Elymus farctus , 
 Espeletia  spp.,  Eucalyptus globulus ,  Gossypium 
hirsutum ,  Papaver somniferum , b   Pinus monticola , 
 Pinus radiata ,  Pinus sylvestris ,  Quercus ilex , 
 Theobroma gileri ,  Zea mays  

 Bills and Polishook ( 1991 ), 
Collado et al. ( 1999 ), Ganley 
and Newcombe ( 2006 ), 
Quesada-Moraga et al. ( 2006 ), 
and Sánchez et al. ( 2007 ,  2008 , 
 2011 ), Thomas et al. ( 2008 ), 
Vega et al. ( 2008 ), Giordano 
et al. ( 2009 ), Yuan et al. ( 2011 ), 
Miles et al. ( 2012 ), and 
Brownbridge et al. ( 2012 ) 

  Lecanicillium lecanii    Ammophila arenaria ,  Carpinus caroliniana , 
 Dactylis glomerata ,  Elymus farctus ,  Gossypium 
hirsutum  

 Bills and Polishook ( 1991 ), 
Sánchez et al. ( 2007 ,  2008 ), and 
de Souza Vieira et al. ( 2011 ) 

  Cordyceps sinensis    Holcus lanatus ,  Theobroma gileri   Thomas et al. ( 2008 ) and 
Sánchez et al. ( 2010 ) 

  Paecilomyces  sp.   Carpinus caroliniana ,  Dactylis glomerata , 
 Holcus lanatus ,  Musa acuminata ,  Oryza sativa  

 Sánchez et al. ( 2007 ,  2010 ) and 
Vega et al. ( 2008 ) 

  Tolypocladium cylindrosporum    Festuca rubra ,  Holcus lanatus   Sánchez et al. ( 2010 ) 
  Hirsutella aphidis    Lolium perenne   Authors, unpublished 
  Metarhizium anisopliae    Cynodon dactylon   Authors, unpublished 
  Cordyceps memorabilis    Eucalyptus globulus   Sánchez et al. ( 2011 ) 
  Clonostachys rosea    Coffea arabica ,  Quercus myrsinifolia   Vega et al. ( 2008 ) and Shirouzu 

et al. ( 2009 ) 
  Plectosphaerella cucumerina    Phaseolus vulgaris ,  Cynodon dactylon , 

 Ammophila arenaria ,  Elymus farctus  
 Authors of  P. vulgaris ; Sánchez 
et al. ( 2010 ) 

  Isaria farinosa    Pinus sylvestris   Giordano et al. ( 2009 ) 

   a  Beauveria brongniartii  
  b Fungus isolated from a mining insect found inside a plant  
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 The above study of colonization of opium poppy 
by  B. bassiana  shows that the leaf treatment with a 
fungal spore suspension is an effective technique to 
carry out this endophytic inoculation. Likewise, we 
have previously reported that conidial suspensions 
are also effective to systemically protect opium 
poppy against stem gall  I. luteipes  applied in seed 
dressings or soil sprays (Quesada-Moraga et al. 
 2009 ), and even the use of strain EABb 04/01-Tip 
in seed dressing to systemically protect opium 
poppy against the gall has been recently patented 
(Patent application number WO2010092223; 
Quesada- Moraga et al.  2010 ). However, it remains 
to be clearly elucidated which inoculation method 
guarantees the higher effi ciency of establishment 
of the endophyte in opium poppy plants. 

 Although there are several studies dealing 
with fl uorescent protein-tagged endophytic fungi-
plant interactions in the literature, to the best of 
our knowledge, this is also the fi rst application 
of a GFP-tagged  B. bassiana  strain for studying 
endophytic colonization. The penetration and 
colonization of barley roots by the nematophagous 
fungus  Pochonia chlamydosporia  has also been 
studied using GFP-transformed strains (Maciá Vicente 

et al.  2009 ). Also, Sasan and Bidochka ( 2012 ) have 
reported the competence in the rhizosphere of a 
 M. robertsii  GFP-tagged strain in switch grass 
( Panicum virgatum ) and haricot beans ( Phaseolus 
vulgaris ), showing a long-term (60 days) association 
in which  M. robertsii  endophytically colonized 
cortical cells within bean roots, growing inter- 
and intracellularly. 

 The inocula most used for artifi cial inocula-
tions are liquid or granular formulations of conidia 
obtained from liquid or solid mycelial cultures. 
Species like  B. bassiana  and  Tolypocladium cylin-
drosporum  sporulate profusely in artifi cial culture 
media, making easy the large-scale production 
of conidia. For instance, about 1.5 × 10 7  conidia 
of  T. cylindrosporum  can be obtained from 1 g of 
mycelium (Herrero et al.  2012b ). The techniques 
that have been used for artifi cial inoculation are 
leaf spraying, injection in stems, soil drenching, 
or seed dressing with conidial suspensions (i.e., 
Bing and Lewis  1992 ; Tefera and Vidal  2009 ; 
Quesada-Moraga et al.  2006 ; Posada et al.  2007 ). 
Inoculation of plants has been achieved with all 
these methods, although with different rates of 
success, depending on several factors. 

    Table 4.2    Plant species where entomopathogenic and nematophagous endophytes have been artifi cially inoculated 
with success   

 Fungus  Host plant  References 

  Beauveria bassiana    Coffea arabica ,  Corchorus 
olitorius ,  Musa  sp.,  Papaver 
somniferum ,  Phoenix dactylifera , 
 Pinus radiata ,  Sorghum bicolor , 
 Theobroma cacao ,  Zea mays  

 Akello et al. ( 2007 ), Bing and Lewis ( 1992 ), 
Biswas et al. ( 2012 ), Brownbridge et al. 
( 2012 ), Gómez Vidal et al. ( 2006 ), Posada 
et al. ( 2007 ), Posada and Vega ( 2005 ), 
Quesada-Moraga et al. ( 2006 ), Tefera and 
Vidal ( 2009 ), and Wagner and Lewis ( 2000 ) 

  Lecanicillium lecanii    Gossypium hirsutum   Anderson et al. ( 2007 ) 
  Tolypocladium cylindrosporum    Solanum lycopersicum, 

Phaseolus vulgaris  
 Herrero et al. ( 2012b ) 

  Lecanicillium dimorphum, 
Lecanicillium  cf.  psalliotae  

  Phoenix dactylifera   Gómez Vidal et al. ( 2006 ) 

  Pochonia chlamydosporia    Hordeum vulgare ,  Solanum 
lycopersicum  

 Bordallo et al. ( 2002 ) 

  Arthrobotrys oligospora    Hordeum vulgare ,  Solanum 
lycopersicum  

 Bordallo et al. ( 2002 ) 

  Arthrobotrys dactyloides    Hordeum vulgare   López Llorca et al. ( 2006 ) 
  Nematoctonus robustus    Hordeum vulgare   López Llorca et al. ( 2006 ) 
  Pleurotus djamor    Hordeum vulgare   López Llorca et al. ( 2006 ) 
  Metarhizium anisopliae    Solanum lycopersicum   García et al. ( 2011 ) 
  Metarhizium robertsii    Panicum virgatum ,

 Phaseolus vulgaris  
 Sasan and Bidochka ( 2012 ) 
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 Evaluations of inoculation methods of 
endophytes indicate that several variables infl u-
ence the effi ciency of inoculation. The effi ciency 
of endophytic colonization in sorghum after leaf 
spray, soil drench, or seed dressing inoculation 
was greatly affected by the substrate where 
plants were grown; colonization was very high 
for all three methods when the plant substrate 
was vermiculite, while only leaf spraying was 
satisfactory in non-sterile soil (Tefera and Vidal 
 2009 ). In coffee plants, injection was the most 
effi cient method, better than drench or leaf spray; 
injection might help to avoid structural defenses 
of leaves and roots that cannot be overcome by 
the fungus (Posada et al.  2007 ). This is supported 
by the results of a study where slight wounding 
of leaf surfaces prior to inoculation improved the 
recovery of endophytic  Lecanicillium  in cotton 
(Anderson et al.  2007 ). From a commercial user 
point of view, methods like seed dressing or foliar 
sprays could be more efficient than injection 
or soil drenching. It is also possible that particular 
large-scale inoculation methods might be improved 
by means of inoculum formulations and other 
technical modifi cations of the process. 

 Differences among strains of  B. bassiana  in 
their capability to infect host plants (Posada and 
Vega  2005 ; Posada et al.  2007 ; Gómez Vidal et al. 
 2006 ) suggest that some fungal genotypes 
might be more specialized than others in carrying 
an endophytic lifestyle. Therefore, screening for 
competent endophytic strains might be as impor-
tant as fi nding adequate inoculation methods in 
the development of endophytic entomopathogens 
as control agents. One current drawback to the 
use of endophytes as biocontrol agents comes 
from the variability observed in the endophytic 
persistence of the fungi after the inoculation. For 
instance, the presence of  T. cylindrosporum  
decreased in bean and tomato leaves as time after 
inoculation increased (Herrero et al.  2012b ). In 
the case of  B. bassiana , its incidence in inocu-
lated plants decreased in coffee, but not in corn, 
jute, or cocoa (Anderson and Lewis  1992 ; Biswas 
et al.  2012 ; Posada et al.  2007 ). Although the 
method of inoculation, as well as the fungal 
strain used, might be associated to the persis-
tence of endophytes, the host plant genotype is 

likely to have a very important role in the com-
patibility of plant- endophyte associations. Most 
known fungal endophytes seem to colonize their 
host plants in a nonsystemic pattern (Rodriguez 
et al.  2009 ; Sánchez et al.  2012 ). It has been 
hypothesized that this limited growth occurs 
because of a situation of “balanced antagonism,” 
where the host plant can restrain the growth of 
the fungus, and the fungus can modulate the 
effectiveness of plant defense mechanisms 
(Schulz and Boyle  2005 ). Research with EF and 
NF shows that in response to endophytic infection, 
plant defense responses like cell wall reinforce-
ment occur (Bordallo et al.  2002 ; Maciá Vicente 
et al.  2009 ). Nevertheless, endophytes can over-
come such defense responses, but perhaps only in 
particular plant genotypes.  B. bassiana  can mod-
ulate host defenses up to the point where its hosts 
are colonized systemically, like some grass endo-
phytes of the genera  Neotyphodium  and  Epichloë  
can do. In contrast with these grass endophytes, 
which are host specifi c,  B. bassiana  has a wide 
host range as an endophyte. 

 It has been reported that transmission of clavi-
cipitaceous endophytes (C-endophytes) or class 1 
endophytes is primarily vertical but also horizon-
tal (Rodriguez et al.  2009 ). However, there are few 
studies, if any, on how entomopathogenic and 
nematophagous fungal endophytes are transmitted. 
Using the abovementioned species- specifi c two-
step nested PCR for identifying and monitoring 
 B. bassiana  strain EABb 04/01-Tip, it has been 
recently found that this strain is transmitted vertically 
from maternal plants via seeds (Quesada-Moraga 
et al.  2013 ). Nonetheless, further studies elucidating 
the fate of the endophytic fungal inoculum in the 
ecosystem are needed for EF and NF.  

4     Entomopathogenic Fungal 
Endophytes and Pest Control 
(Tritrophic Interaction 
Endophyte-Plant-Insect) 

 The idea that the establishment of EF  in planta  can 
confer systemic protection from herbivorous pests 
was proposed by Bing and Lewis ( 1992 ). In recent 
years, several studies reporting the use of EF as 
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artifi cial endophytes (i.e., artifi cially inoculated 
into the plant rather than naturally infecting the 
plant) have appeared in the literature (Table  4.2 ). 
Such studies aimed at using these fungi as biologi-
cal control agents against specifi c pests, whose life 
cycle (they feed internally producing extensive 
tunneling in stems, pseudostems, rhizomes, roots, 
seeds, etc.) seriously limits the effectiveness of 
chemical insecticides and other control methods. 
Compared to conventional biopesticides, the use 
of EF (i.e.,  B. bassiana ) as artifi cial endophytes 
has the advantage of targeting the pest within the 
plant at reduced application costs because little 
inoculum is required in cases where colonization 
is systemic. Furthermore, the endophytic fungus is 
protected inside the plant from abiotic and biotic 
factors that would limit its use as an epiphyte. 
Most of these studies have only completed the fi rst 
stage, that is, inoculation into the plant, although 
some of them have gone further, stating that the 
endophytic colonization of the plant by an ento-
mopathogenic fungus affects the survivorship and 
development of the cryptic insects, while reducing 
plant damage (Akello et al.  2008 ; Bing and Lewis 
 1992 ; Quesada-Moraga et al.  2009 ). 

 The use of EF as plant endophytes is the only 
microbial control technique that targets the larvae 
that feed on the plant (Backman and Sikora 
 2008 ). One might expect that the biocontrolling 
abilities of endophytic EF are due to the infection 
of the insect upon feeding on the endophytically 
colonized plant. However, very few  fungal- infected 
insects have been observed in the aforementioned 
studies; thus, apart from the antibiosis and feeding 
deterrence, it could be argued that endophytes 
could kill insects during the fi rst stages of devel-
opment by secreting toxic compounds  in planta . 
Likewise, various species of endophytes are known 
to produce metabolites that deter insect feeding 
(Daisy et al.  2002 ), what suggests that the pro-
duction of such compounds  in planta  might 
inhibit the insects from foraging on the plants 
(Vega et al.  2009 ). Regarding deterrence effects 
due to the presence of endophytic fungi, the 
following questions remain to be addressed: 
(1) Can EF induce pest control when colonizing 
the plant endophytically? (2) Can insects (including 
sucking ones) become infected when feeding 

within/on the plant? (3) How do endophytic 
entomopathogens affect insect behavior such as 
feeding and oviposition?  

5     Entomopathogenic and 
Nematophagous Fungal 
Endophytes as Rhizosphere 
Colonizers (Tritrophic 
Interaction 
Endophyte-Plant- 
Invertebrate) 

 Entomopathogenic and nematophagous fungi of 
the order Hypocreales are ubiquitous members of 
the mycobiota of most terrestrial ecosystems and 
may play a key role in regulating soil-dwelling 
microherbivores (Humber  2008 ). Soil is a habitat 
for many potential insect and nematode hosts, some 
of which occur at high densities; thus, the conti-
nuity of the proximity of these fungi to potential 
hosts is a factor in the evolution of fungal predation 
of invertebrates (Humber  2008 ). Entomopa-
thogenic species most frequently isolated from 
soils in temperate regions belong to the genera 
 Beauveria ,  Isaria , and  Metarhizium  (Meyling and 
Eilenberg  2007 ; Quesada-Moraga et al.  2007 ); in 
the same habitats, nematophagous endophytes 
like  P. chlamydosporia  and  Clonostachys rosea  
also occur (Bordallo et al.  2002 ; Wearn et al. 
 2012 ). As an environment, soil presents opportu-
nities and challenges to EF. For instance, the soil 
protects fungi from damaging solar radiation and 
acts as a buffer against extremes in temperature 
and water availability (Rangel-Castro et al.  2005 ). 

 The potential of EF for the control of soil- 
dwelling insect pests in modern agriculture has 
attracted signifi cant interest due to the following 
factors: (1) Approximately 80 % of insect pests 
spend part of their life cycle in the soil or come in 
contact with the soil during their lifetime (Tremblay 
 1994 ). (2) To control subterranean pests, more 
pesticide has to be applied to the soil than the 
canopy due to the buffering capacity of soils. 
(3) Few pesticides are available for the control 
of subterranean pests. Namely, many pesticides 
aimed toward the eradication of subterranean 
pests have been banned (e.g., methyl bromide, 
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dazomet) or restricted (e.g., chlorpyrifos), and in 
addition, pests are likely to develop resistance 
through the extensive use of pesticides. (4) Soil 
pests are more diffi cult to control due to insuffi -
cient tools for their monitoring. As a result, 
insects and nematodes are likely to damage plants 
before control measures can be implemented. 
However, the prophylactic application of pesti-
cides could be wasteful due to poor timing or 
targeting practices. (5) Moreover, feeding 
damage caused by subterranean pests allows for 
the entry of plant pathogens at the site of injury. 
Thus, the effective control of pests could reduce 
fungicide applications and lead to higher quality 
produce. (6) Most subterranean pests are polyph-
agous (attack a wide range of crops); therefore, 
control strategies developed on one crop could 
be extended to other crops. 

 In this context, plants and EF are involved in 
the dynamic process of coevolution. For example, 
the endophytic colonization of roots or saprotrophic 
growth on plant exudates has been observed. 
Thus, understanding whether EF may protect the 
plant against herbivores feeding on the roots and 
whether plants benefi t from the presence of EF 
in the rhizosphere (i.e., by the parasitism of root-
feeding pests) may allow to develop new pest 
control strategies. In sum, whether or not plants 
have evolved mechanisms that encourage the 
survival and development of EF in the rhizosphere 
remains a crucial question. 

 The ecology of these fungi in the rhizosphere 
is an understudied area of insect pathology. The 
rhizosphere is the soil region where the presence 
of root exudates infl uences the soil microbiota. 
It is in the rhizosphere that complex interactions 
between roots, root exudates, benefi cial and patho-
genic microorganisms, and invertebrates take place. 
There are three separate, but interacting, regions 
that make up the rhizosphere: the outer rhizo-
sphere, the rhizoplane, and the roots (Bowen 
and Rovira  1999 ; Kennedy  1998 ). The outer 
rhizosphere contains the soil that is loosely 
adhered to the roots and it is the region where the 
root exudates infl uence the soil microbiota. The 
rhizoplane is the portion of the rhizosphere directly 
in contact with the root surface resulting in the 
soil being tightly adhered to the roots. 

 Tritrophic interactions may also involve 
entomopathogens, plant roots, and insects and 
have been found to operate below ground. Hence, 
understanding the dynamic interactions between 
insect pests, fungi, and host plants should be 
of key importance in the development and under-
standing of fungal entomopathogens as microbial 
control agents against root-feeding insects 
(Bruck  2010 ). In this tritrophic interaction, it is 
hypothesized that the behavior of the insect pest 
is modifi ed in response to the presence of the 
rhizosphere-competent fungal entomopathogen. 
However, in this regard, there is contradictory 
evidence in the literature because it seems that 
the behavioral differences observed depend on 
both the fungal isolate and the insect species 
(Bruck  2010 ). St. Leger ( 2008 ) speculates that 
the presence of EF in the rhizosphere might 
provide a “repellent barrier” around plants roots. 
However, the opposite phenomenon, in which 
insects are attracted to plants when their rhizo-
sphere is colonized, may also occur (Kepler and 
Bruck  2006 ). This last assumption makes sense 
from an evolutionary standpoint of the fungus, as 
the spores of EF in the soil are not able to actively 
seek out insect hosts, and if they are in fact utilizing 
the rhizosphere as a bridge between insect hosts, 
attracting the host would shorten the length of 
such bridge (Bruck  2010 ). To date, it is not known 
how the rhizosphere-competent EF attract the 
insects; this attraction may be mediated by the pro-
duction of attractant compounds by either the 
fungus, the plant, or both, and whether such colo-
nization has another effect beyond protecting the 
plant from root-feeding insects (i.e., white grubs 
and wireworms) as promoting plant growth by 
capturing essential micro- and macronutrients for 
plant development (i.e., iron, phosphorous, etc.). 

 The importance of NF or EF might be greater 
that what is known. Several reports indicate that 
predatory fungi are common constituents of plant 
roots in some species. For instance,  Clonostachys 
rosea  was the dominant endophytic species in 
roots of  Cirsium arvense  (Wearn et al.  2012 ). 
And one fourth of the 16 endophytic species 
identifi ed in bean roots in Spain were nematoph-
agous taxa (Arteaga et al.  2013 ). These results 
suggest that the association of fungi that predate 
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invertebrate herbivores with plant roots might 
be a common event of mutualistic symbioses 
occurring in nature. This is a good example to 
support the bodyguard hypothesis, which states 
that plants use predators of their pathogens and 
pests for their own protection (Elliot et al.  2000 ).  

6     Entomopathogenic Fungal 
Endophytes as Plant Growth 
Promoters (Interaction 
Endophyte-Plant) 

 The results of many studies suggest that the 
establishment of certain endophytic fungi  in planta  
(entomopathogenic or not) has growth- promoting 
effects on a wide range of plants (Varma et al. 
 1999 ). However, the mechanism of these effects 
remains unknown, and several hypotheses have 
been suggested: (1) The mutualistic interaction 
between plant and fungi improves the ability of 
the plant to tolerate unfavorable conditions (Hesse 
et al.  2003 ; Rodríguez et al.  2008 ). (2) Endophytic 
fungi provide nutrients to the host plant through 
the transfer of nitrogen and the uptake of phos-
phorous and other minerals (Usuki and Narisawa 
 2007 ). (3) The association induces an improvement 
in the photosynthetic activity of the plant (Obledo 
et al.  2003 ). (4) Endophytic fungi are able to 
secrete compounds that affect plant development 
(Varma et al.  1999 ) and could be developed as 
bio-fertilizers. 

 In greenhouse experiments where invertebrates 
were absent, tomato plants treated with a soil 
drench of  M. anisopliae  had signifi cantly greater 
shoot and root length and dry weight than controls, 
and the growth promotion observed was dependent 
on the fungal strains used (García et al.  2011 ). 
Growth promotion by  M. anisopliae  was also 
observed in soybean, where in addition the 
inoculated plants performed better than controls 
under salt stress (Khan et al.  2011 ). A signifi cant 
promotion of root growth also occurred in the grass 
 Panicum virgatum  and in the legume  Phaseolus 
vulgaris  as a result of inoculation with  M. robertsii , 
a common inhabitant of soils worldwide (Sasan 
and Bidochka  2012 ). Several mechanisms could 
be involved in plant growth promotion as a result 

of endophyte symbiosis. However, in the particular 
case of  Metarhizium , it has been shown that in its 
endophytic phase, this entomopathogen transfers 
to the plant host nitrogen previously obtained 
from insect hosts (Behie et al.  2012 ). 

 Growth promotion activities have also been 
found by Sánchez-Rodríguez et al. ( 2012 ) in 
wheat  Triticum aestivum  due to colonization by 
an endophytic strain of  B. bassiana . Three inocu-
lation methods, soil treatment, seed dressing, and 
leaf spraying, were used. In two of the inoculation 
methods, soil treatment and seed dressing, the 
fungus was revealed as rhizosphere competent, 
with root re-isolation percentages ranging from 
17 to 83 %. In contrast, the percentage of fungal 
re-isolation from leaf tissues was signifi cantly 
higher in plants inoculated by leaf spraying, rang-
ing from 8 to 75 %. Interestingly, the plant growth 
pattern in controls and inoculated plants was 
different, and at the end of the experiment, a general 
trend of higher plant height as the colonization of 
the plant was more intense was detected, reaching 
statistical signifi cance in plants inoculated by leaf 
spraying. Likewise, manganese concentration, 
which also increased with the intensity of fungal 
colonization, was signifi cantly higher in all inoc-
ulated plants. The possible origin of the plant 
height and manganese concentration increase in 
 B. bassiana -inoculated plants, their implications 
for pest and disease control, and the promotion of 
plant growth are being investigated (Sánchez-
Rodríguez et al.  2012 ). Also in wheat, an increase 
in root and shoot length of seedlings occurred as 
a result of the application of  L. lecanii  and 
 P. chlamydosporia.  This effect was attributed to 
the production of growth regulators in endophyte-
infected plants (Monfort et al.  2005 ).  

7     Entomopathogenic Fungal 
Endophytes as Plant Disease 
Antagonists (Tritrophic 
Interaction 
Endophyte-Plant-Pathogen) 

 Although the role of fungal endophytes as biologi-
cal control agents of plant diseases is recognized, 
the role of endophytic EF in the biological control 
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of plant pathogens is poorly studied. Nevertheless, 
as a result of endophytic colonization by entomo-
pathogens, interference in the development of 
diseases caused by fungal and bacterial pathogens 
has been observed in plants (see Ownley et al. 
 2010 ). At the present time, reports of disease control 
 in planta  are scarce, but occur in different systems 
and deserve attention. For instance, seed treatment 
of tomato and cotton with  B. bassiana  resulted 
in reduced severity of damping-off caused by 
 Rhizoctonia solani  and  Pythium myriotylum  in 
seedlings (Ownley et al.  2000 ; Clark et al.  2006 ); 
and leaf disease caused by  Xanthomonas axonop-
odis  was reduced in cotton plants whose roots 
had been inoculated with  B. bassiana  (Griffi n 
 2007 ). The development of powdery mildew was 
suppressed in cucumber and strawberry plants 
treated with  L. lecanii ,  L. longisporum,  and  Isaria 
fumosorosea  (Miller et al.  2004 ; Kavková and 
Curn  2005 ; Kim et al.  2008 ). The nematophagous 
endophyte  P. chlamydosporia  has been reported 
to compete with  Gaeumannomyces graminis var. 
tritici  for the colonization of wheat roots and to 
reduce the symptoms caused in roots by this 
pathogen (Monfort et al.  2005 ). In addition to 
these, there are several reports of in vitro studies 
where an inhibitory effect of  B. bassiana  and 
 Lecanicillium  spp. was observed on cultures of plant 
pathogens such as  Rhizoctonia solani ,  Fusarium 
oxysporum ,  Gaeumannomyces graminis var. tritici , 
 Armillaria mellea, Rosellinia necatrix ,  Botrytis 
cinerea ,  Podosphaera fuliginea , or  Pythium 
ultimum  (Ownley et al.  2010 ). 

 The above studies indicate that the mechanisms 
by which endophytic entomopathogens can 
interfere with the development plant diseases are 
varied, and hypothetically, the following could 
be involved: (1) production of antifungal com-
pounds, (2) competition for space and nutrients, 
(3) mycoparasitism, or (4) induction of host defense 
responses (i.e., systemic acquired resistance) 
(Ownley et al.  2010 ). In addition, as a result 
of insect control, some vector-transmitted patho-
gens (i.e., viruses) could also be affected by 
the presence of entomopathogenic endophytes. 
In some cases, more than one of the above 
mechanisms could be involved in pathogen inhi-
bition, for example, some  Lecanicillium  species 

are mycoparasites of plant pathogenic fungi but 
also produce antimicrobial compounds effective 
in vitro against other fungi (Vandermeer et al. 
 2009 ; Askary et al.  1997 ; Benhamou and Brodeur 
 2000 ); and as a result of their endophytic 
colonization of roots, induced resistance to 
powdery mildew has been observed in leaves 
(Hirano et al.  2008 ).  

8     Mycoviruses Infecting 
Entomopathogenic Fungal 
Endophytes 

 Mycoviruses have been described in numerous 
fungal species having different lifestyles. In 
contrast to animal, plant, or bacterial viruses, an 
extracellular phase is unknown in the life cycle of 
mycoviruses, and no natural vectors are known 
for them. Nonetheless, mycoviruses have effi cient 
means of transmission and dispersion, by means 
of anastomosis between compatible fungal strains 
or by vertical transmission to spores, what explains 
why viral infections are often persistent and prev-
alent in many fungal taxa (Ghabrial and Suzuki 
 2010 ). Mycovirus infections are commonly 
associated with the presence of double-stranded 
RNA (dsRNA) elements, because most known 
fungal viruses have either dsRNA genomes, or 
single-stranded RNA (ssRNA) genomes that 
produce dsRNA replicative intermediates (Morris 
and Dodds  1979 ). 

 A large variety of dsRNA elements has been 
observed in surveys of the presence of dsRNA in 
EF, what indicates that mycoviruses are common 
and diverse among these fungi (Table  4.3 ). In spite 
of this, very few virus genomes from entomo-
pathogens have been completely sequenced up to 
date (Herrero and Zabalgogeazcoa  2011 ; Herrero 
et al.  2012a ). The presence of mycoviruses is 
common among isolates of  B. bassiana ; different 
surveys found viral dsRNA in 15–67 % of the 
analyzed isolates (Table  4.1 ).  B. bassiana  victorivirus 
1 (BbVV1), a mycovirus infecting this fungus, 
was detected in several fungal strains sampled in 
different geographical locations, what suggests 
that it is widespread (Herrero et al.  2012a ). Viral 
dsRNA was also found in endophytic strains of 
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 B. bassiana  and of the entomopathogenic endophyte 
 T. cylindrosporum  (Herrero et al.  2009 ; Herrero 
and Zabalgogeazcoa  2011 ). A virus belonging to 
the same family as BbVV1, the victorivirus TcVV1, 
was completely sequenced in  T. cylindrosporum . 
BbVV1 and TcVV1 have been found alone or 
together with other viruses in mixed infections, a 
common occurrence among mycoviruses (Ghabrial 
and Suzuki  2010 ). The variability of dsRNA 
patterns in  B. bassiana  strains obtained as endo-
phytes was much lower than that observed in 
strains obtained from soil (Herrero et al.  2012a ). 
This situation could be due to the existence of cryp-
tic lineages of entomopathogens which could be 
more compatible with an endophytic lifestyle, and it 
could explain why particular sets of viruses are 
maintained in this group of entomopathogenic 
grass fungal endophytes.

   There is not much knowledge regarding the 
function or effects of mycoviruses in their hosts. 
Most known mycoviruses are apparently symp-
tomless; only a few are clearly detrimental to 
their hosts, producing malformations in mush-
rooms (Romaine and Goodin  2002 ) or reducing 

fertility or virulence (hypovirulence) in plant 
pathogens like  Cryphonectria parasitica  or 
 Rosellinia necatrix  (Chiba et al.  2009 ; Ghabrial 
and Suzuki  2009 ). In fact, some of the best- 
known mycoviruses are those causing hypoviru-
lence in plant pathogenic fungi, because of their 
potential as biological control agents. Virus- 
induced hypovirulence against insects was sug-
gested in the entomopathogens  M. anisopliae  and 
 B. bassiana , but defi nite proof does not yet exist 
(Melzer and Bidochka  1998 ; Dalzoto et al.  2006 ) .  
Nonetheless, the cases in which mycoviruses are 
detrimental to their hosts could be an exception 
to the rule. Actually, the high prevalence and per-
sistence of mycoviruses among the major groups 
of fungi could indicate that their presence could 
be benefi cial to their fungal hosts, as is known to 
occur with a number of non-fungal viruses that 
are able to establish mutualistic or neutral rela-
tionships with their hosts (Roossinck  2011 ). One 
example is the improvement of thermal tolerance 
of the plant host of the endophyte  Curvularia 
protuberata  when this fungus is infected by the 
mycovirus CThTV (Márquez et al.  2007 ). 

   Table 4.3    Incidence of dsRNA elements in entomopathogenic fungi   

 Fungal species 

 Number 
of isolates 
analyzed 

 % isolates 
with ds RNA 

 ds RNA observed 
elements 

 References 
 Size range 
(kbp) 

 Number 
of elements 

  Beauveria bassiana   12  16.7  2.5  1  Melzer and Bidochka ( 1998 ) 
  Beauveria bassiana   34  20.6  1.0–5.0  2–5  Castrillo et al. ( 2004 ) 
  Beauveria bassiana   13  15.4  0.7–4.0  2  Dalzoto et al. ( 2006 ) 
  Beauveria bassiana   15  66.7  1.9–6.0  1–2  Herrero et al. ( 2009 ) 
  Beauveria bassiana   73  54.8  0.8–6.0  1–11  Herrero et al. ( 2012a ) 
  Metarhizium anisopliae   73  38.4  0.5–5.2  1–8  Melzer and Bidochka ( 1998 ) 
  Metarhizium anisopliae   12  33.0  0.5–5.5  1–10  Giménez-Pecci et al. ( 2002 ) 
  Metarhizium anisopliae   7  42.9  0.78–4.1  1–8  Bogo et al. ( 1996 ) 
  Metarhizium anisopliae   41  4.9  0.75–3.5  9–13  Leal et al. ( 1994 ) 
  Metarhizium fl avoviride   7  71.4  1.4–6.2  1–5  Martins et al. ( 1999 ) 
  Metarhizium fl avoviride   6  83.3  0.5–5.2  1–8  Melzer and Bidochka ( 1998 ) 
  Paecilomyces spp.   19  52.6  0.5–5.6  2–7  Inglis and Valadares-Inglis ( 1997 ) 
  Paecilomyces 
fumosoroseus  

 12  25.0  0.5–4.5  3  Souza Azevedo et al. ( 2000 ) 

  Tolypocladium 
cylindrosporum  

 11  45.5  1.2–5.1  2–6     Herrero et al. ( 2011 ) 

  Lecanicillium lecanii   7  42.9  2.0–6.0  1–2  Herrero et al. ( 2009 ) 
  Lecanicillium lecanii   35  62.9  4.0–19  1–6  Sugimoto et al. ( 2003 ) 
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Another study indicated that the mycovirus TcV1 
might slightly affect the endophytic behavior of 
the entomopathogenic fungal endophyte  T. cylin-
drosporum  in different plant species (Herrero 
et al.  2012b ). 

 Entomopathogens have developed complex 
interactions with arthropods and plants, but myco-
viruses seem to play also a role, yet unknown, in the 
establishment of these relationships. In addition, 
viruses infecting arthropods and plants and 
having similar characteristics to those infecting 
fungi have been described (Isawa et al.  2011 ; 
Roossinck  2010 ); it would be interesting to know 
if they are able to move from kingdom to king-
dom, infl uencing the intricate relationships formed 
among arthropods, plants, and fungi. 

 The new player that we present here in the form 
of mycovirus adds complexity to the knowledge 
of EF ecology, which is crucial for understanding 
their role in managed and natural ecosystems and 
for their successful development as biocontrol 
agents (Roy et al.  2010 ; Vega et al.  2009 ).     
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    Abstract  

  Generally, all endophytes should be considered as a community that 
interacts with other symbiotic organisms, such as mycorrhiza. Even 
though an endophyte may colonize the plant systematically, communi-
ties colonizing the plant shoots normally differ to a degree from the 
root-associated endophytes. Meristem-associated shoot endophytic 
bacteria are often found as contaminants in plant tissue cultures started 
from shoot tips (buds) or embryos. Whereas root endophytic bacteria 
are reasonably well studied with respect to location and interactions 
with the host, not much is known about endophytes associated with 
shoot meristems. Endophytic bacteria have been localized in the meri-
stematic tissues of buds and flowers by in situ hybridization and 
transmission electron microscopy. Meristem-associated endophytes 
may share some growth-promoting traits with the root endophytes, but 
likely additional mechanisms of actions exist. For example, such endo-
phytes can produce adenine derivatives that induce growth of the host 
tissue. These endophytes may also affect the plant development by 
various ways. Some of them can co-synthesize secondary metabolites 
together with the plant host. Many more mechanisms remain to be 
determined by methods such as genomics and metabolomics, which 
are valuable tools for characterizing the interactions between the plant 
and endophytic bacteria.  

        J.   Pohjanen     •     J.  J.   Koskimäki     •     A.  M.   Pirttilä       (*)  
  Department of Biology ,  University of Oulu, 
  PO Box 3000 ,  90014   Oulu ,  Finland   
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 5      Interactions of Meristem- 
Associated Endophytic Bacteria 

           Johanna     Pohjanen    ,     Janne     J.     Koskimäki,     
and     Anna     Maria     Pirttilä    

1         Introduction 

 The studies on endophytic bacteria are often 
done on the plant root tissues (Rosenblueth and 
Martinez-Romero  2006 ). However, the root- 
associated communities typically differ from the 
shoot-associated ones on their diversity and func-
tion (Moore et al.  2006 ; Mano et al.  2006 ,  2007 ; 
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Izumi et al.  2008 ; Yrjälä et al.  2010 ; Compant 
et al.  2011 ). The study by Yrjälä et al. ( 2010 ) on 
hybrid aspen seedlings showed that the most 
frequently cultured leaf endophyte was  Methylo-
bacterium fujisawaense , whereas the roots mainly 
contained bacterial species of  Burkholderia fungo-
rum, Pseudomonas koreensis , and  Rahnella aqua-
tilis . Izumi et al. ( 2008 ) compared the endophytic 
populations of pine, birch, and rowan in the below- 
and aboveground tissues using cultivation-dependent 
and cultivation- independent analyses. They found 
a clear difference between the bacterial communities 
and also showed that a higher number of strains 
are found in the roots than in the stem and leaf 
tissues, whereas there was no difference between 
stem and leaf communities. Cultivation- dependent 
analyses of grape vine (Compant et al.  2011 ) and 
rice (Mano et al.  2006 ,  2007 ) have given similar 
results. In this chapter, the shoot tissues, especially 
the meristematic tissues in shoot tips (buds), fl owers, 
seeds, and seedlings, are discussed with respect to 
endophytic bacteria and their interactions with 
the plant host, possibly affecting plant growth 
and development. A number of growth-promoting 
traits are shared between epiphytes and endo-
phytes, as some of the species do occupy both 
niches. However, most endophytes inhabit only 
the specifi c niche of the plant interior (Izumi et al. 
 2008 ; Yrjälä et al.  2010 ), and more than likely, 
they have specifi c traits and roles within the plant 
tissue. In this chapter, we discuss the role of 
bacterial endophytes in the plant shoot tissues in 
the light of the most recent discoveries.  

2     Plant Shoot-Associated 
Endophytes 

 The endophytic bacteria of shoot tissues are often 
isolated from plant tissue cultures, which are 
started from the meristems of the shoot tips, or 
seed embryos. For example, endophytic bacteria 
have been detected in the tissue cultures of 
papaya (Thomas et al.  2007 ), banana (Thomas 
et al.  2008 ), hazelnut (Reed et al.  1998 ), sour 
cherry (Kamoun et al.  1998 ), various species of 
poplar, larch, black locust and Norway spruce 

(Van Aken et al.  2004 ; Ulrich et al.  2008 ), and 
Scots pine (Laukkanen et al.  2000 ; Pirttilä et al. 
 2000 ). The range of bacterial species isolated 
from plant tissue cultures is wide,  Paenibacillus, 
Bacillus, Pseudomonas , and  Methylobacterium  
probably being the most commonly reported 
genera (Pirttilä et al.  2000 ; Ulrich et al.  2008 ). 

2.1     Shoot Tissues as a Niche 
for Endophytic Bacteria 

 Compared to roots, plant shoot tissues are 
exposed to UV radiation, rapidly fl uctuating 
temperatures and alternations in relative humidity. 
Shoot tissues contain more methanol, as methanol 
is mostly produced by the shoot tissues, contrib-
uting to methanol emissions to the atmosphere 
(Nemecek-Marshall et al.  1995 ). When exoge-
nously applied to shoots, methanol induces plant 
growth, whereas root application results in toxic 
effects for the plant (Ramírez et al.  2006 ). Another 
signifi cant difference between the shoot and 
root tissues as a niche for endophytes is 
photosynthesis, which exclusively occurs in the 
shoots. The few studies performed suggest that 
photosynthetic products are not consumed by 
endophytic bacteria, neither is photosynthetic 
effi ciency affected by them. For example, the 
poplar endophyte  Enterobacter  sp. 638 has no 
effect on photosynthesis, stomatal conductance, 
photosynthetic water use effi ciency or the 
maximum and operating effi ciency of photosys-
tem II (Rogers et al.  2012 ). Another example is 
the endophyte  Methylobacterium extorquens  
DSM13060, isolated from shoot tips of Scots 
pine, which cannot utilize glucose or fructose as 
the energy source (Pirttilä et al.  2000 ). It is not 
well understood how the endophytes of shoot 
tissues enter the plant. Likely, some strains enter 
from the leaf surface through the epiderm or 
stomatal cells. In this case, their origin would 
be the water or air (wind). A number of shoot 
endophytes can be vertically transmitted, that is, 
through the seeds, although this has not exclusively 
been proved. Endophytes have been isolated from 
the seeds and even pollen (Cankar et al.  2005 ; 
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Madmony et al.  2005 ; Pirttilä  2011 ), and a seed-
inoculated endophyte has been shown to colonize 
the seedling tissues in  Eucalyptus  (Ferreira et al. 
 2008 ). A third likely source is the soil. When 
endophytes colonize plant shoots through the 
roots, they need to fi nd a way to transfer further 
to the shoot tissues, and xylem has been proposed 
in several studies as the means of transportation 
after the fi rst discovery of bacteria inhabiting 
xylem vessels (Bell et al.  1995 ). Our recent studies 
on colonization of Scots pine seedlings by the 
GFP-tagged  M. extorquens  DSM13060 indicate 
that all three routes can occur (Fig.  5.1 ; Koskimäki 
et al. unpublished).

2.2        Detection and Localization 
of Endophytic Bacteria in 
Shoot Meristematic Tissues 

 The traditional methods developed for the detection 
of endophytes relied on techniques dependent 
on plating of the bacteria. For example, surface-
sterilized plant tissue was plated and the colonies 
growing on the medium after a specifi c incubation 
time were studied further. The endophytic bacte-
ria associated with meristematic tissues were 
often isolated from plant tissue cultures, which 
had been started from surface- sterilized plant 
material. As a result, only cultivable strains were 
typically studied further, and the methods were also 

selective for species that preferred the growth 
conditions used. However, most endophytes are 
likely not cultivable (Koskimäki et al.  2010 ; 
Tejesvi et al.  2010 ) and a higher number of endo-
phytes have been found by culture-independent 
methods than by culture- dependent ones (Yang 
et al.  2001 ;    Podolich et al.  2007 ; Tejesvi et al.  2010 ; 
   Yashiro et al.  2011 ). Therefore, culture-independent 
techniques, such as in situ hybridization (Pirttilä 
et al.  2000 ), and PCR-based methods, for example, 
denaturing gradient gel electrophoresis (DGGE) 
(Yang et al.  2001 ; Izumi et al.  2008 ), restriction 
fragment length polymorphism (RFLP) (Ardanov 
et al.  2012 ), and direct sequencing (Koskimäki 
et al.  2010 ), have been developed and applied for 
the study of single endophytic bacterial strains or 
whole communities. However, the methods based 
on amplifi cation of bacterial 16S rDNA are often 
hampered by the similarity between bacterial, 
plant mitochondrial, and chloroplast sequences 
and need careful designing of primers specifi c 
for the bacteria (Sessitsch et al.  2002 ; Ardanov 
et al.  2012 ). Endophytes can be localized in the 
plant tissue by various microscopic methods. 
Transmission electron microscopy (TEM) 
enables very high magnifi cation of the plant tis-
sue and study of the location of bacteria in the 
cellular compartments, although distinguishing 
the bacterial cells in the sample requires specifi c 
expertise. Another weakness of the method is that 
TEM gives no information on the species of the 

  Fig. 5.1    Colonization of Scots pine seedling by GFP-tagged 
 Methylobacterium extorquens  DSM13060. ( a ) A longitudinal 
section of the pine root epiderm and cortex highly colonized 

by the bacteria 12 days after inoculation. ( b ) A cross 
section of the shoot, showing bacteria inside the cortex 
tissue 7 months after inoculation (scale bar = 10 μm)       
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endophytic organism. By TEM, endophytic bac-
teria have been detected in ultrathin sections of 
buds of linden ( Tilia cordata  L.) and needles of 
blue spruce (Doronina et al.  2004 ; Pirttilä et al. 
 2008 ). 

 In situ hybridization can be used for localization 
of endophytic bacteria by species, genus, class, 
or phylum. Pirttilä et al. ( 2000 ,  2003 ) developed 
oligonucleotide probes to detect endophytes in 
pine tissues. Using probes specifi c for eubacteria, 
 Methylobacterium  spp., a  Pseudomonas fl uorescens  
subgroup, and  Mycobacterium  spp., the corre-
sponding endophytes were identifi ed in the cells 
of scale primordia, the meristems, and around the 
resin ducts of Scots pine buds (Pirttilä et al.  2000 , 
 2003 ,  2005 ) and in the cells of growing callus 
culture (Pirttilä et al.  2002 ). The advantage of using 
the in situ hybridization method is that besides 
localizing the microbes, it refl ects the changes in 
the metabolic activity of the microbes when the 
probes are hybridized to transcripts such as 
ribosomal RNA (DeLong et al.  1989 ). Therefore, 
the location and metabolic activity of endophytes 
in the Scots pine shoot tips were dependent on 
the growth season when studied by in situ hybrid-
ization throughout the year. Endophytes were not 
detected at all during pine dormancy and rarely 
found in the elongating shoot tips during growth 
season. The highest endophytic metabolic rates 
were detected in tissues of spring and autumn, 
prior to growth or differentiation of the bud (Pirttilä 
et al.  2005 ). In addition to buds, endophytic bacteria 
are detected in reproductive organs. Madmony 
et al. ( 2005 ) isolated  Enterobacter cloacae  from 
pollen and fertilized ovules of different  Pinus  
sp., and Pirttilä ( 2011 ) detected endophytes in 
infl orescences and seed embryos of  Pinus sylvestris . 
Bacteria in the genera  Pseudomonas  and  Rahnella  
were found in seeds of Norway spruce (Cankar 
et al.  2005 ). Furthermore, several endophytic 
bacterial species in the taxa  Gammaproteobacteria  
(relatives of  Pseudomonas  sp.) and  Firmicutes  
(relatives of  Bacillus pumilus  and  B. cereus  group 
members) have been isolated from fl owers, fruits, and 
seeds of grapevine (Compant et al.  2011 ). In 
another recent study, species of  Kocuria , 
 Acinetobacter ,  Enterobacter , and  Staphylococcus  

were isolated from seeds, endocarp, and mesocarp 
of different  Carica papaya  variety fruits (Krishnan 
et al.  2012 ). Johnston-Monje and Raizada ( 2011 ) 
studied recently the endophytic microbes in the 
seeds of various  Zea  sp. and by culture-independent 
methods identifi ed  Clostridium  and  Paenibacillus  
spp., and by culturing, bacteria in the genera 
 Enterobacter ,  Methylobacterium ,  Pantoea , and 
 Pseudomonas . Molecular methods provide addi-
tional tools for studying bacterial colonization 
and localization. These methods have commonly 
been used for studying microbes in the rhizosphere. 
Genetic tagging of endophytic bacteria with 
genes encoding for fl uorescent reporter proteins 
allows detailed monitoring of the colonization 
process inside the plant tissues by using laser scan-
ning confocal microscopy (LSCM) (Poonguzhali 
et al.  2008 ; Prieto et al.  2011 ). Broad host-range 
plasmid vectors and transposon systems with 
stable site-directed insertions to bacterial chro-
mosome provide several alternatives suitable for 
transformation of most bacterial species (Koch 
et al.  2001 ; Ramos et al.  2011 ). Advances in the 
development of novel reporter protein derivates, 
which are brighter and more photostable than the 
conventional ones, have supplied new means to 
overcome the extensive autofl uorescence of plant 
tissues, which often hinders the colonization 
studies by LSCM (Shaner et al.  2007 ; Lagendijk 
et al.  2010 ). Combination of LSCM with advanced 
genetic tagging methods presents a valid, nonin-
vasive alternative for complex endophyte-host 
interaction studies to be performed with live or 
fi xed plant tissues. In our recent interaction study, 
a dual labeling strategy was used to monitor 
simultaneously the endophytic colonization and 
gene expression of  Methylobacterium extorquens  
DSM13060 in Scots pine ( Pinus sylvestris  L.) 
seedlings.  M. extorquens  DSM13060 was tagged 
chromosomally with green fl uorescent protein 
(eGFP) under constantly active promoter by using 
Tn5 transposon. To assess the bacterial gene 
activity during the endophytic lifestyle, another 
reporter protein “mCherry” regulated by a selected 
promoter region was subsequently transformed 
to the same bacterial strain. Activation of the 
mCherry reporter verified that the selected 
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promoter and the gene regulated by it were func-
tioning in the endophytic conditions. At the same 
time, the dual reporter experiment provided 
detailed information about methylobacterial 
colonization and localization in the pine tissues 
(Fig.  5.1 , Koskimäki et al. unpublished).   

3     Interactions of Shoot 
Meristem-Associated 
Endophytes with 
Plant Host 

 Methanol present in the shoot tissues creates a 
good carbon source specifi cally for methylo-
trophs, which can utilize methanol and methane 
as the energy source (Fall  1996 ; Fall and Benson 
 1996 ). Because methanol is toxic for the plant, 
the removal by methylotrophs may already have 
signifi cant benefi ts for the plant. Methanol applied 
to the plant surface increases plant shoot growth 
(Nonomura and Benson  1991 ; Ramírez et al. 
 2006 ), which suggests that methylotrophic bacte-
ria transform methanol to products benefi cial 
for the plant. For example,  Methylobacterium  
spp. can participate in the biosynthesis of com-
pounds commonly known as plant products 
(Zabetakis  1997 ; Koutsompogeras et al.  2007 ). 
Endophytic bacteria were recently detected in the 
receptacle vascular tissue and in the cells of 
achenes of raw strawberry. This study indicated 
that the biosynthesis of the strawberry fl avor 
compounds DHMF and mesifuran is aided by 
the bacterial methanol dehydrogenase, as the 
bacterial methanol dehydrogenase and plant 
DMHF biosynthesis genes were localized by in 
situ hybridization in the same tissues or cells of 
the strawberry receptacle (Nasopoulou  2012 ). 
Independent of methylotrophy, many studies 
have reported the positive effect of shoot endo-
phytic bacteria on tissue organogenesis and 
embryogenesis (Visser et al.  1994 ; Murthy et al. 
 1999 ; Pirttilä et al.  2004 ; Pohjanen et al.  2013 ). 
However, rarely specifi c, individual compounds 
are identifi ed responsible for such effects. Phyto-
hormones produced by endophytes are the most 
popular compounds suggested responsible for the 
morphological effects on plant host. 

3.1     Endophytic Products 

 Production of plant growth hormones is typical 
for all plant-associated microbes. However, 
even though a microbe can produce plant growth 
hormones, it cannot be generalized to promote 
growth on all plant hosts, but the result depends 
on mutual interactions, as was discovered on 
 Solanum nigrum  endophytic bacteria (Long 
et al.  2008 ). Whereas gibberellin production can 
be considered a typical trait for root-associated 
bacteria, epiphytic and root endophytic bacteria 
most typically synthesize and secrete auxins 
(Brandl and Lindow  1996 ; Bastián et al.  1998 ; 
Costacurta et al.  1998 ; Doronina et al.  2002 ; 
Gamalero et al.  2003 ; Ivanova et al.  2001 ,  2008 ; 
Merzaeva and Shirokikh  2010 ). However, IAA 
has been identifi ed as a product of a few endo-
phyte species isolated from shoots. For exam-
ple, the shoot endophytic  Pseudomonas stutzeri  
strain producing IAA has been isolated from 
 Echinacea  tissue culture (Lata et al.  2006 ). The 
endophyte of poplar,  M. populi , and the endo-
phyte of pollen grains of  Pinus  spp.,  Enterobacter 
cloacae , are reported to produce IAA (Madmony 
et al.  2005 ; Taghavi et al.  2009 ). A number of 
pathogenic and benefi cial plant-associated bac-
teria synthesize cytokinins (Akiyoshi et al. 
 1987 ; Timmusk et al.  1999 ; Garcia de Salamone 
et al.  2001 ). Methylotrophic epiphytic bacteria 
such as  Methylovorus mays  and 
 Methylobacterium mesophilicum  JCM 2829 
also synthesize cytokinins (Ivanova et al.  2000 , 
 2008 ). These results would indicate a signifi cant 
role for plant growth hormones such as cytoki-
nins in the plant growth promotion by plant- 
associated microbes. However, when cytokinin 
production and plant growth promotion were 
studied in the type strain  Methylobacterium 
extorquens  AM1, results indicated that cytoki-
nin production might not be the factor contribut-
ing to plant growth (Koenig et al.  2002 ).  M. 
extorquens  was reported to produce tRNA-
derived trans- zeatin, but when cytokinin-null 
( miaA ) mutants incapable of cytokinin synthesis 
were generated, they stimulated germination of 
the heat-treated soybean seeds at the same level 
as the wild-type bacteria (Koenig et al.  2002 ). 
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 Plant growth hormone production is not 
common to all endophytes, especially those 
associated with meristematic tissues. Even in the 
strains producing plant growth hormones, the levels 
vary greatly (Ivanova et al.  2008 ). These results 
indicate that other possibly more prominent 
methods of growth promotion by endophytes 
exist. The endophytes isolated from Scots pine shoot 
tips,  Methylobacterium extorquens  DSM13060 
and  Pseudomonas synxantha  DSM13080, produce 
compounds that extend the viability and affect 
the morphology of callus tissues in vitro (Pirttilä 
et al.  2004 ). The most common plant growth 
hormones were not identifi ed responsible for 
these effects, but adenine and adenine ribosides 
were produced by  M. extorquens  DSM13060 
(Pirttilä et al.  2004 ). Adenine induces plant 
growth in tissue culture, but the mode of action is 
unknown (George and Sherrington  1984 ). 
Adenine riboside is the metabolite of adenine 
(Baumann et al.  1994 ) and found abundant in the 
vascular cambial region of  Pinus sylvestris  
(Moritz and Sundberg  1996 ). Therefore, adenine 
and adenine riboside are potential plant-growth-
promoting products of shoot endophytes. A trait 
often associated with endophytic bacteria is 
production of the enzyme aminocyclopropane-
1-carboxylate (ACC) deaminase. This enzyme 
transforms the ethylene precursor ACC to ammonia 
and 2-oxobutanoate, preventing ethylene signaling. 
Ethylene is a plant hormone acting in seed germi-
nation and various stresses, such as bacterial 
colonization. It has been suggested that ACC 
deaminase increases plant growth and develop-
ment in stressful conditions by decreasing plant 
ethylene levels (Glick  2005 ). For example, the 
root endophyte  Burkholderia phytofi rmans  PsJN 
carries a gene encoding ACC deaminase, and 
inactivation of this gene results in loss of the ability 
to promote root elongation in canola seedlings 
(Sun et al.  2009 ). Whereas the ACC deaminase- 
carrying endophytes are often isolated and studied 
in the rhizosphere or roots, a recent study performed 
on cut fl owers indicates that bacteria were able 
to colonize the shoot where ACC deaminase 
prolonged fl owering (Ali et al.  2012 ). However, 
an analysis of sequenced endophyte genomes 
suggests that ACC deaminase is less important than 

anticipated (Frank  2011 ). The  Methylobacterium 
extorquens  DSM13060 isolated from Scots 
pine buds carries the gene for ACC deaminase. 
When activation of this gene was studied by 
promoter fusion with a fl uorescent protein, it was 
rarely active during endophyte colonization of 
pine seedlings (Koskimäki et al. unpublished). This 
might indicate a smaller role of ACC deaminase 
in the plant shoot- colonizing endophytes. Epiphytic 
methylotrophs can synthesize vitamin B 12  (Nishio 
et al.  1977 ; Ivanova et al.  2006 ,  2008 ), which has 
been suggested a plant-growth-promoting product 
of endophytes, as well (Ivanova et al.  2008 ). 
Vitamin B 12  comprises a group of compounds that 
have trivalent cobalt as the cofactor. Generally, 
vitamin B 12  is the coenzyme for isomerization 
and transmethylation reactions in the biosynthesis 
of compounds containing methyl groups. Enzymes 
requiring vitamin B 12  as the coenzyme are found 
in many fl owering plants that cannot synthesize 
vitamin B 12  (Holland and Polacco  1994 ). In mosses, 
epiphytic methylotrophs increase the biomass, 
amount, length, and the degree of branching of 
gametophytes (Koopman and Kutschera  2005 ), 
which are also obtained by exogenously applied 
vitamin B 12  (Basile et al.  1985 ). However, our recent 
reporter gene studies on the shoot endophyte 
 M. extorquens  DSM13060 suggest a smaller role 
for bacterial vitamin B 12  production in the plant-
endophyte interaction, than previously suggested 
(Koskimäki et al. unpublished).  

3.2     Interaction Web in the Full 
Plant Microbiome 

 The interactions between various plant- associated 
microbes are often studied in isolated in vitro 
conditions using single strains. These studies are 
usually concentrated on the roots because of the 
well-known benefi ts of root fungal and bacterial 
symbionts, mycorrhiza, and rhizobia, respectively. 
Mutualistic interactions can be found between 
mycorrhizal fungi and a group of bacteria, called 
mycorrhizal helper bacteria (MHB; Garbaye  1994 ). 
Furthermore, interactions between different plant-
growth-promoting rhizobacteria (PGPR, Bashan 
and de-Bashan  2005 ) have been shown benefi cial 
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for the host plant (Madhaiyan et al.  2010 ). These 
microbes usually improve the growth and nutri-
tion of the plant and, in the case of MHB, also 
the growth and sporulation of the fungal partner. 
Similarly, the mycorrhizal fungus can promote 
growth of the bacterial partner. For example, in 
 Pinus halepensis  roots, the ectomycorrhizal 
fungus  Suillus granulatus  improved the survival 
of  Pseudomonas fl uorescens  in areas where the 
fungal colonization was the highest (Rincón et al. 
 2005 ). The interaction between microbes is often 
specifi c for the species or the strain. Studies 
combining epiphytic  Methylobacterium oryzae  
strains with different rhizobacteria (Madhaiyan 
et al.  2010 ) or with arbuscular mycorrhiza 
(Kim et al.  2010 ) showed that the positive growth 
effect was dependent on the combination of 
microbes. Similarly, the root endophytic bacteria 
 Pseudomonas aeruginosa  and  Burkholderia 
cepacia  of oil palm were shown to act as mycorrhizal 
helper bacteria on two arbuscular mycorrhizal 
fungi,  Glomus clarum  and  Glomus intraradices , 
but to exhibit antagonism on the pathogen 
 Ganoderma boninense  (Sundram et al.  2011 ). 
Although the microbial communities differ in the 
aerial parts from those of the roots (Izumi et al. 
 2008 ; Yrjälä et al.  2010 ) and there is a very low 
number of published examples of microorganisms 
interacting in the plant shoot tissues, a similar 
interaction between various members likely exists. 
For example, parallel to bacteria found in the 
hyphae of mycorrhizal fungi in the rhizosphere, 
Hoffman and Arnold ( 2010 ) revealed bacteria 
inhabiting the living hyphae of foliar endophytic 
fungi. Furthermore, Araújo et al. ( 2001 ) isolated 
several endophytic species from leaf tissues of 
citrus rootstocks and found that  Guignardia 
citricarpa , one of the most abundant fungi among 
the isolates, stimulated growth of the endophytic 
 P. agglomerans  but had an inhibitory effect on 
growth of some endophytic  Bacillus  species. 

 Microbes can prevent or inhibit the growth of 
other strains by several ways. Direct growth inhi-
bition can occur through secreted compounds, 
but antagonism includes also the competition for 
colonization sites, nutrients, and minerals 
(reviewed by Berg  2009 ). Endophytic  Bacillus 
subtilis  strain from the stem of the giant hogweed 

( Heracleum sosnowskyi , Manden) produces 
antifungal lipopeptide antibiotics and is able to 
protect tomato against the fungal pathogen caus-
ing tomato foot and root rot (Malfanova et al. 
 2011 ,  2012 ).  Bacillus mojavensis  isolated from 
kernels of maize is able to inhibit growth of the 
pathogenic fungus  Fusarium verticillioides  and 
reduce mycotoxin production (Bacon et al.  2001 ; 
Bacon and Hinton  1999 ), and a number of  B. 
mojavensis  strains were shown to produce a mix-
ture of surfactins, which are toxic to several 
pathogens (Bacon and Hinton  2011 ). Another 
example comes from our study on shoot endo-
phytic  Methylobacterium  sp. IMBG290, which 
induced resistance against the pathogen 
 Pectobacterium atrosepticum  in potato. The 
resistance was not due to produced toxins but 
dependent on the inoculum density of 
 Methylobacterium  sp., which was associated 
with changes in the structure of the existing, 
innate endophyte community. The changes cor-
related with resistance or susceptibility, suggest-
ing that the whole endophytic community acted 
on the plant responses (Ardanov et al.  2012 ). 
Interaction between symbiotic microorganisms 
can also occur across various plant compartments 
(Novas et al.  2009 ; Liu et al.  2011 ), such as roots 
and shoot tips. These examples demonstrate that 
an endophyte strain isolated from the host plant 
should never be considered as an organism inter-
acting with the plant host alone, but as a member 
of the full plant microbiome.   

4     Conclusions 

 The plant shoot-colonizing bacterial endophytes 
are considerably less studied than bacteria living 
in the roots or in the rhizosphere. Due to easy 
access to culturable isolates in the root tissues, 
the great majority of studies worldwide are con-
centrated on root-colonizing endophytes 
(Rosenblueth and Martinez-Romero  2006 ). 
However, the shoot meristems can be considered 
one of the most important tissues of the plant, 
responsible for growth and development of new 
leaves and stems. The fi nding of bacterial endo-
phytes in these tissues suggests that a balanced 
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interaction is essential for their proper function. 
How is the plant regulating the endophytes colo-
nizing these tissues, and which role are the 
microbes playing in plant development? It is 
known that symbiotic microbes affect the devel-
opment of animals (Troll et al.  2009 ). As endo-
phytes have been occupying the plant interior for 
more than 400 million years (Krings et al.  2007 ), 
mutual evolution must have driven ways to sub-
sist, adapt, and eventually refi ne the interaction to 
a balanced state. Development of genomic tools 
is effectively opening the doors to the secret 
world of bacterial endophytes and allowing fur-
ther studies on their life inside the plant, as we 
have described in this chapter. Metabolomics is 
another tool that can provide a systemic view of 
the plant-microbe interaction at the level where 
genomics has no access (Scherling et al.  2009 ; 
Fester et al.  2011 ). Knowledge gained with these 
powerful methods will be helpful in defi ning the 
details of the plant-endophyte interaction in the 
plant shoot meristems.     
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    Abstract  

  The global occurrence of plant root- associated fungal endophytes and their 
great abundance in many habitats necessitate studies to decipher their potential 
functions. Improved understanding of the basic endophyte ecology including 
host range, host preference, and host responses to endophyte colonization 
has been made possible through populations of endophytes (e.g.,  Periconia 
macrospinosa  and  Microdochium  sp.) isolated from North American 
native tallgrass prairie. The recent demonstration of the endophyte symbiosis 
of the model plant  Arabidopsis thaliana  has provided additional tools to 
further elucidate the ecology of these endophytes. The availability of a large 
number of  Arabidopsis  ecotypes and mutants, microarrays, and databases 
allows the molecular dissection of endophyte symbiosis to better under-
stand the importance of fungal endophytes in host nutrient uptake, defenses, 
and/or responses to pathogens and stress. In this chapter, we discuss the 
ecology and functions of endophytic fungi through experiments utilizing 
the  Arabidopsis  model system. We draw parallels with another deeply 
dissected  Piriformospora indica  root endophyte symbiosis, which has 
been demonstrated to promote growth of model and non-model plants.  

        K.   Mandyam     •     A.   Jumpponen       (*)  
  Division of Biology ,  Kansas State University, 
  Ackert Hall ,  Manhattan ,  KS   66506 ,  USA   
 e-mail: ari@ksu.edu  

 6      Unraveling the Dark Septate 
Endophyte Functions: Insights 
from the  Arabidopsis  Model 

              Keerthi     Mandyam     and     Ari     Jumpponen    

1         Introduction 

 Plants typically host a variety of microbial endo-
phytes. Plant roots in particular maintain broad 
assortments of microbial communities exemplifi ed 
by actinobacteria, plant growth-promoting 

rhizobacteria (PGPR), nitrogen-fi xing rhizobia, 
as well as fungi including a variety of mycorrhizal 
and endophytic fungi. Some fungal endophytes 
(e.g., clavicipitaceous foliar endophytes) have 
been the subject of rigorous investigations, and 
much is understood about their role as plant 
symbionts largely owing to their potential appli-
cations with crop or forage species. However, dark 
septate endophyte (DSE) fungi are an exception, 
and despite their similarities with mycorrhizal 
fungi – global occurrence, high colonization 
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rates, and broad host range (Jumpponen and Trappe 
 1998a ; Jumpponen  2001 ) – there is a conspicuous 
lack of substantial data on their ecological 
signifi cance (Rodriguez et al.  2009 ). 

 Several factors may have contributed to the 
paucity of information on the DSE fungi.  First , 
the DSE fungi have been notoriously diffi cult to 
identify. Most do not produce sexual stages, and 
many fail to produce asexual spores even after 
induced conidiogenesis. This inevitably leads to 
lack of morphological traits to assist in taxo-
nomic assignment of these fungi.  Phialocephala 
fortinii  is perhaps the most well-known DSE fun-
gus (Addy et al.  2005 ). Although it has been mor-
phologically defi ned, the taxon likely consists of 
a number of cryptic taxa. This has necessitated 
the use of various molecular markers to provide 
species rank (Grünig et al.  2008b ). Similarly to 
 P .  fortinii , close relatives that also form DSE 
symbioses (e.g.,  Acephala applanata ) fail to 
sporulate (Grünig et al.  2008a ). As a result, these 
are assigned to  Phialocephala fortinii  s.l. – 
 Acephala applanata  species complex (PAC) that 
constitute the bulk of DSE communities coloniz-
ing conifers and Ericaceae in the Northern 
Hemisphere including Europe, North America, 
and Asia (Jumpponen and Trappe  1998a ; Grünig 
et al.  2008b ; Queloz et al.  2011 ; Walker et al. 
 2011 ).  Second , thus far no evidence has been pre-
sented for an interface that would facilitate nutri-
ent exchange between the host and its DSE 
symbionts (Petersen et al.  2008 ). The few ultra-
structural studies that have focused on DSE fungi 
have failed to pinpoint host-derived perifungal 
membrane, the hallmark of biotrophic interac-
tions (Petersen et al.  2008 ). This is in contrast to 
mycorrhizal fungi that are defi ned by their struc-
tural attributes when colonizing the host as well 
as by their presumed function in nutrient transfer 
to host plants via identifi able fungal interfaces 
(Bonfante  1984 ,  2001 ; Parniske  2000 ; Genre 
et al.  2008 ; Smith and Read  2008 ). A further 
complication is that the DSE colonization may 
vary depending on the host and environment 
making the identifi cation of such interfaces even 
more challenging. Some host cell wall responses 
are characteristic of interactions with necrotro-
phic or hemibiotrophic fungi. This combined 

with the necrotic cytoplasm (Petersen et al.  2008 ) 
suggest a lifestyle not indicative of a mutualistic 
symbiont. However, in some cases, DSE coloni-
zation has shown similarities with mycorrhizal 
colonization like narrowing of hyphae when tra-
versing plant cell wall, accumulation of poly-
phosphate (Yu et al.  2001 ), or development of 
mantle and Hartig net as seen in ectomycorrhiza 
(Petersen et al.  2008 ). Until major structural 
interfaces or novel colonization morphologies 
that unequivocally signify transfer of nutrients to 
the plant hosts, DSE symbiosis is unlikely to 
elicit major interest in research that seeks to fi nd 
putative mutualists that can be used in applica-
tions that clearly benefi t commercially important 
plants.  Third , host responses to DSE colonization 
are highly variable, and growth promotion is 
rarely consistent by PAC fungi (Alberton et al. 
 2010 ; Newsham  2011 ; Mayerhofer et al.  2013 ). 
Most early studies on DSE effects on host growth 
and/or nutrient uptake have focused on PAC 
strains (see Kageyama et al.  2008 ; Petersen et al. 
 2008 ; Newsham  2011 ), and the variable responses 
were confounded by different experimental 
designs or experimental systems (Jumpponen 
and Trappe  1998b ; Grünig et al.  2008a ; Newsham 
 2011 ). Although the PAC and other DSE fungi 
elicit host responses along the mutualism- 
parasitism continuum (Jumpponen  2001 ; Grünig 
et al.  2008a ; Mandyam et al.  2013 ), positive 
growth responses in empirical studies can be rare 
or absent. For example, Norway spruce inocu-
lated with various PAC strains responded mainly 
negatively or neutrally (Tellenbach et al.  2011 ). 
Interestingly, in that study, the host responses 
varied with the source of the inoculant fungus: 
PAC native to the host tended to be more virulent 
than those originating from outside their natural 
range (Tellenbach et al.  2011 ). 

 The isolation and identifi cation of cryptic PAC 
species as well as non-PAC DSE from grasslands 
in North America and Europe (see Sect.  4 ) pro-
vide new opportunities to study the function of 
DSE fungi. Including many fungal strains and 
host plants, manipulation of experimental condi-
tions (e.g., temperature, salinity), and combining 
many DSE fungi or DSE and mycorrhizal fungi 
have provided new insights into the DSE 
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 symbioses. For example, Reininger et al. ( 2012 ) 
concluded that many PAC strains may not nega-
tively affect host growth and that when nonpara-
sitic PAC strains are co-inoculated with parasitic 
ones, the virulence of latter is reduced. These 
results highlight a further complication in mak-
ing clear statements about the DSE function: the 
experimental outcomes are often synergistic and 
context dependent. In essence, the combinations 
of DSE and host genotypes control the outcome 
of the symbiotic interaction, which may be fur-
ther modulated by environmental conditions (see 
Newsham  2011 ). Some recent studies underline 
this context dependency from the perspective of 
host species selection. When four PAC strains 
were inoculated into one of the three tree species, 
they had negligible effects on birch or Douglas fi r 
growth but clearly inhibited spruce growth 
(Reininger et al.  2012 ; Reininger and Sieber 
 2012 ). Interestingly, fungal biomass was nega-
tively correlated with plant biomass and depen-
dent on strain-host combination so that spruce 
maintained a greater PAC biomass than birch 
(Reininger et al.  2012 ). These studies suggest dif-
fering compatibilities among DSE fungi and their 
hosts (see also Mandyam et al.  2012 ) but also the 
importance of considering the cost-benefi t trade- 
offs for DSE symbioses. 

 While hosts may differ in their responses to 
DSE fungi, these differences may also result 
from interactions within the fungal communities. 
It is important to bear in mind that simple deduc-
tive studies, while important as a fi rst step, fail to 
account for the complexities of the hyperdiverse 
soil environments. Combinations of different 
root-associated fungal guilds provide further 
insight. When the ectomycorrhizal fungus, 
 Laccaria bicolor , was inoculated on spruce in 
combination with PAC fungi, PAC colonization 
declined and the ectomycorrhizal fungus likely 
compensated the adverse PAC effects on spruce 
biomass (Reininger and Sieber  2012 ). This was 
also true for some combinations of PAC fungi but 
tended to depend on host and the experimental 
condition (Reininger and Sieber  2012 ). While 
empirical studies address such issues, meta- 
analyses provide the power to seek generali-
ties across many independent studies. Recent 

 meta- analyses (Newsham  2011 ; Mayerhofer 
et al.  2013 ) primarily concluded that DSE fungi 
rarely negatively affect host growth and tend to 
enhance total shoot and root biomass or shoot 
nitrogen and phosphorous contents. It is notable 
that while shoot nitrogen tended to increase as a 
result of DSE inoculation, the increase was far 
greater if nitrogen was supplied in organic forms. 
While the meta-analyses are exciting, their con-
clusions depend on selection of studies and/or 
analytical tools chosen for inference (Newsham 
 2011 ; Mayerhofer et al.  2013 ) and some debate 
on their conclusions remains (Alberton et al. 
 2010 ; Newsham  2011 ). 

 The root-colonizing fungal communities tend 
to be diverse and are comprised of taxa that may 
or may not form DSE associations (Herrera et al. 
 2010 ; Mandyam et al.  2010 ; Knapp et al.  2012 ). 
Among the root-colonizing fungi,  Periconia 
macrospinosa  and  Microdochium  sp. are DSE 
isolated from native grasslands in North America 
(Mandyam et al.  2010 ) and Europe (Knapp et al. 
 2012 ). Inoculation studies with multiple strains 
of these fungi and 12 native grasses and forbs not 
only confi rmed the broad host range of these 
DSE fungi but also suggested that grasses in gen-
eral may be more heavily colonized and respond 
to colonization more positively than forbs 
(Mandyam et al.  2012 ). The broad host range fur-
ther motivated experiments that took advantage 
of well-established model plant  Arabidopsis 
thaliana . The use of 38 DSE strains and three dif-
ferent  Arabidopsis  ecotypes confi rmed the broad 
host range of DSE fungi (Mandyam et al.  2013 ). 
More importantly, these studies indicated that the 
host responses were mainly neutral – few host- 
fungus interactions were negative, fewer yet were 
positive (Mandyam et al.  2013 ). However, even 
the highly controlled laboratory reinoculation 
studies can lead to incongruent conclusions: fur-
ther studies that included six  Arabidopsis  acces-
sions and three  Periconia  strains indicated that 
positive responses were far more common than 
neutral ones and that no inoculation treatment 
inhibited growth compared to the non-inoculated 
controls (Fig.  6.1 ). Perhaps one important con-
clusion emerging from those  Arabidopsis  experi-
ments is that evaluating multiple combinations of 
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hosts and DSE fungi is imperative for drawing 
meaningful inferences about DSE symbiosis.

   In their earlier studies, Mandyam and 
Jumpponen ( 2005 ) hypothesized that DSE are 
multifunctional and have the potential to promote 
host growth and facilitate nutrient uptake, 
improve host resistance to biotic and abiotic 
stressors, or partly control plant community 
dynamics via differential host responses. Like 
mycorrhizal fungi, DSE may induce plant 
defenses or otherwise increase host tolerance of 
the pathogens, while not necessarily enhancing 
host growth. Such interactions are exemplifi ed 
in studies wherein inoculation with PAC fungi 
has a negative impact on Norway spruce growth, 
but increases pathogen tolerance (Tellenbach 
et al.  2013 ). In those studies,  Phialocephala 
europa  was found to produce a variety of plant 

growth- promoting compounds as well as 
 antibiotics that controlled oomycete pathogen 
 Phytophthora citricola . Similarly, multiple 
 Phialocephala subalpina  strains reduced spruce 
mortality and severity of oomycete  P .  citricola  
and  Pythium undulatum  diseases (Tellenbach and 
Sieber  2012 ). Complex interactions among soil- 
and root-inhabiting organisms are likely  common. 
For example, exudates from  Drechslera  sp., a 
DSE colonizing the grass  Lolium multifl orum , 
stimulated hyphal branching and extramatri-
cal hyphae of arbuscular mycorrhizal fungus 
 Gigaspora rosea  thus modulating this symbiosis 
(Scervino et al.  2008 ). 

 The symbiosis between DSE and  Arabidopsis  
as well as the ease with which  Arabidopsis  forms 
symbioses with DSE fungi isolated from a 
 tallgrass prairie (Mandyam et al.  2013 ) permit 

  Fig. 6.1    Responses of six  Arabidopsis thaliana  acces-
sions to inoculation with three  Periconia macrospinosa  
strains.  X -axis indicates the shoot dry weight on non-
inoculated controls after 6-week incubation,  Y -axis 
that of the inoculated plants. The  dashed line  is the iso-
cline indicating equal masses in control and inoculated 

 treatments; values above line suggest positive responses 
to inoculation; values below negative responses.  Black 
symbols  indicate signifi cant differences between the con-
trol and inoculated treatments (Dunnett’s test;  α  = 0.05). 
Methods for these studies are like those described in 
Mandyam et al. ( 2013 )       
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testing hypotheses put forth by Mandyam and 
Jumpponen ( 2005 ). We propose that this model 
plant serves to further elucidate the DSE func-
tions. The  Arabidopsis  model has already pro-
vided a glimpse of the molecular mechanisms 
underlying benefi cial plant symbioses with 
PGPR, actinobacteria, and basidiomycetes 
(Sect.  2 ). Our recent data suggest that  Arabidopsis  
(Sect.  4.1 ) serves as a model for analyzing DSE 
symbiosis. The natural microbial communities 
associated with  Arabidopsis  roots are also 
 discussed to emphasize the validity of the 
 Arabidopsis  system in studying DSE fungi and 
their function in symbiotic associations.  

2         Arabidopsis  Model to Study 
Host-Endophyte Symbiosis 

  Arabidopsis  model has been used extensively to 
study plant-pathogen interactions – particularly 
to elucidate defense responses (Nishimura and 
Dangl  2010 ).  The Arabidopsis Book  regularly 
publishes reviews on a range of topics including 
plant-pathogen or plant-microbe interactions 
(e.g., Betsuyaku et al.  2011 ; Day and Knepper 
 2010 ; Laluk and Mengiste  2010 ; Micali et al. 
 2008 ; Thilmony et al.  2002 ). In addition to patho-
gen interactions,  Arabidopsis  has provided 
insight into benefi cial plant-microbe symbioses. 
In this section, we provide a backdrop for the use 
of  Arabidopsis  in dissecting DSE symbiosis. 

  Arabidopsis  and its numerous signaling 
mutants have improved our understanding of 
growth promotion and induced systemic resis-
tance (ISR) by PGPR. Not only rhizobacterial 
colonization but also their volatile organic com-
pounds (VOC) can promote growth (Ryu et al. 
 2003 ,  2005 ). In vivo and in vitro studies with 
various  Arabidopsis  mutants in symbiosis with 
eight PGPR strains indicated that brassinosteroid, 
indole acetic acid (IAA), salicylic acid (SA), and 
gibberellin signaling were involved in growth 
promotion in vivo and ethylene signaling in 
growth promotion in vitro (Ryu et al.  2005 ). The 
in vitro growth promotion depended on the phys-
ical distance of bacterial inoculum from the roots 
suggesting the diffusion of growth-promoting 

compounds. Ryu et al. ( 2003 ) found that PGPR 
produce strain-specifi c VOCs and the strains that 
induced the greatest growth promotion ( Bacillus 
subtilis  GB03 and  Bacillus amyloliquefaciens  
IN937a) produced 2,3-butanediol and acetoin 
with butanediol that enhance leaf surface area. 
The use of three  Arabidopsis  ecotypes plus vari-
ous signaling mutants pinpointed that cytokinin 
signaling and not brassinosteroid, gibberellic 
acid, or ethylene signaling was responsible for 
the growth promotion by VOC. Rhizobacterial 
VOCs did not contain auxin or other known 
growth-regulating compounds and promoted 
 Arabidopsis  growth by auxin homeostasis as well 
as by cell expansion (Zhang et al.  2007 ). The 
analysis of  Arabidopsis  proteome when exposed 
to VOCs from  B .  subtilis  GB03 showed upregu-
lation of ethylene biosynthesis, antioxidant pro-
teins, and proteins in jasmonic acid (JA) and SA 
signaling (Kwon et al.  2010 ). Rhizobacterial 
VOCs not only promote plant growth but also 
play a role in ISR: 2,3-butanediol from  B .  subtilis  
GB03 and  B .  amyloliquefaciens  IN937a activated 
ISR 4 days after inoculation (dai   ), signifi cantly 
reducing  Erwinia carotovora  disease severity, 
and this ISR activation was dependent on ethyl-
ene signaling independent of SA or JA signaling 
(Ryu et al.  2004a ). In the case of viral disease 
caused by cucumber mosaic virus (CMV), PGPR 
 Serratia marcescens  and  Bacillus pumilus  
reduced symptom severity and CMV accumula-
tion in  Arabidopsis  leaves (Ryu et al.  2004b ). 
 Arabidopsis  signaling and PGPR mutants showed 
that ISR by  S .  marcescens  against CMV was 
dependent on JA signaling independently of SA 
or NPR1 signaling. 

 In addition to the inoculation studies with sin-
gle PGPR, their mixtures have been evaluated 
using  Arabidopsis . The commercial biopreparation 
Bioyield, containing a mixture of growth- 
promoting  B .  subtilis  GB03 and ISR agent 
 B .  amyloliquefaciens  IN937a, confi rmed the growth 
promotion independent of any known hormone 
signaling (Ryu et al.  2007 ). These studies also 
showed that the protection from CMV was inde-
pendent of SA signaling, even though protection 
from the bacterial pathogen  Pseudomonas syrin-
gae  did depend on SA signaling (Ryu et al.  2007 ). 
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These studies demonstrated differences in 
 Arabidopsis  responses to single bacterium and 
mixtures: growth promotion was independent of 
ethylene signaling when  Arabidopsis  was inocu-
lated with a mixture of two PGPR, but not so 
when inoculated with a single PGPR (Ryu et al. 
 2005 ). Interestingly, the inoculation treatments 
did not affect CMV titer but reduced CMV symp-
tom severity, suggesting that PGPR improved 
host tolerance rather than resistance. To study 
 Arabidopsis  genes specifi cally expressed during 
root colonization by ISR-inducing rhizobacteria, 
fl uorescent  Pseudomonas  spp. induced a 
thaumatin- like gene AtTLP1 in the root vascular 
bundle along with a protein homologous with 
pathogenesis-related protein 5 (PR-5) known to 
have antimicrobial properties but not involved in 
ISR (Léon-Kloosterziel et al.  2005 ). Further 
experiments with defense signaling mutants 
suggested SA signaling in  Pseudomonas chloro-
raphis  VOC-butanediol-induced drought toler-
ance combined with  Arabidopsis  stomatal closure 
(Cho et al.  2008 ). 

  Arabidopsis  mutants have also improved our 
understanding of the PGPR effects on root 
architecture and the roles of auxin and ethylene 
in PGPR symbiosis.  Arabidopsis  growth-pro-
moting  Bacillus megaterium  inhibited primary 
root growth by reducing cell elongation and pro-
liferation in the root meristem (López-Bucio 
et al.  2007 ; Shi et al.  2010 ). These responses 
were combined with increases in lateral root 
number, lateral root growth, and root hair length. 
The responses were similar when  Arabidopsis  
was inoculated with  S .  marcescens , except that 
plants maintained normal cell elongation 
(López-Bucio et al.  2007 ; Shi et al.  2010 ). 
Although changes in root architecture were sim-
ilar to those mediated by auxin, auxin and ethyl-
ene signaling mutants showed that the changes 
were independent of these signaling pathways 
(López-Bucio et al.  2007 ). Further studies by 
Shi et al. ( 2010 ) provided a more complex pic-
ture: the changes in root architecture were con-
trolled by both auxin- dependent and 
auxin-independent signaling as well as ethyl-
ene; JA and SA signaling were involved in 
induction of second order lateral roots. The PGPR 

also have more global effects on  Arabidopsis  
gene expression. When inoculated with growth-
promoting  Pseudomonas fl uorescens , at least 95 
 Arabidopsis  genes were signifi cantly upregu-
lated and 105 downregulated (Wang et al.  2005 ). 
Various genes involved in metabolism, signal 
transduction, stress response, putative auxin 
signaling, and nodulin-like genes were among 
those that were upregulated, whereas ethylene 
genes were downregulated. Additionally, genes 
involved in ISR were differentially expressed as 
a result of the inoculation treatments. Although 
the PGPR have been isolated from rhizospheres 
of different plant species and may fi nd valuable 
applications for a number of economically 
important plants,  Arabidopsis  ultimately has 
provided the mechanistic understanding how 
various pathways and mechanisms are involved 
in PGPR effects. Similarly to PGPR,  Arabidopsis  
model has also permitted a deeper understand-
ing of ISR by actinobacteria against plant patho-
gens (Conn et al.  2008 ; Lin et al.  2012 ). 

 In addition to bacterial endophytes, 
 Arabidopsis  has also been a valuable tool in 
studying fungal symbioses. For example, 
 Paraphaeosphaeria quadriseptata  – an endo-
phyte of desert cacti and also of maize – can 
improve thermotolerance in  Arabidopsis  via pro-
duction of monocilin 1 (MON-1) that inhibits 
plant heat shock protein 90 (HSP90) (McLellan 
et al.  2007 ). Even the study of ectomycorrhizal 
systems can benefi t from the use of powerful 
 Arabidopsis  system. For example, hypaphorine, 
an exudate from ectomycorrhizal fungus 
 Pisolithus tinctorius , is involved in symbiosis- 
related root differentiation and elicits similar 
responses in ectomycorrhizal  Eucalyptus globu-
lus  and  Arabidopsis  that do not form mycorrhizas 
of any kind (Reboutier et al.  2002 ). In addition to 
these symbioses,  Arabidopsis  has been used to 
dissect  Piriformospora indica  root symbiosis. 
 Piriformospora  is a sebacinaceaous    fungus from 
the Thar Desert in India (Varma et al.  1999 ) colo-
nizing a range of plants often improving growth, 
fi tness, and tolerance to biotic and abiotic stress-
ors (see Franken  2012 ; Qiang et al.  2012a ). We 
highlight the key fi ndings that have emerged 
from these studies in the following section. 
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2.1        Case Study:  Arabidopsis - 
Piriformospora     Symbiosis 

 In the last decade, a mutualistic root endophyte 
 P .  indica  has been the subject of keen investiga-
tion. This is due to its taxonomic position 
and interesting attributes:  Piriformospora  is a 
Basidiomycete in Sebacinales, a globally distrib-
uted order with mycorrhizal fungi as well as non- 
mycorrhizal root endophytes (Selosse et al.  2009 ; 
Weiss et al.  2011 ). In line with the lack of host 
specifi city in Sebacinales,  P .  indica  colonizes 
bryophytes, pteridophytes, gymnosperms, angio-
sperms, monocots and dicots, and even non- 
mycorrhizal members of Brassicaceae (Franken 
 2012 ; Oelmüller et al.  2009 ; Qiang et al.  2012a ). 
However, unlike many mycorrhizal fungi, 
 P .  indica  grows axenically, making it particularly 
attractive for applications for many crop species 
that form arbuscular mycorrhizal symbioses. 
Most importantly,  P .  indica  is a mutualist that 
can promote host growth and fi tness plus improve 
host tolerance to biotic and abiotic stress (Franken 
 2012 ; Qiang et al.  2012a ). 

 The colonization of non-mycorrhizal 
    Arabidopsis  in the wild by a sebacinalean fungus 
(Weiss et al.  2011 ; see Sect.  2.1 ) and the success-
ful in vitro resynthesis of  Arabidopsis  coloniza-
tion by  P .  indica  (Peškan-Berghöfer et al.  2004 ; 
Shahollari et al.  2007 ) have provided a model 
for fungal mutualisms in  Arabidopsis . Although 
a glimpse into the molecular mechanisms 
 underlying  P .  indica  growth promotion and 
improved host stress tolerance has been achieved 
using barley, wheat, tomato, tobacco, or Chinese 
cabbage (Baltruschat et al.  2008 ; Barazani et al. 
 2005 ; Deshmukh et al.  2006 ; Felle et al.  2009 ; 
Hilbert et al.  2012 ; Schäfer et al.  2009 ; Sherameti 
et al.  2005 ; Sun et al.  2010 ; Waller et al.  2005 , 
 2008 ), the in-depth analyses of the  P. indica  
symbiosis, defense signaling, role of phyto-
hormones, ISR, and differential gene expression 
has been only achieved through the  Arabi-
dopsis  model. 

 Peškan-Berghöfer et al. ( 2004 ) fi rst reported 
 Arabidopsis  root colonization by  P .  indica  and 
the resultant growth enhancement. Colonized 
plants, when transferred to soil, grew faster, had 

more leaves, fl owered earlier, set seed earlier, 
and had higher seed yield than the control 
plants. The shoot dry weight signifi cantly 
increased after only 8 dai coinciding with dis-
tinct changes in root architecture. The inocu-
lated plants had longer and thinner roots, and 
many root proteins were upregulated. 
Additionally, the colonized plants seemed to be 
more stress tolerant: on Murashige-Skoog 
medium,  P .  indica  inoculated plants tolerated 
200 μM concentrations of cadmium. 

 The colonization and life history attributes of 
 P .  indica  are unique. Genome and transcriptome 
analyses suggest a combination of biotrophic and 
saprotrophic lifestyles. Biotrophy is supported by 
accumulation of small, secreted proteins such as 
lectin-like proteins, absence of nitrogen metabo-
lizing genes, as well as absence of genes coding 
for secondary metabolism, for example, 
polyketide synthase and non-ribosomal peptide 
synthase. Saprotrophy is supported by the pres-
ence of cell wall degrading enzymes and metal-
lopeptidases (Zuccaro et al.  2011 ). Consistent 
with the genomic analyses, studies with barley 
revealed that the initial establishment of a biotro-
phic interaction was facilitated by overcoming or 
suppressing host defenses followed by host cell 
death to permit the establishment of symbiosis 
(Deshmukh et al.  2006 ; Hilbert et al.  2012 ; 
Lahrmann and Zuccaro  2012 ; Oelmüller et al. 
 2009 ; Qiang et al.  2012a ; Schäfer et al.  2007 , 
 2009 ). Establishment of  P .  indica  symbiosis in 
 Arabidopsis  knockout line for a gene homologue 
of “does not make infections” (DMI1) protein 
that channels ion fl uxes across plasma membrane 
critical in legume mycorrhizal and rhizobial sym-
bioses indicated a colonization mechanism unlike 
any known previously (Shahollari et al.  2007 ). 
Recently, Jacobs et al. ( 2011 ) confi rmed a unique 
biphasic colonization in  Arabidopsis  and pro-
posed a model involving four stages: (1) extracel-
lular colonization of root surface at 1 dai by 
chlamydospore germination, (2) biotrophic colo-
nization phase of rhizodermal, cortical cells and 
root hairs at <3 dai without any ultrastructural 
changes wherein fungal hyphae is covered by 
host plasma membrane, (3) cell death at >3 dai 
and fungal reproduction by external sporulation 
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at 7 dai, and (4) internal sporulation by 14 dai in 
root maturation zone. Further, the use of at least 
12 mutants and a GFP-tagged  Arabidopsis  line 
(GFP-tmKKXX) permitted detailed analyses of 
the novel microbially mediated cell death. During 
colonization,  P .  indica  induces endoplasmic 
reticulum (ER) swelling and vacuolar collapse, 
but suppresses ER stress signaling, that is, 
unfolded protein response (UPR), leading to vac-
uolar processing enzyme (VPE)/caspase 1-like- 
mediated cell death during the establishment of 
symbiosis without impairing root function or 
development (Qiang et al.  2012b ). After cell 
death, the fungus continues to colonize adjoining 
cells. Typical localized immune response cell 
death attributes including hypersensitive response 
(HR) (whole cell auto fl uorescence or browning 
of colonized cells due to accumulation of pheno-
lics, mitochondrial swelling, increased vesicle 
formation, and protoplast shrinkage) was lack-
ing, suggesting a novel “compatibility-based cell 
death” rather than immunity-related cell death 
(Jacobs et al.  2011 ). 

 The unique  Arabidopsis  mutants, microarrays, 
and other tools have permitted the elucidation of 
molecular mechanisms behind  P .  indica - 
mediated  growth promotion.
(1) The growth responses of  Arabidopsis  

   mutants that differ in root shoot ratios, 
lengths, or architectures (e.g.,  ahk2 ahk3 , 
35S::CKX1, 35::CKX2,  sur1-1 ,  tfl 2 ) are 
similar suggesting that  P .  indica  promotes 
growth independently of  Arabidopsis  root 
architecture (Vadassery et al.  2008 ).

(2) Under laboratory resynthesis,  P .  indica - 
colonized   Arabidopsis  fresh weight increased 
by 21 %. When transplanted to soil, the inoc-
ulated plant seed production was 22 % 
greater compared to uninoculated plants 
(Shahollari et al.  2007 ). Development of a  P . 
 indica  insensitive  Arabidopsis  mutant ( pii-2 ) 
lead to the discovery that a leucine-rich 
repeat (LRR) protein containing ER retention 
signal and another atypical receptor protein 
At5g1650 present in the ER/plasma mem-
brane continuum in roots are required for 
growth promotion and enhancement of seed 
production. Also, sphingolipids involved in 

plasma membrane signaling are required for 
 P .  indica  symbiosis as demonstrated by 
growth reduction in sphingosine kinase 
knockout lines (Shahollari et al.  2007 ).

(3) Although the exact role of PYK10 
(β-glucosidase located in the ER) is unknown, 
it is required for the  P. indica- enhanced  
growth and fi tness of  Arabidopsis  (Sherameti 
et al.  2008a ). Based on the upregulation of 
plant defensin protein (PDF1.2), a defense 
response and the downregulation of LRR1 
protein (a marker for benefi cial interaction 
under reduced PYK10 levels), and the fact 
that PYK10 is similar to PEN2 (a glycosyl 
hydrolase known to restrict ascomycetous 
pathogens in  Arabidopsis ), PYK10 may con-
trol fungal colonization to maintain mutua-
lisms. Since PYK10 released from endosomal 
system and forms a multimeric complex with 
PBP1 (a cytoplasm protein when  Arabidopsis  
tissue is damaged), the substrate for PYK10 
could only come in contact with the enzyme 
when cell and cellular components are dam-
aged during the contact of host and fungal 
symbionts. This is highly likely considering 
the unique  P. indica  colonization pattern as 
outlined in Qiang et al. ( 2012b ).

(4) At least two ROP (RHO-related GTPases) 
proteins ROP1 and ROP6 and ROP1-
interacting protein RIC4 were stimulated in 
 P .  indica -colonized lateral roots compared 
to uncolonized plants. Experiments with 
 Arabidopsis  mutants showed that these pro-
teins were involved in hormone-mediated 
seed germination, root growth and root hair 
development, and F-actin bundle formation 
in the roots (Venus and Oelmüler  2012 ). The 
unimpaired fungal root colonization coupled 
with lack of growth promotion in ROP 
knockouts or overexpressors indicated the 
role of ROP1, ROP6, and RIC4 in maintain-
ing benefi cial interaction via stimulation of 
F-actin bundle formation. Since Ca 2+  cellular 
elevation is one early signaling event of 
 P .  indica  mutualism (Vadassery et al.  2009b ) 
and ROP6 controls root hair growth by 
affecting Ca 2+  gradient, the upregulation of 
Ca 2+  inducible/Ca 2+ /calmodulin-binding 
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protein (CBP60g) that is induced by both 
pathogens and microbe- associated mole-
cular patterns (MAMP) in  P .  indica -colonized 
wild-type  Arabidopsis  suggests that CBP60g 
maintains host defense responses until it 
recognizes  P .  indica  as a mutualist. This is 
further evidenced by lesser upregulation in 
 rop  mutants.

(5) Indole-3-acetaldoxime (IAOx)-derived com-
pounds partly control mutualistic fungal 
root colonization (Nongbri et al.  2012 ). 
Phytoalexins are plant antimicrobial sub-
stances produced at pathogen infection sites 
or when exposed to oxidative stress by 
abiotic factors. Camalexin is the main phyto-
alexin in  Arabidopsis , and IAOx is an 
intermediate in the camalexin- producing 
metabolic pathway. The camalexin produc-
tion requires transcription factor WRKY33 
to activate camalexin biosynthesis and is 
catalyzed by both cytochrome P450 and 
PAD3. Nongbri et al. ( 2012 ) observed much 
lower  Arabidopsis  camalexin levels during 
 P .  indica  colonization compared to patho-
gens. This coincided with expression of 
cytochrome P450 (CYP79B2, CYP79B3, 
CYP71A13), PAD3, and WRKY33. Cama-
lexin and IAOx-defi cient mutants were more 
heavily colonized by  P .  indica , lacked any 
growth promotion, and had an upregulation 
of a suite of defense responses (pathogenesis-
related protein (PR1, PR3), plant defensin 
PDF1.2, phenylalanine ammonia lyase, and 
germin), implying a role of IAOx-derived 
compounds in the early stages of coloniza-
tion as well as in maintaining benefi cial 
symbiosis. Additionally, the cellular Ca 2+  
elevation during early colonization and the 
concomitant mitogen- activated protein kinase 
(MAPK) (Vadassery et al.  2009b ) activation 
seem essential for production of IAOx-
derived metabolites.

(6) In  Arabidopsis  roots, OXI1 (oxidative signal 
 inducible 1) is a protein kinase involved 
in oxidative-burst- mediated pathogen resis-
tance and induced by H 2 O 2  and PDK1 
(3-phosphoinositide- dependent kinase). 
PDK1 is activated by phosphatidic acid (PA) 

produced by phospholipase D (PLD). 
 Piriformospora indica  colonization triggers 
PA synthesis in  Arabidopsis , upregulates OXI1 
and PDK1 genes, and suppresses H 2 O 2  pro-
duction and defense genes. Expected growth 
enhancement by  P .  indica  does not occur in 
 Arabidopsis oxi1 ,  pdk1  ( pdk1.1 pdk1.2 ), or 
 pldα1  and  pldδ  mutants, suggesting that 
PLD-PDK1- OXI1 cascade is essential for 
mutualistic interaction (Camehl et al.  2011 ).

(7) Ascorbate-glutathione cycle offers protec-
tion from reactive oxygen species like H 2 O 2  
by maintaining high ascorbate levels in the 
cells. Ascorbate peroxidase uses ascorbate to 
reduce H 2 O 2  by producing monodehydro-
ascorbate which is reduced back to ascor-
bate by monodehydroascorbate reductase 
(MDAR). If dehydroascorbate is produced, it 
is converted to ascorbate by dehydroascor-
bate reductase (DHAR). Essentially, MDAR 
and DHAR maintain reduced state of ascor-
bate. Vadassery et al. ( 2009a ) observed 
MDAR2 and DHAR5 upregulation in 
 Arabidopsis  as a result of  P .  indica  or its cell 
extract, coinciding with a 1.5-fold increase in 
root ascorbate level, lack of growth promo-
tion, retarded fl ower development, and seed 
yield. Experiment with  mdar2  and  dhar5  
mutants identifi ed that MDAR2 and DHAR5 
enzymes are also involved in maintaining the 
mutualistic symbiosis.

(8) Although  P .  indica  produces auxin 
(Sirrenburg et al.  2007 ; Vadassery et al. 
 2008 ), it is not essential for the  Arabidopsis  
growth promotion (Lee et al.  2011 ). Further, 
the endogenous levels of free and conjugated 
IAA in  Arabidopsis  roots with or without 
 P .  indica  do not differ as suggested by lack 
of responses in the DR5- GUS  reporter sys-
tem and most of auxin-responsive genes to 
 P. indica  colonization (Vadassery et al. 
 2008 ). Overall, auxin production is an 
unlikely candidate for the observed positive 
growth responses in  Arabidopsis :  tfl 2 , 
 ilr1-1 ,  cyp79b2b3 , and  nit1-3  mutants with 
reduced auxin levels respond to  P .  indica  
inoculation like the wild type (Vadassery 
et al.  2008 ). While auxin may not be the
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primary mechanism of growth promotion in 
 Arabidopsis , its role may vary among the 
plant species as exemplifi ed by its impor-
tance for  Brassica campestris  growth 
response to  P .  indica  (Lee et al.  2011 ). 
However, fungal modulation of auxin levels 
and metabolism has been observed in auxin 
overproducing  Arabidopsis  mutant  sur1-1  
whose dwarf phenotype was restored by 
 P .  indica . In sum, it remains unclear 
whether the auxin- induced growth promo-
tion is controlled directly by fungus or indi-
rectly as a plant response to the fungus.

 (9) In addition to the potential and differing 
roles of auxin in the symbiosis between 
 P. indica  and its hosts, other plant growth 
hormones may also be important: cytokinin-
responsive gene ARR5 was expressed at 
54 % greater levels in  P .  indica -inoculated 
 Arabidopsis  roots compared to fungus-free 
controls (Vadassery et al.  2008 ). Cytokinin 
biosynthesis-defective  Arabidopsis  mutants 
provided further evidence that trans-Zeatin 
may be critical for symbiotic growth pro-
motion and that cytokinin receptor combi-
nation CRE1/AKH2 is crucial for symbiotic 
growth promotion.

(10) Finally, ethylene signaling and ethylene-
targeted transcription factor (ETF) are 
essential for maintaining mutualistic sym-
biosis (Camehl et al.  2010 ; Khatabi et al. 
 2012 ), highlighting the overall complexity 
of the hormonal plant responses to fungal 
colonization. 

 Not only the living fungus but its extracts 
enhance plant growth.  Arabidopsis  responds to 
autoclaved  P .  indica  cell wall extract (CWE) like 
it does to fungal colonization (Vadassery et al. 
 2009b ).  Piriformospora indica  inoculation 
increased  Arabidopsis  growth by 36 %, whereas 
CWE increased shoot growth by 15 % and root 
growth by 21 % after 10 dai. Similarly to 
 inoculation with the fungus, CWE induced 
upregulation of LRR1 (Shahollari et al.  2007 ), 
2-nitro- propane- dioxygenease (Sherameti et al. 
 2005 ), monodehydroascorbate reductase 
(MDAR2), and dehydroascorbate reductase 
(DHAR5) genes in roots and shoots (Vadassery 

et al.  2009a ). Ascorbate biosynthesis gene 
   MIOX, Ca 2+  sensor CIPK13, and Ca 2+  signaling 
calmodulin-like genes (CML) were all upregu-
lated, resulting in elevated cytosolic and nuclear 
Ca 2+  levels and upregulation of Ca 2+ -MAPK 
(Vadassery et al.  2009b ). Further, similarly to the 
fungus, CWE elicited no immune responses such 
as H 2 O 2  production or activation of defense-
related genes (Vadassery et al.  2009b ). Liquid 
cultures of  P .  indica  produce IAA and the fun-
gus, CWE, and its ethyl acetate extract change 
root architecture (root stunting and extensive 
root branching) similarly to a treatment with 
18 nmol IAA (Sirrenburg et al.  2007 ). Although 
its importance may be uncertain,  P .  indica  IAA 
(325 pmol/g dry weight) and cytokinin 
(403 pmol/g of dry weight) production is consid-
erable (Vadassery et al.  2008 ). The hormones 
produced by  P .  indica  can signifi cantly alter 
resource plant allocation: although shoot bio-
mass remained unaltered after 14 dai, the inocu-
lation signifi cantly reduced (86.5 %) the main 
root length compared to controls (Stein et al. 
 2008 ). Despite  P .  indica  hormone production, 
like with the living fungus, CWE-induced 
growth is not attributable to fungal auxin or sug-
ars (Lee et al.  2011 ). Chemical composition of 
CWE is not clear although it is heat stable, is 
partially inhibited by trypsin, and remains unal-
tered by chitinase and glucanase (Vadassery 
et al.  2009b ). 

 Interestingly,  P .  indica  harbors an endobacte-
rium, α-proteobacterial  Rhizobium radiobacter  
( Agrobacterium tumefaciens  or  Agrobacterium 
radiobacter ) (Sharma et al.  2008 ). This endobac-
terium was present in the original  P .  indica  
 isolate and is vertically transmitted via spores. 
Although present in low frequency within the 
fungus (up to 0.035 ng bacterial DNA per 100 ng 
of fungal DNA), it cannot be eliminated by anti-
biotics, via single spore or hyphal tip isolations 
or exposure of fungal protoplasts to antibiotics. 
However, the bacterium can be repeatedly iso-
lated and grown axenically. In pure culture, it is 
capable of producing up to 40 μg/ml of IAA after 
24 h at 25 °C in the presence of tryptophan. When 
inoculated on barley, the bacterium can enhance 
growth by 17 % and reduce biotrophic pathogen 
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 Blumeria graminis  pustules by 54 %.  Pirifor-
mospora indica -colonized barley has 27 % 
growth enhancement and 64 % reduction in  B . 
 graminis  pustules. Curiously, the bacterium hosts 
 virD2  gene coding Ti plasmid without the iso-
pentenyltransferase ( ipt ) gene associated with 
cytokinin biosynthesis. This likely explains the 
lack of pathogenicity of the bacterium. Since it 
has not been possible to obtain bacteria-free fun-
gus, it is not possible to ascertain if the benefi cial 
effects are due to the fungus or its endosymbiont 
(Sharma et al.  2008 ). 

 In addition to enhancing plant growth,  P .  indica  
can improve host tolerance to biotic and abiotic 
stress. At least 13 known diseases in fi ve dif-
ferent crop species and  Arabidopsis  are sup-
pressed by  P .  indica  inoculation (see review 
by Qiang et al.  2012a ).  Piriformospora indica  
induces ISR in  Arabidopsis.  ISR is usually 
elicited by nonpathogenic microbes, for example, 
rhizobacteria. The application of nonpathogenic 
microbe to one part of the plant elicits JA or 
ethylene defense signaling to reduce disease 
severity from many different pathogens in distant 
plant parts. In contrast, systemic acquired resis-
tance (SAR) is elicited by necrotizing pathogens 
or chemical elicitors by inducing the SA pathway 
along with expression of PR proteins (Pieterse 
et al.  1998 ). By ISR,  P .  indica  root colonization 
can reduce the severity of powdery mildew of 
 Arabidopsis  leaves caused by  Golovinomyces 
orontii  (Stein et al.  2008 ).  Arabidopsis  JA 
mutants    (jasmonate-resistant 1,  jar1-1;  or 
jasmonate- insensitive mutant 1,  jin1 ) maintained 
higher pathogen loads, whereas mutants unable 
to accumulate SA ( NahG ) or the mutant incapa-
ble of expressing PR genes ( npr1-3 ) maintained 
lesser pathogen loads, suggesting the importance 
of JA defense in ISR (Stein et al.  2008 ). After 14 
dai,  P .  indica  colonization of  Arabidopsis  roots 
did not alter the expression of SA-responsive 
 PR1  and  PR5  or ET-responsive ethylene response 
factor ( ERF1 ), but marginally lowered the levels 
of JA-responsive vegetative storage protein 
( VSP ),  PDF1.2,  and lipoxygenase 2 ( LOX2 ) in 
the leaves. After 3 days of pathogen challenge, 
 VSP  increases eightfold, confi rming a JA-mediated 
systemic response that was absent in the  jin1  

mutant defective in  VSP  expression. Similarly, in 
barley,  P .  indica  promoted resistance to powdery 
mildew caused by  Blumeria graminis  by ISR 
(Waller et al.  2008 ). It is likely that the  P .  indica  
primes defense-related genes  PR1 ,  PR2 , and  PR5  
or a heat shock protein (HSP70), which have 
antifungal properties (Molitor et al.  2011 ). 

 In addition to biotic stressors,  P .  indica - 
colonized  plants tolerate abiotic stress (e.g., 
drought) better than fungus-free controls 
(Sherameti et al.  2008b ). The improved drought 
stress also leads to much improved fi tness – 
after 84 h drought stress, 46.5 % of  P .  indica - 
inoculated   Arabidopsis  produced seed when 
the plants were transplanted into soil, whereas 
none of the control plants even survived 
the stress.  Piriformospora indica  primes 
 Arabidopsis  aerial parts by upregulation of at 
least nine genes involved in drought stress. 
Transfer of colonized plants to soil also showed 
that at least three of those genes (PLD, calcineu-
rin B-like protein CBL1, and histone acetyl 
transferase HAT) remain upregulated longer 
than in the fungus- free controls. The  P .  indica-
 colonized plants also accumulate MDAR2 in the 
ascorbate cycle faster than the uninoculated 
controls (Vadassery et al.  2009b ). Interestingly, 
 mdar2  and  dhar5  mutants were more heavily 
colonized and had very high levels of antifungal 
PDF1.2 in leaves. In contrast, wild-type plants, 
whether colonized or not, did not express 
PDF1.2 under stress, suggesting that MDAR2 
and DHAR5 enzymes are not only required for 
maintaining a benefi cial symbiosis but are also 
essential to repress defense gene expression to 
prevent the shift from mutualism to parasitism 
(Vadassery et al.  2009b ). 

 In summary, the use of at least 30 different 
 Arabidopsis  mutants has permitted the detailed 
dissection of the importance of auxin, ethylene, 
abscisic acid, cytokinin, defense compounds, 
and other proteins in maintaining benefi cial sym-
biosis and/or growth enhancement or ISR by 
 P .  indica . These studies and the described exam-
ples underline the power afforded by the use of 
model plants and  Arabidopsis  in particular for 
more detailed and improved understanding of the 
root- symbiotic endophytes.   
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3      Native Endophytes 
of  Arabidopsis  

  Arabidopsis  has served as a model plant for 
more than 25 years. Although recent develop-
ments have made it feasible to use economically 
relevant plant species as tractable models, 
 Arabidopsis  continues to provide breakthroughs 
(Jones et al.  2008 ; Koornneef and Meinke  2010 ). 
 Arabidopsis  model has provided a strong foun-
dation for understanding basic mechanisms of 
plant-microbe interactions. Yet, the microbial 
endophytes and epiphytes native to  Arabidopsis  

have been largely ignored. Thus far, only a 
handful of studies have investigated bacterial 
and fungal endophytes of  Arabidopsis  (Table  6.1 ). 
Like any other plant, different  Arabidopsis  organs 
maintain an assortment of microbial endophytes 
that may include pathogens, nonpathogenic sap-
robes, and even mutualistic endophytes, such as 
PGPR or nitrogen-fi xing bacteria. In fact, in 
many Brassicaceae – including  Arabidopsis –  
genes involved in mycorrhizal and rhizobial 
symbioses (e.g., nodulation signaling pathway 1 
and 2, NSP1 and NSP2) are conserved and 
may play a role in plant-microbe interactions 
(Hayward et al.  2012 ).

         Table 6.1    Microbial endophytes native to  Arabidopsis thaliana    

 Microbial type/
plant part  Identity of endophytes  Notes  References 

  Bacteria  
 Rhizosphere  Alphaproteobacteria (Rhizobiales 

27 %), Acidobacteria (17 %), 
Bacteroidetes (14 %), 
Gammaproteobacteria (12 %; 
Xanthomonadaceae, 
Pseudomonadaceae), Betaproteobacteria 
(10 %; Burkholderiales), 
Verrucomicrobia (7 %), Actinobacteria 
(5 %), Gemmatimonadetes (5 %), 
Deltaproteobacteria (3 %) 

 Micallef et al. ( 2009a ) 

 Rhizosphere  Actinobacteria, Proteobacteria, 
Cyanobacteria, Acidobacteria, 
Chlorofl exi, Firmicutes, Bacteroidetes, 
Gemmatimonadetes 

 Sugiyama et al. 
( 2013 ), Bulgarelli 
et al. ( 2012 ), 
Lundberg et al. 
( 2012 ), Bressan et al. 
( 2009 ), and Badri 
et al. ( 2013 ) 

 Root  Alpha-, Beta-, and 
Gammaproteobacteria, Actinobacteria, 
Bacteroidetes, Firmicutes, and 
Cyanobacteria 

 DNA- and RNA-based 
metagenomic 
sequencing 

 Bulgarelli et al. 
( 2012 ) and Lundberg 
et al. ( 2012 ) 

 Root  Gammaproteobacteria ( Pseudomonas  
sp. G62) 

 Natural PGPR  Schwachtje et al. 
( 2011 ) 

 Root  Alphaproteobacteria ( Agrobacterium 
tumefaciens ,  Agrobacterium  sp., 
 Rhizobium  sp.), Betaproteobacteria 
( Bordetella holmesii ,  Achromobacter  
sp.,  Pelomonas puraquae ,  Duganella  
sp.,  Herbaspirillum  sp.,  Zoogloea  sp.), 
Gammaproteobacteria ( Dokdonella  sp.), 
Acidobacteria, Archaea 

 Partial 16S and 18S 
rRNA sequences from 
dominant DGGE bands 

 Bressan et al. ( 2009 ) 

(continued)
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 Microbial type/
plant part  Identity of endophytes  Notes  References 

 Leaves  Alphaproteobacteria ( Agrobacterium 
tumefaciens ,  Sphingomonas  sp.) 
Gammaproteobacteria ( Pseudomonas  
sp.,  Xanthomonas  sp.,), Bacteroidetes 
( Flavobacterium  sp.), Firmicutes 
( Bacillus  sp.), Actinobacteria ( Nocardia 
corynebacterioides ,  Arthrobacter  sp., 
C urtobacterium fl accumfaciens , 
 Streptomyces chartreusis ,  Rhodococcus 
erythropolis ,  Frigoribacterium  sp., 
 Agromyces salentinus ) 

 Culturing; natural 
bacterial pathogens and 
putative nonpathogens 

 Traw et al. ( 2007 ) and 
Kniskern et al. ( 2007 ) 

 Leaf   Pseudomonas viridifl ava  ps.  syringae   Culturing and 
identifi cation; natural 
leaf pathogen 

 Jakob et al. ( 2002 ) 

 Seed  Alphaproteobacteria:  Rhizobium  sp. 
(40 %),  Sphingomonas  sp. (33 %), 
 Sinorhizobium  sp. (8 %), 
 Methylobacterium  sp. (14 %), 
Betaproteobacteria:  Acidovorax  sp. 
(1 %),  Variovorax  sp. (0.76 %), 
Actinobacteria:     Micrococcus  sp. 
(0.01 %), Firmicutes:  Bacillus  sp. (2 %), 
 Staphylococcus  sp. (0.52 %) 

 Endophytes cultivated 
and identifi ed by 16S 
rDNA-based method 

 Truyens et al. ( 2012 ) 

  Fungi  
 Rhizosphere  Basidiomycota ( Marchandiobasidium 

aurantiacum ), Ascomycota ( Stilbocrea 
macrostoma ), Chytridiomycota 

 Partial 16S and 18S 
rRNA sequences from 
dominant DGGE bands 

 Bressan et al. ( 2009 ) 

 Root  Unidentifi ed DSE fungi  Microscopy  Mandyam et al. 
( 2013 ) 

 Root  Basidiomycota (group B Sebacinales 
fungus) 

 rDNA-based detection  Weiss et al. ( 2011 ) 

 Root  Basidiomycota ( Marchandiobasidium 
aurantiacum ), Ascomycota ( Nectria  
sp.), Chytridiomycota ( Olpidium 
brassicae  and other unculturable 
chytrids) 

 Partial 16S and 18S 
rRNA sequences from 
dominant DGGE bands 

 Bressan et al. ( 2009 ) 

 Leaves, stem, roots  Ascomycota (total 38 genera, 13 from 
roots remaining from leaves and stems) 

 Culturing and 
morphological 
identifi cation 

 Junker et al. ( 2012 ) 

 Leaves, siliques  Ascomycota (26 genera), 
Basidiomycota ( Leucosporidium  sp.), 
Zygomycota ( Mortierella  sp.) 

 Isolation and rRNA 
sequencing 

 Garcia et al. ( 2012 ) 

Table 6.1 (continued)

3.1       Bacterial Endophytes 

 Culture-dependent and culture-independent stud-
ies have identifi ed bacterial endophytes naturally 
present in  Arabidopsis .  Arabidopsis  grown in 
non-native potting soils supported culturable 
eubacterial population densities of 2 × 10 7  to 
1 × 10 9  cfu/g in rhizosphere and  Pseudomonas  

spp. populations of 5 × 10 5  to 5 × 10 7  cfu/root 
(Doornbos et al.  2011 ).  Arabidopsis  seed endo-
phytes were comprised of bacterial populations 
as high as 10 7  cfu/g and dominated by 
α-proteobacteria and β-proteobacteria with fewer 
Actinobacteria and Firmicutes (Truyens et al. 
 2012 ; Table  6.1 ). Multi-generation exposure of 
 Arabidopsis  seeds to cadmium altered the bacterial 
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community composition and relative abundance 
of endophytes. However, many of the dominant 
α-proteobacteria persisted, suggesting the pres-
ence of a “core microbiome” in  Arabidopsis  
seeds. These persistent bacteria included (1) at 
least two  Rhizobium  spp. and three  Sphingomonas  
spp. capable of fi xing nitrogen, (2) at least three 
 Rhizobium  spp. that increased root length and 
root growth rate, and (3) many isolates capable of 
producing siderophores, IAA, organic acids, and 
mineralization of phytates (Truyens et al.  2012 ). 

 Many culturable bacteria from  Arabidopsis  
leaves represented groups present in seeds 
(Kniskern et al.  2007 ; Traw et al.  2007 ; 
Table  6.1 ). In contrast to the seeds, leaves were 
dominated by γ-proteobacteria ( Pseudomonas  
and  Xanthomonas ) and α-proteobacteria 
( Agrobacterium ).  Pseudomonas viridifl ava , 
 Pseudomonas syringae , and  Xanthomonas 
campestris , which were previously identifi ed as 
natural pathogens in  Arabidopsis  populations of 
Midwestern USA (Jakob et al.  2002 ; Tsuji and 
Somerville  1992 ), along with  Agrobacterium 
tumefaciens , also a plant pathogen with broad 
host range, accounted for 80 % of the leaf endo-
phytes. Similar bacterial groups were among 
epiphytic bacteria dominated by  X .  campestris , 
 A .  tumefaciens ,  Flavobacterium  spp., and  Nocardia 
corynebacterioides  (Kniskern et al.  2007 ); the lat-
ter two are common epiphytic saprobes (Beattie 
and Lindow  1995 ). Although there was consider-
able overlap, the endophytic and epiphytic com-
munities were distinct. Perhaps somewhat 
unsurprisingly, the epiphytes were also more spe-
cies rich and diverse than the endophytes, but 
largely unaffected by the host genotype. Plant 
pathogens and epiphytic saprobes often comprise 
a large proportion in the endophytic and epi-
phytic communities (Beattie and Lindow  1995 ; 
Ercolani  1978 ) as indicated by the strong pres-
ence of  X .  campestris  and  A .  tumefaciens  as epi-
phytes and endophytes (Kniskern et al.  2007 ). 

 In contrast to the limited attention endophytes 
in aboveground plant parts have received, at least 
half a dozen studies have recorded the abundance 
and diversity of root bacterial communities by 
employing culture-independent, next-generation 
sequencing. In addition to bacteria commonly iso-

lated from seeds and leaves (e.g., α-proteobacteria), 
the root communities included Acidobacteria and 
Archaea (Bressan et al.  2009 ; Micallef et al. 
 2009a ; Table  6.1 ). The root communities were 
dominated by  Rhizobium  sp. and  Agrobacterium  
sp. irrespective of host genotype (Bressan et al. 
 2009 ; Micallef et al.  2009a ). 

 The most exhaustive studies of plant root 
microbiomes have been carried out in  Arabidopsis  
using metagenomics (Bulgarelli et al.  2012 ; 
Lundberg et al.  2012 ). Despite different  Arabidopsis  
accessions, soils from different continents, prim-
ers targeting different 16S regions, or different 
portions of roots, these studies arrived at similar 
conclusions about the rhizobiome (Hirsch and 
Mauchline  2012 ): (1) different plant- free soils 
supported similar bacterial communities domi-
nated by Proteobacteria and included large 
proportions of Acidobacteria, Actinobacteria, 
Bacteroidetes, Firmicutes, and Gemmatimonadetes; 
(2) soil types qualitatively and quantitatively 
infl uence rhizosphere bacteria and endophytic 
bacteria are most likely not  Arabidopsis  specifi c 
but a subset of soil bacteria; (3) rhizoplane-
attached bacteria are derived from soil bacteria; 
(4) host genotype exerts only quantitative controls 
on a small subset of root endophytic bacteria, and 
both host genotype and plant age are less impor-
tant than soil type in defi ning root bacterial 
communities (Lundberg et al.  2012 ); and (5) ~40 % 
of  Arabidopsis  root endophytic bacteria respond 
to plant cell wall cues and ~60 % respond to root 
exudates (Bulgarelli et al.  2012 ). Although the 
host genotype may have little effect in defi ning 
the rhizosphere communities, the microbial 
responsiveness to host roots refl ects host control 
in attracting microbes. This selection of plant 
tissue-associated microorganisms (Lundberg 
et al.  2012 ) may have functional signifi cance 
(Sugiyama et al.  2013 ), as  Streptomycetaceae , 
for example, produce antimicrobial metabolites 
and many Proteobacteria including plant growth-
promoting taxa were enriched in roots in response 
to root exudates. The functional signifi cance of 
the bacterial rhizobiome in plant performance 
was supported by the variable bacterial effects on 
the growth of three  Arabidopsis  ecotypes 
(Sugiyama et al.  2013 ). 
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 Examples also exist for  Arabidopsis- 
associated  PGPR. Schwachtje et al. ( 2011 ) 
reported that  Pseudomonas  sp. G62 from natural 
populations of  Arabidopsis  in Golm, Germany, 
were capable of auxin production and ACC 
deaminase activity, phosphate solubilization, 
and production of siderophores, but were unable 
to fi x nitrogen. This strain enhanced growth of 
different  Arabidopsis  ecotypes by sucrose accu-
mulation in roots independently of disease resis-
tance induction (Schwachtje et al.  2011 ). 
 Arabidopsis  root exudates stimulated the growth 
of this PGPR strain, and, as a result, it is local-
ized in root hairs and rhizoplane with little colo-
nization of the root cortex. Further transcription 
studies found that this rhizobacterium induced 
host responses similar to those observed during 
carbohydrate starvation even when sugar levels 
were not depleted (Schwachtje et al.  2011 ). The 
loss of carbon in root exudates was compensated 
by increased photosynthesis correlated with 
increased leaf area. 

 Root exudates can infl uence rhizosphere 
microbes. Recent community and metabolome 
data support rhizobiome modulation by 
 Arabidopsis  root exudates. (1)  Arabidopsis  or its 
root exudates alone recruit similar soil fungal com-
munities in native soils (Broeckling et al.  2008 ). 
(2) Qualitative and quantitative changes in root 
exudates alter root endophyte and rhizosphere 
microbial assemblage (Badri et al.  2009 ; Bressan 
et al.  2009 ). Root exudates are a cocktail of 
various phenolics, amino acids, sugars, and sugar 
alcohols among other compounds. At least 107 
compounds were reported  Arabidopsis  Col-0 
ecotype, and they may vary over time (Chaparro 
et al.  2013 ). Minor shifts in the host genetic 
makeup (e.g. ,  single mutation of the ATP-binding 
cassette (ABC) transporter) can alter the ratios of 
phytochemicals. For example, increased pheno-
lics and decreased sugars can lead to abundance 
of benefi cial bacteria like PGPR, nitrogen-fi xing 
bacteria, or bacteria involved in heavy metal 
remediation become abundant in rhizosphere 
(Badri et al.  2009 ). Similarly, alterations in 
chemical composition of the root exudates can 
impact the composition of Rhizobiaceae commu-
nities (Bressan et al.  2009 ). (3) Natural variation 

among  Arabidopsis  ecotypes (Micallef et al. 
 2009a ) or developmental stages (Chaparro et al. 
 2013 ; Micallef et al.  2009b ) can change the root 
exudates adequately to shift rhizosphere bacterial 
communities. Metatranscriptomic analyses 
revealed that microbial functional genes in the 
rhizosphere that were involved in the secondary 
metabolite and amino acid metabolism were cor-
related with plant root exudates (Chaparro et al. 
 2013 ). The metabolites and the rhizobiome tran-
scriptional profi les corresponded with the host 
developmental stage (Chaparro et al.  2013 ) 
suggesting a coupling between the host metab-
olism and microbial activity in the rhizosphere. 
(4) Finally, root exudates alone can alter the 
rhizobiome microbes (Badri et al.  2013 ). For 
example, phenolic compounds can attract specifi c 
microbes, whereas sugars, sugar alcohols, and 
amino acids are general attractants to a variety of 
microbes (Badri et al.  2013 ). However, it seems 
that the core microbiome of Proteobacteria and 
Bacteroidetes (Bulgarelli et al.  2012 ; Lundberg 
et al.  2012 ) is persistent and minimally infl u-
enced by the differences in the suites of root phy-
tochemicals (Badri et al.  2013 ). 

 In sum, a broad suite of bacteria inhabits 
 Arabidopsis  tissues. These microbial communi-
ties are comprised of potential pathogens, growth 
promoters, saprobes, and nitrogen fi xers. The 
microbial communities likely include a stable 
core. It is notable that endophyte and epiphyte as 
well as rhizosphere and root communities over-
lap considerably. Surprisingly and interestingly, 
nitrogen-fi xing bacteria are present in seeds and 
roots. However, nitrogen fi xation in situ remains 
to be demonstrated. Finally, studies using a num-
ber of accessions in native soils that have reported 
accession-specifi c endophytes or rhizosphere 
bacterial assemblages may permit teasing apart 
the infl uence of plant genotype, edaphic factors, 
plant defense signaling, root exudates, and root 
architecture on microbial communities.  

3.2     Fungal Endophytes 

 The interest in  Arabidopsis  microbiome is a 
recent development, and bacterial communities 
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have received more attention than fungi. Very 
few studies have examined the fungal endophyte 
presence in  Arabidopsis  (Table  6.1 ). Using 
DGGE fi ngerprinting, Bressan et al. ( 2009 ) 
identifi ed various ascomycete (e.g.,  Nectria ), 
basidiomycete (e.g.,  Marchandobasidium ), and 
chytridiomycete (e.g.,  Olpidium ) genera in 
 Arabidopsis  roots. Similarly to bacteria, some 
taxa occurred in the roots and rhizosphere, and 
stable isotope labeling studies suggested that fun-
gal communities were infl uenced by  Arabidopsis  
root exudates. Culture-dependent surveys in 
Germany (Junker et al.  2012 ) and Spain (Garcia 
et al.  2012 ) identifi ed common fungal endo-
phytes. These studies pointed out that both leaf 
and root tissues hosted diverse fungal communi-
ties (Table  6.1 ) and indicated some temporal vari-
ability (Junker et al.  2012 ). While pathogenic 
 Leptosphaeria maculans  was the most commonly 
isolated fungus in the fi rst year of the 2-year 
study, other genera ( Phoma  and  Phomopsis ) 
dominated the samples in the second year (Junker 
et al.  2012 ). Subsequent laboratory resyntheses 
confi rmed that many of these fungi were 
 Arabidopsis  pathogens. In addition to temporal 
variability, the fungal communities that colonize 
 Arabidopsis  are spatially variable (Garcia et al. 
 2012 ). Fungal isolates from leaves and siliques of 
fi ve Spanish  Arabidopsis  populations were 
largely comprised of  Alternaria ,  Embellisia , and 
 Cladosporium . Majority of the fungal isolates 
from  Arabidopsis  are ascomycetes, and few 
represent basidiomycetes or basal fungal lin-
eages (Table  6.1 ; Garcia et al.  2012 ). Despite the 
low frequency in tissues, basidiomycetes in the 
order Sebacinales are interesting: They form 
mycorrhizas and endophytic associations with 
many hosts and have been recently reported in 
 Arabidopsis  under natural conditions (Weiss 
et al.  2011 ). It is notable that  P. indica  (also 
Sebacinales) forms a stable symbiosis with 
 Arabidopsis , opening thus the toolbox afforded 
by the well-characterized model plant (see 
Sect.  2.1 ). Interestingly, Mandyam et al. ( 2013 ) 
observed DSE colonization of  Arabidopsis  in 
native European soils. Finally, the composition of 
fungal communities is likely driven by a suite of 
factors including plant intrinsic (e.g., exudates – 
Bressan et al.  2009 ) and extrinsic controls 

(precipitation, seasonality, plant phenology, plant 
age – Junker et al.  2012 ; Garcia et al.  2012 ). 

 Although limited, the available data unequivo-
cally show that  Arabidopsis  roots host diverse 
microbial communities, including some poten-
tially benefi cial symbionts. Even though the data 
on  Arabidopsis  microbiome is only starting to 
accumulate, many meaningful extrapolations can 
be made using fungi from native plants if they are 
also able to colonize  Arabidopsis .   

4      Dark Septate Root 
Endophytes (DSE) 
in Grasslands 

 Konza Prairie Long Term Ecological Research 
(LTER) site in the Flint Hills region of eastern 
Kansas represents the native tallgrass prairie 
of North America. C 4  photosynthetic grasses 
( Andropogon gerardii ,  Sorghastrum nutans , 
 Schizachyrium scoparium ) typically dominate the 
vegetation. Although the native tallgrass plants 
predominantly form arbuscular mycorrhizas 
(Hartnett et al.  1993 ,  1994 ; Hetrick et al.  1988 , 
 1992 ), DSE fungi are likely as abundant as the 
mycorrhizal fungi (Mandyam and Jumpponen 
 2008 ). North American tallgrass prairie ecosystem 
seems to support DSE communities distinct from 
those routinely isolated from temperate and boreal 
forests which are dominated by fungi with affi ni-
ties within the PAC in the Northern Hemisphere 
(Queloz et al.  2011 ).  Periconia  and  Microdochium  
repeatedly and commonly isolated from the grass-
land ecosystem formed characteristic DSE struc-
tures (Mandyam et al.  2010 ). Grasslands may in 
general host fungal endophyte communities that 
differ from those observed in forested ecosystems 
(see Khidir et al.  2010 ; Kageyama et al.  2008 ). 
However, woodland steppes and savannas may 
have an endophyte composition that includes taxa 
typical to both biomes (Knapp et al.  2012 ). 

 Functionally, the DSE fungi from the grass-
lands align well with the present understanding of 
the DSE fungi: they colonize native grasses and 
forbs suggesting a broad host range (Mandyam 
et al.  2012 ) resulting in host growth responses as 
predicted along the  mutualism- parasitism contin-
uum (Mandyam et al.  2012 ,  2013 ). Grasses also 
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tended to respond more positively than the forbs 
and also host a greater DSE colonization in fi eld-
collected roots. The greater grass affi nity to DSE 
leaves much to speculation, and its ecological sig-
nifi cance is uncertain. We use recent study by 
Knapp et al. ( 2012 ) as an example. They isolated 
similar DSE from both native and invasive plants 
supporting broad host range (see also Mandyam 
et al.  2012 ). Further, based on the similarity of 
DSE fungi in the Hungarian Plain compared to 
those in North American grasslands, Knapp et al. 
( 2012 ) hypothesized that semiarid grasslands 
share common dominant DSE across continents. 
On one hand, this may indicate fungal adaptation 
to these biomes and their plant communities. 
However, on the other hand, one is tempted to 
argue the opposite: fungi play a role in structuring 
the grassland biomes and their plant communities. 
In either case, it is highly likely that biomes glob-
ally may share fungal communities. This argu-
ment is supported by the PAC fungi reported from 
44 undisturbed or naturally regenerated forest 
sites across Europe, America, and Asia and by the 
lack of biogeographic patterns in these popula-
tions in the Northern Hemisphere (Queloz et al. 
 2011 ). Combinations of culture-dependent and 
independent tools are critical for identifying DSE 
fungi. However, they may not provide compre-
hensive views of the fungal communities as 
indicated by poor representation of known DSE 
fungi in roots that host DSE colonization (see 
Jumpponen  2011 ). 

 Based on the limited available data from 
grasslands, DSE fungi in grassland biomes may 
be distinct. Lack of reports on PAC in the grass-
lands prohibits statements about their absence or 
dominance in these systems (but see Knapp et al. 
 2012 ). However, in the interest of broader and 
improved understanding of the DSE fungi, it is 
mandatory to include non-PAC DSE fungi from 
grassland ecosystems. 

4.1       DSE Symbiosis of  Arabidopsis  

  Arabidopsis  does form DSE symbioses as indi-
cated by melanized inter- and intracellular 
hyphae and microsclerotia in native European 
soils (Mandyam et al.  2013 ). Further greenhouse 

studies with native tallgrass prairie soil confi rmed 
low but persistent colonization in three 
 Arabidopsis  ecotypes. These observations and 
the ease of inoculating DSE onto  Arabidopsis  in 
laboratory resynthesis system justify the use of 
 Arabidopsis  as a model for DSE symbiosis. 
Depending on the fungal taxon and strain, the 
 Arabidopsis  roots were extensively colonized by 
chlamydospores ( Microdochium  sp.) or mela-
nized microsclerotia ( Periconia macrospinosa ). 
The disparity in the colonization levels in the 
greenhouse and laboratory resynthesis studies is 
likely due to the use of pure cultures of DSE 
fungi and artifi cial growth conditions (see Junker 
et al.  2012 ). Notably, the  Arabidopsis  growth 
responses (Mandyam et al.  2013 ) were very simi-
lar to those observed for forbs to the native tall-
grass prairie (   Mandyam et al.  2012 ): responses 
were variable and represented the mutualism- 
parasitism continuum. Further, three DSE iso-
lates signifi cantly increased shoot dry weight in 
three accessions (Columbia, Kendallville, 
Niederlenz), two of the three isolates increased 
shoot dry weight in one accession (Cape Verde 
Island) and had nonsignifi cant or minimal effects 
on the remaining two ecotypes (Estland and 
Wassilewskija) (Fig.  6.1 ).  Arabidopsis  may also 
permit more general conclusions about DSE 
symbiosis. Root endophytes isolated from natu-
ral  Arabidopsis  populations include fungi with 
no adverse effects on the host (Junker et al.  2012 ). 
The responses that varied from negative to neu-
tral in that study may have been partly attribut-
able to the use of 2 % sugar in the growth medium 
exacerbating the negative interactions. 

 The expedience of the  Arabidopsis  model also 
permits expansion of inference to populations of 
fungi. For example, Mandyam et al. ( 2013 ) used 
34 strains of  P .  macrospinosa  in symbiosis with 
three  A .  thaliana  ecotypes (Col, Cvi, and Kin) 
and concluded that (1) at the fungal population 
level, the DSE symbiosis was either neutral (Kin) 
or negative (Col and Cvi); (2) at the fungal strain 
level, growth responses varied from positive, 
neutral, or negative within each ecotype; and (3) 
conspecifi c isolates elicit a range of growth 
responses, namely, any fungal strain could elicit a 
range of responses depending on host genotype 
(see Fig. 2 in Mandyam et al.  2013 ). Only one of 

6 Unraveling the Dark Septate Endophyte Functions: Insights from the  Arabidopsis  Model



132

the used strains was pathogenic when inoculated 
on one of the three  Arabidopsis  accessions (Cvi), 
whereas it reduced (Col) or increased (Kin) shoot 
biomass in the remaining two accessions. The 
variable responses with mostly neutral responses, 
few negative, and even fewer positive responses 
in  Arabidopsis  (Mandyam et al.  2013 ) are similar 
to the view emerging from studies that paired 
fungi and plants native to tallgrass prairie 
(Mandyam et al.  2012 ). Conversely, the use of 
DSE fungi that were not isolated from  Arabidopsis  
do not result in disproportionately large propor-
tion of parasitic, pathogenic, or mutualistic 
responses further supporting  Arabidopsis  as an 
appropriate model for this system. 

 Many studies that use laboratory resyntheses 
record simple growth responses (shoot biomass, 
root biomass, root/shoot length, proportion of 
healthy leaves, and infl orescences). However, 
similarly to PAC fungi, DSE from grasslands 
may have minor effects on growth, yet  providing 
other benefi ts (e.g., improved stress tolerance; 
Mandyam and Jumpponen  2005 ; Kageyama 
et al.  2008 ). For example, when  Arabidopsis  
plants first inoculated with  P .  macrospinosa  
were exposed 5 weeks later to either a 
 necrotrophic fungal pathogen ( Botrytis cinerea ) 
or bacterial hemibiotrophic pathogen 
( Pseudomonas syringae  ES 4326), DSE priming 
signifi cantly reduced the progression of  B .  cine-
rea  leaf necrosis only (see fi gure 3 in Kageyama 
et al.  2008 ). Based largely on the robust evi-
dence from the  Arabidopsis  model, pathogen 
lifestyle is considered a predictor of defense 
responses invoked in the host (McDowell and 
Dangl  2000 ): SA defense signaling is mainly 
effective against biotrophic pathogens, whereas 
JA defense pathways provide resistance against 
necrotrophs and generalist chewing insects 
(Glazebrook  2005 ; McDowell and Dangl  2000 ; 
Thomma et al.  2001 ). For  Arabidopsis , 
 Pseudomonas syringae  is largely considered a 
biotroph although it may initially be biotrophic 
and later necrotrophic (Alfano and Collmer 
 1996 ). The DSE-induced resistance to a necro-
trophic  B .  cinerea  and the lack of suppression of 
a hemibiotrophic  P .  syringae  can be explained 
using the framework of mycorrhiza- induced 

resistance (MIR; Pozo and Azcón- Aguilar 
 2007 ). Similarly to the suppression of SA in the 
 Rhizobium -legume symbiosis (Stacey et al. 
 2006 ), obligately biotrophic arbuscular mycor-
rhizal fungi require partial SA defense suppres-
sion for colonization. This increases host 
susceptibility to biotrophs, whereas the fully 
established mycorrhizal symbiosis enhances JA 
levels (Hause et al.  2007 ) resulting in an 
increased resistance to necrotrophs and wound-
ing insects. Similarly, rhizobacteria-induced 
resistance decreases susceptibility to necrotro-
phic pathogens by regulating JA signaling, 
although there may be considerable cross talk 
between SA and JA defense signaling (Kloepper 
and Ryu  2006 ). The signifi cant suppression of 
 Botrytis  necrosis and the slight increase in 
hemibiotrophic  Pseudomonas  titer though not 
statistically signifi cant follow the MIR model. 
The DSE induction of defense responses – espe-
cially upregulation of JA and ET signaling 
(Fig.  6.2 ) – is further supported by the prelimi-
nary microarray studies using  Arabidopsis  
Kin-1 and  Microdochium  sp. that neither stimulate 
nor inhibit this host’s growth.

   In addition to mycorrhizas and the rhizobial 
mutualists, well-known biocontrol agents including 
 Trichoderma  induce ISR against a variety of fun-
gal and bacterial pathogens (Alfano et al.  2007 ; 
Harman et al.  2004a ; Woo et al.  2006 ). This sug-
gests that ISR induction may be a general 
response to colonization and therefore detectable 
in DSE-colonized  Arabidopsis . To exemplify, 
cucumber root colonization by  Trichoderma 
asperellum  modulated genes in JA/ET signaling 
pathways and reduced  P .  syringae  pv.  lachry-
mans  leaf necrosis (Shoresh et al.  2005 ). 
Similarly,  Trichoderma virens  and  Trichoderma 
harzianum  increased maize resistance against the 
leaf pathogen  Colletotrichum graminicola  
(Djonovic et al.  2007 ; Harman et al.  2004b ). 
 Trichoderma asperellum  symbiosis  activates 
mitogen-activated protein kinase (MAPK) that is 
involved in plant defense signal transduction 
and upstream of JA/ET signaling molecules 
(Shoresh et al.  2006 ). Both SA and JA can 
reduce host susceptibility to  P .  syringae , but SA 
is more effective than JA (Shoresh et al.  2005 ; 
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Thaler et al.  1999 ,  2004 ; Zhao et al.  2003 ). The 
lack of resistance in our DSE-colonized 
 Arabidopsis  with enhanced JA defense signaling 
is consistent with the lack of  P .  syringae  suscep-
tibility to JA-mediated defenses in  Arabidopsis  
(Glazebrook  2005 ; McDowell and Dangl  2000 ; 
Thomma et al.  2001 ). However, the JA-mediated 
reduction of  P .  syringae  necrosis in tomato 
(Thaler et al.  2004 ) and the reduced cucumber
 P .  syringae  necrosis due to  Trichoderma -mediated 
JA defenses contrast our studies and underscore 
the importance of controlling for the host geno-
typic background in predicting defense responses. 

 Our unpublished microarray data from the 
shoots of 2-week-old  Arabidopsis - Microdochium  
symbiosis identifi ed 168 upregulated genes and 
33 downregulated genes (Fig.  6.2 ). Protein 
metabolism, cell cycle, defense response, tran-
scription, transport, stress response, hormone 
signaling (especially JA and ET), signal trans-
duction, and cell wall modifi cation genes were 
among those that were upregulated. In contrast, 
metabolism, protein metabolism, transcription, 
stress response, hormone signaling (especially 
auxin signaling), and signal transduction were 
downregulated (Fig.  6.2 ). Metabolomic analyses 
of similar tissues identifi ed 222 upregulated polar 

and nonpolar metabolites and 269 downregulated 
metabolites, which at the time of writing remain 
unannotated. The differential gene expression in 
 Arabidopsis -DSE symbiosis is similar to that in 
plants colonized by  Trichoderma .  Trichoderma 
harzianum  Rifai strain T22 colonization upregu-
lated 114 and downregulated 50 genes in maize 
shoots (Shoresh and Harman  2008 ). Genes 
involved in carbohydrate metabolism, photosyn-
thesis, stress, amino acid, cell wall metabolism, 
transcription, and JA and ET signaling were 
upregulated (Shoresh and Harman  2008 ). 
Similarly,  T .  hamatum  upregulated cell wall, 
defense, stress, and RNA metabolism genes in 
tomato, even in the absence of any growth 
response (Alfano et al.  2007 ). Overall, whether 
the root endophytes are rhizobacteria, mycor-
rhiza,  Trichoderma , or DSE fungi, the commonly 
observed genes that are upregulated include 
defense responses, metabolism (carbon, protein, 
or nitrogen), stress, and hormone regulation 
(Alfano et al.  2007 ; Cartieaux et al.  2003 ; 
Duplessis et al.  2005 ; Gallou et al.  2012 ; 
Johansson et al.  2004 ; Le Quere et al.  2005 ; 
Shoresh and Harman  2008 ; Wang et al.  2005 ). 
The analyses of root endophytes suggest a con-
siderable overlap in their effects on the host. 

  Fig. 6.2    Differential gene expression of  Arabidopsis  
Kin-1 ecotype inoculated with the root colonizing fungus 
 Microdochium  that elicits neither positive nor negative 
growth response. Upregulated ( a ) and downregulated ( b ) 

genes in Arabidopsis inoculated with Microdochium rela-
tive to a fungus-free mock inoculated controls after 2-week 
incubation. The experimental treatment included four rep-
licates and each replicate was a composite of nine plants       
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 As outlined above in Sects.  2  and  3 , 
 Arabidopsis  model has allowed a deeper appre-
ciation of the molecular mechanisms associated 
with benefi cial microbial root symbioses – 
including rhizobacteria, PGPR, and fungi, many 
of which are part of the natural endophytic com-
munity of  Arabidopsis . Although DSE fungi are 
globally distributed and colonize many plants, 
 Arabidopsis  has not been utilized to explore the 
DSE symbiosis. Studies reviewed here suggest 
that DSE naturally colonize  Arabidopsis  and may 
therefore provide a glimpse into the generalities 
of host responses. Unsurprisingly, gene expres-
sion and ISR observed in  Arabidopsis -DSE sym-
biosis are similar to those observed with other 
root endophytes.  Arabidopsis  model provides 
means to dissect host genomic, proteomic, and 
metabolomic responses to DSE fungi originating 
from  Arabidopsis  or from any other host plant to 
demystify this obscure symbiosis.  

4.2     Evaluation of DSE Function 
Using  Arabidopsis  Host 

 Nitrogen-fi xing bacteria, PGPR, actinobacte-
ria, and mycorrhizal fungi are usually consid-
ered mutualistic. Clearly, the jury is still out to 
 determine where DSE fungi belong in the 
mutualism- parasitism continuum. Mandyam and 
Jumpponen ( 2005 ) and Kageyama et al. ( 2008 ) 
reviewed the potential functions of DSE fungi 
and considered that DSE fungi may be multi-
functional beyond improving host growth or 
facilitating host nutrient uptake. 

 In previous sections, we have leaned on the
 P .  indica - Arabidopsis  model to outline the 
potential of the model system to expand our 
understanding of novel and poorly understood 
symbioses. If one were to recruit the  Arabidopsis  
for DSE symbiosis, what would the primary 
questions be? We propose three crucial starting 
points.  First , can we designate life histories for 
DSE fungi? Microscopic data largely suggested 
necrotrophism or biotrophism in many hosts as 
the absence of interfaces that would permit nutri-
ent exchange casted doubts about mutualism 

(Petersen et al.  2008 ). Experiments similar to 
those with  P. indica  and the green fl uorescent 
protein (GFP)-tagged  Arabidopsis  used by 
Jacobs et al. ( 2011 ) and Qiang et al. ( 2012b ) will 
likely prove invaluable in following the DSE 
colonization. Alternatively, GFP-tagged DSE 
fungi    can provide a mycocentric view of the col-
onization, for example (Gorfer et al.  2007 ), GFP-
tagged  Cadophora fi nlandica  and  P .  fortinii  that 
were stable in repeated subculturing. Their studies 
visualized  P .  fortinii  appressorium or spore 
development on pine root surface. Our preliminary 
attempts to GFP-tag  P .  macrospinosa  resulted in 
fl uorescent strains that unfortunately remained 
unstable in subculturing (Fig.  6.3 ). However, 
comparisons of the colonization process among 
different DSE are of utmost importance; they 
represent phylogenetically diverse organisms 
(Jumpponen    and Trappe  1998a ). Studies that 
compare strains that either promote or inhibit 
host growth would likely provide important cues 
on why such differences exist. Use of one host 
species ( Arabidopsis ) and even genetically 
homogeneous inbred lines would permit direct 
comparisons among the root- colonizing fungi. 
Additional genome and transcriptome studies 
would also prove valuable in determining 
the fungal lifestyle strategies. Such studies 
are exemplifi ed by  P .  indica , whose unique 
traits combine biotrophy with saprotrophy- 

  Fig. 6.3    GFP-tagged Periconia macrospinosa expressing 
the green fl uorescent protein       
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hemibiotrophy usually associated with phyto-
pathogens (Zuccaro et al.  2011 ).  Second , what 
are the causes of the observed host growth 
responses – fungal or plant-mediated hormonal 
control, facilitation of nutrient uptake, or changes 
in root or shoot anatomy? Only a small pro-
portion of DSE isolates enhanced  Arabidopsis  
growth in laboratory resynthesis studies 
(Mandyam et al.  2013 ). Comparisons among hor-
monal signaling in  Arabidopsis , root and shoot 
architecture, and nutrient transporter mutants can 
provide preliminary cues to elucidate these ques-
tions as with  P .  indica  (see Sect.  2.1 ). Similarly, 
the well-annotated  Arabidopsis  microarrays can 
shed light on the host transcriptomic responses to 
the DSE fungi (see above).  Finally , how do the 
DSE fungi improve host tolerance to biotic and 
abiotic stressors? Our preliminary data (Sect.  4.1 ) 
suggest that DSE can improve  Arabidopsis  
tolerance to necrotrophic pathogens, but not to 
biotrophic ones.  Arabidopsis  defense signaling 
or defense hormone mutants provide tools to 
understand the defense signaling operating at 
different stages of fungal colonization and/or the 
cross talk between different signaling pathways. 
Similarly,  Arabidopsis  mutants provide tools to 
evaluate DSE modulation of the host tolerance to 
stress caused by heat, drought, or environmental 
contaminants.

    Arabidopsis  model can provide a multitude of 
tools for in-depth analyses of DSE symbiosis. 
Such studies can initially be modeled after 
numerous examples that interrogate pathogenic 
or mutualistic interactions (see Sect.  2 ). Although 
the  Arabidopsis  model is perhaps imperfect to 
evaluate PAC from boreal forest conifers or DSE 
from tallgrass prairie, many fundamental molec-
ular mechanisms are conserved in plants. An 
elegant example of this is the presence of micro-
bial symbiosis gene NSP in  Arabidopsis  implied 
important in plant-microbe interactions (Hayward 
et al.  2012 ). Furthermore, the plentitude of 
advantages afforded by a well-developed model 
should not be ignored. Once mechanisms have 
been identifi ed in a model system, testing eco-
logically more accurate hypotheses with natural 
hosts may become easier. The similarities in the 

mechanisms underlying  P .  indica  symbiosis with 
 Arabidopsis  and barley highlight this.   

5     Conclusions 

 DSE and AM fungi share global distribution, 
broad host ranges, great abundance, and coloniza-
tion of root tissues simultaneously with other 
endophytes. Yet, the DSE symbioses remain 
obscure and our understanding of them cursory. 
Mycorrhizal fungi are vital for ecosystem func-
tioning because of the benefi ts they provide to the 
plants. This is despite the carbon cost incurred for 
maintenance of the symbiosis and the variable 
host responses along the mutualism-parasitism 
continuum. In comparison, DSE fungi have been 
mostly ignored despite their potential for provid-
ing similar services to the host plants. Experiments 
with native prairie plants and DSE fungi clearly 
indicate that these fungi are rarely detrimental 
to hosts. Rather, they tend to have small but vari-
able effects on host growth ranging from inhibi-
tion to stimulation. Studies utilizing  Arabidopsis  
and native DSE strains provided results congruent 
with those with native hosts, suggesting 
that  Arabidopsis  likely provides an appropriate 
model to further interrogate the DSE symbiosis. 
Additional  Arabidopsis  transcriptome studies 
suggest that DSE are similar to other root 
 colonizing organisms including rhizobacteria, 
mycorrhizas   , and other potentially benefi cial 
fungi. As an example, the ISR in DSE symbiosis 
is similar to that MIR in mycorrhizal symbiosis. 
Overall, many observations suggest that DSE may 
be important in improving host tolerance to biotic 
stress. The studies reviewed here highlight poten-
tial afforded by the exploitation of  Arabidopsis  
model with its available “omics” resources. Uses 
of these tools will likely permit major strides in 
unraveling the role of DSE in alleviating abiotic 
and biotic stress and mechanisms of growth pro-
motion or depression.     
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    Abstract  

  Asexual fungi from the genus  Neotyphodium , relatives of the sexual 
 epichloë  species (Clavicipitaceae, Ascomycota), are symbionts of several 
cool-season grasses inhabiting virtually all terrestrial ecosystems. The host 
plants incur carbon costs to sustain this symbiosis, but, in return, they 
obtain multiple benefi ts from the fungal partners, above all, protection 
from herbivores. These endophytes are often considered to be defensive 
mutualists or private protectors because they produce a considerable range 
of secondary metabolites which prove to be toxic to livestock or deterrent 
to insects. Over the past decade, ecologists have begun to recognize the 
critical role played by this grass–endophyte symbiosis in the structure and 
functioning of natural and human-made communities. In this chapter, I 
will identify different pathways through which the presence of  endophytic 
plants or their dead tissues (litter) can alter the fi tness of nonsymbiotic 
plants. Those pathways lead to show how these symbionts impact on the 
establishment and productivity of nonsymbiotic neighbors and the interac-
tion of the latter with multiple above- and belowground ecosystem compo-
nents. A set of recent studies performed with plants of  Lolium multifl orum  
associated with  Neotyphodium occultans  will provide experimental 
evidence to those effects. Finally, I will discuss the relevance of placing 
these pathways under the spotlight in order to understand the processes 
that determine the frequency of symbiotic plants within a population. 
Estimating endophyte impacts on host fi tness must consider advantages or 
disadvantages transferred to conspecifi c plants in the neighborhood, 
coexisting as a consequence of ineffi ciencies during the transmission from 
plants to seeds.  

        M.   Omacini      (*) 
  IFEVA, Facultad de Agronomía ,  Universidad de 
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1         Introduction 

 Symbionts play key roles in terrestrial ecosys-
tems and infl uence a large number of important 
components and processes at different spatial and 
temporal scales (Clay and Holah  1999 ; Omacini 
et al.  2005 ; van der Heijden et al.  2006 ,  2008 ; 
Hartley and Gange  2009 ; Kothamasi et al.  2010 ). 
In many symbioses, participating organisms gain 
multiple benefi ts through novel traits or complex 
metabolic capabilities that either displays on its 
own (Clay and Schardl  2002 ; Rodriguez and 
Redman  2008 ). 

 For instance, microbes that form intimate 
symbiotic associations with plants can stimulate 
plant productivity by supplying them with limit-
ing nutrients and/or by protecting them from 
natural enemies such as pathogens or herbivores 
(Thrall et al.  2007 ; Douglas  2010 ). It is expected 
that phenotypic alterations from symbioses 
increase fi tness of the plants and the microbes 
involved, with consequences on diversity, struc-
ture, and composition of plant community and 
both partners evolution (Sachs et al.  2004 ; van 
der Heijden et al.  2008 ; Douglas  2010 ). The con-
sequences of symbiont effects will vary if the 
microbe confers private benefi ts to one partner or 
if the benefi ts are available to many community 
members. 

 Plant symbionts are a taxonomical diverse 
group of bacteria, fungi, and virus with contrast-
ing life history traits (Douglas  2010 ). Many of 
these microorganisms rely completely on host 
plant for carbon and asymptomatically colonize 
in or on living tissues. It is important to point out 
that new symbioses are reported every year for 
the same host, and recent studies show that sym-
biont effects depend not only on the presence of 
other host symbionts but also on the symbiont 
symbionts (e.g., Márquez et al.  2007 ). Most stud-
ies focus on provider symbionts, above all mycor-
rhizal fungi and nitrogen-fi xing bacteria (Omacini 
et al.  2012 ). 

 There is a growing interest on a small group 
of species of the family “Clavicipitaceae” that 
reside entirely within aerial tissues of cool- 
season grasses (Poaceae) (Schardl et al.  2004 ; 

Rodriguez et al.  2009 ; Schardl  2010 ). These 
fungi are often considered to be defensive mutu-
alists or protective symbionts because they pro-
duce a considerable range of secondary 
metabolites which prove to be toxic to livestock 
or deterrent to insects (Clay  1988 ,  2009 ; Clay 
and Schardl  2002 ; Schardl et al.  2004 ; Schardl 
 2010 ). While potential host species of these fun-
gal endophytes are widely recognized as an 
important component of natural and human-
made communities around the world, the impact 
of the grass–endophyte symbiosis on community 
structure and function is still poorly understood 
(Omacini et al.  2005 ; Cheplick and Faeth  2009 ; 
Saikkonen et al.  2010 ). 

 In this chapter, I explore different pathways 
through which the presence of endophytic plants 
or their dead tissues (litter) can alter the fi tness of 
nonsymbiotic plants and I identify research gaps 
and propose new avenues of research. First, I 
briefl y introduce the symbiosis between grasses 
and asexual endophytes and discuss the impact of 
endophyte on the host grass interaction with its 
biotic and abiotic environment. Second, I describe 
how these symbionts may impact on the perfor-
mance of nonsymbiotic neighbors and the inter-
action of the latter with multiple above- and 
belowground ecosystem components. Third, I 
resort to results from a set of recent studies per-
formed with plants of Italian ryegrass ( Lolium 
multifl orum ) associated with the endophyte 
 Neotyphodium occultans  to provide experimental 
evidences of these potential effects. My ultimate 
aim is to highlight the signifi cance of endophyte–
grass symbiosis at the neighborhood level for 
understanding the processes determining symbi-
osis frequency and structuring plant communities 
(van der Putten et al.  2001 ; Stanton  2003 ; Palmer 
et al.  2010 ). I end with conclusions and identify 
future research priorities.  

2     Overview of Grass–
Endophyte Symbioses 

 Many defi nitions of endophyte have been pro-
posed since the term was fi rst introduced by de 
Bary, referring to any organism occurring within 
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plant tissues (   de Bary  1879 ). The most com-
monly used is the one by Petrini ( 1991 ): “all 
organisms inhabiting plant organs that, at some 
time in their life, can colonize internal plant tis-
sues without causing apparent harm to the host.” 
Great controversy has surrounded the defi nition 
of the boundaries of such a broad concept con-
sidering that any organism isolated from all 
plants studied to date would conformed an 
endophyte (Wilson  1995 ). Thus, some authors, 
whose opinion I endorse, restricted the term 
endophyte to any fungi that reside entirely 
within plant tissues (i.e., roots, stems, and/or 
leaves) although they can emerge to sporulate at 
plant or host-tissue senescence, excluding 
mycorrhizal fungi (Carroll  1988 ; Cabral et al. 
 1993 ; Rodriguez et al.  2009 ). Under this defi ni-
tion, two major groups can be recognized differ-
ing in their taxonomy, plant hosts, and ecological 
functions: the clavicipitaceous endophytes 
which infect cool-season grasses and the non-
clavicipitaceous endophytes which can be 
recovered from asymptomatic tissues of nonvas-
cular plants, ferns, conifers, and angiosperms 
(Rodriguez et al.  2009 ). 

 Clavicipitaceous fungi (phylum Ascomycota), 
in particular the  Epichloë , include many species 
that are exclusively endophytic symbionts of 
cool-season grasses (Schardl  2010 ). These fungi 
live within aerial plant tissues, among cells, and 
colonize host ovaries. They were fi rst isolated 
from seeds of  Lolium temulentum  (Vogl  1980 ). 
Up to the present, more than 200 species have 
been documented as hosts (Leuchtmann  2006 ; 
Saikkonen et al.  1998 ; Rudgers and Orr  2009 ; 
Schardl  2010 ), although there is an inaccurate 
estimation of the number or percentage of 
Poaceae that form symbiotic associations with 
this type of endophytes. Symbiotic plants are 
common in many natural and seminatural eco-
systems in different biomes around the world, 
from tropical rain forests to the high artic, and 
their frequencies within host populations range 
from 0 to 100 % (Iannone et al.  2011 ). There are 
many life-forms among the host species, includ-
ing annual and perennial, palatable or unpalat-
able, and native or exotic, introduced accidentally 
or intentionally. 

 Among endophytic fungi of grasses, 
 Neotyphodium  species (formerly  Acremonium , 
Glenn et al.  1996 ) are asexual forms that are 
exclusively vertically transmitted from symbi-
otic plants to their seeds; the said fungi do not 
sporulate at plant or host-tissue senescence 
(Fig.  7.1 ). According to phylogenetic studies, 
they have arisen independently from hybridiza-
tion of sexual ancestors of  Epichloë  genus 
(Moon et al.  2000 ; Schardl  2010 ). Sexual endo-
phytes may produce collars of mycelium (stro-
mata) on host stems under certain contexts, 
spreading contagiously and reducing host seed 
set. Instead, asexual endophytes belong to a 
group previously recognized as Type III or class 
I (White  1987 ; Rodriguez et al.  2009 ; but see 
also Tadych et al.  2007 ), whose fi tness is deter-
mined by its effects on host fi tness (i.e., seed 
production) and its effi ciency to grow in elongat-
ing grass leaves (Christensen et al.  2008 ) and to 
be transmitted across host life history stages 
(e.g., the number of symbiotic seeds produced by 
the host plant) (Fig.  7.1 ) (Ravel et al.  1997 ; Gundel 
et al.  2008 ,  2009 ).

   Recent studies show that failures in endophyte 
transmission depend on the host stage, the spe-
cies considered, and the environmental condition 
(e.g., Afkhami and Rudgers  2008 ; García Parisi 
et al.  2012 ). As the association between 
 Neotyphodium  and grasses appears to be essen-
tial for the fungus while facultative for host 
plants, evolutionary theory predicts that this type 
of symbiotic interaction should result in mutual-
ism, where both participating organisms benefi t 
(Clay and Schardl  2002 ; Douglas  2010 ). The host 
plant provides nutrition and means of propaga-
tion to the endophytic fungus while the symbiont 
confers the plant with resistance to herbivory and 
tolerance to diverse causes of abiotic stress prob-
ably mediated through bioactive alkaloids and 
antioxidants (summarized by Malinowski and 
Belesky  2000 ; Clay and Schardl  2002 ; Kuldau 
and Bacon  2008 ; White and Torres  2009 ). Interest 
for grass–endophyte symbioses greatly increased 
around the    1970s when toxicosis in cattle grazing 
on tall fescue and perennial ryegrass was associ-
ated with the presence of these asexual endo-
phytes (Bacon and Hill  1997 ). But not all 
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grass– Neotyphodium  symbioses are toxic for 
cattle (e.g.,  Lolium multifl orum–Neotyphodium 
occultans ), and a number of researchers are 
searching for nontoxic associations, which are 
more productive and tolerant to stresses than the 
nonsymbiotic counterpart. 

 Despite the profound effects that asexual 
endophytes have on the communities in which 
they occur, they are still often ignored in com-
munity theory. Bearing this in mind, this chapter 
examines the numerous interactions that 
 Neotyphodium  endophytes mediate between host 
and nonhost plant and other organisms. Besides, 
I discuss their impacts on the abiotic environment 
to highlight the far-reaching consequences of 
these interactions for community structure and 
function. Considering this review is primarily 
concerned with neighborhood level interactions, 
I only briefl y refer to some endophyte impacts on 
individual host plants. 

 More details of the multiple direct impacts, 
their physiological basis, and the genetic and envi-
ronmental contingency of the grass–endophyte 
relationship can be found in, for example, Malinowski 
and Belesky ( 2000 ), Cheplick and Faeth ( 2009 ), 
Rasmussen et al. ( 2009 ), and Brosi et al. ( 2011 ).  

3     From Host Plant 
to Neighborhood 

 In order to understand the linkages between 
endophyte–grass symbiosis and ecosystem func-
tion, a hierarchy of ecological domains needs to 
be recognized, ranging from individual host plant 
to the whole biotic community (Fig.  7.2 ). 
Between both extremes, the neighborhood level 
can be defi ned as an entity comprising a diverse 
assemblage of species that belong to different 
trophic levels interacting continuously with one 
another and with their biotic and abiotic sur-
roundings. Within this framework, the whole 
community is made up by the result of the infor-
mation issued by these assemblages dynamically 
connected by horizontal movement of organism 
and abiotic resources (Wiens  1989 ). The said 
hierarchy allows us to trace the many conse-
quences of endophyte presence at different spa-
tial and temporal scales (Omacini et al.  2005 ). 
Previous studies show that grass–endophyte sym-
biosis may have strong impacts on the structure 
and functioning of plant and arthropod communi-
ties (e.g., Clay and Holah  1999 ; Omacini et al. 
 2001 ; Clay et al.  2005 ; Finkes et al.  2006 ; 

  Fig. 7.1    Life cycle of asexual endophytes (Clavicipitaceae, 
Ascomycota) in relation to the life cycle of their host 
grasses. They transmit only vertically without suppressing 
seed production by the symbiotic host. The right angle turn 
in each  arrow  indicates that the symbiont may be lost by 
imperfect transmission in the passage from one plant stage 

to another. The photos show hyphae of the endophyte 
 Neotyphodium occultans  in seed or seedling tissues of the 
annual grass  Lolium multifl orum  (i.e., hyphae present in 
the aleurone layer or intercellular spaces respectively). 
Both photographs were taken at 200× on a light micro-
scope (Photo credit: M. Rabadán)       
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Rudgers and Clay  2007 , Rudgers et al.  2010 , 
Fig.  7.2 ). Short-term endophytes impact on plant 
composition and diversity has been mainly asso-
ciated to an increase on host performance in the 
presence of herbivores, which leads to changes in 
competitive interactions between symbiotic and 
nonsymbiotic plants with cascading effects. But 
there are multiple above- and belowground spe-
cies that can also respond to endophyte presence 

and impact on community organization (Rudgers 
et al.  2010 ).

   Here, I analyze, at least, three different path-
ways through which endophyte impact on host 
level can modify the interaction between host and 
nonhost plants and of nonhost plants with inver-
tebrate herbivores, root symbionts, and patho-
gens at neighborhood level. I focus on direct and 
indirect interactions between plants in close 

  Fig. 7.2    Three hierarchical levels in which the infl uence 
of endophytic fungi can be detected at different spatial 
and temporal scales and examples of potential effects on 
attributes and processes for each ecological domain. The 

neighborhood is defi ned as an entity comprising a diverse 
assemblage of species concurring with the host grass 
within a relative small area and sharing a common 
resource pool (Modifi ed from Johnson et al.  1997 )       

Host plant

Neighborhood

Community and Ecosystem

(e.g., growth and defense
nutrient uptake rate,  
dependency on AM fungi, 
root exudates)

(e.g., nutrient availability, associational protection, other
mutualistic associations, litter-mediated effects on
seedling success, functional capacity of soil microbes, 
abundance and diversity soil biota)

(e.g., plant diversity, host dominance, succession rate, trophic food-
webs, litter decomposition, nutrient mineralization, nitrogen fixation, 
primary and secondary productivity)
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proximity or between generations of plants in the 
same site, in which the infl uence of a symbiotic 
plant on another nonsymbiotic plant can involve 
a change in its interaction with the biotic and abi-
otic environment. First, I describe those path-
ways considering those changes in host 
characteristics and attributes that are relevant to 
the study at this level. Second, I mention experi-
ments that simplify the complex assemblage to 
reduce the amount of data to be handled. In this 
step, the whole complex system is broken down 
into several subsystems which are then examined 
one by one. Understanding the role of the grass–
endophyte symbiosis in the organization of com-
munities is limited in art. Extrapolation of the 
outcomes of small-scale and simplifi ed experi-
ments with only few associations is diffi cult and 
interpretations are unreliable (Saikkonen et al. 
 2006 ). In addition, considering that the effects of 
any symbiosis are relative to the environmental 
conditions and developmental stage of all the 
species involved, these experiments offer only 
examples of endophyte potential infl uences on 
complex and multidirectional biotic interactions 
within a community. Currently, the number of 
published studies is insuffi cient; further research 
is required in order to establish the generality of 
these insights and the importance of these path-
ways on plant community structure and the 
mechanisms underpinning the described 
responses. 

3.1     Pathways 

 The fi rst pathway considers changes in resource 
availability generated by symbiotic plants that 
can reduce directly the fi tness of nonsymbiotic 
plants in the neighborhood. Despite a small num-
ber of experiments, empirical work using 
 symbiotic and nonsymbiotic plants living 
together and separately supports that endophyte 
presence positively affects host competitive abil-
ity (Omacini et al.  2005 ; Cheplick and Faeth 
 2009 ; but see Saikkonen et al.  2006 ). The major-
ity of these studies have focused on two agro-
nomical and economically important forage 

grasses: tall fescue ( Festuca arundinacea ) and 
perennial ryegrass ( Lolium perenne ) (Saikkonen 
et al.  2006 ). Moreover, numerous studies have 
shown that  Neotyphodium  presence increases 
host ability to capture light and nutrients such as 
nitrogen or phosphorus when living separately in 
controlled conditions (reviewed by Malinowski 
and Belesky  2000 ; Cheplick and Faeth  2009 ), 
thus suggesting plant–plant interactions can be 
impacted by endophyte presence. The fact that 
symbiotic plants (E+) generally have higher root 
biomass and production of exudates than non-
symbiotic plants of the same genotype (E−) (see 
a recent meta-analysis of the published studies by 
Omacini et al.  2012 ) can also account for the 
more effi cient host soil nutrient uptake (Fig.  7.3 ). 
Other indirect evidences that E+ plants can be 
more competitive than E− plants come from 
reports of decreased productivity or biomass of 
nonsymbiotic plants of the same or different gen-
otypes when growing in fi eld conditions with 
symbiotic plants (e.g., Hoveland et al.  1999 ; Clay 
and Holah  1999 ).

   Authors generally suggest that competition 
for resources was the predominant mechanism 
of symbiosis negative impacts on nonsymbiotic 
plants mainly when those effects were detected 
in the absence of aboveground herbivores (e.g., 
Clay et al.  2005 ; Omacini et al.  2006 ). The stud-
ies rarely rule out other possible mechanisms 
such as the production of allelopathic or diffus-
ible substances by E+ plants that may decrease 
or increase the growth of concurring plants (but 
see Sutherland et al.  1999 ; Koulman et al.  2007 ; 
Vázquez-de-Aldana et al.  2011 ; Mersch and 
Cahoon  2012 ). Those processes can also help to 
explain the results of other studies where endo-
phyte effects on host growth and reproductive 
capacity were negative or varied with environ-
mental conditions (Saikkonen et al.  2006 ; 
Cheplick and Faeth  2009 ). 

 The second pathway deals with the potential 
indirect effects through the impact of symbiotic 
plants on the activity of above- and below-
ground ecosystem components that interact 
with the hosts and their neighboring plants 
(Fig.  7.3 ). Those effects can determine a short-
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term shift in competitive ability favor E− plants. 
The grass–endophyte symbiosis has been con-
sidered primarily protective (i.e., a defensive 
mutualism since Clay  1988 ), enabling the host 
plant to reduce herbivory through the produc-
tion of a considerable diversity of toxic alka-
loids. Among them, there are several classes 
that deter or kill invertebrates exclusively and 
others that are also toxic to mammalian grazers 
(summarized by Schardl  2010 ). 

 Protective roles of loline and peramine alka-
loids against insects are well established by 
choice or preference experiments (e.g., Bultman 
et al.  2009 ; Jensen et al.  2009 ) and genetic tests 
(Wilkinson et al.  2000 ; Tanaka et al.  2005 ). In 
general, although invertebrate herbivores show 
a signifi cant preference for E− plants, the degree 
of response depended on the identity of grass, 
endophyte, and herbivore species; developmen-
tal stage of the participating organisms; and 
environmental conditions. Considerable evi-
dence exists showing that endophyte negative 
impact on grass–herbivore interactions, may, in 
turn, affect invertebrate species of higher tro-
phic levels within the grassland community 
(e.g., Omacini et al.  2001 ; de Sassi et al.  2006 ; 
Bultman et al.  2009 ; Hartley and Gange  2009 ). 

Furthermore, Popay et al. ( 2003 ) proposed that 
E+ plants may increase the vulnerability of E− 
to belowground herbivores, based on observa-
tion of grass grub ( Costelytra zealandica ) 
choice between roots of maize plants growing 
with E+ or E− meadow fescue ( Festuca praten-
sis ) plants. 

 Recent studies show that the protection pro-
vided by these fungal endosymbionts to the host 
plant can be extended to other plants in the neigh-
borhood. For instance, Koulman et al. ( 2007 ) 
were able to detect alkaloids in E+ plant guttation 
fl uid and the fl uids fl owing out of tissue damages. 
Additionally, Lehtonen and collaborators ( 2005 ) 
detected the transfer of endophyte-produced 
defensive alkaloids from a grass to a hemiparasitic 
plant which reduced herbivory susceptibility of 
those plants attached to E+ plants. In spite of the 
fact they have not been studied yet, these results also 
suggest that endophyte-mediated changes in the 
degree of herbivory and/or abundance of herbivores 
may protect E+ and E− plants from infections of 
virus such as the barley yellow dwarf virus trans-
ferred by aphids (Lehtonen et al.  2006 ). 

 Furthermore, there are many other endophyte- 
mediated alterations on host biochemistry and 
physiology that may have consequences on 

  Fig. 7.3    Conceptual diagram showing how endophytic 
plants can modify the performance of neighboring and 
subsequent plants. Aphids, leaf-cutting ants, arbuscular 
mycorrhizal fungi, and soil biota represent organisms that 

may interact negatively and positively with symbiotic 
plants and nonsymbiotic plants of the same or different 
species at the neighborhood level       
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plants resistance or tolerance to biotic stresses 
and may modify the interaction of concurring 
plants with other organisms (e.g., Rasmussen 
et al.  2008 ,  2009 ). For instance, although such 
impacts are yet to be directly measured, previous 
studies have shown variation of odor or volatiles 
organic compounds by the presence of endo-
phytic fungi (Yue et al.  2001 ; Steinebrunner 
et al.  2008 ). In addition to endophyte indirect 
effects observed at higher trophic levels via 
deterrence to herbivores, these changes in micro-
environmental conditions might also explain the 
observed differential response of natural ene-
mies of herbivores (i.e., aphid parasitoids) and 
their predators to endophyte presence (Omacini 
et al.  2001 ; Bultman et al.  2009 ). 

 A further way, the third pathway, in which 
symbiotic plants may impact on both E+ and E− 
plants, is through inputs of their dead tissues (lit-
ter). Litter accumulation and decomposition have 
long been considered as complex and important 
factors in controlling vegetation structure and 
ecosystem function (Grime  1979 ; Facelli and 
Pickett  1991a ,  b ; Wardle et al.  1997 ). Endophyte 
presence is known to impact on the quantity and 
quality of litter deposited by E+ plants and its 
rate of decomposition (e.g., Omacini et al.  2004 ; 
Lemons et al.  2005 , but see Omacini et al.  2012 ). 
Apparently, alkaloids may not be responsible for 
endophyte-associated reductions in decomposi-
tion rates (Siegrist et al.  2010 ). Previous studies 
have shown signifi cant effects of the litter depos-
ited by symbiotic plants or their aqueous extracts 
on the activity of soil organisms (Lemons et al. 
 2005 ; Antunes et al.  2008 ; Omacini et al.  2004 ) 
and on seedling establishment (Omacini et al. 
 2009 ). For instance, Antunes et al. ( 2008 ) 
detected that mycorrhizal colonization of E− 
seedlings of  Bromus inermis  was signifi cantly 
reduced when emerged through litter produced 
by E+ tall fescue plants or when watered with 
water-soluble substances leached from that litter. 
These interactions including seedlings from one 
generation and dead tissues of individual from 
the previous generations suggest a previously 
unrecognized effect of the grass–endophyte sym-
biosis on host population dynamics and commu-
nity structure.  

3.2     With the Symbiosis Between 
 Lolium multifl orum  and 
 Neotyphodium occultans 
 in Sight 

  Lolium multifl orum  is an annual grass from the 
Mediterranean region commercialized world-
wide as forage and introduced accidentally as 
weed which can be easily found in roadsides, old 
fi elds, seminatural ecosystems, and wheat fi elds 
in at least 78 countries (accessed through GBIF 
Data Portal, data.gbif.org, January 2013). 
Currently, the density of this grass is promoted to 
improve winter forage production in natural 
grasslands of Argentina (de Battista  2005 ; 
Rodriguez and Jacobo  2010 ). Together with tall 
fescue, it is the only endophyte symbiotic species 
in the current fl ora of the fl ooding Pampa region, 
since resident native grasses are not associated 
with clavicipitaceous endophytes (Gundel et al. 
 2009 ; Iannone et al.  2011 ). Particularly, Italian 
ryegrass populations have shown high levels of 
 N. occultans  incidence (>90 %) in grazed and 
ungrazed humid mesophytic meadows (Gundel 
et al.  2009 ). Unlike tall fescue, no record exists of 
cattle intoxication. However, it is supposed that 
this species can produce dramatic and potentially 
permanent alterations in community structure, 
function, and composition because it is of a life- 
form, habit, and phenology not previously abun-
dant in the native community (Chaneton et al. 
 2002 ). 

 During the last 12 years, we used different 
experimental approaches to study endophyte 
impacts on the traits of this annual grass and 
their relation with multiple above- and below-
ground ecosystem members. As it was predicted 
by studies with other associations, we detected 
an endophyte positive effect on Italian ryegrass 
vegetative and reproductive biomass, and seed-
ling establishment under diverse microenviron-
mental conditions created by litter or water 
availability (Omacini et al.  2006 ,  2009 ) and 
under fi eld conditions (Uchitel et al.  2011 ). We 
also observed an endophyte-mediated reduction 
on host colonization by fungal pathogens and by 
certain species of invertebrate herbivores with 
signifi cant consequences on energy fl ow through 
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insect food webs (Omacini et al.  2001 ). The 
presence of this endophyte also exerted signifi -
cant effects on host seed predation by rodents 
(Uchitel et al.  2011 ) and the activity and func-
tion of soil microbial communities (Omacini 
et al.  2006 ; Casas et al.  2011 ). Furthermore, 
through outdoor microcosm experiments, we 
detected substantial consequences on ecosystem 
processes such as litter decomposition (Omacini 
et al.  2001 ,  2004 ). 

 Prior experiences with this grass–endophyte 
symbiosis allow us to exemplify how the pres-
ence of symbiotic  L. multifl orum  plants signifi -
cantly reduced growth and seed production of 
conspecifi c plants (Fig.  7.4 ). In Omacini et al. 
( 2009 ) experiment, symbiotic and nonsymbiotic 
plants were growing together and separated in 
soils with and without arbuscular mycorrhizal 
fungi (AMF) inoculation in order to evaluate 
plant fi tness and ability to be colonized by 
another symbiont when comparing mixed sce-
narios with monocultures. A reduction on E+ 
host colonization by AMF was detected that 
modify neither host growth nor competitive 
ability (Omacini et al.  2006 ). In both scenarios, 
E+ plants had lower levels of mycorrhizal coloni-
zation. However, in the mixtures, there was a 
signifi cant reduction in mycorrhizal colonization 
in E+ plants and an equivalent increment in 
E− conspecifi c neighbors (Fig.  7.4 ). Competitive 
relationships between foliar endophyte and 
mycorrhizal fungi have been suggested by 
several studies with different grass–endophyte 

associations (Omacini et al.  2012 , but see Novas 
et al.  2009 ; Larimer et al.  2012 ). Further on, 
Rasmussen et al. ( 2007 ) showed that this 
tripartite interaction will affect alkaloid accumu-
lation which may have an impact on host–
herbivore interaction (see Barker  1987 ; Vicari 
et al.  2002 ; Mack and Rudgers  2008 ). Future 
efforts quantifying changes in the rhizosphere are 
needed to elucidate the mechanisms that condi-
tion interaction between concurring nonsymbi-
otic plants and their symbionts (i.e., AM fungi or 
rhyzobia bacteria) and to understand how these 
processes contribute to both fi tness of plants 
sharing the same space and resources and eco-
system productivity.

   Recent experiments showed that the protec-
tion provided by these symbionts to Italian rye-
grass can be extended to other attractive plants in 
the neighborhood. Garcia Parisi and collabora-
tors (unpublished data) measured the natural 
infestation of aphids in white clover ( Trifolium 
repens ) plants surrounded by Italian ryegrass 
plants with contrasting endophyte symbiotic lev-
els (i.e., E+ and E− plants) and found that the 
presence of E+ plants can reduce three times the 
proportion of both species leaves with aphids. 
Finally, we detected that endophyte can confer 
associational protection to the seedlings emerged 
through the litter previously produced by symbiotic 
plants of this annual grass (Omacini et al.  2009 ). 
Although the litter produced by E+ plants may 
inhibit the emergence of either E+ or E− plants, it 
may create an environment that decreases the 

  Fig. 7.4    Endophyte impact on the aboveground vegetative 
and reproductive biomass and colonization by arbuscular 
mycorrhizal fungi of nonsymbiotic  Lolium multifl orum  
plants, comparing their response in monocultures of plants 
with the same symbiotic level and in mixtures of symbiotic 

and nonsymbiotic plants (E+ and E–, respectively). 
 Numbers  above the  arrows  indicate the magnitude (in per-
centage) and direction of change (increase +; decrease –) 
in Omacini et al. (2009) study       
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seedlings damaged (Fig.  7.3 ). Litter produced by 
symbiotic plants reduced by 50 % the proportion 
of E+ and E− seedlings attacked by leaf-cutting 
ants compared to litter produced by nonsymbi-
otic plants (see also White et al.  2001 ). These 
results suggest that alkaloids, the purported 
mechanism underlying herbivore deterrence, 
were examined in a rudimentary fashion and did 
not match to expectation that only E+ plants are 
protected because of high alkaloids. Along with 
resources competition, chemical cues may play a 
role in the protection against natural enemies 
conferred by endophytes in multiple generations 
of symbiotic and nonsymbiotic plants.   

4     The Challenge of Scaling Up 

 The point under discussion in this section will be 
using the information covered so far for predict-
ing the changes in symbiosis frequency within 
host population and its consequences at commu-
nity level. Many symbioses are considered multi-
functional, with potential benefi ts to the host 
plant, derived from multiple mechanisms 
(Newsham et al.  1995 ; Schardl et al.  2004 ). 
Although multifunctionality is frequently cited 
for grass–endophyte symbioses, it is typical to 
quantify either a single function provided by the 
symbiont exclusively to the partner or endophyte 
effects on a certain stage of host life cycle 
(Gundel et al.  2009 ; Rudgers et al.  2012 ). As dis-
cussed above, endophyte impacts on host plants 
can simultaneously affect a large number of dif-
ferent concurring species as well as the physical 
environment around them (i.e., soil water, nutri-
ents, pH). Such effects may have further conse-
quences in altering the resource supply to and 
behavior of multiple organisms, including subse-
quent generations of plants. Examples of endo-
phyte effects are documented for species that can 
potentially reduce or increase growth and repro-
duction (antagonistic or benefi cial species, 
respectively) of symbiotic and nonsymbiotic 
plants of the same or different genotype (see 
Fig.  7.3 ). Thus, endophyte can modify signals the 
community receives from all the lower hierarchi-
cal levels which are not proportional when com-

pared to its location and size. Thus, such impacts 
can occur when endophyte is, apparently, a pri-
vate symbiont and, additionally, a minor compo-
nent of the ecosystems. 

 Symbiosis frequency within a population is 
generally explained after estimating symbiont 
effectiveness through comparing the response of 
symbiotic and nonsymbiotic plants living sepa-
rately under controlled and simplifi ed conditions. 
It is appealing to use these data to account for the 
symbiosis persistence in the ecosystem or the dif-
ference in the percentage of symbiotic plants in 
diverse environments. However, this procedure 
may result in over simplifi cations leading to 
 misunderstandings. In this respect, Gundel and 
collaborators ( 2008 ,  2011 ) highlighted endo-
phyte-transmission effi ciency as an  additional 
mechanism neglected that could also infl uence 
infection frequencies in local populations of 
grasses. On the one hand, subtle differences in 
seed production between symbiotic and nonsym-
biotic plants can be enough for the persistence of 
an endophyte perfectly transmitted through gen-
erations. On the other hand, where endophyte 
fails to colonize all host seeds, the host plant con-
tributes to soil bank with nonsymbiotic seeds 
(e.g., García Parisi et al.  2012 , see Fig.  7.1 ). 
Thus, an increment in host seed production can 
determine a reduction in symbiosis frequency. 
However, we should additionally consider the 
impact of a symbiotic plant on the difference in 
fi tness between symbiotic and nonsymbiotic 
plants in order to estimate endophyte frequency 
more accurately. Thus, the biological importance 
of symbioses to neighboring and subsequent 
plants is central to currently understanding pro-
cesses determining symbiotic plants frequency.  

5     Conclusions 
and Perspectives 

 Asexual endophytes of grasses as well as other 
plant symbionts should be considered as impor-
tant determinants of plant community structure 
and ecosystem functioning (Stanton  2003 ; 
Kothamasi et al.  2010 ; van der Heijden et al. 
 2008 ). The host grass gains benefi ts through 
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novel traits or complex metabolic capabilities, 
which are not displayed by nonsymbiotic plants. 
Research on grass–endophyte symbioses has 
emphasized fi tness benefi ts to host plants; how-
ever, those benefi ts can impact positively or neg-
atively on other plants in close proximity through 
alternative and complementary pathways. In this 
chapter, I have demonstrated that these endo-
phytic fungi can have considerable impact on 
multiple above- and belowground ecosystem 
components and processes. I review and discuss 
mechanisms traditionally and consider and pro-
pose novel mechanisms yet to be evaluated. 
Evaluation of potential effects should also take 
into account as many aspects of host life history 
as possible. Despite not being in contact with soil 
system, endophytes may also greatly impact on 
soil biota and soil resources: this can have further 
consequences for concurring organisms, litter 
decomposition, and subsequent generations of 
plants. Although the mechanisms underpinning 
these potential responses remain elusive, prior 
experience with the association  Lolium multifl o-
rum – Neotyphodium occultans  makes it clear that 
both direct and indirect effects of symbiotic 
plants can be powerful factors in determining fl o-
ristic, structural, and dynamical community 
properties. Effects on communities of host plant 
species may range from simple competitive 
replacement of one or more species, to loss or 
reduction of whole guilds, to major conversion of 
communities structure and organization. 

 Considering the multiple potential effects of 
grass–endophyte symbioses beyond the host 
level and its lifetime, a practical dimension 
emerges. The outcome of grass–endophyte inter-
action is unpredictable with our present percep-
tion, which makes it inaccurate to estimate 
symbiosis effectiveness according to an inven-
tory of effects only on the host plant. To better 
comprehend how endophyte infl uences host 
dynamics, symbiosis persistence, and ecosystem 
functioning, several key questions still need to be 
answered. First, understanding how the presence 
of the grass–endophyte symbiosis modifi es the 
performance of concurring nonhost plants is a 
major challenge for the future. Answering this 
question, however, is complicated and will 

require the development of experimental sys-
tems, allowing the manipulation of symbiotic 
plants density and their products (e.g., volatile 
organic compounds, exudates) without infl uenc-
ing other factors and contamination from the out-
side. Up to the present, the process that has been 
mainly considered is endophyte impact on com-
petitive balance between host and nonhost plants 
and their ultimate effect at community level. 
Second, recent studies show that symbiosis may 
induce changes in litter quality and quantity 
which may have some impact on seedlings estab-
lishment and their interaction with, for example, 
arbuscular mycorrhizal fungi. It is important to 
understand whether and how such changes in 
microenvironmental conditions might feedback 
on plant composition and productivity. Further 
on, experimental studies are necessary to contrast 
the hypothesis that endophyte chemical weapons 
can function as allelopathic agents and also as 
mediators of multitrophic interactions and can be 
a major force driving the reduction of plant diver-
sity in productive communities. Third, the resis-
tance or susceptibility to other interacting 
organisms that a nonsymbiotic plant can receive 
by sharing a microsite with an endophytic plant 
provide much-needed insight into how genetic, 
biotic, and abiotic interactions affect the outcome 
of grass–endophyte symbioses and how these 
interactions, in turn, can infl uence management 
strategies within an agronomic context. Grass–
endophyte symbiosis or its residues may play an 
important but hitherto unknown role in the asso-
ciational protection against herbivores or patho-
gens in nonhost forage species or crops. 

 In conclusion, fungal endophytes are clearly 
major and key components of many ecosystems 
as a natural and invisible endosymbionts of 
grasses of widespread interest to ecological and 
agricultural research. They should not be ignored 
in community study or theory given the consider-
able extent of their impacts, even when they are 
minor components of ecosystems. Up the pres-
ent, few predictions about extended endophyte 
benefi ts to nonsymbiotic plants can be strongly 
supported given available studies and data. The 
paucity of generalization regarding community 
effects still presents a substantial dilemma for 
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community managers but helps to identify 
research priorities and innovations for more sus-
tainable practices than the current agrochemicals 
inputs (Tikhonovich and Provorov  2009 ; Andrews 
et al.  2011 ; Thrall et al.  2011 ).     
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    Abstract  

  Fungal endophytes are relatively overlooked as a platform for discovering 
bioactive molecules against some major neglected tropical diseases, until 
some recent reports. Looking their potential as prolifi c producer of bioactive 
compounds against array of diseases and ailments makes them a suitable 
platform for such explorations. A major part of third world countries 
are facing growing problems of neglected tropical diseases (NTDs). More 
than two billion people of tropical and subtropical countries are facing 
serious health problems caused by lymphatic fi lariasis, onchocerciasis, 
echinococcosis, and other helminthic and zoonotic infections. Increasing 
side effects and appearance of resistance to the synthetic anthelmintics 
stimulates researchers for exploration of novel natural alternatives from 
medicinal plants and their associated endophytic microbes as a useful 
alternative. In this chapter, some aspects with respect to novel chemistry 
of endophytes and their structure activity relationship (SAR) toward tropical 
diseases like antiparasitic, antimalarial, and other neglected tropical 
diseases have been discussed.  
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 8         Microbial Endophytes: Their 
Resilience for Innovative 
Treatment Solution to Neglected 
Tropical Diseases 
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1         Introduction 

 A wide diversity of endophytic fungi is isolated 
from the internal healthy tissues of almost every 
terrestrial and aquatic plants studied so far and 
even also recovered from red and brown algae 
(Raghukumar et al.  1992 ). Endophytic fungi are 
present in almost every plant parts, such as leaves, 
root, stem, and rhizome. Mostly the asymptomatic 
tissues are considered to have endophytes either 
fungal, bacterial, or actinobacteria, and that is 
why they are often called as latent pathogens. It is 
however very unclear about this specifi c lifestyle 
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of microbial endophytes, as it was evidenced that 
under certain conditions these microbes can 
switch from endophyte to pathogen or vice versa. 
There are two microbiomes    residing just few 
millimeter distance the phylloplane and endo-
phytic microbes have signifi cant differences in 
their microbial community, diversity and spatial 
distribution, some time it is very hard to have a 
clear separation between these two microbiome 
(Porras-Alfaro and Bayman  2011 ). 

 Endophytes colonize plant tissue and remain 
within the tissue, except that fruiting bodies that 
may emerge through the surface of the plant tissues. 
Leaves may be colonized by a variety of fungi 
just within a few weeks of its emergence. The 
colonies remain asymptomatic, and in some 
perennial plant, it may have a very long life. 
   Fungal endophytes represent nearly every taxo-
nomic representative from all divisions of fungi, 
that is, ascomycetes, hyphomycetes, and relatively 
less reported basidiomycetes; however, the domi-
nant microfungi were from hyphomycetes and 
sac forming ascomycetes. Many of the listed 
endophytes so far are representative genera from 
common soil fungi that cause disease in plants 
and animals; this phylogenetic evidence is used 
to suggest that endophytes have evolved from 
pathogens or vice versa. The mechanisms of host 
recognition and development of colonization 
may also be common among closely related 
endophytic and pathogenic fungi (Redline and 
Carris  1985 ). Endophytic fungi can be biotrophic 
mutualists, benign commensals, decomposers, or 
latent pathogens (Promputtha et al.  2007 ). All 
plants in the natural environment can shelter 
endophytic fungi, including algae, mosses, ferns, 
conifers, and angiosperms. This fungal group 
appears to signifi cantly infl uence the lifestyle of 
its host (Rodriguez et al.  2009 ). 

 Taxonomically, most of the endophytic fungi 
belong to the phylum Ascomycota and its associ-
ated anamorphs, while some species belong to the 
phyla Basidiomycota and Zygomycota (Huang 
et al.  2001 ). Endophytic fungi are an important 
source of bioactive natural molecules. These bio-
active metabolites have an array of biological 
activities and could be the starting materials or 
lead structures for the development of pharmaceu-

tical or agrochemical products (Baker et al.  2000 ). 
There have been many studies on the diversity, 
ecology, and biotechnological applications of 
endophytic fungi in grasses and wood plants in 
temperate environments. However, there is limited 
information about the diversity of endophytic fun-
gal communities in tropical forests, which are 
endowed with a rich biodiversity of fl ora. Dreyfuss 
and Chapela ( 1994 ) have estimated that approxi-
mately 1.3 million species of endophytic fungi 
remain to be discovered. The substances produced 
by endophytic fungi originate from different 
biosynthetic pathways, including isoprenoid, 
polyketide, and amino acid, and belong to diverse 
structural groups, such as terpenoids, steroids, 
xanthones, quinones, phenols, isocoumarins, ben-
zopyranones, tetralones, cytochalasins, and ennia-
tins (Schulz et al.  2002 ; Verma et al.  2009 ). Indeed, 
these bioactive molecules represent a chemical 
reservoir for discovering new compounds, such as 
antibiotic, antioxidant, immunomodulating, anti-
cancer, and antiparasitic compounds, for use in the 
pharmaceutical and agrochemical industries.  

2     Endophytic Fungi 
in Treatment of Tropical 
Diseases 

 Tropical diseases (TDs) cause over 500,000 
deaths annually and are estimated to result in a 
greater number of lost disability-adjusted life 
span than malaria and tuberculosis (Hotez et al. 
 2006 ,  2009 ). The unconcerned or neglected trop-
ical diseases (NTDs) are a group of chronic, 
debilitating, and poverty-promoting parasitic, 
bacterial, viral, and fungal infections, sporadic in 
the poorest people living in third world countries 
(Hotez and Yamey  2009 ). The major causes of 
these diseases are lack of sanitation, unhygienic 
water supply, malnutrition, and above all illiter-
acy and low economic status of the prevalence 
area. In fact, the link with poverty is so strong 
that the prevalence of these diseases serves as an 
indicator of the level of a country’s socioeco-
nomic development (WHO  2006 ). Tropical 
diseases occur in impoverished settings and are 
chronic conditions; victims can harbor chronic 
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TDs for years or decades, frequently resulting in 
disability, disfi gurement, and stigmatization 
(Hotez and Yamey  2009 ). 

 Drug resistance of pathogens causing fatal 
diseases has increased in recent years, which is a 
prime aspect to be addressed by researchers. 
Evidently, scientists have provided the public 
health cause with many effective drugs and vac-
cines, but the battle against these notorious 
microbes is still far. Diseases caused by microbes 
(bacteria, viruses, fungi, protozoans, and pro-
karyotes) such as respiratory infections, HIV/
AIDS, tuberculosis, and malaria and diseases 
such as cancer account for many infections lead-
ing to death. These microbes obtained resistance 
to many of the fi rst-line drugs used for the treat-
ment. Resistance to these fi rst-line drugs has 
forced to change the treatment to more expensive 
second- or third-line drug alternatives. If resis-
tances to these drugs also emerge, we have no 
more options for treatment. An intensive search 
for newer and more effective lead agents to deal 
with these problems is now seriously underway. 
One such renewable source apart from the 
medicinal plants is the endophytic microbes. 
Some of the interesting compounds produced by 
endophytic microbes are taxol, cryptocin, cryp-
tocandin, jesterone, oocydin, isopestacin, pseu-
domycins and ambuic acid, and many more. The 
reason endophytes mimic the chemistry of their 
respective hosts and make the same bioactive 
natural products or derivatives has been attrib-
uted to the possible intergeneric genetic exchange 
between higher plants and the  endophytic 
microbe. Usually the host-endophyte associa-
tions are symptomless, as the latter do not inter-
fere with the host biological or physiological 
dealings. In some cases, especially in grasses, it 
is observed that secondary metabolites produced 
by the inhabiting endophytes show benefi cial 
effects on the growth of the host.    Nowadays 
endophytic metabolites are looking as new source 
for bioactive molecule against major parasitic 
diseases and NTDs (Hotez et al.  2006 ). Inter-
ruption and default of therapies against TDs are 
still important obstacles to disease control in 
many endemic countries, with consequences for 
both patients and control programs; low adherence 

results in potential remaining sources of infection, 
incomplete curing, and irreversible complica-
tions and may lead to multidrug resistance 
(Heukelbach et al.  2011 ). 

 The most important viral unconcerned TDs are 
dengue and yellow fevers (Hotez et al.  2008 ). 
Tropical climates have experienced a great resur-
gence in dengue fever in recent years, and it 
appears to be spreading to new areas (Carroll et al. 
 2007 ). The WHO reports that two-fi fths of the 
world’s population is at risk of dengue infection, 
with an increase in the annual number of cases 
(Murrell et al.  2011 ). There is no specifi c treat-
ment available for dengue fever so far. Dengue is 
an increasing concern because of the lack of a vac-
cine that protects against all dengue serotypes 
(WHO  2006 ). The increase in dengue infections 
and the prevalence of all four circulating dengue 
serotypes has contributed to a rise in the incidence 
of dengue hemorrhagic fever (Murrell et al.  2011 ). 
Paracoccidioidomycosis (PCM), a kind of myco-
ses, is also responsible for major public health and 
economic burden in Latin America (Hotez et al. 
 2008 ). The available drugs most commonly used 
for treatment of PCM are sulfonamides, ketocon-
azole, itraconazole, and amphotericin B.    A long 
extended period of treatment are required; apart 
from increasing concerns about drug toxicity, the 
cost of treatment and unacceptable rates of non-
compliance with these therapies further compli-
cate the situation (Travassos et al.  2008 ). 

 Some helminth parasites are also among most 
common agents of human infection in developing 
countries, like schistosomiasis, cysticercosis, 
hydatidosis, and onchocerciasis. There are two 
major phyla of helminths, which include the major 
intestinal worms, fi larial worms ( Wuchereria ban-
crofti ) that cause lymphatic fi lariasis and oncho-
cerciasis and platyhelminthes such as the 
schistosomes and the agent of cysticercosis (Hotez 
et al.  2008 ). The drugs albendazole, oxamniquine, 
praziquantel, and ivermectin are the only available 
drugs to treat helminthiasis so far (Hotez et al. 
 2008 ). Increasing development in molecular tech-
niques has led to the identifi cation of new targets 
for the discovery and development of anthelmintic 
drugs. Yellow fever originated    in Africa and 
was imported to Europe and the Americas as a 
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consequence of the slave trade between these 
 continents (Gardner and Ryman  2010 ). Interest in 
developing new inactivated vaccines has been 
spurred by the recognition of rare but serious and 
sometimes fatal adverse events following live-
virus vaccination (Hayes  2010 ). 

  Leishmania  ( Trypanosomatidae ) are protozoan 
parasites that cause high morbidity and mortality 
levels and are recognized by the WHO as a major 
tropical public health problem (Asford  1997 ). 
Currently no vaccines for leishmaniasis are pres-
ent, and the drugs available for leishmaniasis treat-
ment are toxic, expensive, and sometimes 
ineffective (Croft and Coombs  2003 ). Chagas dis-
ease (American  Trypanosomiasis ) is caused by the 
hemofl agellate protozoan  Trypanosoma cruzi  and 
transmitted to humans either by blood-sucking tri-
atomine vectors, blood transfusion, or congenital 
transmission. The geographical distribution of 
human  T. cruzi  infection extends from the south-
ern United States and Mexico to southern 
Argentina (WHO  1991 ). There is evidence that 
trypanocidal drug treatment with nitrofuran and 
imidazole compounds can treat acute  T. cruzi  
infection, but further studies are needed to develop 
new trypanocidal drugs (Reyes and Vallejo  2005 ).  

3     Tropical Endophytic 
Fungal Diversity 

 There are 1.3 million species of endophytic fungi 
alone, the majority of which are likely found in 
tropical ecosystems. This estimate is supported by 
various studies that have sought to characterize the 
fungal communities associated with tropical plants. 
Fungal endophytic communities are divided into 
two basic groups: generalists that are found in high 
abundance and singletons that are found in low 
abundance. Tropical plants are expected to shelter a 
highly diverse population of endophytic fungi, but 
few tropical plants have been screened for their 
presence. Studies have shown that tropical plants 
shelter a great diversity of singleton species 
(Dreyfuss and Chapela  1994 ). The greatest fungal 
diversity probably occurs in tropical forests, where 
highly diverse populations of angiosperms are 
present (Arnold et al.  2000 ). The magnitude of fun-
gal diversity in tropical forests is still unclear, and 

new species remain to be described (Hawksworth 
 2004 ). In support of this proposal, a large number 
of fungal endophytic species have been described 
in association with plants in Asia, Australia, Africa, 
Central and South America, Mexico, and some 
Pacifi c and Atlantic Islands. However, the diversity 
of endophytic fungi can vary across different 
biomes of a tropical forest. Suryanarayanan et al. 
( 2002 ) showed that the endophytic fungal assem-
blage of a dry tropical forest had much less endo-
phyte diversity than a wet tropical forest. Arnold 
et al. ( 2000 ) suggested that endophytic fungi are 
hyperdiverse and about 1.5 million species may be 
an underestimate of their magnitude. In addition, 
the taxonomic placement of tropical fungi has been 
confounded by misidentifi cations made in com-
parison with temperate fungal communities, 
including the endophytic fungal community pres-
ent in the leaves of tropical plants (Arnold et al. 
 2001 ). Endophytic fungi can be passive residents 
or act as an assemblage of latent pathogens in their 
host (Ganley et al.  2004 ). 

 Endophytic fungi have been categorized into 
two main groups based on differences in evolu-
tion, taxonomy, plant hosts, and ecological func-
tions: clavicipitaceous, which are able to infect 
only some species of grasses, and nonclavicipi-
taceous, which are found in the asymptomatic 
tissues of bryophytes, ferns, gymnosperms, and 
angiosperms (Rodriguez et al.  2001 ). Clavici-
pitaceous endophytes belong to the family 
 Clavicipitaceae  ( Hypocreales ;  Ascomycota ), 
many species of which are known to produce 
bioactive molecules (mainly of the genera 
 Cordyceps ,  Balansia ,  Epichloë / Neotyphodium , 
 Claviceps , and  Myriogenospora ). In contrast, 
nonclavicipitaceous endophytes are a large group 
that have not been well defi ned taxonomically, 
but the majority of the species belong to the phyla 
 Ascomycota  and  Basidiomycota , represented by 
the genera  Alternaria ,  Arthrobotrys ,  Aspergillus , 
 Cladospo rium ,  Colletotrichum ,  Coprinellus ,  Curvu-
laria ,  Fusarium ,  Paecilomyces ,  Penicillium , 
 Phanero chaete ,  Phoma , among others. Species 
of these two endophytic groups have been inves-
tigated for their ability to produce various mole-
cules, and species living in association with 
tropical plants have been shown to be effective 
producers of bioactive metabolites. 
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3.1     Isolation and Identifi cation 
Method of Endophytic Fungi 

 The methods used to isolate endophytic fungi 
vary in the technique used for surface disinfection 
of the host plant tissue (leaves, stems, roots, bark, 
fl owers, fruits, and seeds) and the choice of cul-
ture media. The disinfection process can infl uence 
the detection of endophytic fungi; in general, the 
plant surface is disinfected with a strong oxidant 
or surfactant agent for a specifi c period of time. 
The most commonly used agents include 1–4 % 
detergent, 3 % H 2 O 2 , 2–10 % NaOCl, or 70–95 % 
ethanol. The culture medium is another important 
limiting factor. Commonly used media include 
potato dextrose agar (PDA), malt extract agar 
(MEA), yeast malt agar (YMA), and Sabouraud 
agar (SA), supplemented with antibacterial agents 
(chloramphenicol, penicillin, ampicillin, tetracy-
cline, streptomycin, among others) to suppress 
contaminating bacteria. After isolation, the endo-
phytic fungi, including the bioactive species, must 
be identifi ed correctly. Macro- and micromorpho-
logical cultural  characteristics, molecular analy-
sis, and metabolite profi les are the main criteria 
that are used to identify endophyte fungal taxon-
omy. The identifi cation of endophytic fungi relies 
signifi cantly on the taxonomic expertise of the 
mycologist and frequently requires polyphasic 
taxonomy. In tropical regions, multiple endo-
phytic fungal species are recovered and are com-
monly grouped based on similar culture 
characteristics into morphospecies, which repre-
sent a functional taxonomic unit for endophytic 
fungal species (Arnold et al.  2000 ). After charac-
terization as a morphospecies, endophytic fungi 
are submitted to molecular grouping using micro-
satellite markers that are detected with (GTG) 5 , 
M13, or EI primers based on PCR-fi ngerprinting 
methods that amplify genomic segments different 
from the repeat region itself (   Lieckfeldt and 
Seifert  2000 ). Most endophytic fungi (about 
50 %) do not produce conidia or spores when cul-
tured on common mycological media. In these 
cases, endophytic fungi can frequently be identi-
fi ed based on the sequence of the internal tran-
scribed spacer (ITS) region of the large subunit of 
the rRNA gene. Molecular techniques are a pow-
erful tool for identifying the endophytic genera 

and species of non-sporulating fungi. After 
sequencing the ITS1–5.8S–ITS2 region, the 
sequence of the endophytic fungus is compared 
with the sequences of other taxa deposited in pub-
lic databases. The GenBank database is a major 
source of nucleotide sequences. 

 Endophytic fungi produce a large number of 
metabolites, and certain molecules are very 
consistently found in species of a few genera 
when cultured under standard conditions. 
According to Larsen et al. ( 2005 ), fungal isolates 
of different species have different chemotypes, 
which can be differentiated or grouped by mod-
ern methods for dereplication analysis. The 
chemical analysis includes techniques such as 
thin layer chromatography (TLC), gas chroma-
tography (GC), high performance liquid chroma-
tography (HPLC), mass spectrometry (MS), and 
nuclear magnetic resonance (NMR), alone or in 
combination with bioinformatics tools.  

3.2     Different Fermentation 
Technique and Crude Extract 
Production 

 Filamentous fungi have long been known for 
their versatility to produce an array of secondary 
metabolites, which have potentially useful attri-
butes. Recent focus on fungal genomics coupled 
with advances in detection and molecular manip-
ulation has revolutionized this fi eld. Secondary 
metabolites are compounds with varied chemical 
structures that are usually produced only during 
the stationary phase of growth (Robinson et al. 
 2001 ). These compounds do not have a physio-
logical role during exponential phase, and their 
production starts when a key nutrient source, 
such as carbon, nitrogen, or phosphate, is 
exhausted (Barrios-González and Mejia  1996 ). 
In the last two decades, there has been a period 
of rapid discovery of new biological activities of 
these compounds and appropriate modern strate-
gies for their identifi cation (Petrini et al.  1992 ). 

 The culture medium is chosen based on the pur-
pose and the species under investigation. Liquid 
media are preferably used for physiological stud-
ies, but agar media are more convenient and practi-
cal for the rapid screening of many isolates (Hölker 
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et al.  2004 ). To isolate endophytic fungal second-
ary metabolites, fermentation techniques such as 
submerged fermentation (SmF) (or Liquid fermen-
tation) and solid-state fermentation (SSF) have 
become widely used (Table  8.1 ) (Barrios-González 
and Mejia  1996 ; Pandey  2003 ; Hölker et al.  2005 ).

   The SmF and SSF techniques differ, both can 
be used to identify secondary metabolites pro-
duced by endophytic fungi (Fig.  8.1 ). However, 
the appropriateness of a given technique should be 
evaluated based on the aim of the study and the 
available resources. In addition, optimal parameters 
for both techniques, such as incubation conditions, 
medium composition, agitation, temperature, and 
pH, must be standardized to improve process effi -
ciency and maintain reproducibility.

3.3        Host Specifi city of Tropical 
Endophytic Fungi 

 Endophytic relationships may have begun 
from the time that higher plants fi rst appeared 
hundreds of millions of years ago. Evidence of 

   Table 8.1    Comparison of the main characteristics of 
solid-state fermentation and submerged fermentation   

 Microorganism and substrates 
 Need to agitated 
continuously 

 1.  Water usage  Unlimited use 
 2.  Oxygen supply  Aeration 
 3.  Volume to fermentation mash  Larger 
 4.  Liquid waste produced  Larger 
 5.  Physical energy requirement  High 
 6.  Human energy requirement  Low 
 7.  Capital investment  High 

  Fig. 8.1    ( a ) Solid-state fermentation and ( b ) liquid fermentation processes for obtaining endophytic fungal secondary 
metabolites         
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plant- associated fungi has been discovered in 
fossilized tissues of stems and leaves (Taylor 
et al.  1999 ). As a consequence of these long-
term associations, some of these microorgan-
isms may have developed a mechanism of 
genetic cross systems that allow the exchange of 
information between themselves and the higher 
plant. This exchange would allow the fungi to 
more effi ciently cope with the environmental 
conditions and perhaps increase compatibility 
with the plant host. The dependent evolution 
of endophytic fungi may have allowed them to 
better adapt to the plant such that the fungi 
could contribute to the relationship by perform-
ing protective functions against pathogens and 
insects (Petrini et al.  1992 ; Strobel and Daisy 
 2003 ; Gunatilaka  2005 ). Tropical and temperate 
forests are considered to be the most diverse ter-
restrial ecosystems, with the greatest number 
and diversity of endophytic fungi (Strobel 
 2002 ). The constant innovation present in eco-
systems where the evolutionary race to survive 
is the most active may result in the production 
of a plethora of chemical molecules (Strobel 
 2006 ). Tropical rainforests are an important 
example of this type of environment: there is 
great competition, resources are limited, and 
selection pressure is at its peak. Consequently, 
there is a high probability that fungi associated 
with tropical hosts may be a source of novel 
molecular structures and compounds that are 
active against neglected diseases. Each of the 
approximately 300,000 known plant species 
may host at least one endophytic fungus. As 
tropical and subtropical regions harbor most of 
the world’s plant diversity, endophytic fungal 
diversity in this climatic zone is also higher, and 
all vascular plant species examined to date pos-
sess an endophytic fungus. Reasonable guide-
lines should govern the plant selection strategy 
for the discovery of bioactive endophytic fungi, 
which would include plants that are found in 
unique environmental settings, have ethnobo-
tanical histories, or are endemic or growing in 
regions of high diversity according to Strobel 
( 2003 ). Plant endophytic fungi are defi ned as 
the fungi which spend the whole or part of their 
lifecycle colonizing inter- and/or intracellularly 

inside the healthy tissues of the host plants, 
typically causing no apparent symptoms of dis-
ease. They are important components of plant 
micro-ecosystems (Tan et al.  2001 ; Zhang et al. 
 2006 ; Rodriguez et al.  2009 ). Plant endophytic 
fungi have been found in each plant species 
examined, and it is estimated that there are over 
one million fungal endophytes existed in the 
nature (Petrini  1991 ). 

 Plant endophytic fungi have been recognized 
as an important and novel resource of natural bio-
active products with potential application in 
agriculture, medicine, and food industry (Strobel 
et al.  2004 ; Gunatilaka  2006 ; Verma et al.  2009 ). 
Since the “gold” bioactive compound paclitaxel 
(taxol) discovered from the endophytic fungus 
 Taxomyces andreanae  in 1993 (Stierle et al. 
 1993 ), many scientists have been increasing their 
interests in studying fungal endophytes as poten-
tial producers of novel and biologically active 
compounds. In the past two decades, many valu-
able bioactive compounds with antimicrobial, 
insecticidal, cytotoxic, and anticancer activities 
have been successfully discovered from the 
endophytic fungi. These bioactive compounds 
could be classifi ed as alkaloids, terpenoids, ste-
roids, quinones, lignans, phenols, and lactones 
(Xu et al.  2008 ). During the long period of coevo-
lution, a friendly relationship was gradually set 
up between each endophytic fungus and its host 
plant. The host plant can supply plenteous nutri-
ment and easeful habitation for the survival of its 
endophytes. On the other hand, the endophytes 
would produce a number of bioactive compounds 
for helping the host plants to resist external biotic 
and abiotic stresses, and benefi ting for the host 
growth in return (Silvia et al.  2007 ). Some endo-
phytic fungi have developed the ability to pro-
duce the same or similar bioactive substances as 
those originated from the host plants. This is ben-
efi cial for us to study the relations between the 
endophytes and their host plants and to develop a 
substitutable approach for effi ciently producing 
these scarce and valuable bioactive compounds 
(Zhao et al.  2011 ; Gunatilaka  2006 ). For exam-
ple, an endophytic fungus from  Juglans mandsh-
urica  isolated named FSN006 from inner bark of 
the plant and was identifi ed for their antitumor 
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activity against liver cancer cell HepG2. In addi-
tion, there was preeminent selective inhibiting 
effect against the normal liver cell strain HL-7702 
and its caner counter strain HepG2. The inhibit-
ing effect against strain HL-7702 was only one 
quarter of that against HepG2 at the concentra-
tion of IC 50 , showing its higher effi cacy and lower 
toxicity (Li et al.  2009 ).    Another important 
Brazilian medicinal plant  Stryphnodendron 
adstringens  (Mart) displayed high richness, 
diversity, and low dominance indices against 
cancer cell line and amastigote forms of 
 Leishmania amazonensis  and proved their fungal 
endophytes to be a new source for novel antican-
cer drug (Carvalho et al.  2012 ). Sclerotiorin is an 
important bioactive compound isolated through 
high throughput screening (HTP) from an endo-
phytic fungus  Cephalotheca faveolata . 
Sclerotiorin was found to be potent antiprolifera-
tive and found to induce apoptosis in colon can-
cer (HCT-116) cells through BAX activation and 
downregulation of BCL-2 which cleaved cas-
pase-3 causing apoptosis of cancer cells 
(Giridharan et al.  2012 ). Some researchers from 
National Park, Pahang, isolated endophytic fun-
gal extract which induces apoptosis against 
HCT116, MCF-7, and K562 cell lines with IC50 
values less than 17 μg/mL. Molecular analysis, 
based on ITS1 and ITS4 sequencing, revealed 
that these fungus belongs to ascomycetes 
(Hazalin et al.  2012 ). In vitro anticancer activi-
ties of some endophytic fungi have been reported 
from Panama against MCF-7 cells; some of their 
strains show promising activity and lack of toxic-
ity in the assays (Martínez-Luis et al.  2011 ). 
Endophytic fungi, that is,  Aspergillus fl avus ,  A. 
niger ,  Fusarium oxysporum , and  F. solani,  were 
isolated from different parts of  Crotalaria pallida  
which were extracted in methanol by Soxhlet and 
Microwave-Assisted Extraction (MAE) to detect 
the amount of coumarin. Isolated compounds 
were analyzed by HPLC methods and column 
chromatography which was used for in vitro anti- 
HIV and anticancer activity assessment. In vitro 
anti-HIV activity was done against glycohydro-
lase enzyme (α-glucosidase, β-glucorinidase and 
lysozyme). The o-coumaric acid showed strong 

inhibition of these viral replicating enzymes and 
displayed potent anti-HIV activity (Umashankar 
et al.  2012 ). Plant endophytic fungi, as a novel 
and important microbial resource for producing 
bioactive compounds originally from their hosts, 
have attracted many researchers’ attentions on 
their theoretical study as well as potential appli-
cations. After more than two decades of research, 
much progress has been achieved, though there 
are still many issues (i.e., increasing compound 
yield in fermentation culture, elucidating biosyn-
thetic pathway of the compounds in the endophytic 
fungi) needed to be further clarifi ed and resolved 
(Fig   .  8.2 ).

4         Bioactive Compounds 
Against NTDs 

 Fungal metabolites have primarily served as lead 
structures for the development of anticancer, 
antifungal, and antibacterial agents, but recently 
a few reports of anti-parasiticidal activity espe-
cially against hydatid cyst  Echinococcus granu-
losus  have also been recently reported (Verma 
et al.  2013 ). Although new drugs are needed to 
treat all aspects of leishmaniasis, the scientifi c 
literature on the bioprospecting of endophytic 
fungi of tropical rainforests is limited. Indian 
ecosystems are potentially more diverse source 
of endophytic fungi that are able to produce bio-
active prototype molecules for developing 
 prodrugs to combat NTDs. Chemical investiga-
tion of a new endophytic fungus  Mycosphaerella 
sp . nov. strain F2140 associated with the foliage 
of the plant  Psychotria horizontalis  (Rubiaceae) 
in Panama produces cercosporin and its ana-
logue. These compounds were tested in vitro to 
determine their antiparasitic activity against the 
causal agents of malaria ( Plasmodium falci-
parum ), leishmaniasis ( Leishmania donovani ), 
and Chagas disease ( Trypanosoma cruzi ). Also, 
the cytotoxicity and potential anticancer activity 
of these compounds were evaluated using mam-
malian Vero cells and MCF7 cancer cell lines, 
respectively. Some of these derivatives displayed 
high potency and are active with no toxicity at 
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tested concentrations (Moreno et al.  2011 ). Some 
fungal endophytes from Panama has been 
reported for their antiparasitic activity against 
 Leishmania donovani ,  Plasmodium falciparum , 
and  Trypanosoma cruzi  and found to have signifi -
cant antimalarial activity with relatively low tox-
icity (Martínez-Luis et al.  2011 ). Endophytic 
fungus  Aspergillus  sp. strain F1544 reported to 
have anti-leishmanial activity from its isolated 
compounds pseurotin A, 14-norpseurotin A, 
FD-838, pseurotin D, and fumoquinone B 
(Martínez-Luis and Cherigo  2012 ). Citrinin, a 
polyketide isolated from  Penicillium janthinel-
lum  from the fruit of  Melia azedarach  ( Meliaceae ) 
in Brazil, was previously found in  Penicillium 
citrinum  and several other  Aspergillus  species 
(Vrabcheva et al.  2000 ) and signifi cantly inhib-
ited  Leishmania mexicana  at a concentration of 
40 μg/mL (Marinho et al.  2005 ).
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    The    endophytic fungus  Edenia  sp. was 
 isolated from mature leaves of  Petrea volubilis  
(Verbenaceae), which was collected from the 
Coiba National Park in Panama. Bioassay-
guided fractionation of organic extracts of 
 Edenia  sp. led to the isolation of the anti-leish-
manial compounds preussomerin EG1 (IC 50  
0.12 μM), palmarumycin CP2 (IC 50  3.93 μM), 

  Fig. 8.2    Outline of the bioactive compounds from both endophytic fungi and their host plants along with their potential 
applications       
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palmarumycin CP17 (IC 50  1.34 μM), palmarumy-
cin CP18 (IC 50  0.62 μM), CJ-12, 37 (IC 50  
8.40 μM), palmarumycin CP19 (IC 50  11.6 μM), 
and 5-methylochracin (IC 50  33.4 μM), which 
inhibited the growth of amastigote forms of 

 Leishmania donovani . Preussomerin EG1 was 
the most active substance and inhibited growth 
of  L. donovani  with a potency similar to that of 
amphotericin B (IC 50  0.09 μM) (Martínez-Luis 
et al.  2009 ).
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 Endophytic  Cochliobolus  sp. obtained from 
the plant  Piptadenia adiantoides  produces 
cochlioquinone A and isocochlioquinone A. Both 

compounds were active in an assay against 
 L. amazonensis , with EC 50  values of 1.7 and 
4.1 μM, respectively (Campos et al.  2008 ).
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    Grandisin, a tetrahydrofuran lignan isolated 
from  Piper solmsianum  ( Piperaceae ) 
(Martins et al.  2003 ) and  Virola surinamensis  
( Myristicaceae ), has potent trypanocidal 
activity against the trypomastigote form of  T. 
cruzi  at 5 μg/mL (Lopes et al.  1998 ). Biotrans-
formation of this compound by the endophytic 

fungus  Phomopsis  sp. obtained from  Viguiera 
arenaria  yielded the compound 3,4-dimethyl-
2-(4′-hydroxy-3′ ,5′-dimethoxyphenyl)-5-
methoxy- tetrahydrofuran. It had trypanocidal 
activity (IC 50  9.8 μmol/mL) similar to its nat-
ural precursor (IC 50  3.7 μmol/mL) (Verza 
et al.  2009 ).

   

O

OMe

OMe

MeO

MeO

MeO

OMe

O

OH

HO
O

OH

O

Grandicin Altenusin

O

O

CH3
Cl

O

CH3

O
CH3
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    Altenusin is a metabolite obtained from the 
organic extract of a broth culture of the endophytic 
fungus  Alternaria  sp. UFMGCB 55, which was 
isolated from a plant known to contain trypanoci-
dal compounds,  Trixis vauthieri . This fungus 
inhibited TryR enzymatic activity with an IC 50 value  
of 4.3 mM (Cota et al.  2008 ). The endophytic fun-
gus  Diaporthe phaseolorum , recovered from 
 Viguiera arenaria , displayed promising results by 
inhibiting the parasitic enzyme gGAPDH (95 %) 
at 100 μg/mL (Guimarães et al.  2008 ). An organo-

halogen natural product 2-chloro-5-methoxy-3-
methyl cyclohexa-2,5-diene- 1,4-dione and a 
quinine derivative 7-hydroxy-8-methoxy-3,6-
dimethyl dibenzofuran- 1,4-dione were obtained 
from the organic extract of  Xylaria  sp. PBR-30. 
This endophytic fungus was isolated from healthy 
leaves of  Sandoricum koetjape  ( Meliaceae ). These 
natural products had in vitro activity against  P. fal-
ciparum  (K1, multidrug-resistant strain), with IC 50  
values of 1.84 and 6.68 μM (Tansuwan et al. 
 2007 ).
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    The yeast-like fungus  Aureobasidium pullulans , 
which was isolated from leaves of  Calophyllum  
sp. collected in Narathiwat Province, Thailand, 
produces the cyclohexadepsipeptides pullularins 
A–D. Pullularin A exhibited antimalarial activity 
(IC 50  3.6 μg/mL) and moderate antituberculosis 
activity (MIC 25 μg/mL). Pullularin B exhibited 
considerable antimalarial activity (IC 50  3.3 μg/
mL), but this substance and pullularin C exhib-
ited weaker activities in other assays when com-
pared with pullularin A. The low lipophilicity of 
a deprenyl analogue of pullularin A may explain 
the inactivity of this substance in all of the assays 

(Isaka et al.  2007 ).  Codinaeopsis gonytrichoides  
was isolated from  Vochysia guatemalensis  
( Vochysiaceae ), a white yemeri tree collected in 
Costa Rica. A new tryptophan- polyketide hybrid 
named codinaeopsin, which contains an unusual 
heterocyclic unit linking indole and decalin 
fragments, was isolated from the crude extract of 
this endophytic fungus. Codinaeopsin is active 
against the 3D7 strain of  P. falciparum  with an 
IC 50  value of 2.3 μg/mL (4.7 μM). Codinaeopsin 
has the same scaffold as the HIV-integrase inhib-
itor equisetin, the antifungal agent cryptocin, 
and the telomerase inhibitor UCS1025A. These 
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compounds have a linear fragment joined to 
amino acids or N-methyl amino acids (Kontnik 
and Clardy  2008 ). Stems of  Melaleuca quinque-
nervia  ( Myrtaceae ), collected from Toohey 
Forest, Australia, were examined for fungal con-
tent. Chemical investigations of a fermentation 
culture from the endophytic fungus  Pestalotiopsis  
sp. yielded three caprolactams, which were 
named pestalactams A–C. Pestalactams A and B 
displayed modest in vitro selectivity against 
chloroquine- resistant (IC 50  41.3 and 36.3 μM, 
respectively) and chloroquine-sensitive (IC 50 16.2  
and 20.7 μM, respectively) cell lines of the 

malaria causing parasite  P. falciparum  versus 
neonatal foreskin fi broblasts (NFF, IC 50 20.2  and 
12.8 μM, respectively) (Davis et al.  2010 ). 
 Chalara alabamensis , an anamorphic fungus, 
was isolated from the host plant  Asterogyne 
 martiana  (Arecaceae), which was collected in 
Costa Rica. The dichloromethane extract of this 
fungus inhibited PfHsp86, an essential protein-
folding chaperone from  P. falciparum , with an 
EC 50  value of 24 μg/mL. The only active com-
pound isolated from the extract was viridiol, a 
steroidal furan with an EC 50  value of 1.2 μg/mL 
(Cao et al.  2010 ).
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    Phomoarcherins A–C were isolated from the 
endophytic fungus  Phomopsis archeri . These 
structures were established on the basis of spec-
troscopic evidence.    Compound phomoarcherins 
B having antimalarial activity against  Plasmodium 
falciparum  with an IC50 value of 0.79 μg/mL 
(Hemtasin et al.  2011 ).

   

OO

OMe

Pestalopyrone   

    Pestalopyrone, 6-(1′-methylprop-1′-enyl)-4-
methoxy- 2-pyrone, which was isolated from a 
Costa Rican endophytic fungus,  Phoma tospora 
bellaminuta , had activity against  P. falciparum  in 
an assay with an IC 50  value of 37 μM and is a 

promising candidate for a  prototype molecule for 
antimalarial drugs (Cao and Clardy  2011 ).  

5     Conclusions 

 Plant endophytic fungi, as a novel and abundant 
microorganism resource, owning the special 
ability to produce the same compounds as origi-
nated from their host plants, as well as other bio-
active compounds, have increased many 
investigators interesting in both basic research 
and applied fi elds. In the past two decades, 
 scientists mainly focused on the investigation of 
fungal endophytes for diversity, relationships 
with their host plants. Recently interest has been 
generated in seeking for natural bioactive com-
pounds originated from the endophytic fungi 
and improving the productivity of some poten-
tial candidates by taking advantage of genetic 
engineering, microbial fermentation projects, 
and other measures. 
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 For the development of new drugs, few bioactive 
molecules discovered from tropical endophytic 
fungi were included in studies. The metabolites 
described in this review were used against con-
cerned tropical diseases, because they are able to 
act against eukaryotic cells such as cancer cells, 
immune system cells, cells infected with viruses, 
and some human pathogenic fungi. Indeed, the 
use of the tropical endophytic fungi as novel 
scaffolds for the development of new drugs against 
neglected diseases represents a challenge to 
researchers of several scientifi c areas. The study 
of this fungal group offers some unique advan-
tages such as: (1) endophytic fungi have a com-
plex relationship with their host plant and produce 
bioactive metabolites; (2) there are a lot of differ-
ent isolates of same species of endophytic fungi, 
which also have differences in their capability 
to produce bioactive compounds, so taxonomic 
diversity brings chemical diversity as well; (3) 
   tropical endophytic fungi preserved in culture 
collections can be grown in different conditions of 
nutrients, temperature, pH, agitation, and aeration 
to optimize and recover the high amount of crude 
extracts, as well as bioactive pure compounds; 
and (4) if the crude extract and fractions produced 
by endophytic fungi do not display toxic activi-
ties, they can be used as therapeutic agents. 

 Unexplored natural environment is an excel-
lent source of bioactive compounds that can act 
as the scaffold for commercial drugs. By taking 
advantage of new genomic, proteomic, and drug 
design techniques, endophytic fungal communities 
associated with tropical forest plants, with their 
high diversity of species and their diverse genetic 
and metabolic pathways, may be resources for 
intelligent screening for discovering new drugs to 
treat unconcerned tropical diseases.     
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    Abstract  

  The distribution of endophytes (fungal and bacterial) is ubiquitous and 
almost without exception; the endophytes have been reported from all 
tissues, including leaves, stems, roots, fl owers and fruits. As typical 
symptomless organisms, in contrast to their pathogenic counterparts, they 
pose a serious challenge in explaining their continued maintenance in 
plants. How do plants tolerate them? And how do the endophytes contain 
the plant defences? But a more intriguing and enigmatic issue with many 
endophytes is the fact that they mimic the production of specifi c plant-
associated secondary metabolites (e.g. taxol, camptothecin and rohitu-
kine) in culture, independent of the host tissue. Several theories including 
the possibility of horizontal gene transfer from the respective hosts have 
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1         Introduction 

 Endophytic fungi, often referred to as “symp-
tomless fungi”, occur ubiquitously in plants 
(Arnold and Lutzoni  2007 ). They reside in 
intercellular spaces of stems, petioles, roots and 
leaves of plants without causing any obvious 
negative effects (Bacon and White  2000 ). 
Almost without exception, endophytes have 
been reported from all plants and parts of plants 
investigated. Woody plants or trees often con-
tain a greater diversity of endophytes compared 
to herbaceous plants (Petrini et al.  1992 ; 
Gaylord et al.  1996 ; Faeth and Hammon  1997 ; 
Saikkonen et al.  1998 ; Arnold et al.  2000 ). The 
endophytes may be transferred either horizon-
tally through airborne spores or vertically 
through seeds (Hartley and Gange  2009 ). Like 
other fungi, endophytic fungi are heterotrophic 
and obtain their metabolic carbon from their 
host plants. In fact, in the absence of overt 
pathogenesis, endophytic fungi are believed to 
be engaged in some mutualistic and/or symbi-
otic relationship with the host, with the latter 
benefi ting in such an engagement. 

 Many plant processes have been attributed to 
be shaped by endophytic fungal association. 
For example, endophytic fungi are suggested to 
have played a major role in structuring plant 
communities and in shaping processes such as 
colonisation, competition, coexistence and soil 
nutrient dynamics (Saikkonen et al.  1998 ; 
Schulz et al.  2002 ). Several studies have 

 demonstrated the role of endophytic fungi in 
imparting tolerance to plants against abiotic 
and biotic stresses (Bae et al.  2009 ; Arnold 
et al.  2003 ). Unlike in mutualism or symbiosis, 
the association between plants and their endo-
phytic fungi is not strong. Endophytic fungal 
diversity is shaped by environmental or habitat 
conditions in which the plants take residence 
(Vega et al.  2010 ). For instance, incidence, 
diversity and host breadth of endophytic fungi 
were shown to increase with latitude (Arnold 
 2007 ; Arnold and Lutzoni  2007 ). Plants at 
higher latitudes were mainly comprised by 
members of Ascomycota, while those in lower 
tropical latitudes with a number of different 
species (Arnold and Lutzoni  2007 ). 

 Few studies have suggested an active sym-
biotic association between plants and their 
endophytic fungal associates. The close syn-
chronisation of fungal and host reproduction 
in certain grasses, for example, is often cited 
as an example of possible co-evolution 
between the fungus and its host (Schardl et al. 
 1991 ; Moricca and Ragazzi  2008 ). Lack of 
plant defence reactions against endophytic 
fungi (Christensen et al.  2002 ) as well as the 
ability of endophytes to produce bioactive 
metabolites mimicking those produced by 
their respective host plants (Stierle et al. 
 1993 ; Amna et al.  2006 ; Eyberger et al.  2006 ; 
Kusari et al.  2009a ,  b ; Shweta et al.  2010 ; 
    2013a ,  b ; Mohana Kumara et al.  2012 ) also 
indicate the possibility of a more sustained or 

been proposed, but none has so far been supported. In this paper, we 
critically review studies on endophytes producing plant secondary 
metabolites and explore the possible molecular mechanisms. By 
analysing the pathway genes for a few major metabolites, including 
taxol and camptothecin, we show that a far more intricate molecular 
mechanism might be involved in the production of the secondary 
metabolites by the endophytes. We show that these molecular 
mechanisms could have arisen through the evolutionary interactions 
of the endophytes with their respective host plants. We discuss these 
fi ndings in the context of the current interest in harnessing endo-
phytes as alternative sources of plant secondary metabolites.  
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evolved relationship between the endophytic 
fungi and their host plants.  

2     Plant Secondary Metabolite 
Production by Endophytic 
Fungi 

 Besides their role in aiding several plant growth 
processes, endophytic fungi are known to pro-
duce a larger number of metabolites as demon-
strated by a number of fungal culture studies 
(Tan and Zou  2001 ). The metabolites including 
alkaloids, steroids, terpenoids, isocoumarins, 
quinones, fl avonoids, phenylpropanoids, lig-
nans, peptides, phenolics, aliphatics and volatile 
organic compounds have raised tremendous 
interest especially from the possibility of exploit-
ing the fungi as source of pharmaceutically 
important compounds (Tan and Zou  2001 ; 
Gunatilaka  2006 ; Zhang et al.  2006 ). Many of 
these compounds intriguingly are the same as 
produced by the respective host plants, suggest-
ing a possible genetic cross talk between the host 
and the endophytes (Fig.  9.1 ). Stierle et al. 
( 1993 ) for the fi rst time showed that an endo-
phytic fungus,  Taxomyces andreanae , isolated 
from the yew plant,  Taxus brevifolia , also pro-
duced paclitaxel, the multibillion dollar antican-
cer compound, just as is produced by the yew 
plant. In a way this demonstration stoked an 
unprecedented interest in endophytic fungi, 
especially from the possibility that these could 
serve as alternative sources of important plant-
based metabolites (Rubini et al.  2005 ; Tan and 
Zou  2001 ;    Strobel and Daisy  2003 ).

   Following Stierle et al. ( 1993 ), a number of 
studies have demonstrated the production of 
host-mimicking secondary metabolite production 
by their endophytic fungal associates. These 
metabolites include besides taxol, camptothecin, 
podophyllotoxin, vinblastine, hypericin, dios-
genin, azadirachtin and rohitukine. Nineteen 
genera of endophytic fungi ( Alternaria , 
 Aspergillus ,  Botryodiplodia ,  Botrytis ,  Cladospo-
rium ,  Ectostroma ,  Fusarium ,  Metarhizium , 
 Monochaetia ,  Mucor ,  Ozonium ,  Papulaspora , 
 Periconia ,  Pestalotia ,  Pestalotiopsis ,  Phyllosticta , 

 Pithomyces ,  Taxomyces  and  Tubercularia ) isolated 
from taxol-producing plants have been shown to 
produce paclitaxel and its analogues (i.e. bacca-
tin III, 10-deacetylbaccatin III) (Zhao et al .  
 2010 ). 

 An endophytic fungus isolated from 
 Catharanthus roseus  produced in culture the 
antileukaemic compound, vincristine (Yang 
et al.  2004 ). Similarly, podophyllotoxin, a natu-
ral product precursor of useful anticancer 
agents, was found to be produced by  Trametes 
hirsuta,  an endophyte from  Podophyllum 
hexandrum  (Puri et al.  2006 ) and also by the 
endophytic fungus  Phialocephala fortinii  asso-
ciated with  Podophyllum peltatum  (Eyberger 
et al.  2006 ). 

 An endophytic fungus  Shiraia  sp. Slf14 iso-
lated from  Huperzia serrata  produced huper-
zine (Zhu et al.  2010 ). Endophytic fungus 
isolated from the stems of  Hypericum perfora-
tum  produced hypericin and emodin (   Kusari 
et al.  2009a ,  b ). Other bioactive molecules iso-
lated from endophytic fungus include huper-
zine A, α-irone, β-irone, diosgenin, hypericin 
and toosendanin (Zhao et al.  2010 ). Several 
endophytic fungi producing camptothecin 
(CPT), an anticancer alkaloid, have been iso-
lated from CPT-producing plants (Puri et al. 
 2005 ; Amna et al.  2006 ; Rehman et al.  2008 ; 
Kusari et al.  2009a ,  b ; Shweta et al.  2010 ). 
For example,  Entrophospora infrequens  and 
 Neurospora  sp. isolated from  Nothapodytes 
foetida  were found to produce camptothecin in 
culture (Puri et al.  2005 ; Rehman et al.  2008 ). 
Kusari et al. ( 2009a ,  b ) reported the production of 
CPT, 9-methoxy camptothecin and 10-hydroxy-
camptothecin, by the endophytic fungus 
 Fusarium solani  isolated from  Camptotheca 
acuminata . Two strains of  Fusarium solani  
from  Apodytes dimidiata  were found to pro-
duce CPT, 9-methoxy camptothecin and 
10- hydroxycamptothecin (Shweta et al.  2010 ). 
More recently, Shwetha et al. ( 2013a ,  b ) dem-
onstrated the production of camptothecin by 
other endophytes isolated from  Miquelia 
 dentata , a plant recently found to produce the 
highest amount of camptothecin in its fruits 
(Ramesha et al.  2013 ).  
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3     Attenuation of Endophytic 
Fungi 

 Despite the avalanche of studies reporting the pro-
duction of host-mimicking secondary metabolites 
by endophytic fungal associates, none have led to 
realising endophytes as a viable source of the 
plant-based secondary metabolites (Priti et al. 
 2009 ). On subculturing the fungi in axenic 
medium, the endophytes tend to lose their ability 
to produce the secondary metabolites (Table  9.1 ). 
This process referred to as attenuation is a com-
mon phenomenon observed in many fungi, bacte-
ria and viruses. With particular reference to 
endophytes, successive cultures of the endophytic 
fungi  Periconia  sp. isolated from  Torreya grandi-
folia  resulted in the attenuation of taxol production 
(Li et al.  1998 ). Successive cultures of several 

endophytic fungi isolated from  Nothapodytes 
nimmoniana , a plant producing camptothecin, 
resulted in the attenuation of camptothecin pro-
duction (Gurudatt et al.  2010 ). Similarly, Kusari 
et al. ( 2009a ,  b ) reported attenuation of camptoth-
ecin production by the endophytic fungi,  Fusarium 
solani , isolated from  Camptotheca acuminata . 
The attenuation of endophytic fungi has become a 
serious impediment to the use of endophytic fungi 
as alternative sources of plant secondary metabo-
lites. Among the various reasons, it is hypothesised 
that the attenuation could be due to a lack of host-
specifi c stimuli when the fungi are cultured in 
axenic medium and/or due to silencing of genes in 
axenic cultures (Priti et al.  2009 ). Several efforts to 
reverse the attenuation by supplementing the 
axenic cultures with their respective host extracts 
have not been very promising.
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   A serious handicap in addressing the problem 
of attenuation lies in the lack of clarity underly-
ing the synthesis of plant secondary metabolite 
by the fungi. It has been suggested that the pro-
duction of the plant secondary metabolite by the 
endophytic fungi could be due to a genetic 
recombination between the fungi and its host 
plant in evolutionary time. However, there is as 
yet no evidence for such horizontal transfer of 
genes coding for secondary metabolites between 
plant and fungi (Heinig    et al.  2013 ).  

4     Do Endophytic Fungi 
Possess Genetic Machinery 
to Synthesise Plant 
Secondary Metabolites? 

 In the recent past several attempts have been 
made to unravel the biosynthetic pathway of 
plant secondary metabolites with specifi c refer-
ence to terpenoid indole alkaloid and to ask if 
these are in fact recovered in the endophytic 
fungi. Here we briefl y recapitulate certain recent 
studies that have a bearing on the production of 
plant secondary metabolites by endophytes. 

 Plant secondary metabolites are basically 
derived from three pathways, namely, polyketide, 
shikimate and mevalonate pathways. While the 
polyketide pathway contributes to the synthesis 
of phenols, quinine and prostaglandins, the shi-
kimate pathway is responsible for the synthesis 
of aromatic amino acid. All the three pathways 
are present in plants, fungi and bacteria but not 
in animals. Together these pathways easily 
explain most of the plant secondary metabolite 
diversity. For example, the decarboxylated form 
of tryptophan, tryptamine, on condensation with 
secologanin, a monoterpenoid glucoside, gives 
rise to nitrogenous glucoside, strictosidine. 
Over 1,000 indole alkaloids, including quinine, 
strychnine and the anticancer compounds vin-
blastine, vincristine and camptothecin are 
derived from strictosidine (Cordell  1974 ). 
While a number of pathway genes upstream of 
strictosidine have been unravelled in plants, for 
most metabolites, the downstream pathway 
genes are unexplored. 

 In the recent past, few studies have attempted 
to unravel plant secondary metabolite pathway 
genes in endophytic fungi. Here we briefl y review 
the pathway genes for three specifi c metabolites, 
namely, camptothecin, taxol and gibberellic acid, 
in plants and then relate it to the current under-
standing of the pathways in endophytes. 

4.1     Camptothecin (CPT) 

 Camptothecin (CPT) is a quinoline alkaloid 
fi rst isolated from  Camptotheca acuminata , a 
deciduous tree native to China and Tibet. The 
bark of the tree is extensively used in traditional 
Chinese medicine (Wall et al.  1966 ). Later, 
camptothecin was discovered in several other 
species belonging to the families Icacinaceae, 
Rubiaceae, Apocynaceae and Loganiaceae, 
with the highest concentration reported from 
 Nothapodytes nimmoniana  (Graham) Mabb. 
(Icacinaceae) [0.3 % by dry weight (DW) in its 
bark] (Govindachari and Viswanathan  1972 ; 
Uma Shaanker et al.  2008 ). 

 The biosynthetic pathway of CPT in plants is 
only partially characterised (Yamazaki et al. 
 2003 ,  2004 ). Strictosidine, a precursor of terpe-
noid indole alkaloids, is considered as the pre-
cursor for CPT. The synthesis of strictosidine is 
catalysed by strictosidine synthase ( STR) , an 
enzyme committed for CPT biosynthesis 
(Fig.  9.2 ). This gene was isolated and identifi ed 
from  Ophiorrhiza pumila  (Yamazaki et al.  2003 ), 
 Catharanthus roseus  (McKnight et al.  1990 ) and 
 Rauvolfi a serpentina  (Kutchan et al.  1988 ). 
More recently, Sun et al. ( 2011 ) cloned and char-
acterised three putative genes involved in CPT 
biosynthesis, namely, geraniol-10-hydroxylase, 
secologanin synthase and strictosidine synthase 
from  C. acuminata .

   Attempts to unravel the secondary metabolite 
genes and their clusters in fungi using whole 
genome sequences (SMURF; secondary metabo-
lite unique regions fi nder, KEGG: Kyoto 
Encyclopedia of Genes and Genomes and 
FUNGI path v3.0) failed to detect the presence 
of  STR  as also other downstream genes of terpe-
noid indole alkaloids including those, for example, 
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known in the biosynthesis of vindoline, reserpine 
and ajmalicine (Kanehisa et al.  2004 ; Khaldi 
et al.  2010 ; Sandrine et al.  2010 ; Sachin et al. 
 2013 ). These results were also confi rmed by the 
FUNGI3 pathway database where orthologs of 
 STR  and other downstream genes could not be 
located in any of the fungal genomes analysed. 
The databases also failed to detect any of the 
genes responsible for taxol biosynthesis (Sachin 
et al.  2013 ). 

 Recently, an attempt was made to unravel the 
CPT biosynthetic gene from a CPT-producing 
endophytic fungus  Fusarium solani  isolated from 
 C. acuminata  (Kusari et al.  2011 ). Signifi cantly 
while they could locate the presence of  TDC  (shi-
kimate pathway) and  G10H  and  SLS  (mevalonate 
pathway) genes, they could not locate the pres-
ence of the crucial gene,  STR  in the endophyte. 
Studies on the evolution of STR and SSLs (stric-
tosidine synthase like proteins) show that these 
proteins have been recovered from algae, cyano-
bacteria and insects but never from fungi (Sachin 
et al.  2013 ). Yet the endophyte was shown to pro-
duce CPT. Kusari et al. ( 2011 ) suggested that the 
endophyte might be using the host STR to syn-
thesise CPT. However, as Sachin et al. ( 2013 ) 
argued, this suggestion is inconceivable, consid-
ering the fact that the endophyte was able to syn-
thesise CPT in axenic cultures for several 
generations in absence of the host tissue where 
obviously the fungus cannot access the host  STR .  

4.2     Taxol 

 Paclitaxel, a highly functionalised diterpenoid, 
occurs naturally in  Taxus  (Yew) plants (Suffness 
 1995 ). Paclitaxel and some of its derivatives rep-
resent the fi rst major group of anticancer agents 
that was reported to be produced by endophytes. 
Paclitaxel precludes tubulin molecules from 
depolymerising during the process of cell divi-
sion (Schiff and Horowitz  1980 ). 

 In plants, taxol is produced by a series of 
enzymatic conversion of diterpenoid precursor 
geranylgeranyl diphosphate (GGPP) by the plas-
tidial methylerythritol phosphate pathway 
(Fig.  9.2 ); among them three genes, namely,  ts  

(involved in formation of the taxane skeleton), 
 dbat  (involved in baccatin III formation) and  bapt  
(involved in phenylpropanoyl side chain forma-
tion at C13) are regarded as key to taxol biosyn-
thesis (Xiong et al.  2013 ). 

 Several attempts have been made to unravel 
the taxol biosynthetic pathway in the fungal endo-
phytes. For example, Zhang et al. ( 2009 ) showed 
the presence of the gene 10-deacetylbaccatin- III-
10-O-acetyl transferase responsible for taxol 
biosynthesis in the endophyte  Cladosporium 
cladosporioides  MD213 isolated from  Taxus 
media  (yew species). Furthermore, Staniek et al. 
   ( 2009 ) reported the presence of the  Taxadiene 
synthase  ( txs ), a gene unique to the formation of 
the primary taxane skeleton, as well as  phenylpro-
panoyltransferase  ( bapt ) gene encoding of the 
fi nal acylation of the core structure of taxol pres-
ent in the endophytic fungus  Taxomyces andre-
anae  isolated from  Taxus . More recently, Xiong 
et al. ( 2013 ) showed that in three taxol- producing 
endophytes isolated from Anglojap Yew,  T. media , 
the fungus gave positive hits for the three key 
genes,  ts ,  dbat  and  bapt . However, the homology 
of these genes with those of  T. media  was low 
(between 40 and 44 % for  ts  and  bapt ), indicating 
that the genes in the endophytes may have inde-
pendently evolved in the endophytes (Xiong et al. 
 2013 ). 

 However, in another recent study, Heinig 
et al. ( 2013 ) using three probes, taxadiene syn-
thase, taxane-5α-hydroxylase and taxane-13α- 
hydroxylase, all involved in taxol biosynthesis, 
found none of the genes in the endophytic 
genome sequence. This result was further con-
fi rmed by sequencing the endophytes; none of 
the contigs had any signifi cant homology to the 
genes responsible for taxane biosynthesis in the 
yew plant. Analysis of FUNGI3 pathway data-
base also failed to detect any of the genes 
responsible for taxol biosynthesis (Sachin et al. 
 2013 ). Based on these studies, Heinig et al. 
( 2013 ) concluded that the endophytes recovered 
from  Taxus  species do not have the ability to 
produce taxol endogenously and that the 
reported presence of taxol in the endophytes is 
probably due to the residual taxanes absorbed 
by the endophyte cell wall structures.  
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4.3     Gibberellic Acid 

 Unlike many other plant secondary metabolites, 
the biosynthetic pathway of gibberellic acid (GA) 
is well known. GA has been shown to be pro-
duced by plant, fungi and even bacteria. 
Intriguingly while the GA produced by all of 
them is structurally identical, they are all synthe-
sised from diverse pathways. For example, while 
the basic pathway of GA biosynthesis in both 
plants and fungi are the same until GA12- 
aldehyde, the two differ later on in the process of 
making active GAs (GA1 or GA3). In plants, 
conversion of GGDP to active GAs requires the 
presence of 3 terpene synthases, two 450s and a 
soluble 20 DDS. In contrast, in the fungus, the 
synthesis is made by only 1 bifunctional terpene 
cyclase (CPSD/KS) and by P450s. 

 These results suggest that the biosynthetic 
pathways in plants and fungi may have evolved 

independently (Bömke and Tudzynski  2009 ). 
GA production has also been reported from 
endophytic fungi,  F. proliferatum,  isolated from 
orchid roots. The fungus was found to contain 
the GA biosynthetic gene P450-4. Strains of  F. 
proliferatum  that did not produce GA were found 
to have mutations at some of the genes involved 
in GA biosynthesis. Complementation of these 
fungi with those producing GA restored the GA 
production. These studies therefore clearly 
negate a long-held view that the fungi acquired 
the genes for GA biosynthesis from higher plants 
through horizontal gene transfer (Bömke and 
Tudzynski  2009 ). 

 In summary, despite the overwhelmingly 
large number of reports of endophytic fungi pro-
ducing plant secondary metabolites, there seems 
to be little evidence of them having the pathway 
genes associated with the synthesis of these 
metabolites.   

  Fig. 9.2    Schematic representation of the biosynthetic pathways of indole alkaloid, camptothecin and diterpenoid taxol 
in plants       
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5     Alternative Hypotheses 

 Recently, Sachin et al. ( 2013 ) proposed three 
alternative hypotheses that could explain the 
observed production of plant secondary metabo-
lites by endophytic fungi with specifi c reference 
to CPT-producing endophytes (Fig.  9.3 ). In its 
generic sense, these hypotheses can explain the 
production of other plant secondary metabolites, 
such as taxol, as well as by endophytes.

   All the hypotheses can explain the observed 
attenuation of production of secondary metabo-
lite upon subculturing the endophytes. According 
to the fi rst hypothesis, the key gene strictosidine 
synthase ( STR ) involved in camptothecin biosyn-

thesis in plants may be replaced by a new stricto-
sidine synthase-like (SSL) gene or an entirely 
different protein. Under this condition, conven-
tional methods to clone the gene (using degener-
ate primers) from the endophytes or searching for 
homologous segments in the endophyte genome 
sequence may be futile. Thus, in the absence of 
the known  STR  gene, endophytes can still synthe-
sise camptothecin in culture. Silencing of the 
gene by differential methylation during subcul-
ture generations can easily explain the observed 
attenuation. In the second hypothesis, Sachin 
et al. ( 2013 ) proposed that the endophytic fungi 
may carry the critical gene clusters for secondary 
metabolite synthesis in extra-chromosomal 

  Fig. 9.3    Schematic representation of the hypotheses 
describing the mechanism of production of plant sec-
ondary metabolites by endophytic fungi. ( a ) Formation 
of strictosidine by the enzyme strictosidine synthase 
(STR) in the plant. ( b ) Typical attenuation of camptoth-
ecin (CPT) by CPT-producing endophytic fungi from 
 Nothapodytes nimmoniana  5. ( c ) Flow of events on iso-

lation of endophytic fungi from the plant. (C1), 
Hypothesis 1; (C2), Hypothesis 2 ( red circles  represent 
the extra-chromosomal elements (ECEs) carried within 
the fungal mycelia); and (C3), Hypothesis 3.  Yellow  dots 
are endohyphal bacteria presumed to carry plasmids 
( red ) bearing secondary metabolite genes (Adapted from 
Sachin et al.  2013 )       
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elements (ECEs) or plasmids. The genes them-
selves may have evolved independently or 
acquired from the host tissue through horizontal 
gene transfer. Evidence exists to indicate that 
fungi carry plasmids (Griffi this  1995 ). Finally, in 
the third hypothesis they suggested that endo-
phytic fungi may harbour plasmids bearing the 
gene clusters in endohyphal bacteria. Again evi-
dence indicates the presence of endohyphal bac-
teria in a number of endophytes (Hoffman and 
Arnold  2010 ; Bianciotto et al.  2004 ; Bertaux 
et al.  2005 ). The second and third hypotheses are 
also consistent with the attenuation process; loss 
of endohyphal bacteria from fi lamentous fungus 
as well as plasmids from bacteria on subculture is 
well known; if these contain genes for secondary 
metabolite synthesis, it could lead to the attenua-
tion of production over subculture (Sachin et al. 
 2013 ). The latter two hypotheses derive support 
by the recent fi ndings that secondary metabolite 
gene clusters were recovered from giant linear 
plasmids isolated from antibiotic-producing 
 Streptomyces  species; the 1.8-Mb linear plasmids 
harboured 25 putative secondary metabolite gene 
clusters including polyketide synthase gene clus-
ters and those coding for terpene synthases or 
cyclases (Medema et al.  2010 ).  

6     Spin-Off or an Evolutionary 
Adaptation? 

 Just why do endophytic fungi produce plant sec-
ondary metabolites mimicking those produced by 
their host plants? Surprisingly despite more than 
hundred published studies on endophytic fungi 
producing plant secondary metabolites, no 
attempt has been made to address this issue. Here 
we propose two alternative explanations. 

6.1     Spin-Off Hypothesis 

 In this hypothesis we argue that the production of 
plant secondary metabolites by endophytic fungi 
mimicking those produced by their host plant 
may merely be a spin-off by virtue of the fungus 
being located in the host tissue producing the 

specifi c metabolite. In this scenario, the fungal 
resident might acquire gene clusters located in 
extra-chromosomal elements (ECEs) or plasmids 
responsible for the production of the secondary 
metabolite from the host plant and integrate it 
into its own genetic machinery to produce the 
secondary metabolites. The spin-off theory is 
consistent with the following observations. 

6.1.1     Multitude of Endophytic 
Fungus Producing the Same 
Plant Secondary Metabolite 

 Several studies in the last couple of decades have 
reported that a multitude of endophytic fungi iso-
lated from the same plant species show the ability 
to produce the same secondary metabolite. For 
example, over 19 different fungal genera isolated 
from several  Taxus  species were all shown to pro-
duce taxol in vitro. Similarly, Gurudatt et al. 
( 2010 ) and Shweta et al. ( 2010 ,  2013a ) found that 
over 28 different fungi isolated from  N. nimmoni-
ana  and related plants produced the anticancer 
alkaloid, camptothecin. The fungi in all these 
cases were very diverse taxonomically or phylo-
genetically and yet produced the same com-
pound. It is rather unlikely that such collaboration 
between the host and the diverse fungi could have 
arisen through mutualistic/symbiotic relationship. 
Normally for the latter to happen, the mutualistic 
interactions span over evolutionary time and often 
engage one or few taxonomically defi ned groups 
such as those evident from well- documented rela-
tionships between ant-pollinator mutualism, ant-
fungal gardens and fi g and fi g- wasp mutualism.  

6.1.2     Attenuation of Production over 
Subculture Generations 
Through Loss of Genes 
or Silencing of Genes 

 The spin-off theory is also consistent with the 
phenomenon of attenuation of fungi. Assuming 
that the endophytes have acquired the metabolic 
machinery for the production of the secondary 
metabolite from the host plant through extra- 
chromosomal elements, it is easy to visualise 
their gradual loss over subculture generation 
leading to the attenuation of production of the 
secondary metabolite. There is now ample evi-
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dence to indicate the loss of extra-chromosomal 
elements or plasmids through subculture of bac-
teria (Alex and Michael  1998 ). Alternatively, the 
attenuation could also be due to silencing of the 
acquired genes in the endophytes in absence of 
the host plant.   

6.2     Evolutionary Adaptation 

 In contrast to the spin-off theory, the ability of 
the fungus to produce secondary metabolites 
similar to that produced by the host plants could 
be a result of an evolutionary adaptation that 
imparts fi tness to either or both the partners, the 
fungus and the host plant. Accordingly in this 
scenario, we argue that once in the host plant, the 
endophyte acquires critical gene clusters in 
extra- chromosomal elements or plasmids 
responsible for the synthesis of the secondary 
metabolites and incorporates them to produce 
the metabolite in its own tissues, in addition to 
them being synthesised in the host plant tissue as 
well. Thus, a fungus resident in  Taxus baccata  
could use the gene clusters borne on a plasmid 
and incorporate it in its own biosynthesis for 
adaptive signifi cance – of deterring other fungal 
invasions. This is clearly of evolutionary signifi -
cance to the fungus concerned. However, unlike 
the spin-off hypothesis, the evolutionary adapta-
tion-based argument would be expected to favour 
at most a few endophytic associations (not a 
multitude) with a host plant considering that the 
host plant- endophyte relationship may have 
evolved over an evolutionary timescale. Available 
evidence however indicates that by far the rela-
tionship between host and endophyte is one 
(host) to many (endophyte) relationships. Clearly 
more research is required to generate critical evi-
dence for these processes.   

7     Conclusions 

 In conclusion, it appears that the mechanism by 
which endophytes produce secondary metabo-
lites that mimic those produced by their host 
plants is far from clear. Efforts to unravel the 

pathway genes in the endophytes, for instance, 
involved in taxol and camptothecin synthesis, 
have failed to detect critical genes corresponding 
to those that exist in plants. Yet, the endophytes 
isolated from the respective host plants produce 
the metabolites in culture, identical to those 
 prod uced by their host plants. Reviewing some 
recent studies, we argue that the mechanisms 
leading to the synthesis of the host-specifi c 
metabolites by endophytes could be enabled by 
gene clusters carried in extra-chromosomal ele-
ments or plasmids. On invasion into host tissues, 
these plasmids could be incorporated into the 
endophyte leading to the production of the 
metabolites in axenic cultures. However, on sub-
culturing the endophytes, the plasmids are cured 
or shed off, leading to the attenuation of produc-
tion of the metabolite by the endophyte. But why 
do endophytes in the fi rst place produce host- 
specifi c metabolites? We propose two possibili-
ties, one based on a simple spin-off theory and 
the other based on an intrinsic evolutionary adap-
tation to the endophyte and to the host. Clearly 
more research is required to unravel the mecha-
nism by which endophytes produce secondary 
metabolites mimicking those produced by their 
host plants. Until then, there is a little hope to use 
endophytes as alternative sources of plant metab-
olites, a promise that has been in the air for over 
two decades now.     
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1         Introduction 

 Despite the discovery of many effective drugs, a 
number of health problems still remain uncured. 
These problems include various types of can-
cer, viral infections such as HIV and HCV, 
severe fungal and bacterial infections, Parkinson’s 
and Alzheimer’s diseases, depression, obesity, 
cardiovascular diseases, infl ammatory disorders, 
and many others. Therefore, the search for novel 
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    Abstract 

 Fighting the existing and emerging diseases is one of the big challenges 
of this age, as the appearance of drug-resistant pathogens is an alarming 
phenomenon, globally. To address this matter of urgency, researchers and 
pharmaceutical companies have to revive efforts to develop completely new 
classes of pharmaceuticals. Natural products have proved a fascinating 
resource in the continued search for new drug candidates. Among various 
natural sources, microorganisms represent a sustainable and reproductive 
source of bioactive compounds, where endophytes are considered a 
hidden component. Endophytes have fascinating potential for a source of 
new drug leads as they have capacity to synthesize organic compound of 
diverse structural features. Most of the promising natural products are 
available only in extremely small quantities, which necessitate substantial 
efforts to produce required amounts for pharmacological testing. In addi-
tion, many natural products have highly complex structures, complicating 
commercial production through chemical synthesis. The majority of such 
drug candidates remains pharmacologically undeveloped due to the 
perceived supply problem and anticipated higher production costs. 
Therefore, new methods and techniques such as metagenomics and 
metatranscriptomics are needed to facilitate production of such compounds 
for pharmaceutical industry.  

      Endophytes as a Novel Source 
of Bioactive New Structures 

           Mahmoud     Fahmi     Elsebai    ,     Mysore     V.     Tejesvi    , 
and     Anna     Maria     Pirttilä    
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therapeutic agents continues, and there is a need 
to discover new structural leads for drug develop-
ment. Natural products offer a good opportunity 
both for a direct therapeutic effect and for the 
discovery of lead compounds that provide the 
basis and inspiration for the semisynthesis or 
total synthesis of effective drugs. Investigation of 
endophytic compounds, especially fungal ones, 
resulted in the discovery of structurally novel 
natural products with interesting biological 
activities, evidenced by the increased number of 
published reviews and the release of compounds 
in the clinical market (Mayer et al.  2011 ; Rateb 
and Ebel  2011 ). Unfortunately, these fascinating 
machineries synthesizing diverse structures still 
remain under-explored for new drug discovery.  

2     Importance of Microbes 

 Throughout the history, microorganisms have 
been of considerable environmental and eco-
nomic importance to mankind. Microbes, being 
single-cell entities, possess unique traits since all 
functions of life such as reproduction, assimila-
tion, digestion, and growth take place in a highly 
condensed form within a single cell, evidenced 
by their ability to grow fast. This may explain 
why these extremely small, single-cell organ-
isms are highly productive and their enzyme 
systems can catalyze a wide variety of chemical 
reactions, some being so complicated, that they 
cannot be reproduced in the synthetic chemical 
laboratories. 

 Microorganisms are proven sources of poten-
tial drug candidates; besides, they are identifi ed 
as signifi cant agents for biotransformation and 
fermentation. For example,  Candida utilis  is used 
for food and fodder yeast production, production 
of secondary metabolites, genetic engineering, 
and microbial pesticides against entomopatho-
genic fungi, bacteria, and viruses. Vinegar produc-
tion is perhaps the oldest and best-known example 
of microbial oxidation. Similarly, food manufac-
turing processes such as beer, wine, cheese, 
saccharifying grains, and leavening of bread all 
involve the use of benefi cial microbes. The further 

exploitation, such as the production of certain 
alcohols, vitamins, alkaloids, organic and amino 
acids, antibiotics, cortisone, and nucleotides, is 
much more recent. The most promising natural 
products are available only in extremely small 
quantities, and, therefore, substantial efforts are 
needed to provide suffi cient amounts for pharma-
cological testing. For example, one ton of a 
 Lissodendoryx  sp. sponge was collected to obtain 
310 mg of the anticancer compound halichondrin 
B (Piel  2006 ). In addition, many natural products 
have highly complex structures, complicating 
commercial production through chemical syn-
thesis. Therefore, the majority of such drug can-
didates remain pharmacologically undeveloped. 
Pharmaceutical companies hesitate to pursue 
such bioactive natural products due to the per-
ceived supply problem (Paterson and Anderson 
 2005 ) leading to high production costs. Therefore, 
microorganisms, such as bacteria, cyanobacteria, 
and fungi, have mainly attracted attention as 
potential lead compound producers (Lam  2007 ). 
However, culturable microorganisms can be 
manipulated and processed due to their small size 
and huge reproduction capabilities. Scaling up 
and mass production are relatively easy in micro-
organisms that can be grown in large volume. 
Many microorganisms can be stored for an indef-
inite time, ensuring availability of the targeted 
source organism. Microorganisms can be manip-
ulated both physicochemically and genetically to 
increase yields of desired natural products 
(Kharwar et al.  2011 ). 

 Microorganisms produce secondary metabo-
lites for many reasons, such as predation and 
defense against invading pathogens. A fascinat-
ing example is the isolation of isatin from the 
shrimp  Palaemon macrodactylus . The surface 
of the shrimp embryos is consistently covered 
by a bacterium of the genus  Alteromonas  which 
is the real producer of isatin. Treatment of the 
embryos with antibacterials inhibited bacterial 
growth and leads to death of the embryos from 
infection by the fungus  Lagenidium callinectes , 
indicating that the bacterial metabolite    isatin 
protected the shrimp embryos against fungal 
infection (Kelecom  2002 ).
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    Many drugs currently in the pharmaceutical 
market, especially antibiotics, have been reported 
from microorganisms. The most famous antibiotic 
is the penicillin produced by the fungus  Penicillium 
chrysogenum  (previously known as  P. notatum ), 
which was discovered by the Nobel laureate 
Alexander Fleming in 1928. The clinical use of 
penicillin in the 1950s opened up a new era in drug 
discovery, followed by the isolation of a huge num-
ber of antibiotics from soil microbes, for example, 
cephalosporins from  Cephalosporium  species. 
Later the chemical derivatization of antibiotics that 
were discovered until the early 1970s established 
new generations of clinically useful antibiotics 
(Overbye and Barrett  2005 ). In 1949, Harold 
Raistrick  initiated the fi rst systematic study of fun-
gal metabolites and recognized fungi as a prolifi c 
source of natural products (Saleem et al.  2007 ). 

 Kelecom ( 2002 ) predicted a relationship 
between the type of secondary metabolite and 
the source of microbe, rather than the microor-
ganisms themselves. The latter was exemplifi ed 
by the fungi in the genus  Aspergillus  that pro-
duce fumiquinazoline derivatives if they are 
obtained from fi sh, sesquiterpene nitrobenzoate 
derivatives if they originate from algae, and 
indole diketopiperazine derivatives if they are 
isolated from sponges. Kelecom ( 2002 ) also 
reported that bacteria produce almost equally 
antitumour and antibacterial compounds, but 
fungi are richer sources of anticancer metabo-
lites than antibacterial compounds. Therefore, 
when cytotoxic compounds are desired, for 
example, sediment bacteria, algal fungi or spon-
geal fungi should be preferred in a marine envi-
ronment. If antibacterial compounds are searched 
for, one should prefer bacteria over fungi. 

 Genetic studies have shown that fungi are 
more closely related to animals than to plants. The 
main difference is that the fungal cell walls con-
tain mainly chitin. However, Jones et al. ( 2011 ) 

reported a new species of fungi without chitin in 
their cell walls, and hence we are in front of a 
novel intermediate form, which redefi nes the fun-
gal tree of life. This form does not produce a chi-
tin-rich cell wall during any of the life cycle stages 
observed and therefore does not conform to the 
standard fungal body plan and is named 
 Cryptomycota . This new issue desires more atten-
tion from the endophytic researchers for drug 
discovery and also the possibility of fi nding these 
new fungi in the marine environment.  

3     Marine Fungi 

 Most reviews on bioactive compounds from 
endophytes have overlooked marine sources, 
and, therefore, we take this source in further con-
sideration. Marine fungi are a form of ecological, 
and not a taxonomic, group of fungi that is 
divided into two groups, that is, obligate and 
facultative, a classical defi nition that is still 
universally accepted. Obligate marine fungi are 
those that grows and sporulate exclusively 
in marine water, while facultative marine fungi 
are those from freshwater or terrestrial milieus 
able to grow and possibly also to sporulate in the 
marine environment after some physiological 
adaptations (Raghukumar  2008 ). All marine habi-
tats can host fungal strains, for example, marine 
plants (algae, sea grasses, driftwood, and man-
grove plants), marine invertebrates (sponges, 
corals, bivalves, and crustaceans), vertebrates 
(fi shes), and inorganic matter (soil, sediments). It 
is estimated that in general 74,000 fungal species 
have been described so far, and the overall 
expected global fungal diversity amounts to 1.5 
million species. The fungal diversity in individ-
ual habitats or regions is considerably underesti-
mated, for example, marine fungi from sediments 
are not observed easily by microscope due to 
their tendency to form aggregates (Rateb and 
Ebel  2011 ). Since algae and sponges are the most 
prevalent sources of marine fungi for chemical 
studies, they are subjected to meticulous studies 
on their fungal communities. The organisms that 
live and thrive in spite of pronounced pressures 
can, to a high degree, be expected to produce 
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metabolites, which might be of interest for the 
development of drugs to cure various diseases. 
Therefore, many researchers are interested in 
bio-prospecting such unusual environments in a 
quest to fi nd exotic and unique metabolite- 
producing organisms. The extreme conditions in 
terrestrial and marine environments are encoun-
tered in the form of high temperatures at the tropi-
cal areas, elevated hydrostatic pressure and low 
temperatures in the deep sea, low temperatures in 
sea ice, high temperature and elevated hydrostatic 
pressure with high concentrations of metals 
in hydrothermal vents, and hypersaline water 
bodies and hypoxic conditions in coastal as well 
as  offshore waters, not to mention deep-sea 
 sediments, oil-contaminated sites, and sites 
grazed by both terrestrial and marine animals 
(Raghukumar  2008 ). Examples of the extremo-
philic microbes (extremophiles) include acido-
philes (acidic sulfur hot springs), alkaliphiles 
(alkaline lakes), halophiles (salt lakes), hypo- and 
hyperthermophiles (deep-sea vents), and psychro-
philes (alpine lakes, arctic and antarctic waters) 
(Cragg et al.  2009 ).  

4     Endophytes as a Potential 
Source of Natural Products 

 Among the natural sources, the potential of endo-
phytes in drug discovery has been identifi ed 
within the past decade (Pirttilä and Frank  2011 ). 
Isolation and identifi cation of metabolites from 
microorganisms, especially endophytic fungi and 
bacteria, are rapidly growing, as can be observed 
from the increased number of reviews, patents, 
and original research articles published every year 
in this modern fi eld of drug discovery (Tejesvi    
and Pirttilä  2011 ). The presence of many fungal 
metabolites in the pharmaceutical market 
indicates the potential of microorganisms as a 
valuable source of lead drugs, for example, the 
antibacterial terpenoid fusidic acid (Fucidin ® ), 
the antibiotic polyketide griseofulvin (Likuden 
M ® ), semisynthetic or synthetic penicillins and 
cephalosporins, chloramphenicol, macrolides, 
statins, as well as the ergot alkaloids such as 
ergotamine (Ergo-Kranit ® ) (Hamilton-Miller 
 2008 ; Butler  2008 ; Parry et al.  2011 ).
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    Furthermore, endophytes have recently 
obtained attention in bio-inoculation to increase 
the plant growth (biomass) and production 
of key plant secondary metabolites. This is 
exemplifi ed by bio-inoculation of bacterial 
endophytes to the plant  Catharanthus roseus . 
 C. roseus  is particularly well known for its 
therapeutically useful terpenoid indole alkaloids, 
including the anticancer bisindole alkaloids 
vinblastine and vincristine, as well as other 
alkaloids, such as ajmalicine and serpentine 
(Tiwari et al.  2013 ).  

5     Chemistry and Pharmacology 
of Endophytes 

 Endophytic fungi are considered as the hidden 
members of the microbial world and represent an 
underutilized resource for new compounds. They 
produce diverse structural metabolites such as 
polyketides, alkaloids, peptides, proteins, lipids, 
shikimates, glycosides, isoprenoids, and hybrids 
of these metabolites (Mayer et al.  2011 ; Rateb 
and Ebel  2011 ). These metabolites exhibit diverse 
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pharmacological activities. In this sense, appre-
ciation of endophytic fungi is much greater than 
that of other endophytes. Global biodiversity of 
endophytic fungi is enormous, and more than 100 
fungal strains have been isolated from some plant 
taxa (Tejesvi et al.  2011 ) and have received less 
attention than soil microbes or plant pathogens, 
because they exist asymptomatically in the plant 
tissue (Kharwar et al.  2011 ). 

5.1     Cytotoxic and Antimicrobial 
Endophytic Metabolites 

 Cancer is a major cause of death worldwide; like-
wise, microbial infections have become a serious 
health threat. Specifi cally, development of resis-
tance toward current antibiotics is a signifi cant 
problem in the treatment of infectious diseases. 
Therefore, the discovery and development of new 
antibiotics is becoming a high priority in biomedi-
cal research (Saleem et al.  2010 ; Zhang et al.  2009 ). 
Since the discovery and application of penicillin, 
antibiotics have saved billions of lives and played 
an important role in human history. Many patho-
genic microorganisms, for example, methicillin-
resistant  Staphylococcus aureus  (MRSA) and 
vancomycin-resistant  Enterococcus faecium  
(VREF), have developed resistance toward current 
antibiotics, and the spread of resistance has become 

exceedingly serious. Meanwhile, some new emerging 
infectious diseases, for example, cryptococcal 
meningitis and toxoplasmosis, have emerged and 
become prevalent. All these new problems demand 
an increasing amount of novel antibiotics to be dis-
covered (Zhang et al.  2009 ; Alekshun and Levy 
 2007 ). The nonnitrogenous methyl phenalenones 
produced by the endophytic fungus  Coniothyrium 
cereale  have shown valuable cytotoxic and antimi-
crobial activities. In antimicrobial assays, conio-
scleroderolide, coniosclerodione, (–)-cereo lactone, 
and (–)-scleroderolide showed activity against 
 Staphylococcus aureus  SG 511 with MIC values 
of 23.8, 65.7, 52.0, and 23.8 μM, respectively. 
In agar diffusion assays,  Z- coniosclerodinol, 
( S , S )-sclerodinol, and coniolactone inhibited 
(>15 mm) the growth of  Mycobacterium phlei . 
(–)-Trypethelone strongly inhibited the growth of 
 M. phlei ,  S. aureus,  and  E. coli  with inhibition 
zones of 18, 14, and 12 mm, respectively (Elsebai 
et al.  2011a ,  b ). In cytotoxic assays, using an MTT 
assay with mouse fi broblast cells, the compounds 
(–)-sclerodione and (–)-trypethelone exhibited sig-
nifi cant activity with an IC 50  value of 6.4 and 
7.5 μM, respectively. Cytotoxicity was also deter-
mined using an epithelial bladder carcinoma cell 
line, in which the compounds conioscleroderolide 
and (–)-scleroderolide exhibited very weak in vitro 
cytotoxicity with IC 50  values of 27 and 41 μM, 
respectively (Elsebai et al.  2011a ,  b ).
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    Studies on endophytic fungi indicate that 
they are prolifi c producers of bioactive natural 
products. After the isolation of taxol (potent 
microtubule stabilizer) from the endophyte of 
northwestern Pacifi c yew (Stierle et al.  1993 ), 
researchers have reported several other important 
anticancer agents from fungal endophytes, such 
as camptothecin and its analogues, vincristine, 
and podophyllotoxin (Kharwar et al.  2011 ). Taxol 
was originally isolated from the host plant  Taxus 
brevifolia  and then reported as a product of the 

endophytic fungus  Taxomyces andreanae  (Stierle 
et al.  1993 ). Also podophyllotoxin was originally 
isolated from the rhizomes of the host plant 
 Podophyllum peltatum  and later identifi ed as 
products of the endophytes  Phialocephala forti-
nii  (Eyberger et al.  2006 ) and  Fusarium oxyspo-
rum  of  Juniperus recurva  (Tejesvi et al.  2011 ). 
Podophyllotoxin is a valuable natural product as 
the lead for several therapeutic agents, including 
the clinically used anticancer drugs teniposide 
and etoposide (Canel et al.  2000 ).
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    Another example demonstrating the potential 
of endophytes for natural products discovery is 
pestalone. Pestalone is a chlorinated benzophe-
none antibiotic that was produced by a co- cultured 
endophytic algal marine fungus/unicellular 
marine bacterium strain CNJ-328. Pestalone 
exhibits moderate in vitro cytotoxicity and shows 
potent antibiotic activity against methicillin- 
resistant  Staphylococcus aureus  (MIC = 37 ng/mL) 
and vancomycin-resistant  Enterococcus faecium  
(MIC = 78 ng/mL), indicating that pestalone should 
be evaluated in advanced models of infectious 

diseases (Cueto et al.  2001 ). Pestalachlorides 
A–C, three new chlorinated benzophenone deriv-
atives, have been isolated from cultures of the 
endophytic fungus  Pestalotiopsis adusta . 
Pestalachloride A was obtained as a mixture of 
two inseparable isomers, whereas pestalachloride 
C was found to be a racemic mixture. 
Pestalachloride A and B displayed signifi cant 
antifungal activities against some plant pathogens 
(Li et al.  2008 ). Pestalone can be readily con-
verted into pestalachloride A by a simple treat-
ment with ammonia at pH 8 (Slavov et al.  2010 ).
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    The novel compound KL-4 was isolated from 
the fungal endophytic extract of the medicinal 
plant  Gloriosa superba  and was subjected to 
antimicrobial and anticancer activities. It showed 
broad spectrum as antifungal and signifi cantly 
inhibited leukemic cancer cell line THP-1 and 
breast cancer cell line with IC 50  30 and 50 μg/mL, 
respectively, and was found to possess potency 
comparable to standard anticancer agents mito-
mycin- c and 5-FU. Compound KL-4 also inhib-
ited lung cancer cell lines A-549 and CV-1 
(Budhiraja et al.  2013 ).
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    Another recent example of endophytic products 
with cytotoxic activity is the endophytic fungus 
 Cephalotheca faveolata  isolated from leaves of 
 Eugenia jambolana  Lam (Lamiaceae) from 
India. Sclerotiorin exhibited antiproliferative 
activity against different cancer cell lines and 
induced apoptosis in colon cancer (HCT-116) 
(Giridharan et al.  2012 ).

   The endophytic fungus  Pichia guilliermondii  
Ppf9 derived from the medicinal plant  Paris poly-
phylla  var.  yunnanensis  produces interesting anti-
microbial steroids and one nordammarane 
triterpenoids. Helvolic acid exhibited the stron-
gest antibacterial activity against all tested bacte-
ria with MIC values ranging from 1.56 to 50 μg/
mL and IC 50  values from 0.98 to 33.19 μg/mL. It 
also exhibited a strong inhibitory activity on the 
spore germination of  Magnaporthe oryzae  with 
an IC 50  value of 7.20 μg/mL (Zhao et al.  2010 ).  

5.2     Endophytic Metabolites 
Acting on Human Leukocyte 
Elastase Enzyme (HLE) 

 The excessive and uncontrolled human leukocyte 
elastase (HLE) activity may result in several 
pathological states such as chronic obstructive 
pulmonary disease (COPD), pulmonary emphy-
sema, rheumatoid arthritis, and cystic fi brosis 
(Korkmaz et al.  2008 ). The detailed analysis of 
the marine endophytic fungus  Phaeosphaeria 
spartinae  resulted in discovery of active com-
pounds, named spartinoxide and prenyl-hydroxyl 
benzoic acid, toward HLE (Elsebai et al.  2010 ). 
Analysis of the products of another marine 
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endophytic fungus  Coniothyrium cereale  resulted 
in discovery of a series of compounds with a 
polyketidic methyl phenalenones. The alkaloidal 

nitrogenous derivatives, named (–)-cereolactam, 
(–)-cereoaldomine, and conioimide, have valuable 
activities toward HLE (Elsebai et al.  2011b ,  2012 ).
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5.3         Endophytic Metabolites 
Acting on Cannabinoid 
Receptors 

 Cannabinoid receptors are located in the   cell 
membrane     and belong to the G protein-coupled 
receptor (GPCR) super family. They are divided 
into two distinct cannabinoid receptor subtypes 
designated CB 1  and CB 2  and inhibition of adenyl-
ate cyclase upon activation results in reduced 
intracellular cAMP levels. The CB 1  receptor is 
expressed in the central nervous system (CNS) in 
high density, but it is also present in peripheral 
tissues including   lungs    ,   liver    ,   kidneys    , and adipo-
cytes. CB 1  activation mediates physiological 
responses such as analgesia, stimulation of appe-
tite, and euphoria. CB 1  antagonists show appetite- 
suppressing and antischizopathic effects. The 
CB 2  receptor is mainly present in organs and cells 
of the immune system including spleen, tonsils, 
and thymus, and its activation results in analgesic 
and anti-infl ammatory effects. Here, we report a 
highly potent and selective cannabinoid receptor 

ligand, a CB 1  antagonist, from a novel source, 
namely, a fungal source (Elsebai et al.  2011c ). 
Peripherally acting CB 1  receptor antagonists 
without CNS penetration would be promising 
drugs for the treatment of metabolic disorders 
associated with abdominal obesity, as they would 
avoid side effects caused by central CB 1  receptor 
activation, for example, depression, anxiety, and 
stress disorders (Elsebai et al.  2011c ). The endo-
phytic  Auxarthron reticulatum  produces an alka-
loid amauromine, which is a potent selective 
antagonist for CB 1  receptors with a K i  value 178 
nM. To the best of our knowledge, amauromine is 
the fi rst fungal and exogenous dipeptide natural 
product with indole derivative that has selective 
antagonism to CB 1  (Elsebai et al.  2011c ). 
Amauromine has no affi nity to CB 2  receptors 
(Elsebai et al.  2011c ). The origin of the ligands of 
cannabinoid receptors can be classifi ed into 
three groups: (1)   endocannabinoids    , such as 
N-arachidonoylethanolamine; (2) phytocannabi-
noids, such as Δ 9 -  tetrahydrocannabinol     (Δ 9 - THC); 
and (3)   synthetic     cannabinoids such as the agonist 
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nabilone, a synthetic analogue of Δ 9 - THC, and 
the antagonist rimonabant, which is synthetically 
produced. Amauromine, hence, represents the 
fourth source of cannabinoid ligands, namely, 
fungal origin.
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    In functional assays that measured forskolin- 
induced cAMP accumulation in CHO cells 
expressing the human CB 1  receptor, amauromine 
had no agonistic effect. However, amauromine 
(300 nM) led to a signifi cant rightward shift of the 
concentration-response curve for the potent CB 
receptor agonist CP55, 940 in inhibiting forskolin- 
induced cAMP accumulation at the G i  protein-
coupled CB 1  receptor. A K b  value of 66.6 nM was 
determined for amauromine. Many synthetic 
indoles are known to have affi nity for CB recep-
tors and exhibit high cannabimimetic effects on 
CB 2 , but only weak or no affi nity to CB 1  recep-
tors. In contrast to such previous results, the com-
pound amauromine functions as a selective 
antagonist to CB 1  receptor (Elsebai et al.  2011c ).   

6     Culture-Independent 
Methods for Searching New 
Endophytic Metabolites 

 In general, microorganisms are ubiquitous and 
widely distributed in the nature, playing an 
important role in the regulation and maintenance 
of ecological processes. However, it is estimated 
that <1 % of microorganisms can be cultivated 
using standard laboratory techniques (Amann 
et al.  1995 ). As a result, the culture-dependent 
methods bias our view on microbial diversity and 
majority of the prokaryotic phyla are uncultur-
able (Connon and Giovannoni  2002 ). During the 
past two decades, the application of molecular 
methods by polymerase chain reaction (PCR) 

amplifi cation of ribosomal (rRNA) and con-
served protein-encoding genes, such as beta 
tubulins, histone (Tejesvi and Prakash  2009 ), 
ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCO) (Chen et al.  2009 ), sulfate thioester-
ase/thiohydrolase (soxB) (Chen et al.  2009 ), and 
methyl-coenzyme reductase (mcrA) (Vianna 
et al.  2009 ), has revolutionized the identifi cation 
of microbial communities in the environments. 
Majority of the studies have relied on the restric-
tion fragment length polymorphisms (RFLP) 
(Laguerre et al.  1994 ), single-strand- conformation 
polymorphism (SSCP) (Lee et al.  1996 ), denatur-
ing/temperature gradient gel electrophoresis 
(DGGE/TGGE) (Muyzer  1999 ), terminal restric-
tion fragment length polymorphisms (T-RFLP), 
(Dunbar et al.  2000 ), and quantitative PCR 
(qPCR) (Takai and Horikoshi  2000 ). These tradi-
tional methods have been widely applied over the 
past two decades, but they can only be employed 
for detection or identifi cation of microbes and are 
not suitable for functional screening and identifi -
cation of gene-encoded peptides or metabolites. 
Meanwhile, the emergence of next-generation 
sequencing methods (pyrosequencing) has pro-
pelled many exciting fi elds such as single-cell 
genomics (Blainey  2013 ), metagenomics 
(Felczykowska et al.  2012 ), transcriptomics 
(McGettigan  2013 ), metatranscriptomics (Jang 
et al.  2012 ), and metaproteomics (Muth et al. 
 2012 ). These techniques will enable the func-
tional screening and identifi cation of candidate 
gene-encoded proteins and peptides from endo-
phytes for application in agriculture, food, and 
pharmaceuticals. Fungi are known to have an 
excellent potential for the production of diverse 
secondary metabolites. For instance, the genome 
sequences of the  Aspergillus fumigatus ,  A .  nidu-
lans,  and  A .  oryzae  have revealed the presence of 
28 ( A .  fumigatus ) to 48 ( A. oryzae ) gene clusters 
with polyketide synthase and nonribosomal pep-
tide synthetase genes (Keller et al.  2005 ). Several 
metabolites and peptides have been discovered 
recently from the environment using metage-
nomic tools. Notably, antibacterials such as 
 violacein, indigo, nocardamine, and turbomycins 
were all discovered from soil libraries using 
metagenomics (Banik and Brady  2010 ). With 
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respect to endophytes, care should be taken to 
differentiate endophytic products from those of 
the plant host. For example, in our study on 
screening for defensins from  Picea glauca  EST 
libraries, a peptide with high similarity to plecta-
sin (Mygind et al.  2005 ) was identifi ed. Further 
studies indicated that this defensin, named 
endopiceasin, likely originated from an endo-
phytic fungus of  P. glauca  (Picart et al.  2012 ). 
We recently developed a method to separate 
endophytic DNA from that of the host for metage-
nomic purposes. This way, we discovered a novel 
gene  En-MAP1  of fungal origin from the plant 
 Empetrum nigrum  L., having no signifi cant simi-
larity to other known sequences (Tejesvi et al., 
unpublished). The folded, expressed protein 
itself had no antibacterial activity, but its tryptic 
digests exhibited antimicrobial activity against 
 S. aureus  and  E. coli .  

7     Conclusion 

 Endophytes have already shown to be a potent 
source for discovery of bioactive compounds, but 
still new and innovative approaches are needed 
for natural product-based drug discovery to 
become successful again. The current effi ciency 
in identifying new drugs from endophytes is poor 
and there should be systematic approaches for 
isolation and development of bioactive com-
pounds. Increasing number of novel methods 
combined with tools of metagenomics, metatran-
scriptomics, and metaproteomics should be 
employed to mine microbial genomes from the 
environment for returning to the golden age of 
natural product discovery.     
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    Abstract  

  Endophytic research is now gaining pace together with the technological 
advancement and refi nements. The phenomenal potential of endophytes as 
prolifi c producer of a wide range of bioactive compounds occupies a com-
plimentary domain of natural product research. The discovery of pacli-
taxel (Taxol) as bioactive natural product of endophytic origin seems to 
draw indisputable attention not only for their antitumor activity but as 
potential microbial alternative for this high in- demand drug. Plenty of 
opinion is given by the enthusiasts on microbial production of paclitaxel 
as phylogenetic process and driving paradigm of evolution; however, 
skeptics described it as phylogenetic anomalies. But despite being highly 
controversial, the horizontal gene transfer (HGT) theory still seems quite 
justifi able. Let’s have another example: “maytansinoid,” a potent cytotoxic 
agent, was isolated and characterized from microbial endophyte of the 
same plant; however in both cases, further investigations recorded their 
occurrence not only in same host but also from deferent distant hosts and 
even from different endophytes. So the report of taxane and related tax-
oids from a taxonomically distant host raises several    questions. One may 
assume that this might be due to evolutionary invention; however, it is very 
unlikely to accept that all modules of gene responsible for biosynthesis of 
these molecules invented in microbial systems during long evolutionary 
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symbiosis. With this chapter we are trying to get into the mechanistic aspects 
of host-specifi c chemicals synthesized by endophytic microbes together 
with our experience with isolation and characterization of host-specifi c 
compounds like piperine and azadirachtin. Nevertheless, the signifi cance 
of this potential of endophytes cannot be ignored, as it provides not only 
alternative source to existing pharmaceuticals but also on the other hand 
save    the valuable biodiversity of highly medicinal plants.  

1         Introduction 

 Traditionally humans have always relied on 
natural remedies for treating and healing of their 
ailments. Nature has been the ultimate source 
of substances that reduce human sufferings, and 
many of the world’s tribal peoples have a better 
understanding of native medicinal fl ora for this 
purpose. Some of the most erudite peoples in this 
regard are those in the Amazon basin, the high-
lands of Papua New Guinea, and the Aborigines 
of Australia, each of which has its own pharma-
copeia of medicinal knowledge (Isaacs  1994 ). 
They learn through nature and used medicinal 
plants as possible cure, which drive pharmaceuti-
cal companies for their chemical bioprospection 
and formulation as drugs. Many medicinal plants 
on earth are the only source for some well-known 
pharmaceutically important metabolites and 
thus are overexploited and facing challenge of 
their existence. Additionally, a plant source 
provides a very trace-level production of desired 
metabolite that too is obtained after rigorous 
purifi cation procedure, starting with huge raw 
material. Endophytic microbes emerge as an 
alternative source of host-specifi c molecules and 
thus provide new platform for harvesting desired 
molecule of plant origin from microbial sources 
(Zhao et al.  2011 ). Every plant examined to date 
harbors at least one species of endophytic fungus 
and many plants, especially woody plants, and 
may contain literally hundreds or thousands of 
species (Petrini et al.  1992 ; Geylord et al.  1996 ; 
Faeth and Hammon  1997 ; Saikkonen et al.  1998 ; 
Arnold et al.  2000 ). With the discovery of the 
“Taxol” from an endophytic fungi  Taxomyces 

andreanae  of pacifi c yew plant ( Taxus brevifolia ) 
by Stierle and colleagues, a new era of research 
in endophytic biology opens (Stierle et al.  1993 ), 
since before that pacifi c yew plant is the only 
source of “Taxol” known. So it is gradually 
established that certain endophytes during their 
long mutualistic symbiosis somehow acquires 
potential to produce the phytochemicals mimetic 
to those as their host have. This is one of the 
strong reasons to the selection of medicinal 
plants for endophytic study that have therapeutic 
as well as ethnobotanical    history backed by some 
very strong phytomolecule. Some well-known 
systems are like  Catharanthus roseus-vincristine, 
Azadirachta indica-azadirachtin, Camptotheca 
foetida-camptothecin, Curcuma longa-curcumin,  
etc. After the discovery of taxol from endophyte, 
plenty of other reports have been made to identify 
endophytic microbes as sources of host- mimetic 
natural products. Endophytes producing campto-
thecin (CPT) and its structural analogs (Puri et al. 
 2005 ; Shweta et al.  2010 ), anticancer pro-drugs 
podophyllotoxin (Eyberger et al.  2006 ; Puri 
et al.  2006 ), antimycobacterial piperine (Verma 
et al.  2011 ), and natural insecticides azadirachtin 
(Kusari et al.  2012 ) are some recent reports that 
followed the same hypothesis. However, the abil-
ity of endophytes to produce these chemicals 
raises several intriguing questions that have yet 
to be answered, including (1) whether the com-
pound is fi rst synthesized by the plant or by the 
fungus and whether there is a transfer of genetic 
information between the two. (2) Furthermore, 
we need to determine if microbes are capable of 
communicating with each other within the plant, 
and whether chemical production occurs as a 
result of cross talk between microbes. (3) It 
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remains a question of further research as to how 
and why certain endophytes produce an metabo-
lite identical to that derived from its host while 
not others. (4) As suggested by Tan and Zou, 
there may be the possibility of genetic recombi-
nation between endophyte and the host, in the 
course of evolutionary symbiosis, and if this 
happens, then the exact mechanism should be 
resolved (Tan and Zou  2001 ). 

 The potential of endophytic microbes in synthe-
sizing bioactive compounds within their host plants 
is a very signifi cant aspect of the host- endophyte 
interaction (Verma et al.  2009 ; Gunatilaka  2006 ; 
Guo et al.  2008 ; Strobel  2002 ; Strobel et al.  2004 ). 
The discovery of fungal endophytes with potential 
of producing host- specifi c metabolites may have 
signifi cant scientifi c and industrial applications. 
However, there are several factor associated in its 
industrial implications; one major factor is the 
metabolic regulation of fungus in axenic culture. It 
is observed that after second or third successive 
generations, this potential was substantially attenu-
ated, and the production of interested molecule 
dropped below the limit of detection. This might be 
assumed due to lack of host stimuli in axenic cul-
tures or rapid inactivation or transformation of the 
interested molecule. Meanwhile, if endophytes can 
produce the same rare and important bioactive com-
pounds as their host plants, this would not only 
reduce the need to harvest slow- growing and possi-
bly rare plants but also help to preserve the world’s 
ever-diminishing biodiversity. But it requires fur-
ther insight research about the biosynthetic pathway 
dissection of these two molecules in host as well as 
in microbes. This however provides an exciting 
platform for further scientifi c exploration within 
both the ecological and biochemical contexts.  

2     Host-Mimetic Metabolism 

 First we would like to discuss our own experience 
with this hypothesis as we too fi nd some endophyte 
host system that validates this hypothesis. Piperine 
and azadirachtins were obtained from endophytic 
microbes  Periconia  and  Eupenicillium  sp. isolated 
from their respective host, that is,  Piper longum  
L. and  Azadirachta indica  A. Juss. 

2.1     Azadirachtin and Its Analog 
from Endophytes of 
 Azadirachta indica  A. Juss 

 Azadirachtin ( 1 ) is a well-known insecticide found 
in three species of the neem tree,  Azadirachta 
indica  A. Juss. , A. excelsa  (Jack) Jacobs, and  A. 
siamensis  Valeton (Meliaceae). It is chemically 
interesting because of its complex structure and 
the challenges of its chemical synthesis, while 
biologically interesting because it has feeding-
deterrent and growth-disrupting activity for a wide 
range of insects causing huge loss of standing 
crops. Azadirachtin is a highly oxygenated 
tetranortriterpenoid that has eight condensed 
rings, of which three are carbocyclic and fi ve are 
heterocyclic. It has plethora of oxygen function-
ality, comprising enol ether, acetal, hemiacetal, 
one acid–base-sensitive hemiketal, one strained 
and sterically hindered epoxide, and tetrasubsti-
tuted oxirane, together with variety of carboxylic 
esters. It contains 16 stereogenic centers, 7 of which 
are fully substituted (   Ley  1994 ; Ley et al.  1993 ). 
It takes about 16 years for its fi rst structural eluci-
dation and refi nements (Butterworth and Morgan 
 1968  and Butterworth et al.  1972 ) and 25 years 
for its chemical synthesis (Veitch et al.  2007a ,  b ). 
The azadirachtin has been synthesized chemically 
from a common intermediate “epoxide-2”; this 
molecule alone has the potential as an intermediate 
to synthesize compounds from all three groups of 
limonoids: azadirachtin, azadirachtol, and melia-
carpin from the neem tree (Veitch et al.  2007a ,  b , 
 2008 ; Devkumar and Kumar  2008 ). Within 
cellular metabolism, azadirachtin is formed via the 
“iso- prenoid pathway” (IPP) and follows a relay 
route through mevalonate, squalene, and apo-
tirucallol to a series of oxidation, ring cleavage, 
and degradation reactions (   Kraus et al.  1985 ). 

 Azadirachtin affects insects as antifeedant, 
insect growth regulator, and sterilant (Mordue 
et al.  1998 ). The dihydrofuran acetal moiety of the 
azadirachtin molecule is supposed to be responsi-
ble for the antifeedant activity, while the decalin 
fragment is responsible for insect growth regula-
tion (Aldhous  1992 ) (Fig.  11.1 ). Azadirachtin func-
tions at cellular level by disrupting protein 
synthesis, more precisely at molecular level by 
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altering the transcription and translation of protein 
expressed during rapid protein synthesis (Mordue 
and Nisbet  2000 ). Azadirachtin has several struc-
turally related isomers (Table  11.1 ). Azadirachtin A 
and its several congeners are having signifi cant 
biological activity specifi cally insecticidal and 
nematicidal (Morgan  2009 ; Klenk et al.  1986 ; 
Butterworth and Morgan  1968 ).

    Thus looking at commercial and industrial 
relevance of azadirachtin, extensive efforts have 
been made in recent years to facilitate the 
production of this highly desired molecule by 
adopting some novel biotechnological approaches 
such as callus culture (Prakash et al.  2002 ; Rafi q 
and Dahot  2010 ), cell culture (Jarvis et al.  1997 ), 
and hairy root culture of neem plant (Satdive 
et al.  2007 ). As a new alternative approach, we 
report for the fi rst time the production of azadi-
rachtin ( 1 ) and its analog 3-tigloylazadirachtol 
( 2 ) by an endophytic fungus  Eupenicillium 
pervum  from neem plant ( A. indica ), using high- 
resolution mass spectrometry. 

 The endophytic fungus Eupenicillium pervum 
was isolated from surface-sterilized stem tissues 
of neem plant. The identifi cation of the com-
pounds in the fungal biomass was achieved 
using unique ion fragmentation patterns with 
LC-HRMS 3  and by comparison with the authen-
tic reference standards. This fungus was screened 
based on its potential of secreting very prominent 
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  Fig. 11.1    Azadirachtin ( 1 ) and 3-tigloylazadirachtol ( 2 ) molecules and their decalin and hydroxyfuran acetal 
fragments       

   Table 11.1    Different isomeric forms of azadirachtins; 
these are closely related stereo isomers   

 Azadirachtin B–G 

 Rambold ( 1988 ), Rembold et al. 
( 1987 ), Klenk et al. ( 1986 ), Kraus 
et al. ( 1987 ), and Govindachari 
et al. ( 1997 ) 

 Azadirachtin H 
and I 

 Ramaji et al. ( 1996 ) and 
Govindachari et al. ( 1992a ) 

 Azadirachtin J 
and K 

 Govindachari et al. ( 1992b ,  1996 ) 

 Azadirachtin L  Kalinowski et al. ( 1993 ) 
 Azadirachtin M 
and N 

 Luo et al. ( 1999 ) 

 Azadirachtin O–Q  Kanokmedhakul et al. ( 2005 ) 
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dark-pink exudates on culture plates (Fig.  11.2 ). 
The colonies were very slow growing, initially 
cottony white which later turned into light pink 
due to secretion of exudates as it becomes mature. 
Additionally, looking into its prominent exudates’ 
secretion potential, a “micro-extraction method” was 
adapted for the exudates. The exudate droplets 
were picked directly from the culture plate by 
using gel-loading tips of micropipette; about 
10 ml of exudates were collected from 7-day-old 
5 culture plates. These exudates were extracted    in 
ethyl acetate (10 ml) twice and condensed to 
dryness; after redissolving the extract in 2 ml of 
methanol, high- resolution mass spectrometry was 
performed. In comparison to the cell-free extract, 
these exudates extract show very prominent 
signals for both azadirachtin (Fig.  11.3 ) and 
3- tigloylazadirachtol (Fig.  11.4 ). This indicates 
that the azadirachtin production is extracellular in 
nature. The LC-MS chromatogram for the fungal 

extract and the standard azadirachtin A shows 
strong signals at retention time 17.73 min, which 
correspond to the molecular ion [M + H] +  peak at 
 m/z  721, while  m/z  703 represents the removal 
of one water molecule from [M + H] + , and  m/z  
743 is the sodium adduct peak.

     The mass spectrum of the azadirachtin A stan-
dard showed only a weak protonated molecule 
[M + H] +  at 721 but relatively intense sodium adduct 
ions [M + Na] +  at  m/z  743 caused by the traces of 
sodium in the solvent. The base peak  m/z  703 was 
formed by the elimination of the water molecule 
[M + H-H 2 O] + . Similarly, Fig.  11.4  represents mass 
spectroscopy of fungal extract, and for standard 
3-tigloylazadirachol, strong peak at retention 
time 18.73 min was observed which corresponds 
in fungal extract at 18.68 min. A very intense    peak 
at  m/z  680 was observed both in standard and 
in fungal extract that corresponds to the ammo-
nium adduct. The peak at  m/z  662 represents the 

  Fig. 11.2    The colony morphology of the endophytic fungi  Eupenicillium pervum , ( a ) under liquid and ( b ) plate culture 
(Image courtesy Vijay Verma)       

  Fig. 11.3    High-resolution MS 2  product ions of azadirachtin A ( a ) authentic reference standard, ( b ) azadirachtin A 
produced by the endophytic fungus (After Kusari et al.  2012 )       

 

 

11 Host-Mimetic Metabolomics of Endophytes: Looking Back into the Future



208

molecular ion peak [M + H] +  while  m/z  645 is the 
loss of water molecule from [M + H] + . 

 In contrast to azadirachtin A, the ammonium 
adduct [M + H + (NH 4 )] +  at  m/z  680 in the spectra 
of azadirachtin B forms the base peak. Thus the 
sodium adduct peak at  m/z  743 for azadirachtin 
A and ammonium adduct peak at  m/z  680 
were chosen for the ion fragment analysis (CID) 
for  further confi rmations. The unique mass 
fragmentation pattern of azadirachtin A and B 
recorded with the electrospray probe in positive 
ion mode (Figs.  11.3  and  11.4 ) provided additional 
evidences to the presence of these structures 
in the fungal extract. Also for more confi rmation, 
the plant extracts were also run with the same 
parameters. The unique fragmentation patterns 
for these molecules both in plant as well as in 
fungal extracts in accordance with the reference 
standards confi rm the presence of these molecules 
in fungal extracts. The high-resolution measure-
ments confi rmed the molecular formulas of the 
compounds  1  [M + H]  +  720.28714 (C 35 H 44 O 16 ) 
and  2  [M + H]  +  663.28497 (C 33 H 44 O 14 ) and the 
characteristic fragments (Kusari et al.  2012 ).  

2.2     Piperine from Endophytic 
 Periconia  sp. of  Piper 
longum  L. 

 In our effort we have isolated piperine from  Piper 
longum  plant, and this is also a fi rst report from 
this host (Verma et al.  2011 ). Piperine is a piperi-
dine derivative with multiple pharmacological 

and physiological activities (Pie  1983 ; Srinivasan 
 2007 ). The traditional uses include analgesic, 
antipyretic, antidepressant (Li et al.  2007 ), neuro-
protective (Chonpathompikunlert et al.  2010 ; Fu 
et al.  2010 ), anti-infl ammatory (Lee et al.  1984 ; 
Bae et al.  2010 ), antioxidant (Khajuria et al.  1997 ; 
Prakash and Srinivasan  2010 ), anticonvulsant, 
antibacterial, antitumor (Bezerra et al.  2008 ), and 
hepatoprotective activities (Koul and Kapil  1993 ; 
Takumi et al.  2008 ; Chandrashekhar et al.  2008 ). 
Piperine provides protection against seizures in 
epilepsy (Timmers  1994 ) and has been shown to 
enhance the bioavailability of several drugs, such 
as sulfadiazine, tetracycline, streptomycin (Hu 
and Davies  1997 ), rifampicin, pyrazinamide, iso-
niazid (Karan et al.  1988 ), ethambutol (Zutshi 
et al.  1985 ), and phenytoin (Bano et al.  1987 ). The 
pepper plant has formed the basis of many tradi-
tional formulations that have been in existence for 
thousands of years in the Indian system of medi-
cine called “Ayurveda.” The pepper and its phyto-
constituents play an essential role in healthcare in 
several other traditional systems of medicine in 
many other countries (Pie  1983 ). Thus, given the 
importance of piperine and other related alka-
loids, we attempted to isolate endophytic fungi 
from  P. longum  plants, with the objective to screen 
and isolate strains that have the potential to pro-
duce piperine and related alkaloids, as an alterna-
tive source other than their host. The only report 
other than our own is the isolation and character-
ization of piperine from an  Ulocladium  sp. 
(Dahiya et al.  1988 ); however it does provide 
details about biology and ecology of the fungus. 

  Fig. 11.4    High-resolution MS 2  product ions of 3-tigloyalazadirachtol ( a ) authentic reference standard 
( b ) 3- tigloyalazadirachtol produced by the endophytic fungus (After Kusari et al.  2012 )       
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 We screen an endophytic  Periconia  sp. from 
the leaf tissue of  Piper longum  L. which has the 
potential to produce alkaloid “Piperine” in trace 
amount (Verma et al.  2011 ). Interestingly this 
fungal piperine has signifi cant antimycobacterial 
activity against  Mycobacterium tuberculosis  
(1.74 μg/ml) and  M. smegmatis  (2.62 μg/ml) .  
We attempt further purifi cation and obtained 
crystals of fungal piperine and obtained crystal-
lographic analysis. The single crystals of size 
0.60 × 0.50 × 0.40 mm 3  belongs to the space group 
P2(1)/n of monoclinic family with unit cell 
dimensions:  a  = 8.6712(6), b = 13.4428(8), and 
 c  = 12.9744(9)A°. A total of 15,940 refl ections 
were collected, 4,430 of which were symmetry 
independent  R  (int)  = 0.0275, with 608 “strong” 
refl ections (Fig.  11.5 ). These crystal parameters 
are in very close proximity to the natural/parent 
piperine from the host plant. The molecular struc-
ture was obtained with the details of parameters 
as obtained from crystallography (Table  11.2 ).

    This fungal piperine shows very promising 
potential as antimycobacterial agent, as it showed 
prominent growth inhibitory activity against 
two strains of  Mycobacterium . In  M. tuberculo-
sis,  all treatments differed from each other, and 
there was a clear trend of increasing inhibition 
with increased fungal piperine concentration 
(F 3, 8  = 248.3,  P  < 0.001). A very similar pattern was 
seen with  M. smegmatis  (F 3, 8  = 452.6,  P  < 0.001). 
In general, stronger inhibition was observed with 
 M. tuberculosis,  than with  M. smegmatis . The 
mycobacterial bioassay established by us and the 

MICs by the alamar blue assay provided a very 
clear indication of antimycobacterial activity 
with purifi ed fungal piperine. These bioactivities 
confi rm that the fungal piperine is as active and 
functional as piperine from the host plant.   

3     Dissecting Host-Mimetic 
Metabolism in Endophytic 
Microbes 

 Hereby, two intriguing examples from the endo-
phytic world are discussed. Both instances deal 
with the occurrence of identical natural products 
in unrelated taxa, namely, the host and the invader. 

3.1     Taxol: The Dissection 
of Biosynthetic Pathway 
in Endophytes 

 Taxol is the best ever example of phytomimetic 
metabolite which has been extensively investigated 
(Wildung and Croteau  1996 ). The biosynthetic 
machinery for taxol synthesis  in planta  is con-
sidered to require 19 enzymatic steps initiated by 
universal terpenoids precursor geranylgeranyl 
diphosphate (GGPP) which itself is derived from 
isopentenyl pyrophosphate (IPP). The fi rst step is 
the conversion of GGPP to taxa-4(5), 11(12)-diene 
by taxadiene synthase (TS). Another enzyme phen-
ylpropanoyl transferase (BAPT) provides for the 
fi nal attachment of phenolic side chain (Fig.  11.6 ); 

  Fig. 11.5    Crystal    structure of piperine, C 17  H 19  N O 3 , based on single crystal X-ray crystallography (Image courtesy 
Prof. Emil Lobkovsky)       
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it is this side chain which is responsible for the 
anticancer effi cacy (Walker et al.  2002 ). These 
two enzymes were encoded by  txs  and  bapt  
genes, which have been extensively studied and 
reported in the plant  Taxus brevifolia ; however 
the  txs  gene has later been also reported to be 
present in  Taxomyces andreanae  (Staniek et al. 
 2009 ; Zhou et al.  2007 ; Zhang et al.  2008 ). 
Recent reports have claimed the isolation of a 
fungal gene-encoding taxadiene synthase, the 
sequence similarity (96 %) being surprisingly 
high when compared to plants. Again it was also 
confi rmed by a protein of the expected molecular 
weight (110 kDa) of TS in a paclitaxel-producing 
fungal strain using a plant anti-TS antibody 
(Soliman et al.  2011 ). Two pathways can generate 
IPP and GGPP precursors for the taxane ring 
of paclitaxel: the classical mevalonate (MVA) 

pathway, which is cytosolic and active in all 
organisms including fungi, and 2-C-methyl-D-
erythritol- 4-phosphate (MEP or DXP) pathway, 
which is exclusively chloroplastic (plastidic) and 
bacterial. The MVA pathway generates the pre-
cursors for sesquiterpenes, including steroids and 
triterpenes, and it also generates the precursor 
GGPP for diterpenoids in fungi and yeast. To 
distinguish whether the taxane ring system of 
plant paclitaxel is derived primarily from the 
cytosolic MVA or plastidic MEP pathways or 
both, Soliman et al. ( 2011 ) studies chemical 
inhibitors targeting enzymes specifi c to each of 
these pathways (Fig.  11.6 ). For example, lovastatin 
and fosmidomycin were used to block 3-hydroxy-
3-methylglutaryl-coenzyme A reductase (HMGR) 
and 1-deoxy-D-xylulose-5- phosphate reductoi-
somerase (DXR), key enzymes in the MVA (cyto-

   Table 11.2    Crystal data and structure refi nement parameters for fungal piperine   

 Empirical formula   C   17    H   19    N O   3   
 Formula weight  285.33 
 Temperature  173(2) K 
 Wavelength  0.71073 Å 
 Crystal system  Monoclinic 
 Space group  P2 (1)/ n  
 Unit cell dimensions   a  = 8.6712(6)Å   α  = 90° 

  b  = 13.4428(8) Å   β  = 107.998(3)° 
  c  = 12.9744(9) Å   γ  = 90° 

 Volume  1,438.36(16) Å 3  
  Z   4 
 Density (calculated)  1.318 Mg/m 3  
 Absorption coeffi cient  0.090 mm −1  
 F (000)  608 
 Crystal size  0.60 × 0.50 × 0.40 mm 3  
 Theta range for data collection  2.24–30.65° 
 Index ranges  −11 ≤  h  ≤ 12, −17 ≤  k  ≤ 19, −18 ≤  l  ≤ 15 
 Refl ections collected  15,940 
 Independent refl ections  4,430 [ R  (int)  = 0.0275] 
 Completeness to theta = 30.65°  99.7 % 
 Absorption correction  Semi-empirical from equivalents 
 Max. and min. transmission  0.9648 and 0.9479 
 Refi nement method  Full-matrix least squares on F 2  
 Data/restraints/parameters  4,430/0/266 
 Goodness-of-fi t on  F  2   1.005 
 Final  R  indices [ I  >2sigma( I )]  R1 = 0.0413, wR2 = 0.1121 
  R  indices (all data)  R1 = 0.0596, wR2 = 0.1278 
 Largest diff. peak and hole  0.345 and −0.173 e. Å −3  
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solic) and MEP (plastid) branches, respectively, 
of the terpenoid biosynthetic pathway (Fig.  11.7 ). 
Paclitaxel production was signifi cantly lowered 
by lovastatin and fosmidomycin treatment, 
suggesting that both MVA and MEP pathways 
contribute to taxane ring of paclitaxel biosynthesis. 
Surprisingly, inhibition by fosmidomycin sug-
gested that fungal paclitaxel production absolutely 
requires DXR, an enzyme in the MEP pathway 
normally found in plants and bacteria. Inhibition 
by compactin identifi ed HMGR, a rate-limiting 
enzyme in the fungal mevalonate pathway, as 
being required for fungal paclitaxel biosynthesis, 
similar to plants, where it  contributes to the 
terpenoid ring system. Similarly, identifi cation 
and differential expression of a gene-encoding 
HMGS confi rmed the importance of the meval-
onate pathway in fungal paclitaxel biosynthesis. 
Surprisingly, inhibition by fosmidomycin suggested 
that fungal paclitaxel production absolutely requires 
DXR, an enzyme in the MEP pathway normally 
found in plants and bacteria. Three additional 

types of evidence support the unexpected conclusion 
that a fungus might possess enzymes in the MEP 
pathway. First, a plant anti-DXR antibody cross-
reacted with a fungal peptide of the correct 
molecular weight. Second, apparent fungal DXR 
expression correlated to changes in paclitaxel 
production based on elicitor treatment and fungal 
age. Finally, a gene-encoding DXS, the enzyme that 
immediately precedes DXR in the MEP pathway, 
was identifi ed in another fungus,  Aspergillus  (Hans 
et al.  2004 ). The presence of many common 
steps in biosynthesis of paclitaxel suggests that a 
lateral transfer of genetic information shaped the 
evolutionary trajectory of taxonomically unrelated, 
yet coexisting, species; however it remains incon-
clusive. Moreover, advocating HGT to be a driving 
force in the evolution of fungal gene clusters – a 
phenomenon now considered a hallmark char-
acteristic of secondary metabolic biosynthetic 
pathways (Lawrence and Roth  1996 ; Rosewich 
and Kistler  2000 ) – raises several questions as to 
whether the genes responsible for paclitaxel for-
mation in  Taxomyces andreanae  are in a contigu-
ous cluster. Identifying the regulatory mechanisms 
will be of considerable future interest and will 
provide further insight into the true nature of the 
fi ne-tuned equilibrium of plant- microbe interac-
tions (Staniek et al.  2008 ; Hines and Zahn  2009 ).

3.2         Maytansine: From  Maytenus 
serrata , a Story Different to 
Taxol 

 Maytansine is a potent cytotoxic metabolite 
recovered from an Ethiopian shrub  Maytenus ser-
rata  (Kupchan et al.  1972 ) and other higher 
plants also (Wani et al.  1973 ; Ahmed et al.  1981 ; 
Powel et al.  1982 ). This is later on also obtained 
from Gram-positive actinomycetes  Actinosynnema 
pretiosum  (Higashide et al.  1977 ; Asai et al.  1978 ). 

 One could assume that the biosynthesis of 
these unique natural products has been repeatedly 
invented during evolution. However, the fact that 
approximately 48 genes are involved in the micro-
bial synthesis of maytansinoids (Yu et al.  2002 ) 
makes it highly unlikely. Nevertheless, before invok-
ing HGT, alternative and often equally plausible 

  Fig. 11.6    A simplifi ed outline of paclitaxel biosynthesis 
indicating crucial steps, respective genes, and their product 
enzymes       
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explanations ought to be thoroughly considered 
fi rst. In case of maytansinoids, all evidence seems 
to point to them being ultimately produced by 
plant-associated microorganisms. Maytansine, the 
unique parent compound (Fig.  11.8a ), was found 

neither in cell suspension cultures from  Maytenus 
buchananii  (Kutney et al.  1981 ) nor in callus cultures 
raised from  Maytenus wallichiana  (Dymowski 
and Furmanowa  1990 ) and  Putterlickia verrucosa  
(Pullen et al.  2003 ), unlikely to the taxol case 

  Fig. 11.7    The cytosolic MVA pathway and plastid MEP pathway contribute terpenoid precursors for paclitaxel 
biosynthesis (Redrawn from Soliman et al.  2011 )       
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  Fig. 11.8    Structure of ( a ) maytansine and ( b ) structurally similar ansamitocin P-3       
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where taxol is also present in the suspension 
culture. It is noteworthy, however, that these 
19-membered macrocyclic lactams are closely 
related to ansamycin antibiotics of microbial 
origin, such as Rifamycin B and geldanamycin 
(Rinehart and Shield  1976 ). In fact, the aforemen-
tioned similarity stimulated a search for maytan-
sinoid-producing microorganisms, ultimately 
leading to the isolation of ansamitocins (Fig.  11.8b ) 
from the Actinomycetes,  Actinosynnema pretiosum  
ssp.  pretiosum  and a mutant strain  Actinosynnema 
pretiosum  ssp.  auranticum  (Higashide et al. 
 1977 ; Asai et al.  1978 ). This is in line with the 
result of an in- depth search for the unique gene 
involved in maytansinoid biosynthesis, encoding 
for 3-amino-5-hydroxy-benzoic acid (AHBA) 
synthase, in  Putterlickia verrucosa cell  cultures. 
An extensive PCR-based homology screen gave 
negative results only (Pullen et al.  2003 ). These 
observations point to the conclusion that plants 
do not produce maytansinoids ab initio. However, 
an active role of the plant in an overall biosynthe-
sis cannot be excluded, as it seems likely that the 
host converts a bacterially synthesized precursor 
into the fi nal, biologically active compound. 
Secondly, it is possible that maytansine is only 
produced as a consequence of a pathogen attack 
on the plant. The plants may contain a biologically 
inactive bacterially produced precursor, which is 
only converted into the potent fi nal product in 
response to a signal resulting from the attack. 
Alternatively, and more plausibly, the bacterial 
production of the maytansinoid precursor could 
be triggered by a plant signal in response to the 
pathogen aggression (Cassady et al.  2004 ). On 
the contrary, the bio-formation of paclitaxel 
seems to be a genuine feature of the yew host, as 
ample evidence supporting the production of the 
diterpenoid by sterile cell suspension cultures of 
 Taxus  has been provided (e.g., Ketchum and 
Gibson  1996 ; Ketchum and Croteau  1998 ; 
Yukimune et al.  2000 ; Wu and Lin  2003 ; Naill 
and Roberts  2005 ; Khosroushahi et al.  2006 ; 
Vongpaseuth and Roberts  2007 ). This conclusion 
is further supported by the aforementioned work 
of Croteau and his associates who succeeded in 
the isolation of paclitaxel biosynthetic genes of 
plant origin. Interestingly, the taxadiene synthase 
gene has a long N-terminal targeting sequence 

for localization to and processing in the plastids, 
indicating that this gene is plant derived rather 
than a fungal product (Koepp et al.  1995 ; Walker 
and Croteau  2001 ). Accordingly, an extensive 
PCR-based screen for taxadiene synthase gene in 
 Taxomyces andreanae , the very fi rst presumed 
endophytic taxane producer (Stierle et al.  1993 ), 
failed to provide any positive results (Staniek, 
unpublished data).

4         Horizontal Gene Transfer 
(HGT) 

 Transmission of genetic material in between two 
distinct evolutionary lineages that lead to the 
genomic innovation between several microbial 
lineages is a phenomena well known as horizon-
tal gene transfer, HGT (Andersson  2005 ; Keeling 
and Palmer  2008 ; Jain et al.  2003 ). A genomic 
analysis of many microbes as protozoans sug-
gests that universal eukaryotic features, such as 
the possession of linear chromatin-based chro-
mosomes, intron-exon gene structures, and the 
nuclear envelope are not barriers to HGT. 
Equipped with this essential genetic information 
and modern tools to manipulate the biosynthetic 
machinery, the research on microbial paclitaxel 
synthesizers could enter a novel combinatorial 
stage. While several heterologous systems 
including  Escherichia coli  (Huang et al.  2001 ), 
 Saccharomyces cerevisiae  (DeJong et al.  2006 ; 
Engels et al.  2008 ), and  Pichia pastoris  (Schmeer 
and Jennewein  2009 ) were already exploited for 
expression of plant-derived genes encoding early 
paclitaxel biosynthetic enzymes, to engineer and 
co-mobilize a functional gene cluster in a parent 
producer microorganism affords the advantage of 
all the regulatory elements being present and 
functional. This suggests that specifi c plant 
environment may be required for the induction 
of paclitaxel biosynthetic genes in the fungal sym-
biont. Identifying these triggering mechanisms 
will be of considerable future interest, not only 
providing further insight into the true nature of 
the fi ne-tuned equilibrium of plant-microbe inter-
actions, but also revealing their tremendous poten-
tial as possible new therapeutics. A recent report 
communicates a unique endeavor to reestablish the 
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intriguing co-habitat by proposing a promising 
co-culture system for  Taxus chinensis  var.  mairei  
and its endophyte  Fusarium mairei  (Li et al. 
 2009 ). The next challenge lies in the further inte-
gration of these approaches to develop a compre-
hensive view of how life history traits of both 
“players” interact with the environment to shape 
evolutionary road map (Burdon and Thrall  2009 ).  

5     Current Progress and Future 
Challenges 

 Biodiversity: a precious source    of novelty, not 
only in terms of unraveling numerous mysteries 
of nature – discovering a plethora of yet unde-
scribed species, their evolutionary backgrounds, 
genetics, and ecology, as well as the richness of 
thus implied new, potentially valuable molecules – 
but also a revolution of thought, an expanded    
view promising to transform glimpses of reduc-
tionist research of the past years into snapshots of 
a dynamic world of systems biology, where cells 
grow, divide, and produce, or organisms develop, 
differentiate, and begin to deviate from the norm 
(Kate and Laird  2000 ; Stephanopoulos et al.  2004 ; 
Kayser and Quax  2007 ). Endophytic microbes 
seem to fi t perfectly into this natural “warehouse,” 
only a small part of which we have been able 
to tap into so far. The production of bioactive 
compounds by endophytes, especially those 
exclusively mimetic to their host plants, is highly 
signifi cant for molecular and biochemical per-
spective, apart from their ecological importance. 
This potential of microbial endophytes makes 
them high in demand as alternative and sustainable 
source for valuable phytochemical. These microbes 
might be used as platform for investigation, 
application, and implication of desired compounds 
from specifi c host plants (Kusari and Spiteller  2011 ). 

 The recent genomics revolution    to which a 
better term could be the “Revolomics” has given 
momentum to considerable progress in the devel-
opment of new technologies addressing specifi -
cally the concerns in natural product research: whole 
genome sequence mining (Lautru et al.  2005 ) and 
genome scanning as an alternative approach, 
providing an effi cient way to discover natural 

product biosynthetic gene clusters without hav-
ing the complete genome sequence (Zazopoulos 
et al.  2003 ); advances in microbial cell fermenta-
tion technology (Zengler et al.  2005 ; Weuster-
Botzl et al.  2007 ); and metagenomics as a 
valuable alternative offering cultivation- 
independent approaches (Schloss and Handelsman 
 2005 ). In recent years ample successes in heter-
ologous expression and metabolic engineering 
(Alper et al.  2005 ; Schmidt et al.  2005 ; Wenzel 
et al.  2005 ; DeJong et al.  2006 ; Julsing et al. 
 2006 ; Li and Unsöld  2006 ; Lindahl et al.  2006 ; 
Nims et al.  2006 ; Ro et al.  2006 ) have been 
observed, the latter being in fact perceived as a 
progenitor of functional genomics and systems 
biology (Stephanopoulos et al.  2004 ; Tyo et al. 
 2007 ). With advancement in technologies, we 
believe that in the future we could be able to 
elucidate the basic machinery of this host- mimetic 
synthesis of important pharmaceuticals.     

  Acknowledgments   VCV gratefully acknowledges the 
fi nancial support from University Grant Commission 
(wide letter No. F. 4-2/2006/13-552/2011/BSR) and 
Council of Scientifi c and Industrial Research (CSIR), 
New Delhi. VCV is also thankful to the Department of 
Science and Technology (DST), for the recognition as 
“Fast track young scientist” (wide letter No.: SERC/
LS-515/2011).  

      References 

    Ahmed MS, Fong HH, Soejarto DD, Dobberstein RH, 
Waller DP, Moreno-Azorero RJ (1981) High- 
performance liquid chromatographic separation and 
quantitation of maytansinoids in  Maytenus ilicifolia . J 
Chromatogr 213:340–344  

    Aldhous P (1992) Neem chemicals: the pieces fall in 
place. Science 258:893  

    Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) 
Identifying gene targets for the metabolic engineering 
of lycopene biosynthesis in  Escherichia coli . Metab 
Eng 7:155–164  

    Andersson JO (2005) Lateral gene transfer in eukaryotes. 
Cell Mol Life Sci 62:1182–1197  

    Arnold AE, Maynord Z, Gilbert G, Coley PD, Kursar TA 
(2000) Are tropical fungal endophytes hyperdiverse? 
Ecol Lett 3:167–274  

     Asai M, Mizuta E, Izawa M, Haibara K, Kishi T (1978) 
Isolation, chemical characterization and structure of 
ansamitocin, a new antitumour antibiotic. Tetrahedron 
35:1079–1085  

V.C. Verma et al.



215

    Bae GS et al (2010) Inhibition of lipopolysaccharide- 
induced infl ammatory responses by piperine. Eur J 
Pharmacol 642:154–162  

    Bano G, Amla V, Raina RK, Zutshi U, Chopra CL (1987) 
The effect of piperine on pharmacokinetics of phenyt-
oin in healthy volunteers. Planta Med 53:568–569  

    Bezerra DP et al (2008)  In vitro  and  in vivo  antitumor 
effect of 5-FU combined with piplartine and piperine. 
J Appl Toxicol 28:156–163  

    Burdon JJ, Thrall PH (2009) Co-evolution of plants and 
their pathogens in natural habitats. Science 
324:755–756  

     Butterworth JH, Morgan ED (1968) Isolation of a sub-
stance that suppresses feeding in locusts. J Chem Soc 
Chem Commun 1968:23–24  

    Butterworth JH, Morgan ED, Percy GR (1972) The struc-
ture of azadirachtin; the functional groups. J Chem 
Soc Perkin Trans 1:2445–2450  

    Cassady JM, Chan KK, Floss HG, Leistner E (2004) 
Recent developments in the maytansinoids antitumour 
agents. Chem Pharm Bull 52:1–26  

    Chandrashekhar RB, Jithan A, Narsimha RY, Malla RV 
(2008) Fabrication and investigations on hepatopro-
tective activity of sustained release biodegradable pip-
erine microspheres. Int J Pharm Sci NanoTechnol 
1:87–96  

    Chonpathompikunlert P, Wattanathorn J, Muchimapura S 
(2010) Piperine, the main alkaloid of Thai black pep-
per, protects against neurodegeneration and cognitive 
impairment in animal model of cognitive defi cit like 
condition of Alzheimer’s disease. Food Chem Toxicol 
48:798–802  

    Dahiya JS, Woods DL, Tiwari JP (1988) Piperine from an 
 Ulocladium  sp. Phytochemistry 27:2366  

     DeJong JM, Liu Y, Bollon AP, Jennewein S, Williams D, 
Croteau R (2006) Genetic engineering of taxol 
 biosynthetic genes in  Saccharomyces cerevisiae . 
Biotechnol Bioeng 93:212–224  

    Devkumar C, Kumar R (2008) Total synthesis of azadi-
rachtin: a chemical odyssey. Curr Sci 95:573–575  

    Dymowski W, Furmanowa M (1990) Investigating cyto-
static substances in tissue of plants  Maytenus molina 
in in vitro  cultures. Chromatographic test of extracts 
from callus of  Maytenus wallichiana . Acta Pol Pharm 
47:51–54  

    Engels B, Dahm P, Jennewein S (2008) Metabolic engi-
neering of taxadiene biosynthesis in yeast as a fi rst 
step towards Taxol (paclitaxel) production. Metab Eng 
10:201–206  

    Eyberger AL, Dondapati R, Porter JR (2006) Endophyte 
fungal isolates from  Podophyllum peltatum  produce 
podophyllotoxin. J Nat Prod 69:1121–1124  

    Faeth SH, Hammon KE (1997) Fungal endophytes in oak 
tree; long term pattern of abundance and association 
with leaf miners. Ecology 78:810–819  

    Fu M, Sun ZH, Zuo HC (2010) Neuroprotective effect of 
piperine on primarily cultured hippocampal neurons. 
Biol Pharm Bull 33:598–603  

    Geylord ES, Preszler RW, Boecklen WJ (1996) 
Interactions between host plants, endophytic fungi, 

and a phytophagous insect in an Oak ( Quercus grisea  
×  Q. gambelii ) hybrid zone. Oecologia 105:336–342  

    Govindachari TR, Sandhya G, Raj SPG (1992a) 
Azadirachtin H and I: two new tetranortriterpenoid 
from  Azadirachta indica . J Nat Prod 55:596–601  

    Govindachari TR, Sandhya G, Raj SPG (1992b) Structure 
of azadirachtin K, a new tetranortriterpenoid from 
 Azadirachta indica . Indian J Chem Sect B 31:295–298  

    Govindachari TR, Gopalakrishnan G, Rajan SS, 
Kabaleeswaran V, Lessinger L (1996) Molecular and 
crystal structure of azadirachtin-H. Acta Crystallogr 
Sect B Struct Sci B52:145–150  

    Govindachari TR, Gopalakrishnan G, Suresh G (1997) 
Purifi cation of azadirachtin-B (3- tigloylazadirachtol) 
by preparative high performance liquid chromatogra-
phy, using the recycling mode. J Liq Chromatogr Relat 
Technol 20:1633–1636  

    Gunatilaka AAL (2006) Natural products from plant- 
associated microorganisms: distribution, structural 
diversity, bioactivity and implications of their occur-
rence. J Nat Prod 69:509–526  

    Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural 
products from endophytes: a review. Appl Biochem 
Microbiol 44:136–142  

    Hans J, Hause B, Strack D, Walter MH (2004) Cloning 
characterization and immunolocalization of a mycor-
rhizal inducible 1-Deoxy-D-Xylulose 5-phosphate 
reductoisomerase in arbuscule containing cells of 
Maize. Plant Physiol 134:614–624  

     Higashide E, Asai M, Ootsu K, Tanida S, Kozay Y, 
Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) 
Ansamitocins, a group of novel maytansinoid antibiot-
ics with anti-tumour properties from  Nocardia . Nature 
270:721–722  

    Hines PJ, Zahn LM (2009) What’s bugging plants? 
Introduction to special issue. Science 324:741  

    Hu RQ, Davies JA (1997) Effects of  Piper nigrum  L. on 
epileptiform activity in cortical wedges prepared from 
DBA/2 mice. Phytother Res 11:222–225  

    Huang Q, Roessner CA, Croteau R, Scott AI (2001) 
Engineering  Escherichia coli  for the synthesis of taxa-
diene, a key intermediate in the biosynthesis of Taxol. 
Bioorg Med Chem 9:2237–2242  

    Isaacs J (1994) Bush food aboriginal food and herbal 
medicine. Lansdowne Publishing Pty. Ltd., Sydney  

    Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal 
gene transfer accelerates genome innovation and evo-
lution. Mol Biol Evol 20:1598–1602  

    Jarvis AP, Morgan ED, van der Esch SA, Vitali F, Lay SV, 
Pape A (1997) Identifi cation of azadirachtin in tissue- 
cultured cells of neem ( A. indica ). Nat Prod Lett 
10:95–98  

    Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, 
Kayser O (2006) Com-binatorial biosynthesis of 
medicinal plant secondary metabolites. Biomol Eng 
23:265–279  

    Kalinowski HO, Ermel K, Schmutterer H (1993) 
Strukturaufklärung eines azadirachtin derivates aus 
dem Marrangobaum  Azadirachta excelsa  durch NMR- 
spektroskopie. Liebigs Ann Chem 1993:1033–1035  

11 Host-Mimetic Metabolomics of Endophytes: Looking Back into the Future



216

    Kanokmedhakul S, Kanokmedhakul K, Prajuabsuk T, 
Panichajakul S, Panyamee P, Prabpai S, Kongsaeree P 
(2005) Azadirachtin derivatives from seed kernels of 
 Azadirachta excelsa . J Nat Prod 68:1047–1050  

    Karan RS, Bhargava VK, Garg SK (1988) Effect of piper-
ine on the pharmacokinetic profi le of isoniazid in rab-
bits. Indian J Pharmacol 30:254–256  

    Kate KT, Laird SA (eds) (2000) The commercial use of 
biodiversity: access to genetic resources and benefi t 
sharing. Earthscan Publications Ltd., London  

    Kayser O, Quax WJ (eds) (2007) Medicinal plant biotech-
nology: from basic research to industrial applications. 
Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim  

    Keeling PJ, Palmer JD (2008) Horizontal gene transfer in 
eukaryotic evolution. Nat Rev Genet 9:605–618  

   Ketchum RE, Croteau R (1998) Recent progress toward an 
understanding of taxol biosynthesis in plant cell cul-
tures. In: Ageta H, Aimi N, Ebizuka Y, Fujita T, Honda 
G (eds) Towards natural medicine research in the 21st 
century. Proceeding of the international symposium on 
natural medicines. Elsevier, Amsterdam, pp 339–348  

    Ketchum RE, Gibson DM (1996) Paclitaxel production in 
suspension cell cultures of Taxus. Plant Cell Tissue 
Organ Cult 46:9–16  

    Khajuria A, Thusus N, Zutshi U, Bedi KL (1997) Antioxidant 
potential of piperine on oxidant induced alterations in rat 
intestinal lumen. Indian Drugs 34:557–563  

    Khosroushahi AY, Valizadeh M, Ghasempour A, 
Khosrowshahli M, Naghdibadi H, Dadpour MR, 
Omidi Y (2006) Improved taxol production by combi-
nation of inducing factors in suspension cell culture of 
 Taxus baccata . Cell Biol Int 30:262–269  

     Klenk A, Bokel M, Kraus W (1986) 3-tigloylazadirachtol 
(tigloyl = 2-methyl crotonoyl), an insect growth regu-
lating constituent of  Azadirachta indica . J Chem Soc 
Chem Commun 7:523–524  

    Koepp AE, Hezari M, Zajicek J, Vogel BS, LaFever RE, 
Lewis NG, Croteau R (1995) Cyclization of geranyl-
geranyl diphosphate to taxa-4(5),11(12)-diene is the 
committed step of taxol biosynthesis in Pacifi c yew. J 
Biol Chem 270:8686–8690  

    Koul IB, Kapil A (1993) Evaluation of the liver protective 
potential of piperine, an active principle of black and 
long peppers. Planta Med 59:413–417  

    Kraus H, Bokel M, Klank A, Pohnl H (1985) The structure 
of azadirachtin and 22, 23-dihydro-23β- 
methoxyazadirachtin. Tetrahedron Lett 26:6435–6438  

    Kraus W, Bokel M, Bruhn A, Cramer R, Klaiber I, Klenk 
A, Nagl G, Pohnl H, Sadlo H, Vogler B (1987) 
Structure determination by NMR of azadirachtin and 
related compounds from  Azadirachta indica  A. Juss. 
(Meliaceae). Tetrahedron 43:2817–2830  

    Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith 
RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan 
RF (1972) Maytansine, a novel antileukaemic ansa 
macrolide from  Maytenus ovatus . J Am Chem Soc 
94:1355–1356  

    Kusari S, Spiteller M (2011) Are we ready for industrial 
production of bioactive plant secondary metabolites 
utilizing endophytes? Nat Prod Rep 28:1203–1207  

       Kusari S, Verma VC, Lamshöft M, Spiteller M (2012) An 
endophytic fungus from Azadirachta indica A. Juss. 
that produces azadirachtin. World J Microbiol 
Biotechnol 28:1287–1294  

    Kutney JP, Beale MH, Salisbury PJ, Stuart KL, Worth BR, 
Townsley PM, Chalmers WT, Nilson K, Jacoli GG 
(1981) Isolation and characterization of natural prod-
ucts from plant tissue cultures of  Maytenus buchana-
nii . Phytochemistry 4:653–657  

    Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) 
Discovery of a new pep-tide natural product by 
 Streptomyces coelicolor  genome mining. Nat Chem 
Biol 1:265–269  

    Lawrence JG, Roth JR (1996) Selfi sh operons: horizontal 
transfer may drive the evolution of gene clusters. 
Genetics 143:1843–1860  

    Lee EB, Shin KH, Woo WS (1984) Pharmacological 
study on piperine. Arch Pharmacal Res 7:127–132  

    Ley SV (1994) Synthesis and the chemistry of the insect anti-
feedant azadirachtin. Pure Appl Chem 66:2099–2102  

    Ley SV, Denholm AA, Wood A (1993) The chemistry of 
azadirachtin. Nat Prod Rep 10:109–157  

    Li SM, Unsöld IA (2006) Post-genome research on the bio-
synthesis of ergot alkaloids. Planta Med 72:1117–1120  

    Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y 
(2007) Antidepressant like effects of piperine in 
chronic mild stress treated mice and its possible mech-
anisms. Life Sci 80:1373–1381  

    Li YC, Tao WY, Cheng L (2009) Paclitaxel production 
using co-culture of  Taxus  suspension cells and 
paclitaxel- producing endophytic fungi in a co- 
bioreactor. Appl Microbiol Biotechnol 83:233–239  

    Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, 
Brodelius M, Brodelius PE (2006) Production of the 
artemisin in precursor amorpha-4,11-diene by engi-
neered  Saccharomyces cerevisiae . Biotechnol Lett 
28:571–580  

    Luo X, Ma Y, Wu S, Wu D (1999) Two novel azadirachtin 
derivatives from  Azadirachta indica . J Nat Prod 
62:1022–1024  

    Mordue AJ, Nisbet AJ (2000) Azadirachtin from the neem 
tree  Azadirachta indica : its action against insects. An 
Soc Entomol Bras 29:615–632  

    Mordue AJ, Simmonds MSJ, Ley SV, Blaney WM, 
Nasiruddin M, Nisbet AJ (1998) Actions of azadi-
rachtin, a plant allelochemical against insects. Pestic 
Sci 54:277–284  

    Morgan ED (2009) Azadirachtin: a scientifi c goldmine. 
Bioorg Med Chem 17:4096–4105  

    Naill MC, Roberts SC (2005) Cell cycle analysis of  Taxus  
suspension cultures at the single cell level as an indi-
cator of culture heterogeneity. Biotechnol Bioeng 90:
491–500  

    Nims E, Dubois CP, Roberts SC, Walker EL (2006) 
Expression profi ling of genes involved in paclitaxel 
biosynthesis for targeted metabolic engineering. 
Metab Eng 8:385–394  

    Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, 
metabolite production, and substrate utilization in 
endophytic fungi. Nat Toxins 1:185–196  

V.C. Verma et al.



217

     Pie YQ (1983) A review of pharmacology and clinical use 
of piperine and its derivatives. Epilepsia 24:177–183  

    Powel RG, Weisleder D, Smith CR, Kozlowski J, 
Rohwedder WK (1982) Trefl orine, trenudine, and 
N-methyltrenudone: novel maytansinoids tumour 
inhibitors containing two fused macrocyclic rings. J 
Am Chem Soc 104:4929–4934  

    Prakash UN, Srinivasan K (2010) Gastrointestinal protec-
tive effect of dietary spices during ethanol-induced 
oxidant stress in experimental rats. Appl Physiol Nutr 
Metab 35:134–141  

    Prakash G, Bhojwani SS, Shrivastava AK (2002) 
Production of azadirachtin from tissue culture: state of 
the art and future prospects. Biotechnol Bioprocess 
Eng 7:185–193  

     Pullen CB, Schmitz P, Hoffmann D, Meurer K, Boettcher 
T, von Bamberg D, Pereira AM, de Castro França S, 
Hauser M, Geertsema H, van Wyk A, Mahmud T, 
Floss HG, Leistner E (2003) Occurrence and non- 
detectability of maytansinoids in individual plants of 
the genera  Maytenus and Putterlickia . Phytochemistry 
62:377–387  

    Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) 
An endophytic fungus from  Nothapodytes foetida  
that produces camptothecin. J Nat Prod 68:
1717–1719  

    Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ulHasan S, 
Amna T, Ahmed B, Verma V, Singh S, Sagar R, 
Sharma A, Kumar R, Sharma RK, Qazi GN (2006) 
The endophytic fungus  Trametes hirsuta as  a novel 
alternative source of podophyllotoxin and related aryl 
tetralin lignans. J Biotechnol 122:494–510  

    Rafi q M, Dahot M (2010) Callus and azadirachtin related 
limnoids production through  in vitro  culture of neem 
( Azadirachta indica  A. Juss). Afr J Biotechnol 
9:449–453  

    Ramaji N, Venkatakrishnan K, Madyastha KM (1996) 
11-Epi- azadirachtin H from  Azadirachta indica . 
Phytochemistry 42:561–562  

    Rambold H (1988) Isomeric azadirachtin and their mode 
of action. In: Jacobson J (ed) Focus on phytochemical 
pesticides, vol 1, The neem tree. CRC Press, London  

      Rembold H, Forster H, Sonnenbichler (1987) Z.Z. 
Naturforsch C, 42: 4–6  

    Rinehart KL, Shield LS (1976) Chemistry of the ansamy-
cin antibiotics. In: Herz W, Grisebach H, Kirby GW 
(eds) Progress in the chemistry of organic natural 
products. Springer, New York, pp 232–300  

    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, 
Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, 
Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling 
JD (2006) Production of the antimalarial drug pre- 
cursor artemisinic acid in engineered yeast. Nature 
440:940–943  

    Rosewich UL, Kistler HC (2000) Role of horizontal gene 
transfer in the evolution of fungi. Ann Rev Phytopathol 
38:325–363  

    Saikkonen K, Faeth SH, Helander ML, Sullivan TJ (1998) 
Fungal endophytes: a continuum of interactions with 
host plants. Ann Rev Ecol Syst 29:319–343  

    Satdive RK, Fulzele DP, Eapen S (2007) Enhanced 
production of azadirachtin by hairy root cultures of 
 Azadirachta indica  A Juss. by elicitation and media 
optimization. J Biotechnol 128:281–289  

    Schloss PD, Handelsman J (2005) Metagenomics for 
studying unculturable microorganisms: cutting the 
Gordian knot. Genome Biol 6:229–233  

   Schmeer H, Jennewein S (2009) Bioorganic synthesis of 
the key taxoid pre-cursor taxa-4(5),11(12)-diene using 
a one-pot, two enzyme catalyzed re-actions. Enzyme 
Engineering XX, Groningen, the Netherlands  

    Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, 
Haygood MG, Ravel J (2005) Patellamide A and C 
biosynthesis by a microcin-like pathway in  Prochloron 
didemni , the cyanobacterial symbiont of  Lissoclinum 
patella . Proc Nat Acad Sci USA 102:7315–7320  

    Shweta S, Zühlke S, Ramesha BT, Priti V, Kumar PM, 
Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU 
(2010) Endophytic fungal strains of  Fusarium solani , 
from  Apodytes dimidiate  E. Mey. ex Arn (Icacinaceae) 
produce camptothecin, 10-hydroxycamptothecin and 
9-methoxycamptothecin. Phytochemistry 71:117–122  

      Soliman SSM, Tsao R, Raizada MN (2011) Chemical 
inhibitors suggests endophytic fungal paclitaxel is 
derived from both mevalonate and non-mevalonate- 
like pathways. J Nat Prod 74:2497–2504  

    Srinivasan K (2007) Black pepper and its pungent 
principle- piperine: a review of diverse physiological 
effects. Crit Rev Food Sci Nutr 47:735–748  

    Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: 
exploiting biodiversity for the improvement of natural 
product-based drug discovery. J Plant Interact 
3:75–93  

    Staniek A, Woerdenbag HJ, Kayser O (2009)  Taxomyces 
andreanae : a presumed paclitaxel producer demysti-
fi ed? Planta Med 75:1561–1566  

     Stephanopoulos G, Alper H, Moxley J (2004) Exploiting 
biological complexity for strain improvement through 
systems biology. Nat Biotechnol 22:1261–1267  

     Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane 
production by  Taxomyces andreanae , an endophytic 
fungus of Pacifi c yew. Science 260:214–216  

    Strobel GA (2002) Microbial gifts from the rain forest. 
Can J Plant Pathol 24:14–20  

    Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural 
products from endophytic fungi. J Nat Prod 
67:257–268  

    Takumi I, Mizuho I, Siho T, Yuzi I, Hideyuki Y (2008) 
Piperine, a pepper ingredient, improves the hepatic 
increase in free fatty acids caused by 2, 3, 7, 8- 
tetrachlorodibenzo-p - dioxin. J Health Sci 54:551–558  

    Tan RX, Zou WX (2001) Endophytes: a rich source of 
functional metabolites. Nat Prod Rep 18:448–459  

   Timmers L (1994) Herbal medicines used against 
epilepsy in developing countries; Publication Number 
PUG/94-4. Publicaties Wetenschapswinkel 
Geneesmiddelen, Vrouwen  

    Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding 
the metabolic engineering toolbox: more options to 
engineer cells. Trends Biotechnol 25:132–137  

11 Host-Mimetic Metabolomics of Endophytes: Looking Back into the Future



218

     Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley 
SV (2007a) A relay route for the synthesis of azadi-
rachtin. Angew Chem Int Ed 46:7633–7635  

     Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley 
SV (2007b) Synthesis of azadirachtin: a long but suc-
cessful journey. Angew Chem Int Ed 46:7629–7632  

    Veitch GE, Boyer A, Ley SV (2008) The azadirachtin 
story. Angew Chem Int Ed 47:9402–9429  

    Verma VC, Kharwar RN, Strobel GA (2009) Chemical 
and functional diversity of natural products from plant 
associated endophytic fungi. Nat Prod Commun 
4:1511–1532  

      Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash 
S (2011) Piperine production by endophytic  Periconia  
sp. isolated from  Piper longum  L. J Antibiot 64:
427–431  

    Vongpaseuth K, Roberts SC (2007) Advancements in the 
understanding of paclitaxel metabolism in tissue cul-
ture. Curr Pharm Biotechnol 8:219–236  

    Walker K, Croteau R (2001) Taxol biosynthetic genes. 
Phytochemistry 58:1–7  

    Walker K, Long R, Croteau R (2002) The fi nal acylation 
step in taxol biosynthesis: cloning of the taxoid C13- 
side chain N-benzoyltransferase from Taxus. Proc Nat 
Acad Sci USA 99:9166–9171  

    Wani MC, Taylor HL, Wall ME (1973) Plant antitumour 
agents: colubrinol acetate and colubrinol, antileukae-
mic ansa macrolides from  Colubrina texensis . J Chem 
Soc Chem Commun 1973:390  

    Wenzel SC, Gross F, Zhang Y, Fu J, Stewart F, Müller R 
(2005) Heterologous expression of a myxobacterial 
natural products assembly line in  Pseudomonads  via 
Red/ET recombineering. Chem Biol 12:349–356  

    Weuster-Botzl D, Hekmat D, Puskeiler R, Franco-Lara E 
(2007) Enabling technologies: fermentation and 
downstream processing. Adv Biochem Eng Biotechnol 
105:205–247  

    Wildung MR, Croteau R (1996) A cDNA clone for taxadi-
ene synthase, the diterpene cyclase that catalyzes the 

committed step of taxol biosynthesis. J Biol Chem 
271:9201–9204  

    Wu J, Lin L (2003) Enhancement of taxol production and 
release in  Taxus chinensis  cell cultures by ultrasound, 
methyl jasmonate and in situsol-vent extraction. Appl 
Microbiol Biotechnol 62:151–155  

    Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh 
KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The 
biosynthetic gene cluster of the maytansinoid antitu-
mour agent ansamitocin from  Actinosynnema pretio-
sum . Proc Nat Acad Sci USA 99:7968–7973  

    Yukimune Y, Hara Y, Nomura E, Seto H, Yoshida S (2000) 
The confi guration of methyl jasmonate affects pacli-
taxel and baccatin III production in  Taxus  cells. 
Phytochemistry 54:13–17  

    Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, 
Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM 
(2003) A genomics-guided approach for discovering 
and expressing cryptic metabolic pathways. Nat 
Biotechnol 21:187–190  

    Zengler K, Walcher M, Clark G, Haller I, Toledo G, 
Holland T, Mathur EJ, Woodnutt G, Short J, Keller 
M (2005) High-throughput cultivation of microor-
ganisms using microcapsules. Method Enzymol 
397:124–130  

    Zhang P, Zhou P, Jiang C, Yu H, Yu LJ (2008) Screening 
of taxol-producing fungi based on PCR amplifi cation 
from  Taxus . Biotechnol Lett 30:2119–2123  

    Zhao J, Shan T, Mou Y, Zhao L (2011) Plant derived bio-
active compounds produced by endophytic fungi. 
Mini Rev Med Chem 11:159–168  

    Zhou X, Wang Z, Jiang K, Wei Y, Lin J, Sun X, Tang K 
(2007) Screening of taxol-producing endophytic fungi 
from  Taxus chinensis  var.  mairei . Prikl Biokhim 
Mikrobiol 43:490–494  

    Zutshi RK, Singh R, Zutshi U, Johri RK, Atal CK (1985) 
Infl uence of piperine on rifampicin blood levels in 
patients of pulmonary tuberculosis. J Assoc Phys India 
33:223–224      

V.C. Verma et al.



219V.C. Verma and A.C. Gange (eds.), Advances in Endophytic Research, 
DOI 10.1007/978-81-322-1575-2_12, © Springer India 2014

    Abstract  

     In recent years, a surge of interest was observed in synthesizing nanoparticles 
and other highly structured nanomaterials using microbes. Plenty of reports 
in cited domain claims synthesis of nanomaterials with desired shape, size 
and architecture through fungi, bacteria and actinomycetes. More precisely, 
fungi are frequently reported for their pivotal potential in bioreduction of 
the aqueous metal ions into their respective nanomaterials. The sporadic 
reports of nanomaterial synthesis from fungi led to the development of 
‘myconanotechnology’ as a new domain of nanotechnology. This newly 
emerging domain of nanotechnology attracts not only the microbiologist 
but also material chemists and technologists, because of safe, sustainable and 
non-toxic ‘green chemistry’ associated with it. There is possibility of getting 
a total control over shape and size in a microbial system more easily than 
chemical methods. So far, a number of fungal strains have been reported 
for this potential among which some most common are  Aspergillus , 
 Fusarium ,  Colletotrichum ,  Penicillium ,  Verticillium , etc. However, the 
exact mechanism of this mycoreduction is not known so far, but it is specu-
lated that fungal enzymes and/or metabolites are usually responsible 
for reduction of metal ions into their respective nanoparticles.    Although 
many soil and pathogenic fungi have been reported as nano- factories of 
desired metals, relatively few reports are available about the synthesis of 
nanomaterials using fungal endophytes.    It’s surprising since fungal endo-
phytes occupying the unusual habitat have potential to survive under stress 
conditions and thus must have set of enzymes and metabolites not found in 
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their wild-type counterparts. For this reason, fungal endophytes could be a 
better candidate for synthesizing nanomaterials. We, in this review, pro-
vide a brief review of recent account about endophyte-mediated synthesis 
of nanomaterials.  

  Fig. 12.1    The trending pattern of the publications on 
green chemical approach for synthesizing nanomaterials; 
after 2009, the rapid increase in ( a ) number of publications 

and ( b ) number of citations indicates the importance of 
this approach (Data sourced from web of science accessed 
on April 3rd 2013)       

1         Introduction 

 Nanomaterials are at the leading edge of the rap-
idly developing fi eld of nanotechnology. The 
development of reliable experimental protocols 
for the synthesis of nanomaterials over a range of 
compositions, sizes, with high monodispersity is 
one of the most challenging issues in current nano-
technology researches. In this context, the current 
drive to develop green technologies in material 
synthesis is of considerable importance. Recent 
studies on the use of microorganisms in the syn-
thesis of nanoparticles are a relatively new excit-
ing and fascinating area of research having 
potential for array of advantages over the conven-
tional chemical synthesis. In recent years, the use 
of fungi and actinomycetes in the synthesis of 
nanoparticles has become more sporadic as ‘green 
synthesis’ of nanomaterials (Mandal et al.  2006 ; 
Verma et al.  2009 ; Gade et al.  2010 ). After 2009, 

signifi cant interest has been paid by scientists to 
develop new protocols for synthesizing nanomate-
rials by fungi; this was observed by increasing the 
number of publications and citations published in 
this duration (Fig.  12.1 ). In fact, this interdisciplin-
ary fi eld of the so-called nanobiotechnology now 
emerges as a pivotal technology that intersects the 
different domains of sciences at a single platform.

   Several reports are now available about the 
fungus-mediated biosynthesis of metal nanopar-
ticles especially noble metals like gold and sil-
ver. Advantages of these green protocols include 
tight controlled, highly reproducible, non-toxic 
by- products, highly stable on room temperature 
and biocompatible. The biosynthetic method 
employing microbes has received some attention 
as a simple and viable alternative to chemical 
procedures and physical methods synthesizing 
metal nanoparticles only in recent years. Several 
fungi were evaluated for their potential to biore-
duce the aqueous ionic solutions of metals into 
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their respective nanoparticles such as  Fusarium  
spp. (Ahmad et al.  2003a ; Ingle et al.  2008 ; 
Sawle et al.  2008 ),  Aspergillus  spp. (Verma et al. 
 2010 ,  2011 ; Vigneshwaran et al.  2007 ; Gade 
et al.  2008 ) and  Verticillium  sp. (Mukherjee et al. 
 2001 ). Similarly, many actinomycetes were 
also reported to synthesize nanomaterials like 
 Thermomonospora  sp. (Sastry et al.  2003 ) and 
 Rhodococcus  sp. (   Ahmad et al.  2003b ). However, 

all these strains mentioned above were not endo-
phytic in nature (Table  12.1 ). As this fact was 
established that the fungal system can effi ciently 
produce nanomaterials which are safe and eco- 
friendly, many scientists started to think of the 
effi cacy of selected strains that have precise con-
trol over the shape and size of nanomaterials, 
and endophytic microbes are then evaluated for 
this purpose.

   Table 12.1    A list of most recent fungal strains used for synthesis of nanoparticles (contains report from 2010 onwards)   

 Fungi  Nanoparticle  Size  Morphology  References 

  A. alternata   Se  30 ± 5  Spherical  Sarkar et al. ( 2011b ) 
  A. alternata   Ag  12 ± 5  Spherical  Sarkar et al. ( 2011a ) 
  A. alternata   Ag  35–90  ND  Acharya et al. ( 2011 ) 
  A. clavatus   Ag  10–25  Spherical, hexagonal  Verma et al. ( 2010 ) 
  A. clavatus   Au  20–35  Triangular  Verma et al. ( 2011 ) 
  A. fl avus   Ag  17 ± 5.9  Spherical  Jain et al. ( 2010 ) 
  A. fl avus   Ag  7  Spherical  Moharrer et al. ( 2012 ) 
  A. fumigatus   Ag  7–19  Variable shapes  Navazi et al. ( 2010 ) 
  A. oryzae var. viridis   Au  10–60  Triangle, hexagon  Binupriya et al. ( 2010 ) 
  A. terreus   Ag  1–20  Spherical  Li et al. ( 2012 ) 
  Bipolaris nodulosa   Ag  10–60  Semi-pentagonal  Saha et al. ( 2010 ) 
  Cochliobolus lunatus   Ag  3–21  Spherical  Salunkhe et al. ( 2011 ) 
  C. versicolor   CdS  100  Spherical  Chen et al. ( 2011 ) 
  F. oxysporum   Au  20–40  Multishaped  Anitha and Palanivelu 

( 2011 ) 
  F. oxysporum   Ag  20–70  Multishaped  Pandiarajan et al. ( 2010 ) 
  Neurospora crassa   Ag/Au  11  Spherical  Castro-Longoria et al. 

( 2011 ) 
  Fusarium solani   Ag  3–8  Spherical  El-Rafi e et al. ( 2010 ) 
  L. lecanii   Ag  45–100  Spherical  Namasivayam and 

Avimanyu ( 2011 ) 
  N. oryzae   Ag  30–90  Spherical  Saha et al. ( 2011 ) 
  Penicillium  sp.  Ag  52–104  Multishaped  Hemath et al. ( 2010 ) 
  Penicillium  sp.  Au  30–50  Spherical  Du et al. ( 2011 ) 
  Pestalotia  sp.  Ag  10–40  Spherical  Raheman et al. ( 2011 ) 
  Phanerochaete 
chrysosporium  

 Au  10–100  Spherical  Sanghi et al. ( 2011 ) 

  Phoma sorghina   Ag  30–40  Rods  Gade et al. ( 2011 ) 
  R. stolonifer   Ag  5–50  Spherical  Afreen and Ranganath 

( 2011 ) 
  S. rolfsii   Au  25  Triangle 
  Trichoderma harzianum   Ag  30–50  Spherical  Singh and Balaji ( 2011 ) 
  Trichoderma reesei   Ag  5–50  Multishaped  Vahabi et al. ( 2011 ) 
  T. viride   Ag  5–40  Spherical  Fayaz et al. ( 2010 ) 
  Tricholoma crassum   Ag  5–50  Spherical  Ray et al. ( 2011 ) 
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2        Microbial Endophytes 
in Nanoparticles Synthesis 

 With increasing interest in the mycosynthesis of 
nanomaterials, apart from several soil and other 
fungi from other sources, the microbial endo-
phytes were also been recently used for their 
potential in myconanosynthesis (Table  12.2 ). 
The fi rst report of endophytic fungi used for 
synthesis of nanoparticles was from endophytic 
 Colletotrichum  sp. from  Pelargonium graveolens  
(geranium leaf) to bioreduction of chloroaurate 
ions into gold nanoparticles. According to their 
report, they obtained different shape of gold 
nanoparticles instead of a specifi c shape; how-
ever, they didn’t claim to get a control over the 
shape. The majority of nano-gold obtained were 
decahedral and icosahedral in shape ranging in 
size from 20 to 40 nm; interestingly, they have 
obtained multiply twinned particles (MTPs). As 
part of mechanism, they examined the extract of 
 Pelargonium graveolens  by FTIR and obtained 
strong bands at 1,658, 1,543 and 1,240 cm −1 . 
They hypothesized that these strong bands correlate 
with presence of polypeptide/proteins that are 

earlier reported in capping and stabilizing agents 
(Shankar et al.  2003 ). It is well known that certain 
proteins can bind to gold nanoparticles either 
through free amine groups or cysteine residues in 
the proteins. Endophytic fungi  Aspergillus clavatus  
isolated from  Azadirachta indica  plant have also 
been reported to synthesize silver nanoparticles 
which have signifi cant antibacterial and antifun-
gal activity (Verma et al.  2010 ). Mostly spherical 
and hexagonal nanoparticles as well as clusters of 
nanoparticles were observed. Simple analysis of 
the topography suggests that the nanoparticles 
were spherically shaped with a height range of 
2–6 nm and width range of 30–60 nm. This report 
shows that AgNP- embedded composite fi lm 
exhibited clear inhibition zones when targeted 
against  Candida albicans  seeded plates, while no 
inhibition zone was observed in the controls 
(composite fi lms of AgNP solution as positive 
control and composite fi lms without nanoparti-
cles as negative control). Maximum of 16 mm 
inhibition zone was observed for  C. albicans . 
The minimum inhibitory concentration (MIC) 
was in the range of 5.8 μg ml −1  for  C. albicans , 
while the minimum bactericidal concentration 
(MBC) was about 9.7 μg ml −1 . While other 

   Table 12.2    List of most recent microbial endophytes that have been reported for synthesis of nanoparticles   

 SI  Host plant  Endophytic microbe  Nanoparticle  References 

 1   Bauhinia variegata    Penicillium citrinum   Au  Alappat et al. ( 2012 ) 
  Colletotrichum gloeosporioides  
  Colletotrichum lindemuthianum  
  Phyllosticta  sp. 

 2   Garcinia xanthochymus    Bacillus cereus   Ag  Sunkar and Nachiyar 
( 2012a ,  b ) 

 3   Phellodendron amurense    Epicoccum nigrum   Ag  Qian et al. ( 2012 ) 
 4   Avicennia marina    Aspergillus conicus   Ag  Bharathidasan and 

Panneerselvam ( 2012 )   Suaeda monoica    Penicillium janthinellum  
  Rhizophora mucronata    Phomopsis  sp. 

 5   Syzygium cumini    Pestalotia  sp.  Ag  Raheman et al. ( 2011 ) 
 6   Pelargonium graveolens    Colletotrichum  sp.  Au  Shankar et al. ( 2003 ) 
 7   Centella asiatica    Penicillium  sp.  Ag  Devi et al. ( 2012 ) 
 8   Azadirachta indica    Aspergillus clavatus   Ag  Verma et al. ( 2010 ) 
 9   A. indica    Aspergillus clavatus   Au  Verma et al. ( 2011 ) 
 10   A. indica    Saccharomonospora  sp.  Au  Verma et al. ( 2013 ) 
 11   Piper nigrum    Bordetella  sp.  Ag  Thomas et al. ( 2012 ) 
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reports claim MIC about 4.8 while MBC 
6.2 μg ml −1 , but that involved  Streptococcus 
mutans  as the test organism, thus, it is likely that 
 S. mutans  is more sensitive to the silver 
nanoparticles than  C. albicans . The AgNPs are 
also found effective against  Pseudomonas fl uo-
rescens  with inhibition zone of 14 mm, while 
against  Escherichia coli,  it has 10 mm inhibition 
spectrum.

   In an effort, endophytic  Pestalotia  sp. iso-
lated from leaf tissues of  Syzygium cumini  was 
evaluated for its potential in synthesizing silver 
nanoparticles. The extracellular synthesis of 
AgNPs was observed with average size of 
10–40 nm and mostly spherical and polydis-
perse (Raheman et al.  2011 ). A detailed in vitro 
antibacterial activity was also performed in this 
study, and interestingly, a combination of 
AgNPs along with antibiotics showed a many-
fold increase in their antibacterial activity. 
AgNPs produced from endophytic fungus 
 Pestalotia  sp. were carried out without antibiot-
ics and in combination with commercially avail-
able antibiotics gentamicin and sulphamethizole 
against  S. aureus  and  S. typhi . AgNPs without 
antibiotics showed antibacterial activity but the 
effi ciency was found to be increased signifi -
cantly in combination with antibiotics. AgNPs 
in combination with gentamicin showed maxi-
mum activity (30 mm) (increase in fold area, 
0.23) against  S. aureus  followed by sulphame-
thizole (25 mm) (increase in fold area, 0.18). 
Similar results were reported in case of  S. typhi  
where silver nanoparticles in combination with 
gentamicin (28 mm) (increase in fold area, 0.15) 
showed more activity than combination of sil-
ver nanoparticles and sulphamethizole (24 mm) 
(increase in fold area, 0.08). To confi rm the role 
of extract in nanosynthesis, an FTIR study of 
extract of  Pestalotia  sp. was performed, which 
confi rms that amino acid residues and peptides 
of proteins have the stronger ability to bind with 
metal, so that the proteins could most possibly 
form a coat covering the metal nanoparticles, 
that is, capping of silver nanoparticles to prevent 
agglomeration of the particles and stabilizing in 
the medium (Raheman et al.  2011 ). 

 Besides many highly medicinal plants, some 
reports are available in which endophytes of 
mangrove plants were investigated for bioreduc-
tion of metal ion solutions into corresponding 
nanoparticles. Foliar endophytes of three selected 
mangrove plants  Avicennia marina ,  Suaeda 
monoica  and  Rhizophora mucronata  were iso-
lated from Karankadu, Ramanathapuram district 
in south India. The authors have randomly 
selected three endophytes from each plant 
 Aspergillus conicus ,  Penicillium janthinellum  
and  Phomopsis,  respectively, for the synthesis 
of silver nanoparticles. The lyophilized 
nanoparticle samples were analyzed in FTIR to 
identify the possible biomolecules responsible 
for the reduction of the Ag+ ions by the cell 
fi ltrate. The representative spectra of nanoparti-
cles obtained manifest absorption peak located at 
about 3,843.68 cm −1  (−NH group of amines), 
3,597.73 cm −1  (−OH group of phenols), 
2,080.65 cm −1  (aromatic-CH stretching), 
1,631.66 cm −1  (−NHCO of amide) and 
767.16 cm −1  (C–CI) (Table  12.3 ). Silver nanopar-
ticle synthesized by  Aspergillus conicus , 
 Penicillium janthinellum  and  Phomopsis  shows 
better zone of inhibition when tested against sev-
eral bacterial pathogens such as  Salmonella typhi , 
 Staphylococcus aureus ,  Bacillus subtilis  and 
 Vibrio cholerae . It was observed that in  n - butanol , 
there are 10 nm inhibition zones for  Vibrio chol-
erae  and  Staphylococcus aureus  followed by 
about 15 mm for  Salmonella typhi;  however, the 
methanol extracts show moderate activity against 
tested pathogens with 10 and 5 mm of inhibition 
zones (Bharathidasan and Panneerselvam  2012 ).

   Many other recent reports indicate several 
new endophytic strains for rapid synthesis of 
nanoparticles. Here, we briefl y named a few 
more. An endophytic  Penicillium  sp. isolated 
from  Centella asiatica  has also been reported to 
produce silver nanoparticle and also has spec-
trum of antibacterial activity against an array of 
pathogenic strains such as  Proteus mirabilis , 
 Shigella dysenteriae ,  Klebsiella pneumoniae , 
 Staphylococcus aureus  and  Candida albicans  
(Devi et al.  2012 ). Four    endophytic fungi 
 Penicillium citrinum ,  Colletotrichum gloeo-
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sporioides ,  Colletotrichum lindemuthianum , and 
 Phyllosticta  sp. isolated from  Bauhinia variegata  
were investigated for biosynthesis of gold 
nanoparticle (Alappat et al.  2012 ). Out of the 
three strains tested, only  Penicillium citrinum  
was found to synthesize the gold nanoparticles. 

 Apart from fungal endophytes, there are also 
reported bacterial endophytes used for the syn-
thesis of nanoparticles. Endophytic bacterium 
 Bacillus cereus  isolated from leaf of  Garcinia 
xanthochymus  was used to synthesize silver 
nanoparticle and also evaluate antibacterial activ-
ity against many pathogenic strains like 
 Escherichia coli ,  Pseudomonas aeruginosa , 
 Staphylococcus aureus ,  Salmonella typhi  and 
 Klebsiella pneumoniae . The silver nanoparticles 
range from 20 to 40 nm in size; however, the 
shape is not mentioned in the report. The authors 
have convincingly state that with EDX analysis, 
the signals for C, N and O indicate the presence of 
proteins as a capping material on the surface of silver 

nanoparticles (Sunkar and Nachiyar  2012a ,  b ). 
Also in another report, endophytic bacterium 
(unidentifi ed) from  Coffee arabica  has been also 
reported to synthesize silver nano particles with 
signifi cant antibacterial activity (Baker    and 
Shreedharmurthy  2012a ). Endophytic  Bordetella  
sp. isolated from  Piper nigrum  was also found to 
have the ability to biofabricate extracellular sil-
ver nanoparticles at room temperature. The anti-
bacterial potential of silver nanoparticles 
synthesized was also tested against pathogens 
like  Salmonella paratyphi ,  Vibrio cholera  and 
 Staphylococcus aureus  (Thomas et al.  2012 ). 

 However, the above-mentioned reports are 
mainly restricted to the synthesis of nanoparti-
cles, and except a few, none have tried to investi-
gate possibilities to get a control over the shape 
and size of biogenic nanoparticles by endophytes. 
Recently, a report come on the shape-controlled 
synthesis of gold nanoparticle from endophytic 
fungi  Aspergillus clavatus  (Verma et al.  2011 ). 
This endophytic strain was isolated from 
 Azadirachta indica  plant; earlier, the same 
authors have reported the same fungus for the 
synthesis of silver nanoparticles (Verma et al. 
 2010 ). The most interesting outcome of this study 
was to get fairly monodisperse nanotriangles of 
gold. The authors have shown that this particular 
strain can be used to modulate for getting a 
shape-controlled synthesis of gold nanoparticles 
(Table     12.2 ).

   They have measured a single gold nanotri-
angle using atomic force microscopy (AFM); 
the purifi ed gold nanotriangles showed a parti-
cle size distribution ranging from 20 to 35 nm 
with an average particle size of 30 ± 2 nm. 
Among the triangles also, they obtained a set of 
different types of triangles like sharp angle tri-
angle, snipped angle triangle, and truncated tri-
angles. This is the fi rst report that thoroughly 
investigates the possibility of getting shape-con-
trolled synthesis of nanoparticles from endo-
phytes (Fig.  12.2 ). In effort to elucidate the 
mechanism of the biogenic synthesis of 
nanoparticles, the same authors have also 
investigated another endophytic actinomycetes 
 Saccharomonospora  sp. (Verma et al.  2013 ). In 
this study, the authors have convincingly shown 

   Table 12.3    The FTIR analysis of the extracts from endo-
phytic  Aspergillus conicus ,  Penicillium janthinellum  and 
 Phomopsis  sp. and assignments of various functional 
groups   

 S.N. 

 Group 
frequency cm −1  
of the sample  Functional group assignment 

 1  3,406.98  N–H stretch, primary two 
bands, amine N–H stretching 

 2  2,925.89  Chelating compound Co–H 
stretching vibration-free OH 

 3  2,861.34  C–H alkalines, C–H stretching 
vibrations two band (aldehyde) 

 4  2,356.28  Hydrocarbon chromophone, 
C–H stretching (alkane) 

 5  2,145.24  –N═C═N– stretching 
vibrations, diamides 

 6  1,731.49  Cyclic, β-lactams, dilute 
solution 

 7  1,647.67  C–C alkene/ketone stretching 
β dilution, –N═N– stretching 

 8  1,559.32  N–H, amine salt, β-diketone, 
primary amide –N–H, 
Coo-aromatic 

 9  1,449.90  Aromatic 
 10  1,379.47  Coo-anion, OH phenol 

(sulphonyl chlorides) 
 11  1,073.88  (C–F) halogen compound C–X 

stretching vibrations 
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the role of proteins in bioreduction and stabili-
zation of gold nanoparticles. They perform 
SDS protein profi ling to investigate the role of 
protein. They identify two proteins correspond-
ing to 42 and 50 kD that gradually decline from 
the reduction mixture.  

3     Concluding Remarks 

 Size-dependent properties exhibited by the 
nanoparticles make them to have attractive med-
ical and technological applications. Nanoparticles 
differ signifi cantly from the bulk materials in its 
physical, chemical and biological properties due 
to their large fraction of surface atoms, large sur-
face energy and spatial confi nement. In addition 
to its advantages as non-toxic, and environmen-
tally benign synthetic procedures, biological 
methods of nanoparticle synthesis provide parti-
cles with good control over the size distribution. 
The variation in physico-chemical properties of 
the nanoparticles synthesized through diverse 
microbial sources can affect its applications. 
This indicates the importance of exploration of 
novel untapped microbial sources for the identi-
fi cation of potential strains with nanoparticle- 
synthesizing property. Endophytes, by occupying 

the unique habitat, are greatly unexplored in 
terms of its nanoparticle-synthesizing proper-
ties. Although endophytic bacteria and fungi 
were greatly studied for its bioactive compounds 
and also for its use as biocontrol agent, its stud-
ies on nanoparticle synthesis are very limited. 
The interface between endophytes and nanoma-
terials is a relatively new and unexplored area 
(Baker and Shreedharmurthy  2012b ). Improved 
scientifi c knowledge and implementation of new 
technologies unfold interaction of nano-revolu-
tion with biological entities, and the role of 
microbes in bio- and green synthesis of nanopar-
ticles seems to have drawn unequivocal attention 
with a view of reformulating the novel strategies 
as alternatives for conventional methods for the 
synthesis of nanoparticles which are bound with 
various implications such as expensive costs and 
toxicity risks on health from environmental 
contaminants. 

 The biosynthetic route for the synthesis of 
metal nanoparticles using fungi is a simple pro-
cess involving the reaction of microbial endo-
phyte culture with aqueous solutions of metal 
ions. But there are a number of questions, which 
need to be addressed. The synthesis process 
points out that there are a number of reducing 
agents involved in the reduction of metal ions 

     Fig. 12.2    TEM images of gold nanotriangles synthesized 
endophytic fungi  Aspergillus clavatus . The different types 
of edge/tip margins of gold nanotriangles were obtained 

such as  sharp-edged triangles  ( a ,  c ,  f ),  truncated triangles  
( b ,  d ,  e ) and  snipped triangles  ( a – b ,  d – e ) (Adapted from 
Verma et al.  2011 )       
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and corresponding formation of nanoparticles. 
These reducing agents also affect the size and 
shape of nanoparticles; hence, there is a need to 
investigate the exact mechanism involved in the 
biosynthesis of nanoparticles. Studies on the 
synthesis of nanoparticles of specifi c size and 
shape depend on different factors like tempera-
ture and light intensity. Biosynthetic approach 
for nanoparticle synthesis also needs to focus on 
the shape selectivity and size monodispersity of 
nanoparticles. Studying the novel shape- and 
size-dependent physical and chemical properties 
of nanoparticles and their subsequent interaction 
could help in the development of a new range of 
photonic and electronic devices that can control 
and manipulate light at nanoscale.     
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    Abstract  

  The natural and biological control of insect-pests and diseases affecting 
 cultivated plants has gained much attention in the past decades as a way of 
reducing the use of pesticides in agriculture. Biocontrol has been fre-
quently used in tropical countries, such as Brazil, and it is supported by the 
development of local basic and applied research. In this context, tropical 
endophytes have attracted special attention to develop their roles to control 
of pest insect and plant diseases. Endophytic symbiotic microorganisms 
are defi ned in different ways and a recent defi nition includes all of the 
culturable microorganisms that inhabit inner parts of plant tissues causing 
no harm to their hosts. They can be divided in two groups: those that do 
not generate external structures from the host and those able to develop 
external structures such as nodules of N 2  fi xing bacteria and mycorrhizal 
fungi. Endophytes have important roles in the plant host protection, acting 
against predators and pathogens. They protect host plants against herbi-
vores such as cattle and pest insect. They also may increase plant resis-
tance to pathogens that produce antimicrobial agents and plant-growth 
hormones and have other effects countering biotic and abiotic stresses. 
Endophytic microorganisms were fi rst studied in plants in temperate 
regions but more recently have been also studied in plants from tropical 
regions. In this chapter, we focus on examples of endophytic bacteria and 
fungi, especially those that may control pest insects and plant diseases by 
antagonistic effects, production of enzymes, or introduction of heterolo-
gous genes by recombinant DNA technology.  
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1         Introduction 

 The term endophyte is    applied to microorganisms 
that live within plant tissues for all or part of their 
life cycles and cause no apparent infections or 
symptoms of disease (Wilson  1995 ; Azevedo 
et al.  2000 ; Bacon and White  2000 ; Saikkonen 
et al.  2004 ). Hallmann et al. ( 1997 ) describe 
endophytes as those organisms that can be iso-
lated from surface-sterilized plant parts or 
extracted from inner tissues and that cause no 
damage to the host plant. In addition, Azevedo 
and Araújo ( 2007 ) suggested that endophytes are 
all microorganisms, culturable or not, that inhabit 
the interior of plant tissues, cause no harm to the 
host, and do not develop external structures. 
More recently, Mendes and Azevedo ( 2007 ) 
defi ned endophytic microorganisms in the same 
way as other authors (Hallmann et al.  1997 ; 
Azevedo et al.  2000 ; Azevedo and Araújo  2007 ) 
but suggested a division of endophytes in two 
types: Type I, or endophytes that do not develop 
external structures, and Type II, or endophytes 
that develop external structures. Endophytic bac-
teria have been isolated from many different 
plant species (Lodewyckx et al.  2002 ; Idris et al. 
 2004 ; Rosenblueth and Martinez-Romero  2006 ; 
Barzanti et al.  2007 ; Sheng et al.  2008 ; Mastretta 
et al.  2009 ). Also fungal endophytes have been 
isolated from lichens, moss, ferns, gymnosperms, 
monocotyledonous, and dicotyledonous plants, 
growing in different environments (Petrini  1986 ; 
Petrini et al.  1990 ). More recently they have been 
frequently isolated from plants growing in 
tropical and subtropical regions. According to 
Azevedo and Araújo ( 2007 ), more than 50 plant 
species studied from these regions and hun-
dreds of different species of fungi were isolated 
and these numbers are constantly increasing 
(Bernardi-Wenzel et al.  2010 ; Gazis and Chavern 
 2010 ; Suryanarayanan et al.  2011 ; Radji et al. 
 2011 ; Orlandelli et al.  2012 ; Rhoden et al.  2012 ; 
Garcia et al.  2012 ). This category of microorgan-
isms may stimulate host growth through several 
mechanisms, including biological control; induc-
tion of systemic resistance to pathogens; nitro-
gen fi xation; production of growth regulators, 

 antimicrobial products, and enzymes; and 
enhancement of mineral nutrients or water uptake 
(Ryan et al.  2008 ). Additionally, the endophytic 
microorganisms isolated from plants that hyper-
accumulate metals exhibit tolerance to high metal 
concentrations (Idris et al.  2004 ; Rajkumar et al. 
 2009 ). There is a great deal of interest in under-
standing endophyte diversity and the role of 
endophytic microorganisms in plant and micro-
bial ecology, evolutionary biology, and applied 
research, ranging from biological control to bio-
prospecting for genes (Azevedo et al.  2000 ; 
Araújo et al.  2008 ). In the past two decades, a lot 
of information on the role of endophytic microor-
ganisms in nature has been collected. The ability 
to colonize internal host tissues has made endo-
phytes valuable as a tool to improve crop perfor-
mance. In this review, we address the major 
topics concerning the biocontrol potential of 
endophytes in agrobiology systems.  

2     Endophytic Bacteria from 
Different Host Plants 

 Reported endophytes include both Gram-positive 
and Gram-negative bacteria and the classes 
 Alpha -,  Beta -, and  Gammaproteobacteria , 
 Actinobacteria ,  Firmicutes , and  Bacteroidetes  
(Lodewyckx et al.  2002 ; Bacon and Hinton 
 2006 ). Approximately 300,000 plant species 
growing in unexplored areas of the earth are host 
to one or more endophytes (Araújo et al.  2001 ), 
and the presence of biodiverse endophytes in 
huge numbers plays an important role in the 
ecosystems with the greatest biodiversity, such as 
tropical and temperate rainforests (Arachevaleta 
et al.  1989 ), which are found extensively in Brazil 
and possess almost 20 % of its biotechnological 
source materials (Araújo et al.  2002 ). Endophytic 
bacteria have been isolated from a variety of 
plants, as reviewed by Sturz et al. ( 2000 ) and 
Hallmann et al. ( 1997 ). Plants harboring endo-
phytes were reported in a review by Rosenblueth 
and Martinez-Romero ( 2006 ) of bacterial endo-
phytes and their interactions with hosts but, most 
likely, there is not a single plant species devoid of 
endophytes. The few examples of apparent 
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absence of endophytes suggest that some micro-
organisms are not easily isolated or cultured. The 
diversity of endophytic bacterial species has been 
largely based on culture techniques. Culture- 
independent analysis of bacterial populations 
inside citrus plants also suggests that bacterial 
endophytic populations are much more diverse 
than previously realized (Araújo et al.  2002 ; 
Lacava et al.  2006 ). Various reports concerning 
endophytic bacteria in agricultural plants have 
demonstrated that the use of fi ngerprinting tech-
niques and clone analysis can provide additional 
information for analyzing the community com-
position of endophytic bacteria (Chelius and 
Triplett  2001 ; Garbeva et al.  2001 ; Seghers et al. 
 2004 ; Sessitsch et al.  2004 ). Culture-independent 
molecular approaches based on 16S rRNA gene 
analysis, such as PCR amplifi cation of 16S 
rDNAs, amplifi ed ribosomal DNA restriction 
analysis (ARDRA), denaturing gradient gel elec-
trophoresis (DGGE), and terminal restriction 
fragment length polymorphism (T-RFLP), have 
been successfully used for bacterial community 
analysis in a great variety of environments, 
including soil ecosystems (Dunbar et al.  1999 ), 
marine environments (Cottrell and Kirchman 
 2000 ), rhizospheres (Smalla et al.  2001 ), foods 
(Cocolin et al.  2002 ), and human intestines (Kibe 
et al.  2005 ), to overcome the limitations of 
culture- dependent approaches. However, these 
culture-independent approaches used on endo-
phytic bacteria have met with limited success due 
to disturbances from chloroplast 16S rDNA and 
mitochondrial 18S rDNA. Recently, Sessitsch 
et al. ( 2012 ) suggested a new approach to study 
the functional characteristics of endophytic 
bacteria. The authors presented the fi rst metage-
nomic approach to analyze an endophytic 
bacterial community inside roots of rice. They 
asserted that assessing microbial functions is 
impeded by diffi culties in cultivating most pro-
karyotes, and endophytes inside host tissues are 
not always amenable to biochemical or genetic 
analyses (Mano and Morisaki  2008 ; Weyens 
et al.  2009 ). From the results of Sessitsch et al. 
( 2012 ), metagenome sequences were obtained 
from endophytic cells extracted from the roots of 
fi eld-grown plants (rice). Putative functions were 

deduced from protein domains or similarity 
 analyses of protein-encoding gene fragments, 
and this allowed insight into the capacities of 
endophytic cells. Prominent features included 
fl agella, plant-polymer-degrading enzymes, pro-
tein secretion systems, iron acquisition and 
 storage, quorum sensing, and detoxifi cation of 
reactive oxygen species. In this metagenome 
analysis, endophytes might be involved in the 
entire nitrogen cycle as protein domains involved 
in N 2 - fi xation, denitrifi cation, and nitrifi cation 
because genes involved in these cases were 
detected and expressed. Finally, the authors con-
cluded that a deeper understanding of endophytic 
functions and mechanisms for their establish-
ment in the endosphere could be exploited to 
improve agricultural management practices with 
respect to biocontrol, bioremediation, and plant 
nutrition. They suggested the metagenome 
approach as a method alternative to cultivation 
for the study of the role of bacterial endophytes 
that reside inside host plants.  

3     Localization Inside of Host 
Plants 

 Endophytic bacteria appear to originate from 
seeds (Pleban et al.  1995 ; Adams and Kloepper 
 1996 ), vegetative planting material (Dong et al. 
 1994 ), rhizosphere soil (Sturz  1995 ; Hallmann 
et al.  1997 ; Mahaffee and Kloepper  1997 ), and 
the phylloplane (Beattie and Lindow  1995 ). With 
the exception of seed-transmitted bacteria, which 
are already present in the plant, potential endo-
phytes must fi rst colonize the root surface prior to 
entering the plant. The initial processes of coloni-
zation of plant tissue by endophytic bacteria can 
be via stoma, lenticels, areas of emergence of lat-
eral roots, and germinating radicles (Huang 
 1986 ). Several authors have reported coloniza-
tion of the secondary root emergence zone by 
bacterial endophytes (Reinhold and Hurek  1988 ; 
Wiehe et al.  1994 ; Mahaffe et al.  1997 ). Various 
bacterial endophytes have been reported to live 
within cells, in intercellular spaces, or in the vas-
cular systems of plants (Hallmann et al.  1997 ; 
James and Olivares  1998 ; Reinhold-Hurek and 
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Hurek  1998 ; Sturz et al.  2000 ; Rosenblueth 
and Martinez-Romero  2006 ; Gai et al.  2009 ). 
Although endophyte populations vary in different 
plants according to many factors, bacterial popu-
lations are generally larger in roots and smaller in 
stems and leaves (Lamb et al.  1996 ). Additionally, 
the population density of endophytic bacteria 
found in plants depends on the plant species, gen-
otype, and tissue, the growth stage and special-
ization of the bacteria, differences in colonization 
pathway, and mutual exclusion of different bacte-
rial populations (Sturz et al.  1997 ). According to 
Strobel and Daisy ( 2003 ), many factors change 
endophytic biology, including the season, the age 
of the host plant, the environment, and the loca-
tion. The processes of colonization of plant tissue 
by endophytic bacteria are complex and include 
host recognition, spore germination, penetration, 
and colonization, and the sources of endophytic 
colonization are diverse, ranging from transmis-
sion via seeds (Ferreira et al.  2008 ) and vegeta-
tive planting material to entrance from the 
surrounding environment, such as the rhizo-
sphere and phyllosphere. However, there is inter-
est in fi nding bacterial strains with biological 
control or plant-growth-promoting capabilities. 
If these bacteria can be found in internal plant 
tissues, as they can in the rhizosphere, these bac-
teria may have the unique capacity to elicit 

 benefi cial effects from within the plants. As new 
benefi cial bacterial strains are identifi ed, delivery 
of these strains to specifi c plant tissues will be 
needed. To use endophytic bacteria in practical 
agronomic production, reliable and practical 
methods of inoculation must be developed. 
Several delivery systems have been reported for 
endophytic bacteria (van Der Peer et al.  1990 ; 
Kumar and Dube  1992 ; Musson  1994 ). In our 
studies, we have used culture-dependent 
approaches based on media culture (Fig.  13.1 ) 
and fl uorescent microscopy (Fig.  13.2 ) to deter-
minate the localization of endophytic bacteria in 
host plants. The endophytic bacterium  Methylo-
bacterium mesophylicum  (strain SR1.6/6) in 
 Catharanthus roseus  and  Nicotiana clevelandii  
plants was made visible by scanning electron 
microscopy (SEM). The highest densities were 
observed in the roots and hypocotyl, suggesting 
that these sites may be the most important points 
of entry for strain SR1.6/6 in both plants. 
Remarkably, cells adhering to the plants were 
immersed in a mucilaginous layer, suggesting 
that strain SR1.6/6 is able to form a biofi lm on 
the root and hypocotyl surfaces of both plants 
(Andreote et al.  2006 ). Lacava et al. ( 2007b ), 
using fl uorescence microscopy, revealed that 
 Klebsiella pneumoniae  strain Kp342 colonized 
the xylem vessels of  Citrus sinensis  roots and 

  Fig. 13.1    Diversity of culturable endophytic microorganisms 
isolated from leaf tissue of mangrove plants ( Rhizophora 
mangle ). ( a ) Primary isolation of endophytic bacteria 

from  R. mangle . ( b ) Primary isolation of endophytic fungi 
from  R. mangle        
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branches, and it was able to colonize the xylem 
vessels of  C. roseus  branches and roots. Previous 
reports have described the ability of  K. pneu-
moniae  to colonize the roots and vascular tissue 
of plants (Dong et al.  2003 ). Based on isolation 
and fl uorescence microscopy, Lacava et al. 
( 2007a ) suggested that  C. roseus  could be used as 
a model plant to study the interaction between 
endophytic bacteria and host plants. Ferreira 
et al. ( 2008 ) reported an endophytic bacterial 
community residing in  Eucalyptus  seeds and the 
transmission of these bacteria from seeds to seed-
lings. The authors suggested that endophytic bac-
teria can be transmitted vertically from seeds to 
seedlings, assuring the support of the bacterial 
community in the host plant. The authors evalu-
ated the characteristics of colonization of endo-
phytic bacteria by isolation and fl uorescence 
microscopy. Gai et al. ( 2009 ) reported the local-
ization of the endophytic bacterium  M. mesophi-
licum  in  C. roseus  and the transmission of this 
endophyte by  Bucephalogonia xanthophis  using 

isolation and fl uorescence microscopy.  C. roseus  
is a model plant for the study of interactions 
between endophytic bacteria and  Xylella fastidi-
osa , the causal agent of citrus variegated chloro-
sis, and  B. xanthophis  is an insect vector that 
transmits  X. fastidiosa  to citrus plants (Hartung 
et al.  1994 ).

4         Endophytic Bacteria: 
Biotechnological Potential 

 A better understanding of endophytic bacteria 
may help to elucidate their function and potential 
role in developing sustainable systems of crop 
production (Sun et al.  2008 ). Bacteria interact 
with plants in four ways: as pathogens, symbi-
onts, epiphytes, or endophytes. Of these four 
types of bacteria–plant interactions, endophytic 
interactions are the least studied and least under-
stood (Iniguez et al.  2005 ). Endophytic bacteria 
are of biotechnological and agronomic interest 

  Fig. 13.2    Transverse section of  Citrus sinensis  roots. 
Series of images demonstrating colonization by GFP-
labeled  Klebsiella pneumoniae  342 strain ( a ,  b ,  c ,  d ). 

 Arrows  point to GFP-tagged bacterial cells. Bars, 50 μm 
(Modifi ed Lacava et al.  2007a )       
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because they can enhance plant growth and 
improve the nutrition of plants, and they can also 
control pests and plant diseases (Boddey et al. 
 2003 ; Sevilla et al.  2001 ; Azevedo et al.  2000 ). 
Endophytes may increase crop yields, remove 
contaminants, inhibit pathogens, and produce 
fi xed nitrogen or novel substances (Rosenblueth 
and Martinez-Romero  2006 ). The repertoire of 
their effects and functions in plants has not been 
comprehensively defi ned. The challenge and goal 
is to be able to manage microbial communities 
that favor plant colonization by benefi cial bacte-
ria. This will be possible when better knowledge 
of endophyte ecology and plant–endophyte 
molecular interactions is attained. The endo-
phyte–host relationship is believed to be complex 
and most likely varies from host to host and 
microorganism to microorganism (Boursnell 
 1950 ). Many experiments have been conducted 
to compare how endophyte-infected plants and 
noninfected plants behave in response to environ-
mental stress and attack by insect and animal 
predators (Owen and Hundley  2004 ). Furthermore, 
endophyte-infected plants often grow faster than 
noninfected ones (Cheplick et al.  1989 ). This 
effect is at least in part due to the endophytes’ 
production of phytohormones, such as indole-
3-acetic acid (IAA), cytokines, and other plant-
growth-promoting substances (Tan and Zou 
 2001 ), and the fact that endophytes enhance the 
hosts’ uptake of nutritional elements such as 
nitrogen (Reis et al.  2000 ) and phosphorus 
(Malinowski and Belesky  1999 ). 

 The search for interesting natural biological 
activities has been the basis for the development 
of various applications in biotechnology and 
agriculture. The microbial world, and endophytes 
in particular, refl ects a genetic and metabolic 
biodiversity, which has not yet been thoroughly 
explored. 

4.1     Endophytic Fungi: Isolation, 
Localization, and 
Biotechnological Potential 

 Fungi were the fi rst microorganisms described as 
endophytes (de Bary  1866 ) but at that time they 

were considered neutral, not causing any benefi ts 
or harm to their plant hosts. Only during the last 
two decades of the twentieth century it was 
shown that endophytic fungi have important 
roles, protecting plants against herbivores includ-
ing cattle and insects. They also provide nutrients 
to the host and increase plant resistance to 
drought, cold, and pathogens. So, only in the last 
30 years, there were an increasing number of 
research studies dealing with endophytes. As pre-
viously mentioned they were found to occur in 
every plant till now studied. It is estimated that 
there are about 1.5 million of fungal species in 
our planet (Hawksworth  2001 ) and only a small 
percentage of them have been described. As the 
majority of fungal species are valuable from 
environmental and biotechnological point of 
views and as endophytic fungi were isolated only 
from few, among the    300,000 existing plant spe-
cies, endophytes are a potential source as produc-
ers of new antibiotics, enzymes, dyes, and many 
other useful compounds. They also can be 
valuable as biological controllers of pests and 
diseases and increase plant-growth vigor by pro-
ducing hormones or providing nutrients to the 
host. Several reviews cover different aspects of 
fungal endophytes (Azevedo et al.  2000 ; 
Azevedo and Araújo  2007 ; Vega et al.  2008 ; 
Suryanarayanan  2011 ; Suryanarayanan et al. 
 2012 ). As already mentioned for bacteria, with 
few differences, fungi are found in seed, stems, 
leaves, and other plant organs and tissues. Besides 
vertical transmission as from seeds, colonization 
began with penetration of the fungus from natural 
or artifi cial openings as root emission zone, 
stomata, or injuries caused by root growth, 
agricultural practices, or insects. After penetra-
tion endophytes can be found all over the plant. 
Isolation of endophytes from plants is easily 
made by using appropriated fungal culture media 
with plant fragments previously surface treated to 
eliminate epiphytic microorganisms and, after 
incubation, fungi are transferred to new media 
and purifi ed. Details of different methods of 
isolation and purifi cation can be found in a 
practical guide organized by Araújo et al. 
( 2010 ). Molecular approaches to recover culture- 
independent data from fungi are now used, 
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opening new ways to detect valuable characteristics 
of endophytic fungi. The processes described 
using bacteria may be applied with appropriated 
modifi cations, when fungi are considered (Araújo 
et al.  2010 ). Considering the classic and modern 
molecular approaches, the biotechnological 
potential of endophytic microorganisms for the 
production of pharmaceutical products, biological 
control, plant-growth promotion, enzymes, and 
other products is continuously growing. Some 
examples of biotechnology and agronomic uses 
of endophytic microorganisms were already 
mentioned for endophytic bacteria and most of 
them may also be applied to endophytic fungi. 
A more detailed aspect, that is, use of endophytic 
fungi for biological control of pests and diseases, 
will be further discussed.  

4.2     Biological Control of Insect- 
Pests and Plant Diseases by 
Endophytic Microorganisms 

 The control of insect-pests and diseases by 
means of biological processes, such as the use 
of entomopathogenic microorganisms or those 
that inhibit/antagonize microorganisms patho-
genic to plants, is an alternative that may help to 
reduce or eliminate the use of chemical products 
in agriculture (Azevedo et al.  2000 ). Agriculture 
by its own nature is anti-ecological, and, with 
the use of chemical fertilizers, insecticides, fun-
gicides, herbicides, and antibiotics on a large 
scale, profound biological modifi cations have 
been occurring. Products such as insecticides 
and fungicides aim to control pests and phyto-
pathogenic microorganisms. However, they are 
responsible for eliminating important species of 
insects that control other pests and microorgan-
isms that are performing a crucial role in the 
environment, inhibiting the growth and the mul-
tiplication of other microorganisms. One group 
of microorganisms that is affected by these 
anthropogenic modifi cations is the endophytes. 
The natural and biological control of pests and 
diseases affecting cultivated plants has gained 
much attention in the past decades as a way 
of reducing the use of chemical products in 

 agriculture. Biological  control has been 
 frequently used in Brazil, and it is supported by 
the development of basic and applied research 
on this fi eld not only in our country but also in 
South America, as shown by several reviews 
(Lecuona  1996 ; Alves  1998 ; Melo and Azevedo 
 1998 ). The use of agrochemicals, although 
decreasing the impact of insects and phyto-
pathogenic microorganisms, still represents a 
high risk for fi eld workers and consumers. In 
this review we will fi rst focus on examples 
of endophytic bacteria, especially those that 
may control insect- pests and plant diseases by 
antagonistic effects, production of enzymes, or 
introduction of heterologous genes by recombi-
nant DNA technology followed by examples 
of endophytic fungi control of plant pests and 
diseases. 

4.2.1     Biocontrol of Plant Diseases 
by Antagonistic Endophytic 
Bacteria 

 Recent studies have indicated that biological 
control of bacterial wilt disease could be achieved 
using antagonistic bacteria (Fig.  13.3 ). Different 
bacterial species, namely,  Alcaligenes  spp. and 
 Kluyvera  spp. (Assis et al.  1998 ),  Pseudomonas 
fl uorescens ,  P. alcaligenes ,  P. putida ,  Flavo-
bacterium  spp. and  Bacillus megaterium  (Reiter 
et al.  2002 ),  B. pumilus  (Benhamou et al.  1998 ) 
and  Microbacterium  spp.,  Clavibacter michi-
ganensis ,  Curtobacterium  spp., and  B. subtilis  
(Zinniel et al.  2002 ), have been reported as endo-
phytes and were inhibitory to plant pathogens. 
Toyota and Kimura ( 2000 ) have reported the sup-
pressive effect of some antagonistic bacteria on 
 R. solanacearum . Moreover, Ciampi- Panno et al. 
( 1989 ) have demonstrated the use of antagonistic 
microbes in the control of  R. solanacearum  under 
fi eld conditions. Ramesh et al. ( 2009 ) have sug-
gested that Pseudomonads are the major antago-
nistic endophytic bacteria that suppress the 
bacterial wilt pathogen,  Ralstonia solanacearum , 
in eggplant ( Solanum melongena  L.). Twenty-
eight bacterial isolates that effectively inhibited 
 R. solanacearum  were characterized and identi-
fi ed in vitro (Ramesh et al.  2009 ). More than 
50 % of these isolates were  Pseudomonas 
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 fl uorescens . In greenhouse experiments, the 
plants treated with  Pseudomonas  isolates (EB9, 
EB67),  Enterobacter  isolates (EB44, EB89), and 
 Bacillus  isolates (EC4, EC13) reduced the inci-
dence of wilt by more than 70 %. All the selected 
isolates reduced damping by more than 50 % and 
improved the growth of seedlings in the nursery 
stage. Large-scale fi eld evaluations and detailed 
knowledge of antagonistic mechanisms could 
provide an effective biocontrol solution for 
bacterial wilt of solanaceous crops. In our study, 
we suggested that the endophytic bacteria 
 Curtobacterium fl accumfaciens , isolated from 
citrus plants (Araújo et al.  2001 ), can inhibit  X. fas-
tidiosa , a phytopathogenic bacterium that is the 
causal agent of citrus variegated chlorosis (CVC) 
(Schaad et al.  2004 ), both in vitro (Lacava et al. 
 2004 ) and in vivo (Lacava et al.  2007b ), when 
inoculated in the model plant  C. roseus  (Monteiro 
et al.  2001 ).  C. roseus  has been used to study the 
interaction between endophytic bacteria and  X. 
fastidiosa  in greenhouse environments (Lacava 
et al.  2006 ; Andreote et al.  2006 ). To characterize 
the interactions of  X. fastidiosa  and the endo-
phytic bacteria  C. fl accumfaciens  in vivo, 
 C. roseus  plants were inoculated separately with 

 C. fl accumfaciens ,  X. fastidiosa,  and both bacteria 
together (Lacava et al.  2007b ). The number of 
fl owers produced by the plants, the heights of the 
plants, and the exhibited disease symptoms were 
evaluated.  X. fastidiosa  induced stunting and 
reduced the number of fl owers produced by  C. 
roseus . When  C. fl accumfaciens  was inoculated 
together with  X. fastidiosa,  no stunting was 
observed. The number of fl owers produced by 
our doubly inoculated plants was an intermediate 
between the number produced by the plants inoc-
ulated with either of the bacteria separately. 
These data indicate that  C. fl accumfaciens , an 
endophytic bacterium, interacted with  X. fastidi-
osa  in  C. roseus  and reduced the severity of the 
disease symptoms induced by  X. fastidiosa  
(Fig.  13.4 ). The identifi cation of biological 
sources for the control of plant pathogenic fungi 
remains an important objective for sustainable 
agricultural practices. In a recent project with 
fi nancial support from several Brazilian agencies 
(Foundation of Support the Research of the State 
of Amazonas [FAPEAM] and the State of São 
Paulo Research Foundation [FAPESP – Grant/
Process no. 09/53376-2]), we screened the antag-
onistic activity in vitro of endophytic bacteria 

  Fig. 13.3    In vitro antagonistic activities of endophytic bacteria isolated from  Vitis labrusca  against phytopathogenic 
fungi. ( a – b ) Antagonist activity against  Ceratocystis paradoxa  and ( c – d ) against  Rhizoctonia solani        
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versus  Colletotrichum  sp., the causal agent of 
anthracnose disease (Silva et al.  2004 ) of guarana 
( Paullinia cupana  var.  sorbilis  Mart. Ducke). 
Fruits from guarana are of both economic and 
social importance in Brazil. Sodas, syrups, juices, 
and several pharmaceutical products are made 
from guarana toasted grains (Ângelo et al.  2008 ). 
A signifi cant decrease in the area of guarana pro-
duction, particularly in the Brazilian Amazon 
region, can be attributed to anthracnose disease. 
In this study, the endophytic bacteria used in the 
antagonism test were isolated from guarana 
plants. We found some endophytic isolates 
from guarana with antagonism activity against 
 Colletotrichum  sp. in our preliminary results.

4.2.2         Endophytic Actinobacteria in 
the Control of Phytopathogens 

 Endophytic actinobacteria have been isolated 
from a wide variety of plants, and the most fre-
quently isolated species belong to the genera 
 Microbispora ,  Nocardia ,  Micromonospora , and 
 Streptomyces , the last of which is by far the 
most abundantly observed (Sardi et al.  1992 ; 
Taechowisan et al.  2003 ). Actually, the best 
studied genus of actinobacteria is  Streptomyces  
(Seipke et al.  2012 ), which has a complex devel-
opmental life cycle (Flärdh and Buttner  2009 ) 
and produces numerous secondary metabolites 
(Challis and Hopwood  2003 ). Endophytic 
 Streptomyces  bacteria are not simply plant 

  Fig. 13.4    ( a ) Disease symptoms induced in  Catharanthus 
roseus  plants 2 months after inoculation with  Xylella fas-
tidiosa  ( right ). A symptom-free plant doubly inoculated  X. 
fastidiosa  and  C. fl accumfaciens  ( left ). Leaf stunting and 

chlorosis induced in  C. roseus  leaves 2 months after inocu-
lation with ( b )  X. fastidiosa  ( left ). ( c ) Symptom-free leaves 
from a plant doubly inoculated with  X. fastidiosa  and  C. 
fl accumfaciens  ( right ) (Modifi ed Lacava et al.  2007b )       
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 commensals but confer benefi cial traits to their 
hosts that primarily fall into two categories: 
growth promotion and protection from phyto-
pathogens. Members of the genus  Streptomyces  
are prolifi c producers of antimicrobial com-
pounds, and endophytic  Streptomycetes  are no 
exception (Seipke et al.  2012 ). Numerous endo-
phytic  Streptomyces  isolates inhibit the growth of 
fungal phytopathogens both in vitro and  in 
planta , and this antibiosis has been proposed as 
one of the mechanisms by which endophytes sup-
press plant diseases (Sardi et al.  1992 ; Coombs 
and Franco  2003 ; Taechowisan et al.  2003 ; 
Franco et al.  2007 ). Endophytic actinobacteria 
(Sardi et al.  1992 ; Coombs and Franco  2003 ; 
El-Tarabily  2003 ; Rosenblueth and Martinez-
Romero  2006 ) have been isolated from within the 
living tissues of various plant species. These 
endophytes have been shown to protect plants 
against different plant pathogens including 
 Rhizoctonia solani  and  Verticillium dahliae  
(Krechel et al.  2002 ),  Plectosporium tabacinum  
(El-Tarabily  2003 ),  Gaeumannomyces graminis  
var.  tritici  and  R. solani  (Coombs et al.  2004 ), 
 Fusarium oxysporum  (Cao et al.  2005 ),  Pythium 
aphanidermatum  (El-Tarabily et al.  2009 ), and 
 Botrytis cinerea  and  Curvularia lunata  (Kafur 
and Khan  2011 ). 

 Quecine et al. ( 2008 ) evaluated chitinase pro-
duction by endophytic actinobacteria and the 

potential of this for the control of phytopathogenic 
fungi. Actinobacteria are used extensively in the 
pharmaceutical industry and agriculture owing to 
their great diversity of enzyme production. In this 
study, endophytic  Streptomyces  strains were 
grown on minimal medium supplemented with 
chitin, and chitinase production was quantifi ed. 
The strains were screened for any activity towards 
phytopathogenic fungi with a dual-culture assay in 
vitro. The correlation between chitinase produc-
tion and pathogen inhibition was calculated and 
further confi rmed on  Colletotrichum sublineolum  
cell walls by scanning electron microscopy. 
Quecine et al. ( 2008 ) report a genetic correlation 
between chitinase production and the biocontrol 
potential of endophytic actinobacteria in an antag-
onistic interaction with different phytopathogens, 
suggesting that this control could occur inside the 
host plant (Fig.  13.5 ). Additionally, a genetic cor-
relation between chitinase production and patho-
gen inhibition was demonstrated. Finally, these 
results provide an enhanced understanding of 
endophytic  Streptomyces  and its potential as a bio-
control agent.

4.2.3        Endophytic Actinobacteria 
in the Control of Insect-Pests 

 The actinomycetes are a widely exploited group 
of microorganisms that can produce enzymes 
and antibiotics for agricultural applications such 

  Fig. 13.5    Scanning electronic microscopic analysis of 
 Colletotrichum sublineolum . ( a ) Control: fungi hyphae on 
saline solution. ( b ) Chitinase action: hyphae fungi, after 

incubation at 28 °C for 3 h in crude extract chitinolytic of 
A8 strain. Bars indicate 10 μm (Modifi ed Quecine et al. 
 2008 ). Photos authorized by authors       
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as eco-friendly crop protection. Among the 
 actinomycetes,  Streptomyces  spp. are particularly 
effi cient in the breakdown of chitin via  chitinolytic 
enzymes (Bhattacharya et al.  2007 ; Quecine et al. 
 2008 ). During the past decade,  several reports 
described this chitinolytic activity, and the corre-
sponding genes responsible have been isolated 
and characterized (Robbins et al.  1998 ; Tsujibo 
et al.  1993 ; Christodoulou et al.  2001 ; Barboza- 
Corona et al.  2003 ; Kim et al.  2003 ). There is a 
wide variety of chitinases and a correspondingly 
large range of optimal temperatures and pH val-
ues for chitinase activity to determinate how well 
suited the chitinase is for pest control applica-
tions (Kramer and Muthukrishnan  1997 ). Our 
research group reported the partial characteriza-
tion of the chitinolytic extract produced by an 
endophytic  Streptomyces  sp. strain (A8) (Quecine 
et al.  2011 ). The extract produced by the A8 
strain was also tested against  Anthonomus gran-
dis  Boheman (Coleoptera: Curculionidae), the 
cotton boll weevil (Quecine et al.  2011 ). The 
 chitinase crude extract from the A8 strain was 
cultured for 5 days in a minimal liquid medium 
supplemented with chitin. The extract was par-
tially characterized by standard methods. The 
chitinolytic extract had an optimum temperature 
of 66 °C and an optimum pH between 4 and 9 
(approximately 80 % of relative activity). We 
also characterized the temperature and pH stabil-
ity and measured the effects of enzyme inhibi-
tors. The fi ltered chitinolytic extract was added to 
an artifi cial boll weevil diet. Boll weevil develop-
ment from the egg stage to the adult stage was 
prolonged, and the percentage of adults that 
emerged was approximately 66 % less than on 
the control diet. This study showed that the larval 
development of  A. grandis  was inhibited by the 
presence of characterized chitinolytic extract in 
the artifi cial diet. This work provides an experi-
mental basis for using the chitinase from an 
endophytic  Streptomyces  sp. as an alternative to 
controlling the plant pest  A. grandis . In this con-
text, the cotton boll weevil,  A. grandis , is major 
pest that affects cotton production in the Americas 
(Martins et al.  2007 ,  2008 ). It is typically 
 controlled with chemical agents, but these chemi-
cals are expensive and may disrupt predator and 

 parasitoid populations due to their broad-spectrum 
activities (Burton  2006 ; Wolkers et al.  2006 ). 
Consequently, it is necessary to search for safer 
alternatives for boll weevil control. Biological 
and other control strategies to decrease the 
 damage to cotton crops by the boll weevil are 
encouraged in integrated pest management strat-
egies, which utilize insecticides that are more 
selective (Pimenta et al.  1997 ).  

4.2.4    Biological Control of Pests by 
Endophytic Fungi 

 The fi rst report showing that endophytic micro-
organisms play an important role to control 
insects was reported by Webber ( 1981 ) which 
showed that  Phomopsis oblonga,  an endophytic 
fungus, protected elm trees against the beetle 
 Physocnemum brevillineum  which is a vector of 
the Elm Dutch disease caused by the pathogenic 
fungus  Ceratocystis ulmi . Other early reports 
were published; the Azevedo et al. ( 2000 ) review 
presents several examples of fungal endophytes 
controlling insect-pests. Besides insects, endo-
phytic fungi are able to produce toxins which 
protect plants against herbivorous domestic 
mammals. This was fi rst demonstrated by Bacon 
et al. ( 1977 ) showing a correlation between the 
endophyte  Epichloe typhina  producing a toxin in 
the host plant  Festuca arundinacea . Inoculation 
of the entomopathogenic fungus  Beauveria 
bassiana  was carried out in  Zea mays  (maize) to 
control  Ostrinia nubilalis , the European corn 
borer (Lewis and Cossentine  1986 ; Bing and 
Lewis  1991 ), using aqueous and granular formu-
lations. Also the fungus  B. bassiana  was later 
found as endophyte in several plant species and 
probably plays an important role to avoid attack 
of insect-pests against plants. However,  O.  nubilalis   
feeding on maize with  B. bassiana  as endophyte 
showed a low percentage of insects with myco-
ses (Bing and Lewis  1993 ) and it was proposed, 
as no conidia was found inside the host plant, 
that the mode of action involves fungal metabo-
lites, which cause insect feeding deterrence or 
antibiosis (Wagner and Lewis  2000 ; Cherry et al. 
 2004 ). Several papers and reviews reported the 
presence of entomopathogenic microorganisms 
as endophytes, occurring in host plants, some of 
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them with great agricultural importance. The 
reviews of Vega et al. ( 2008 ,  2009 ) present some 
examples of entomopathogenic endophytic fungi 
isolated from several host plants. 

 Entomopathogenic endophytic microorgan-
isms were also isolated from our group in Brazil, 
and the results obtained with some of them 
will be reported. One or more known    as insect 
and nematode controllers fungi as  Beauveria, 
Cladosporium, Cordyceps, Paecilomyces, 
Verticillium  ( Lecanicillium ), among others were 
quite frequently isolated from several studied 
plant hosts. Among plants of agricultural impor-
tance, these fungi were found in  Citrus  spp. 
(Glienke-Blanco et al.  2002 ),  Glycine max  
(Pimentel  2001 ),  Theobroma cacao  (Rubini 
et al.  2005 ),  Saccharum  (Stuart et al.  2010 ),  Vitis 
labrusca  (Brum et al.  2012 ),  Coffea arabica  
(Ciraulo  2011 ), and  Zea mays  (Pimentel  2001 ; 
Pamphile and Azevedo  2002 ).  B. bassiana  
strains B95 and B157 isolated from maize were 
further studied. Morphological characterization 
and molecular characterization showed that both 
strains resembled  B. bassiana  but could not be 
exactly classifi ed as the  B. bassiana  used as con-
trols. Distinctions between B95 and  B. bassiana  
could be explained by the fact that, as it is known 
there are small differences between endophytic 
and direct insect isolated fungi, it is an endo-
phytic. However, strain B 157 showed to be dis-
tinct from others and was classifi ed as  Beauveria 
amorpha . These strains (Campos et al.  2005 ; Sia 
 2006 ) were used against an important maize 
insect-pest ( Spodoptera frugiperda ) and the 
results showed that the endophytes from maize 
behave as good controllers or even better than 
commercial entomopathogenic strains used in 
Brazil to control  S. frugiperda  (Fig.  13.6 ). The 
results demonstrated the importance of endophytes 
as entomopathogens. Even more, the same 
strains were tested in vitro and in vivo against 
the bovine tick  Rhipicephalus microplus , an 
ectoparasite that causes signifi cant losses in 
herds of tropical and subtropical regions of the 
world. To attack the tick, it was shown that endo-
phytic strains of  Beauveria  produce several 
hydrolytic extracellular enzymes as proteases 
and chitinases suggesting that these enzymes 

are pathogenic determinants. Also the  endophytic 
strains showed appressorium formation during 
penetration on the cuticle of the tick (Campos 
et al.  2005 ). The endophytic  Beauveria  were 
tested in laboratory bioassays and fi eld condi-
tions against the cattle tick.  Beauveria  strains 
tested in laboratory bioassays reduced females’ 
egg weight and reproductive effi ciency. The 
mortality showed that endophytic strains were 
equally effi cient as commercial  B. bassiana  
strains to kill  R. microplus  females. Field tests 
were carried out with cows infested with the 
tick. A treated group was sprayed with 3L sus-
pension containing about one million conidia/ml 
and after 72 h all ticks were collected from cows 
and adjacent stable fl oor. A control group of 
cows were sprayed with the same amount of 
aqueous solution with no conidia. Field tests 
showed that endophytic strain was the most effi -
cient followed by a  B. bassiana  strain collected 
from insects (Campos et al.  2010 ). Although 
endophytic  Beauveria  strains were isolated from 
maize, it is likely that they also may be found 
in pasture grasses which may act as controllers 
of cattle ticks by indirect ways as antibiosis. As 
far as we know, this was the fi rst fi eld test made 
in Brazil with endophytic entomopathogens 
fungi against ticks and the results showed an 
increase of 32 % mortality compared to controls. 
Some reports from Africa using insect isolates 

  Fig. 13.6    Mortality at 20 days of  Spodoptera frugiperda  
larvae treated with a conidial suspension (100,000 
conidia/ml) of endophytic  Beauveria  (B95 and B157) and 
 Beauveria bassiana  strains (CG 61, CG 14r and CG 166). 
Control was treated with aqueous 0.1 % Tween 80 solu-
tion. The  bars  show standard errors. Values followed by 
the same letter are not signifi cantly different from each 
other (Tukey test,  P  > 0.05)       
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entomopathogens against the African tick 
 R. appendiculatus  gave mortality as high as 85 % 
(Mwangi et al.  1995 ; Kaaya et al.  1996 ) indicat-
ing that a search for new endophytes allied to 
improvement of delivery conidia may increase 
mortality making biological control techniques 
able to substitute the use of synthetic compounds.

4.2.5       Endophytic Fungi 
and Biological Control 
of Plant Pathogens 

 The fi rst example of biological control of an 
insect by an endophytic fungus already men-
tioned (Webber  1981 ) was also an indirect con-
trol of Dutch elm disease caused by the fungus 
 Ceratocystis ulmi . Several other examples of 
endophytic fungi controlling plant diseases 
caused by pathogenic fungi, nematodes, and 
bacteria are also known as reviewed by Azevedo 
and Araújo ( 2007 ). The fungi  Neotyphodium 
(Acremonium)  and  Fusarium  are active against 
some  Triticum  diseases and nematodes, respec-
tively (Pocasangre et al.  2000 ; Tunali et al.  2000 ). 
One type of mechanism for biocontrol is the 
induced systemic resistance (ISR). Thanks to the 
action of the endophyte, the plant is induced to 
produce resistant compounds as phenolic ones or 
increase protection by glucan and lignin forma-
tion. Other endophytes, mainly the ones with fast 
growth as  Trichoderma,  are able to colonize the 
plant inhibiting by competition or antibiosis the 
establishment of the pathogen. In other cases a 
nonpathogenic endophyte may reduce an inci-
dence of similar pathogenic fungi. It is well 
known that some pathogenic fungi containing 
double-strand RNA (dsRNA) mycoviruses act as 
endophytes reducing in this way the damage 
caused by pathogenic strains (Agnostakis and 
Day  1979 ; Dawe et al.  2004 ; Deng et al.  2007 ; 
Kwon et al.  2009 ). Recently, our research group 
detected a  Colletotrichum gloeosporioides  
containing dsRNA particles in cashew. This 
strain was hypovirulent when compared to 
cashew pathogenic isolates. The introduction of 
hypovirulent dsRNA strains could prove to be a 
good method to reduce cashew tree anthracnose 
(Figueiredo et al.  2012a ,  b ). Other cases of endo-
phytic behavior or mutant strains of pathogens 

which protect the host against disease are reported 
(Redman et al.  1999 ). In other cases very similar 
or even identical fungi can act as pathogenic for 
one host species and endophytic for other as 
 Guignardia  in citrus (Glienke-Blanco et al.  2002 ; 
Baayen et al.  2002 ) or  Moniliophthora perniciosa     
in cacao (Lana et al.  2011 ). A good example of 
potential biological control of  M. perniciosa , the 
causal agent of witches’ broom disease, was 
reported by Rubini et al. ( 2005 ). From more than 
30 endophytic fungi isolated from cacao, some 
were able to control in vitro the disease. Further 
in vivo tests    have shown that from several endo-
phytes which inhibited in vitro  M. perniciosa , 
only one,  Gliocladium catenulatum , signifi cantly 
reduced the incidence of the pathogen. The 
results showed that in vitro tests must be fol-
lowed by in vivo assays to show if endophytes 
may be used with success to control plant diseases. 
We are now studying the possible control of 
 Fusarium  in grapes ( V. labrusca ) (Brum et al. 
 2012 ) and anthracnose caused by  Colletotrichum  
in an Amazonian plant, guarana ( P. cupana ), 
largely used as medicinal and to produce soft 
drinks. In these cases, several endophytic isolated 
fungi were active to inhibit in vitro the patho-
genic fungi but in vivo tests must be performed to 
show the effi ciency of these endophytes for bio-
control. Anyway endophytic fungi, besides 
protecting their plant hosts, may play a potential 
role to substitute chemical compounds for bio-
control of plant pathogens.  

4.2.6    The Recombinant DNA 
Technology and Biocontrol 
by Endophytic Microorganisms 

 Recently, recombinant DNA technology has been 
applied to improve endophytic microorganisms, 
aiming to introduce new characteristics of agro-
nomic interests, such as the biological control of 
insect-pests (Azevedo et al.  2000 ; Araújo et al. 
 2008 ). Fahey ( 1988 ) and    Fahey et al. ( 1991 ) 
described the fi rst work directed at the introduc-
tion of a heterologous gene in an endophytic 
microorganism for the purpose of insect control. 
As a member of the biotechnology company 
Crop Genetics International, he described the 
major steps in the construction of an endophytic 
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bacterium for the purpose of insect control. This 
was achieved through the secretion of an insecti-
cidal toxin in the host plant. He used the 
 endophyte  Clavibacter xyli  subsp.  cynodontis , 
a Gram-positive, xylem-inhabiting bacterium, 
capable of colonizing several plant species. This 
endophytic bacterium received a gene from 
another bacterium,  Bacillus thuringiensis , which 
is able to produce the d-endotoxin active against 
insects, especially Lepidoptera and Coleoptera. 
Therefore, the genetically modifi ed bacterium is 
able to secrete toxin inside the plant, protecting it 
against attacks by target insects (Azevedo et al. 
 2000 ). Following the work of Fahey ( 1988 ), 
 several other researchers belonging to the same 
company published more detailed reports 
describing the construction of the insect biocon-
trol agent. Turner et al. ( 1991 ) showed that a plas-
mid carrying two copies of the  B. thuringiensis  
subsp.  kurstaki cryIA (c) d-endotoxin gene and 
containing a genomic DNA fragment of  C .  xyli  
subsp.  cynodontis  could be integrated into the 
chromosome of  C .  xyli  subsp.  cynodontis  by 
homologous recombination. However, the engi-
neered bacterium exhibited insecticidal activity 
in artifi cial diets but not  in planta . Lampel et al. 
( 1994 ) used an improved integrative vector that, 
although it showed some instability, resulted in 
toxin production  in planta . The presence of endo-
phytic bacteria inside the host plant may increase 
the plant’s fi tness by protecting it against pests 
and pathogens, improving plant growth and 
increasing resistance in stressful environments 
(Azevedo et al.  2000 ; Scherwinski et al.  2007 ). 
Many studies are being carried out with both nat-
ural and genetically modifi ed microorganisms to 
evaluate host colonization (Germaine et al.  2004 ; 
Ferreira et al.  2008 ).  Methylobacterium  spp. have 
been described as enhancing plant systemic resis-
tance (Madhaiyan et al.  2004 ), plant growth, and 
root formation (Senthilkumar et al.  2009 ). In this 
context, our research group decided to study 
the endophytic colonization of rice seedlings 
and  Spodoptera frugiperda  J.E. Smith larvae by 
the genetically modifi ed endophytic bacterium 
 M. mesophilicum  in vitro (Rampelotti-Ferreira 
et al.  2010 ). The endophyte  M .  mesophilicum  
strain SR1.6/6 used in this work was previously 

isolated from  Citrus sinensis  (Araújo et al.  2002 ) 
and labeled with green fl uorescent protein ( gfp ) 
(Gai et al.  2009 ). The colonization of  S. frugi-
perda  larvae and rice seedlings by the genetically 
modifi ed endophytic bacterium  M. mesophili-
cum , and also the possible transfer of this bacte-
rium into the larva’s body during consumption of 
the seedlings, were studied. The data obtained by 
bacterial reisolation and fl uorescence micros-
copy showed that the bacteria colonized the rice 
seedlings and that the endophytic bacteria pres-
ent in the seedlings could be acquired by the lar-
vae. In that way, the transference of endophytic 
bacteria from plants to insect can be a new and 
important strategy in insect control using engi-
neered endophytic bacteria. 

 Recombinant DNA technology in fungi is 
mainly restricted to the development of transfor-
mation systems. Van-Heeswijck and McDonald 
( 1992 ) were probably the fi rst to propose the use 
of engineering endophytic fungi to control insects 
and diseases of the host plant  Lolium perenne . 
The use of recombinant    DNA techniques as 
reviewed by Azevedo et al. ( 2000 ) was mainly 
restricted to fungi able to produce toxins, aiming 
to obtain more active toxin mutants to control 
herbivores as insects or aiming elimination of 
toxins which are prejudicial to domestic animals. 
Yunus et al. ( 1999 ) engineered the endophytic 
fungi  Neotyphodium lolii     to introduce an auxin 
growth hormone producer gene; the modifi ed 
strain was able to be reintroduced into perennial 
ryegrass. Panaccione et al. ( 2001 ) also used 
 N. lolii  (Lp1) isolated from  L. perenne  in order to 
obtain by genetic modifi cation a strain which was 
no longer able to produce the toxin ergovaline.    A 
recent review (Mei and Flinn  2010 ) listed 
US-issued patents which relate the use of fungal 
and bacterial endophytes for plant-growth pro-
motion and stress tolerance. Recombinant DNA 
techniques are becoming more frequently used in 
endophytic microorganisms and new molecular 
biology approaches have been introduced. For 
instance, fungal transformation mediated by 
 Agrobacterium tumefaciens  has been used for 
several species. Our group used  Diaporthe phase-
olorum  from mangrove plants (Sebastianes et al. 
 2012b ). This fungus is an    antibiotic producer of 
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3-hydroxypropionic acid (Sebastianes et al. 
 2012a ), and similar techniques may be used in 
endophyte-engineered fungi to produce com-
pounds which can be used for biological control 
of insect-pests and diseases.    

5     Symbiotic Control by 
Endophytic Bacteria: 
A Paratransgenic Approach 

 The strategy, paratransgenesis, was developed in 
order to prevent the transmission of pathogens by 
insect vectors to humans (Beard et al.  1998 ,  2001 , 
 2002 ; Rio et al.  2004 ). The key concept in 
paratransgenesis is the genetic alteration of sym-
biotic microbes that are carried by insects 
(therefore, they are paratransgenic insects). The 
genetic alterations of the symbiotic microbes are 
designed to increase their competitiveness within 
the insect vector at the expense of the pathogen. 
This overall strategy of disease prevention is an 
example of symbiotic control and is a variation 
on the theme of symbiotic therapy (Ahmed 
 2003 ). The symbiotic control strategy, and there-
fore paratransgenesis, is to fi nd a local candidate 
microbe having an existing association with the 
pathosystem that includes the problem or condi-
tion at hand. The local candidate microbe should 
occupy the same niche as, or have access to, the 
target pathogen or condition (Durvasula et al. 
 1997 ). The local origin of the biocontrol microbe 
in symbiotic differs from classical biological 
control, where microbes, herbivores, parasites, or 
predators are sought from outside of the local 
ecosystem for establishment in the local ecosys-
tem to control a pest such as a plant or inverte-
brate (Miller  2007 ). In symbiotic control, all 
elements originate at the local site and are already 
coevolved with and established in the pathosys-
tem; foreign exploration is not only unnecessary 
but also most likely counterproductive. Because 
of these strict requirements, a suitable symbiotic 
candidate may not always be found or may not be 
amenable to practical manipulation (Miller 
 2007 ). The key to symbiotic control is fi nding a 
candidate microbe having an existing association 
with the ecosystem that includes the problem or 

condition at hand and that occupies the same 
niche as or has access to the target pathogen 
(Miller  2007 ). In this context, endophytic micro-
organisms, special bacteria, have been consid-
ered as a candidate to symbiotic control strategy 
to control of phytopathogens (Gai et al.  2009 , 
 2011 ; Ferreira Filho et al.  2012 ).    Also, the strategy 
of symbiotic control employs both paratrans-
genic and nonrecombinant methods to control 
disease or health problems. In some cases these 
solutions may result in competitive displacement 
of the pathogen with a more benign microbe. 

5.1     Symbiotic Control 
of the Phytopathogen 
 Xylella fastidiosa  

 Citrus variegated chlorosis (CVC) is a disease of 
the sweet orange,  Citrus sinensis  L., which is 
caused by  Xylella fastidiosa  subsp.  pauca  
(Hartung et al.  1994 ; Schaad et al.  2004 ), a 
phytopathogenic bacterium that has been shown 
to infect all sweet orange cultivars (Li et al. 
 1997 ). CVC was fi rst reported in Brazil in 1987 
and has rapidly become one of the most economi-
cally important diseases affecting sweet orange 
production in Brazil (Rossetti et al.  1990 ; Lee 
et al.  1991 ). CVC rapidly became widespread in 
most major citrus growing areas through unregu-
lated movement of infected nursery stock due to 
a previous lack of certifi cation programs and high 
CVC infection rates in Brazil. CVC can be found 
in at least 90 % of the orchards in Brazil (Lambais 
et al.  2000 ). In Brazil, CVC is responsible for 
losses of US $100 million per year to the citrus 
industry (Della-Coletta et al.  2001 ). Although 
 X. fastidiosa  subsp.  pauca  was the fi rst plant 
pathogen to have its genome sequenced (Simpson 
et al.  2000 ), there is still no effective control for 
CVC. The pathogen is known to have an extraor-
dinary host range among higher plants in New 
World ecosystems (Freitag  1951 ). Interestingly, 
within the majority of native host plants,  X. fas-
tidiosa  does not damage the host plant and 
behaves as an endophyte (Purcell and Saunders 
 1999 ). In contrast, the horticultural crops that 
suffer from diseases caused by  X. fastidiosa  are 
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those that have been introduced into New World 
ecosystems (Chen et al.  2000 ). The observation 
that a few asymptomatic trees persist in some 
infected orchards may lead to new approaches to 
the investigation of the control of CVC. These 
asymptomatic plants have the same genotype as 
diseased plants and are located in the same grove 
under similar climatic and edaphic conditions, 
suggesting that some other factor is responsible 
for resistance to CVC. One factor that may infl u-
ence the resistance to CVC is the nature of the 
endophytic microbial community colonizing 
individual  C. sinensis  plants (Araújo et al.  2002 ). 
The key to symbiotic control is fi nding a candi-
date microbe having an existing association with 
the ecosystem that includes the problem or con-
dition at hand and that occupies the same niche as 
or has access to the target pathogen (Miller  2007 ). 
Bacteria of the genus  Methylobacterium  are 
known to occupy the same niche as  X. fastidiosa  
subsp.  pauca  inside citrus plants (Araújo et al. 
 2002 ; Lacava et al.  2004 ). During feeding, insects 
could acquire not only the pathogen but also 
endophytes from host plants. Gai et al. ( 2009 ) 
reported the localization of the endophytic bacte-
rium,  M. mesophilicum , in  C. roseus  model plant 
system and the transmission of this endophyte by 
 Bucephalogonia xanthophis,  a sharpshooter 
insect vector of  X. fastidiosa  subsp.  pauca . 
 Methylobacterium mesophilicum , originally iso-
lated as an endophytic bacterium from citrus 
plants (Araújo et al.  2002 ), was genetically trans-
formed to express  gfp  (Gai et al.  2007 ). The GFP- 
labeled strain of  M. mesophilicum  was inoculated 
into  C. roseus  (model plant) seedlings and was 
observed colonizing its xylem vessels. The trans-
mission of  M. mesophilicum  by  B. xanthophis  
was verifi ed with insects feeding on fl uids con-
taining the GFP-labeled bacterium. Forty-fi ve 
days after inoculation, the plants exhibited endo-
phytic colonization by  M. mesophilicum , con-
fi rming this bacterium as a nonpathogenic, 
xylem-associated endophyte (Gai et al.  2009 ). 
These data demonstrate that  M. mesophilicum  not 
only occupies the same niche as  X. fastidiosa  
subsp.  pauca  inside plants but also that it may 
be transmitted by  B. xanthophis . The transmis-
sion, colonization, and genetic manipulation of 

 M. mesophilicum  are a prerequisite to examining 
the potential use of paratransgenic–symbiotic 
control (SC) to interrupt transmission of  X. fas-
tidiosa  subsp.  pauca , the bacterial pathogen 
causing CVC, by insect vectors that propose  M. 
mesophilicum  as a candidate for a paratrans-
genic–SC strategy to reduce the spread of  X. fas-
tidiosa  subsp.  pauca . It is known that  X. fastidiosa  
subsp.  pauca  produces a fastidian gum (da Silva 
et al.  2001 ) which may be responsible for the 
obstruction of xylem in affected plants (Lambais 
et al.  2000 ), so the production of endoglucanase 
by genetically modifi ed endophytic bacteria may 
transform the endophytes into symbiotic control 
agents for CVC. Azevedo and Araújo ( 2003 ) 
have used the replicative vector pEGLA160 to 
produce genetically modifi ed  Methylobacterium  
expressing antibiotic resistance and endogluca-
nase genes. Furthermore, other strategies can be 
evaluated such as a production of genetically 
modifi ed  Methylobacterium  to secrete soluble 
anti- Xylella  protein effect in citrus, such as 
Lampe et al. ( 2006 ) suggested in the  Escherichia 
coli  α-hemolysin system for use in Axd to secrete 
soluble anti- Xylella  protein effectors in grape-
vine.    Also, Lampe et al. ( 2007 ) suggested the 
evaluation of proteins secreted from the grape-
vine bacterial symbiont  Pantoea agglomerans  for 
use as secretion partners of anti- Xylella  protein 
effectors. One strategy that can adopt as the next 
step for SC control of CVC is producing a geneti-
cally modifi ed endophytic bacterium, like 
 Methylobacterium , to secrete anti- Xylella  protein 
effectors. 

 According to Gai et al. ( 2011 ), the bacterial 
communities associated with vector insects and 
plants differ in abundance through the yearly sea-
son. Endophytic bacteria could infl uence disease 
development by reducing the insect transmission 
effi ciency due to competition with pathogens in 
host plants and also in insect foreguts. In addition 
the bacterial communities in the foregut of insect 
vectors of  X. fastidiosa  subsp.  pauca  changed 
with time, environmental conditions, and in dif-
ferent insect species. However, members of the 
genus  Curtobacterium  were consistently detected 
in the sharpshooters foregut and are commonly 
isolated from the xylem of citrus plants (Araújo 
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et al.  2002 ), and because of this, they may be can-
didates for biological control.   

6     Siderophores from 
Endophytic Bacteria: 
Suppression of 
Phytopathogens 

 Iron is a necessary cofactor for many enzymatic 
reactions and is an essential nutrient for virtually all 
organisms. In aerobic conditions, iron exists pre-
dominantly in its ferric state (Fe 3+ ) and reacts to 
form highly insoluble hydroxides and oxyhydrox-
ides that are largely unavailable to plants and micro-
organisms. To acquire suffi cient iron, siderophores 
produced by bacteria can bind Fe 3+  with a high 
affi nity to solubilize this metal for its effi cient 
uptake. Bacterial siderophores are low-molecular- 
weight compounds with high Fe 3+  chelating affi ni-
ties (Sharma and Johri  2003 ) responsible for the 
solubilization and transport of this element into bac-
terial cells. Some bacteria produce hydroxamate-
type siderophores, and others produce catecholate 
types (Neilands and Nakamura  1991 ). In a state of 
iron limitation, the siderophore-producing microor-
ganisms are also able to bind and transport the iron-
siderophore complex by the expression of specifi c 
proteins (Nachin et al.  2001 ; Nudel et al.  2001 ). The 
production of siderophores by microorganisms is 
benefi cial to plants because it can inhibit the growth 
of plant pathogens (Masclaux and Expert  1995 ; 
Nachin et al.  2001 ; Sharma and Johri  2003 ; 
Etchegaray et al.  2004 ; Siddiqui  2005 ). Siderophores 
can also induce resistance mechanisms in the plant 
(Schroth and Hancook  1995 ). Plant-growth promo-
tion, including the prevention of the deleterious 
effects of phytopathogenic organisms (Sharma and 
Johri  2003 ), can be achieved by the production of 
siderophores (Hayat et al.  2010 ). Production of sid-
erophores is a mechanism through which endo-
phytic biocontrol agents suppress pathogens 
indirectly by increasing the availability of minerals 
to the biocontrol agent in addition to iron chelation 
and, thus, stimulating the biosynthesis of other anti-
microbial compounds (Duffy and Defago  1999 ). 

 Endophytic bacteria colonize an ecological 
niche similar to that of plant pathogens, especially 

vascular wilt pathogens, which might favor them 
as potential candidates for biocontrol and growth-
promoting agents (Ramamoorthy et al.  2001 ). 
Several bacterial endophytes have been reported 
to support plant growth by providing phytohor-
mones, low-molecular-weight compounds, or 
enzymes (Lambert and Joos  1989 ; Frommel et al. 
 1991 ; Glick et al.  1998 ). Production of sidero-
phores is another mechanism by which endo-
phytic biocontrol agents suppress pathogens 
indirectly by stimulating the biosynthesis of other 
antimicrobial compounds by increasing availabil-
ity of minerals to the biocontrol agent in addition 
to iron chelation (O’Sullivan and O’Gara  1992 ; 
Duffy and Defago  1999 ; Persello-Cartieaux et al. 
 2003 ). In this context, Vendan et al. ( 2010 ) sug-
gested that siderophore production may be a com-
mon phenotype among endophytes. In a recent 
study of the diversity and potential for plant-
growth promotion of endophytic bacteria isolated 
from ginseng ( Panax ginseng  C.A. Meyer), 
Vendan et al. ( 2010 ) described the siderophore 
production by 7 endophytic bacteria strains. These 
strains were classifi ed as  Bacillus cereus ,  B. fl exus , 
 B. megaterium ,  Lysinibacillus fusiformis ,  L. 
sphaericus ,  Microbacterium phyllosphaerae , and 
 Micrococcus luteus . Siderophore production by 
endophytic bacteria has been investigated in only 
a few cases, mainly as a mechanism of certain 
bacteria to antagonize pathogenic fungi. Thus, it 
was observed that all the isolates from cotton 
roots having antagonistic activity, mainly  Pantoea  
spp., excreted siderophores (Li et al.  2009 ). Also 
in rice, strains of the genera  Pseudomonas  and 
 Burkholderia  and two species of  Pantoea  ( P. anan-
atis  and  P. agglomerans ) having antagonistic 
activity excreted siderophores (Yang et al.  2008 ). 

 According to Verma et al. ( 2011 ), three endo-
phytic actinobacteria strains isolated from the 
root tissues of  Azadirachta indica  plants were 
selected through tests for their potential as bio-
control and plant-growth-promoting agents. It 
was also observed that the seed treated with the 
spore  suspension of three selected endophytic 
strains of  Streptomyces  signifi cantly promoted 
plant growth and antagonized the growth of 
 Alternaria  alternata , the causal agent of early 
blight disease in tomato plants. It was observed 
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that the three selected strains prolifi cally pro-
duce siderophores that play a vital role in the 
suppression of  A. alternata . These authors con-
cluded that these endophytic isolates have the 
potential to be plant-growth promoters as well as 
a biocontrol agent, which is a useful trait for 
crop production in nutrient-defi cient soils. 
Loaces et al. ( 2011 ) described and characterized 
the community of endophytic, siderophore-pro-
ducing bacteria (SPB) associated with  Oryza 
sativa . Less than 10 % of the endophytic bacteria 
produced siderophores in the roots and leaves of 
young plants, but most of the endophytic bacte-
ria were siderophore producers in mature plants. 
According to the results, 54 of the 109 endo-
phytic SPB isolated from different plant tissues 
or growth stages from replicate plots of  O. sativa  
were unique. The relative predominance of bac-
teria belonging to the genera  Sphingomonas , 
 Pseudomonas ,  Burkholderia , and  Enterobacter  
alternated during plant growth, but the genus 
 Pantoea  was predominant in the roots at tillering 
and in the leaves at subsequent stages.  Pantoea 
ananatis  was the SPB permanently associated 
with all of the plant tissues of  O. sativa . In the 
same study, the SPB and plant-growth-promot-
ing bacteria (PGPB)  Azospirillum brasilense ,  A. 
amazonense , and  Herbaspirillum seropedicae  
were assessed using dual culture in vitro on 
NFbI medium to allow the simultaneous growth 
of PGPB and SPB. These PGPB are considered 
important genera of endophytic diazotrophs 
(Baldani and Döbereiner  1980 ; Baldani et al. 
 2000 ,  2003 ). The results indicate that the SPB  P. 
ananatis  is the permanent and dominant associ-
ated species and is unable to inhibit two of the 
relevant plant-growth- promoting bacteria,  A. 
brasilense  and  H. seropedicae .  

7     Concluding Remarks 

 Endophytic microorganisms are believed to elicit 
plant growth in many ways, including helping 
plants acquire nutrients, e.g., via nitrogen fi xa-
tion, phosphate solubilization, or iron chelation; 
preventing infections via antifungal or antibacte-
rial agents; out-competing pathogens for nutri-

ents by producing siderophores; or establishing 
the plant’s systemic resistance and producing 
phytohormones. However, the effects and func-
tions of endophytes in plants have not been com-
prehensively defi ned. The challenge and goal is 
to be able to manage microbial communities to 
favor plant colonization by benefi cial bacteria 
and fungi. This will be possible when a better 
knowledge of endophyte ecology and molecular 
interactions is attained. Although all of the 
approximately 300,000 plant species have been 
estimated to harbor one or more endophytes, few 
relationships between plants and these endo-
phytes have been studied in detail; the legume–
rhizobia symbiosis and associations between 
fungi and the root of plants (mycorrhizae) are 
exceptions. Additionally, there remain many bar-
riers to commercial usage of inoculants for induc-
ing resistance, and even more studies are 
necessary to permit the usage of endophytes in 
this way. While there is a wide diversity of endo-
phytes to be explored, supporting the idea that the 
most effi cient resistance inducers are still to be 
described, genetic transformation of bacteria 
should also be considered a way to group impor-
tant characteristics found in different strains. The 
combination of inducers of systemic resistance 
and endophytic characteristics may affect future 
agricultural concepts, allowing safer production 
with a lower impact on the environment.     
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    Abstract  

  Research into the benefi cial use of endophytic organisms has dramatically 
increased worldwide in recent years. Endophytes are typically bacteria or 
fungi which colonize the internal tissues of plant hosts without causing 
visible negative effects. Two areas in endophyte research, which hold tre-
mendous positive economic and environmental potential, are biocontrol and 
bioremediation. Biocontrol, short for biological control is the intentional use 
of a specifi c organism or their metabolic by-products to limit the harmful 
impact of a plant pest. Endophytes due to their unique symbiotic relation-
ships within their hosts have the potential to directly act antagonistically 
against plant pests. In addition endophytes may also act indirectly against 
pests, benefi tting their hosts by enhancing general plant growth or plant-
protection responses, such as in the case of induced systemic resistance. 
Bioremediation is the use of microorganisms to alter or reduce the 
toxic impact of pollutants through various forms of metabolic activity. 
Microorganisms, in part due to their short life spans, can adapt relatively fast 
to environmental pollutants. Endophytes with these adaptations can in some 
cases provide their hosts with the capability to remediate their surrounding 
microenvironments. In this review, we will explore recent advances made in 
the promising areas of biocontrol and bioremediation research.  

        M.  R.   Griffi n      (*) 
  Department of Environmental and Plant Biology , 
 Ohio University ,   Athens ,  OH   45701 ,  USA   
 e-mail: maryruthgriffi n@gmail.com  

 14      Biocontrol and Bioremediation: 
Two Areas of Endophytic Research 
Which Hold Great Promise 

           Mary     Ruth     Griffi n    

1         Introduction 

 Symbiosis describes a relationship between two 
interacting organisms and includes a wide spec-
trum of resulting conditions that range from 

mutualistic to pathogenic. Organisms that inter-
nally colonize plants for part (facultative) or all 
(obligate) of their lives (Hardoim et al.  2008 ) 
occur along different areas of the symbiotic spec-
trum due to a plethora of reasons. Known as endo-
phytes, these diverse organisms dwell within the 
internal tissues of plant structures and are found 
in roots, stems, leaves, fl owers, and even seeds 
(Surette et al.  2003 ). As mutual or commensal 
symbionts, they coexist peaceably within their 
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plant hosts causing no visible negative effects or 
signs of infection (Compant et al.  2010 ; Ryan 
et al.  2008 ). The bacteria or fungi that become 
endophytes typically originate from the plant’s 
rhizosphere (Compant    et al.  2005a ) or phyllo-
sphere (Hallman et al.  1997 ); although some are 
horizontally transmitted (Fig.  14.1 ) and a few are 
vertically transmitted (Fig.  14.2 ) from parent 
to seed (Ernst et al.  2003 ; Müller and Krauss 
 2005 ; Canakar et al.  2005 ). Once internalized, 
endophytes may move throughout the plant and 
colonize additional areas (Germaine et al.  2006 ). 

Endophytes have been known about for a long 
time. The term endophyte was actually coined in 
1884 by Heinrich Anton de Bary, who recognized 
that fungi and bacteria could dwell within plant 
tissues without causing any apparent harm. At this 
time however there are still ongoing discussions 
about what specifi cally constitutes a “true endo-
phyte,” because the term, as it is, only defi nes the 
location of an organism in a plant as opposed to 
any specifi c attribute (Schulz and Boyle  2005 ; 
Porras-Alfaro and Bayman  2011 ). As such, sym-
biotic titles can have fl uidity and this will effect 
where endophytes are viewed to fall on the symbi-
otic spectrum.

    Overall endophytes are very common world-
wide and it is thought that all 300,000+ plant spe-
cies identifi ed thus far serve as hosts for at least 
one or multiple endophytic species (Strobel et al. 
 2004 ). Linked to their widespread presence in the 
plant kingdom is additional evidence that the 
diversity of endophytic species within ecosys-
tems is highest among those with the highest fl o-
ral diversity, such as in tropical and temperate 
rainforests (Strobel and Daisy  2003 ). Despite 
their commonality in plants, most endophytes 
were generally overlooked or even ignored in the 
scientifi c literature until recent decades. Now, 
however, interest in endophytes, especially mutu-
alistic endophytes, has exploded worldwide due 
to the many potential benefi ts they may provide. 
Two examples of rapidly developing technolo-
gies which utilize  endophytes to benefi t society 
as a whole are biocontrol and bioremediation. 
Biocontrol research and technology development 
primarily focus on aiding plant survival by utiliz-
ing organisms to inhibit the advance of harmful 
pest/pathogenic organisms. 

 Bioremediation research and technology 
development focuses on the utilization of organ-
isms which have the ability to break down or 
accumulate harmful toxins in the environment; to 
ultimately aid plant growth in a polluted environ-
ment. The use of endophytes for biocontrol and 
bioremediation efforts has made tremendous 
strides, but work is still ongoing. The primary 
focus of this chapter is to examine advantages 
and challenges related to the use of endophytes 
with these two technologies. It also attempts to 

  Fig. 14.1    Fungal endophyte ( Beauveria bassiana ) 
shown here sporulating from the fl ower and stem of a 
Venus fl ytrap ( Dionaea muscipula ). The fungus was inoc-
ulated via the pods and, after 6–8 weeks, moved systemi-
cally throughout the plant before sporulating from new 
plant tissue. As a result of the spores becoming airborne, 
uninoculated plants also became colonized (Photo cour-
tesy Mary R. Griffi n, unpublished data)       

  Fig. 14.2    Squash seeds plated onto plant-based media to 
determine if they are colonized with endophytes. Use of 
host-plant media (10 % juice concentrate) is useful for 
encouraging growth of seed endophytes in culture       
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examine many of the advances made in our 
understanding regarding endophytes’ abilities 
which relate to their potential in biocontrol activ-
ities and bioremediation efforts. 

1.1     Endophytes and Their 
Relationships with Plants: 
Diversity, Ecology, and 
Challenge 

 Endophytes, because of their symbiotic rela-
tionships with plant hosts, offer a novel 
approach to the study of plants in general, but 
also, specifi cally, they provide a unique win-
dow for examining mechanisms by which 
plants and other organisms interact in their 
environment to ultimately facilitate their own 
survival. Over the past several decades there 
have been numerous published articles and 
reviews calling for the importance of recogniz-
ing the potential benefi ts endophytes have to 
offer human society in the areas of biocontrol 
and bioremediation efforts (Strobel and Daisy 
 2003 ; Bacon and Hinton  2007 ; Weyens et al. 
 2009b ; Yu et al.  2010 ; Khan and Doty  2011 ). It 
is now realized by researchers in plant micro-
technology fields that endophytes literally 
represent a treasure trove of unexplored micro-
diversity and ecology, and as a result research 
literature regarding their abilities is continuing 
to mount worldwide.  

1.2     Identifying Endophytes 
in a Plant: Endophyte 
Diversity and Its Challenges 

 Scientifi c study of the taxonomy of endophytes is 
really just beginning to shed light on their com-
plex diversity and ecology (Surette et al.  2003 ; 
Tejesvi et al.  2007 ; Taghavi et al.  2009 ; Yousaf 
et al.  2010b ). Often research focused on acquiring 
endophytes for future biocontrol or bioremedia-
tion efforts will begin with a survey of the endo-
phytes currently inhabiting the plant(s) of interest. 
From these, selected endophytes can then be 
screened for specifi c abilities, in the hopes of 

 isolating potential biocontrol or bioremediation 
agents (Bacon and Hinton  2007 ; Hardoim et al. 
 2008 ; Yousaf et al.  2010a ). Novel endophytes 
with specifi c abilities enabling them to deter 
insect feeding, antagonize a plant pathogen, 
degrade a toxic compound, or hyperaccumulate 
metals internally are continually being identifi ed 
through these surveys. In reality however, the 
results of these studies often represent only a 
small portion of the plant’s total endophyte diver-
sity. Currently the isolation of endophytes for 
identifi cation from even well-known plants can be 
diffi cult. Traditional culturing methods, which 
isolate endophytes from surface-sterilized plant 
material plated on media, only allow for the iden-
tifi cation of endophytes, capable of growing on 
that particular prepared media. It is well known 
that the ingredients in culture media can impact 
endophytic growth (Figs.  14.2 ,  14.3 , and  14.5 ). In 
addition, endophyte surveys often overlook slow-
growing or unculturable species, such as obligate 
biotrophs. Because of these variables, it is often 
diffi cult to know, with complete assurance, all the 
different endophyte species that are present in a 

  Fig. 14.3    Example results from the use of a traditional 
isolation culturing method using aseptic techniques. 
Fungal endophyte ( Beauveria bassiana ) is shown grow-
ing from surface-sterilized Venus fl ytrap plant material 
after placement on antibiotic containing media (Doberski 
and Tribe  1980 ) selective for the isolation of fungal spe-
cies (Photo courtesy Mary R. Griffi n, unpublished data)       
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single plant. To enhance our knowledge about this 
diversity, survey studies now often include, in 
addition to morphological identifi cation, further 
taxonomic techniques such as gene sequence 
identifi cation methods (16S rRNA, 16S rDNA 
BOX-PCR), carbon source  utilization tests, and 
fatty acid methyl ester profi le analysis. For exam-
ple, in a recent study of the endophytic bacteria of 
the aerial parts (stems and leaves) found in a cro-
cus wildfl ower ( Crocus albifl orus ), a combination 
of plating isolation techniques and 16S rRNA 
gene sequence identifi cation of isolates was used. 
In this study it was found that the community 
composition of culturable microbial communities 
was different from the results found using gene 
sequence identifi cation. Only three bacterial 
divisions were found in the culture collection, 
whereas six divisions were identifi ed using gene 
sequence identifi cation. Also of note, it was found 
that  C. albifl orus  supports diverse bacterial com-
munities. Some of the identifi ed communities had 
been described previously in association with 
other plants, but the  C. albifl orus  in this study also 
contained species that had not been described in 
association with plants before (Reiter and 
Sessitsch  2006 ). Obviously for any technology 
that would utilize benefi cial endophytes, it would 
be important to know about the other endophytes 
also colonizing the plant(s) of interest. Additional 
endophytes could greatly impact (positive or neg-
ative) the results of a biocontrol or bioremediation 
effort. In past work with endophytes, this has not 
always been possible; however, in current studies 
work is now done to determine if the plant(s) of 
interest is colonized with endophytes that may 
alter the results of a study. Concerning total endo-
phyte diversity, we’ve only begun to scratch the 
surface but innovations in survey technology 
capability and the mapping of genomes of many 
critical bacteria and fungi isolates should help 
alleviate many of these issues in coming years 
(Porras-Alfaro and Bayman  2011 ).

1.3        Developing a Working List 
of Common Endophytes 

 Despite the overwhelming diversity of endophytes, 
there is now a working list of organisms consistently 

identifi ed in plant–endophyte taxonomic studies, 
and as such, these organisms have become associ-
ated with their ability to utilize the endophytic life-
style. Endophytic bacterial species commonly 
isolated from plants often include members from 
the  Acetobacter ,  Arthrobacter ,  Bacillus , 
 Burkholderia ,  Cellulomonas ,  Clavibacter , 
 Curtobacterium ,  Enterobacter ,  Herbaspirillum , 
 Pseudomonas, Streptomyces,  and  Microbacterium  
genera (Lodwyckx et al.  2002 ). This list however 
is continually expanding. Endophytic fungi are 
also exceptionally broad in their biodiversity. 
These endophytes are typically from the ascomy-
cetes and to a lesser degree the basidiomycetes.   

2     Variables Which Can Impact 
the Success of Biocontrol 
or Bioremediation Efforts 

 As discussed earlier, all plants are thought to host 
one or more endophytic bacteria or fungi, with 
the more common being multiples of both; 
however, beyond this, much of our current under-
standing about the multitude of species that 
cultivate the endophytic lifestyle and their inter-
actions between plant hosts and one another is 
limited. Reasons for these limitations are many 
but include the fact that endophytic communities, 
population numbers, and interspecies dynamics 
occurring within plants can differ depending on 
plant species, cultivar, plant part (leaf, stem, or 
root), and any number of environmental condi-
tions, such as drought, low nutrient availability, 
pathogen–host interaction, or pollution presence 
(Gange et al.  2007 ; Tan et al.  2003 ; Yousaf et al. 
 2010a ; Khan et al.  2011 ). A recent study dem-
onstrated that even individual differences 
between plant genotypes can impact the type and 
ratio of endophytic communities colonizing plant 
tissues in a relatively small geographical area 
(Bálint et al.  2013 ). Some endophytes may colo-
nize only one or a few species, while others may 
cultivate numerous species. In addition some 
endophytes may only be associated with one area 
of the plant, whereas others may be found 
throughout (Jumpponen and Trappe  1998 ). 
Because many endophytes live only part of their 
lives inside plants, it is likely that plants become 
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colonized long term by endophytes capable of 
thriving within not only the internal plant envi-
ronment but the external as well. 

 To complicate this, there is also increasing 
evidence that plants can be involved in the recruit-
ment or shedding of endophytes (Siciliano et al. 
 2001 ). Plants also have their own attributes which 
limit harmful pest/pathogens (Cowan  1999 ; 
Cortesero et al.  2000 ) such as specifi c disease 
resistance genes which code for the production of 
compounds with direct activity against pest/
pathogens, some of which we have exploited for 
agricultural gain (Martin et al.  2003 ) as well as 
numerous chemical pathways by which some 
species have the ability to accumulate or break-
down many harmful toxins in the environment 
(Peer et al.  2005 ). 

2.1     Confusing and Sometimes 
Confl icting Results Can Occur 
When Working in Biological 
Systems 

 Work with biological systems is by its nature 
very diffi cult because scientists must account for 
innumerable variables which occur between 
interacting organisms. As a result biocontrol and 
bioremediation agents that have been under 
study for numerous years may still produce 
highly variable results when observed in a fi eld 
study. Therefore, the large-scale practical appli-
cation of these bio-agents still has numerous 
challenges (Weyens et al.  2009b ). Knowing 
some but not all, of the interactions occurring in 
a biological system can cause unforeseen diffi -
culties and confusion about how best to proceed. 
For example, in a study related to understanding 
the impact of long-term biocontrol efforts, endo-
phytes from two types of corn plants were exam-
ined; control plants and corn plants selectively 
breed for increased production of benzoxa-
zinoids (BXs). The BX-producing corn plants 
contain compounds that are known to be toxic to 
many microbes and insects. This toxicity to 
microbes and insects was assumed to be advan-
tageous to growers because they could use fewer 
pesticides. However, upon comparison of the 
two types of corn plant–endophyte communities, 

it was found that they differed greatly. The corn 
plants with increased BX compounds were actu-
ally encouraging the selection of tolerate BX 
endophytes, which unfortunately happened to be 
 Fusarium  spp., (   Saunders and Kohn  2008 ). 
 Fusarium  is a genus of well-known fungi which 
have been especially problematic to agriculture 
because of their production within plant tissues 
of mycotoxins that are harmful to humans and 
animals if consumed (Thane et al.  2004 ). In 
another study related to bioremediation pro-
cesses, certain plants or bacteria have been 
shown to have specifi c genes enabling them to 
use toxin-degrading pathways for organic com-
pounds. However, in some cases when the com-
pounds are taken up by the plant, the toxins are 
only partially degraded. As such the compounds 
are typically stored within the plant’s tissues and 
could pose a danger to herbivores if eaten. 
Studies such as these detail the complexity of 
plant’s microbial ecology.   

3     Changing Perceptions 
Regarding Fungi and 
Bacteria in General and 
Endophytes in Particular 

 As mentioned in the introduction, the term endo-
phyte is under some debate particularly regarding 
biocontrol technology. This debate stems from 
the fact that the term refers primarily to the loca-
tion of an organism living within a plant, without 
causing disease; however, as such this defi nition 
could still include latent pathogens (organisms 
which cause disease after a specifi c period) or 
opportunistic saprotrophs (organisms that feed 
on nonliving organic matter). In addition, many 
may limit the term “endophyte” to specifi c taxo-
nomic groups primarily for the purpose of mak-
ing a study or review more manageable. Lastly 
the terms used to describe the endophytic condi-
tion (mutualistic etc.) can also be a source of con-
fusion for the novice as the descriptive terms can 
change depending on the human or plant associa-
tion. Despite this, endophytic activities by fungi 
and bacteria have had a long history of study in 
biological research literature and the use of 
mutualistic endophytes in modern biocontrol and 
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bioremediation efforts can be directly tied to 
these earlier studies. 

3.1     Brief History Behind 
Endophytes and the Fluidity 
of Symbiotic Titles 

 Plant–bacterial and fungal relationships actually 
have been extensively studied for a long period 
of time, and the results of these have added to 
our overall understanding of these complex rela-
tionships. Much of what was learned about 
endophytes early on involved the discipline of 
crop science and was used primarily to improve 
agricultural crop yields. As a result work with 
bacteria and fungi that formed symbiotic internal 
relationships in plants examined plant–pathogen 
interactions. The plant science discipline, known 
as plant pathology, actually evolved in part due 
to the tragedy of the infamous Irish potato fam-
ine, which occurred in the mid-1800s. The fam-
ine which lasted over a period of several years 
was the result of potato blight, a condition of 
rapid rot caused by the plant pathogen 
 Phytophthora infestans . The famine was historic 
because of the millions of people that died of 
starvation or were forced to migrate in mass to 
other regions of the world (Fraser  2003 ). 
Consequently at this time in history, our only 
understanding of plant relationships with bacte-
ria and fungi was negative, and the idea of inten-
tionally inoculating plants with bacteria and 
fungi for their benefi t would take time to develop 
in society. However, thanks to the work in plant 
pathology, there is now enhanced understanding 
about the many organisms that cause plant dis-
ease and the mechanisms they employ 
(Hammond-Kosack and Jones  2000 ). Much of 
this previously acquired knowledge is now used 
in current biocontrol studies. In other words, 
information from the negative aspect of the sym-
biotic spectrum now provides researchers with 
information upon which to build a better under-
standing of benefi cial plant symbionts. It has 
been suggested that what makes endophytes 
especially suitable as biocontrol agents is their 
colonization of an ecological niche similar to 

that of plant pathogens (Ryan et al.  2008 ). 
Furthermore, some plant pathogens may actually 
be considered benefi cial as several have actually 
been sought as biocontrol agents for use against 
weed plants. Justifi cation for their use is related 
to the phasing out or cancellation of many wide-
spread commercial pesticides and herbicides 
(Charudattan  2001 ), several of which have 
through their continual use built up in the envi-
ronment and are part of the many contamination 
site pollutants which now must be addressed 
through the use of bioremediation efforts. 

 As understanding continued to develop 
regarding the range of symbiotic spectrum 
activities and what individual symbiotic organ-
isms in biological systems could do, recogni-
tion of benefi cial microbes by scientists began 
to emerge. For instance some of the earliest 
benefi cial symbionts recognized in the plant 
sciences were the root-colonizing endophytes 
known as Rhizobia bacteria. These bacteria are 
associated with legumes (Fabaceae) and pro-
duce nodules in the roots wherein they live and 
fix unusable nitrogen into a usable form for 
the plant. Nitrogen typically (unless artifi cially 
supplied) is a limiting factor that restricts 
growth in plants. Rhizobial activity within 
legumes is still one of the best known examples 
of a plant growth-promoting activity (PGPA), 
taught now in most basic plant science classes. 
This early work led to further understanding in 
the area of microbes and nitrogen fi xation. Now 
we know there are many kinds of nitrogen-fi x-
ing bacteria found in soil that do not require an 
endophytic relationship with legumes. These 
organisms are known collectively as diazo-
trophs and help make up the benefi cial rhizo-
bacteria located in the critical rhizosphere zone 
of plant roots. Diazotrophs can provide protec-
tion by occupying the rhizospheric area to the 
exclusion of pathogens attempting to invade. 
Plant growth promotion using nitrogen fi xation 
endophytes is still actively sought in research 
for both biocontrol and bioremediation efforts. 
Many diazotrophs that do not have to form 
nodules to fi x nitrogen can also become endo-
phytic and some provide assistance to plants 
through their PGPAs at contamination sites. 
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For instance, endophytic diazotrophs, such as 
    Pantoea  and  Azospirillum  sp., were recently 
isolated from a large diversity of plants (Verma 
et al.  2001 ; Loiret et al.  2004 ; Xin et al.  2009 ). 

 Also instrumental in the scientifi c communi-
ty’s increased awareness of the complexity of 
plant symbiotic relationships are the well-
known benefi cial root colonizers, arbuscular 
mycorrhiza fungi (AMF). These symbionts 
internally colonize the root cortex of plants and 
develop branched networks that aid plants in 
capturing macronutrients such as phosphorous 
or nitrogen as well as other micronutrients. It is 
understood that the type of symbiotic relation-
ship AMF form with plants has been occurring 
for a very long time as evidenced by paleobo-
tanical fossils of plant roots containing the 
arbuscular structures of the fungi. Today AMF 
continue to form relationships with a large por-
tion of land plants, and several articles and 
reviews describe the demonstrated success of 
arbuscular mycorrhizal associations in bioreme-
diation and biocontrol efforts (Al-Karaki and 
Al-Raddad  1997 ; Augé  2001 ; Denton  2007 ; 
Compant et al.  2010 ). Plants have prophylacti-
cally benefi ted from the presence of AMF by 
enhancing their ability to control numerous plant 
pathogens such as  Fusarium ,  Rhizoctonia , 
 Verticillium ,  Pythium,  and  Sclerotium  (Azcón- 
Aguilar and Barea  1996 ). Typically, however, 
mycorrhizal fungi are generally not considered 
true endophytes because as a group they are 
identifi ed by the specifi c function they provide 
for a plant and they are grouped in the fungal 
phylum Glomeromycota (Porras-Alfaro and 
Bayman  2011 ). 

 More generalized studies of plant–bacterial 
and fungal relationships also examined how rhi-
zospheric and endophytic microbes could facili-
tate plant’s overall ability to survive in challenging 
environments through PGPA other than nitrogen 
fi xation. Now widely recognized, these PGPAs 
incorporate a wide variety of activities done (1) 
by the microbe(s) solely or (2) by the plant in 
response to the microbe(s) or vice versa or (3) in 
unison with the microbe (Strobel  2002 ; Tejesvi 
et al.  2007 ). Various endophytes have been shown 
to increase plant growth through a number of 

mechanisms such as drought tolerance (Bacon 
 1993 ), phosphate solubilization activity (Verma 
et al.  2001 ), or through the production of func-
tional metabolites (Tan and Zou  2001 ) as in 
essential plant vitamin production (Pirttila et al. 
 2004 ), indole acetic acid (IAA) production (Xin 
et al.  2009 ), and production of siderophores 
(Rajikumar et al.  2010 ).  

3.2     True Endophytes 

 The potential importance of benefi cial endo-
phytes to plants and biotechnology really did 
not become clear until 1975, when Charles 
Bacon discovered fungal endophytes in the 
family Clavicipitaceae growing systemically in 
pasture grasses (Bacon et al.  1977 ). Subsequent 
studies revealed that these endophytes actually 
aided plant survival through a variety of PGPAs 
(Arachevaleta et al.  1989 ; Bacon  1993 ; Latch 
 1993 ) and that the endophytes could be passed 
from parent plant to seed (Clay  1987 ). The rea-
son behind the initial work performed by 
Charles Bacon (how his work was supported) 
highlights some of the greatest challenges in 
using endophytes for the benefi t of plants. In a 
situation related to the issue found with high 
BX corn plants discussed earlier, the fungal 
endophytes Bacon recognized also produced 
alkaloids within their hosts, and as such the 
colonized pasture grasses were toxic to cattle, 
and the associated syndromes caused by their 
consumption had a highly negative fi nancial 
impact on the livestock industry. It turned out 
that when the endophytes produced toxins, it 
was good for the plant because it deterred insect 
feeding (Johnson et al.  1985 ). Of note, there are 
now biocontrol commercial formulations of 
clavicipitaceous endophytes of grasses that 
protect turf grasses from insect pests (Clay 
 1987 ). By humans, clavicipitaceous endophytes 
are deemed benefi cial in turf grasses, but negative 
in pasture grasses; however, in both cases, the 
plant would consider the fungi benefi cial. Thus, 
symbiotic titles are defi ned not just by the plant 
but also by the humans who utilize the endo-
phyte and plant. 
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 For the general public however, even today 
bacteria and fungi are viewed as negative regard-
less of type or potential. For example, if ques-
tioned today about endophytes, a general 
layperson would likely view endophytes as 
potential contaminants in food, even though all 
food (industrial or organic) typically contains 
some fungi or bacteria. In contrast a layperson’s 
response concerning bioremediation efforts and 
the use of endophytes will likely have a more 
generally positive response. This would likely 
arise from the assumption that food and pollut-
ants are not associated; however, many environ-
mental pollutants come from agricultural-related 
chemicals used on food.   

4     Biological Control 
(Biocontrol) with 
Endophytes 

 The defi nition of a biocontrol (biological con-
trol) agent is the use of a living organism or their 
metabolic by-products to control pests or 
disease- causing pathogens. Part of the appeal of 
biocontrol technology is that it offers growers a 
natural means of control and can lessen depen-
dency on chemical pesticides. The ecological 
risks of synthetic chemicals such as pesticides 
and herbicides used in crop protection in edible 
portions of foods are a cause of grave concern by 
the public and their governments (US National 
Research Council  1993 ). Because of this, much 
of the research on the use of endophytes as 
 biocontrol agents has focused on important com-
mercial crops which have historically been 
plagued with insects or pathogens that cause tre-
mendous economic loss. In the past to ensure 
good yields, these high-value crops were treated 
with solely chemical pesticides, now however 
due to increasing pest and pathogen pesticide 
resistance, even reluctant-to-change growers are 
seeking workable alternatives or augments to 
their traditional chemical treatments (Copping 
and Menn  2000 ). Changes in agriculture grow-
ing practices are evidenced by widely enacted 
integrated pest management programs (IPM) 
and policies worldwide. As public understanding 

has increased regarding the multiple benefi ts 
symbiotic organisms can provide, their general 
use has become more common (Zhuang et al. 
 2007 ). Currently there is an amazing amount of 
literature regarding the utilization of bacterial or 
fungal–plant symbiotic partnerships for biocon-
trol efforts; however, many of these do not exam-
ine solely endophytes but rather also include 
colonizers of plant’s external surrounding areas 
such as the rhizosphere (Weller  1988 ). In addi-
tion the use of endophytes for biocontrol activi-
ties is still limited for several reasons: (1) there is 
public concern over potential negative conse-
quences, and (2) many of the relationships 
formed with plants by microbes do not necessar-
ily require them to colonize the plant to work 
effectively, as such endophytes are a subgroup of 
the total biocontrol agents examined in the sci-
entifi c literature. However, because endophytes 
are naturally present in all plants and within this 
unique niche they are sheltered from external 
environmental conditions, they can in some 
cases be potentially more effective biocontrol 
agents than microbes in external niches. Also 
considering their diversity, endophytes could be 
used as biocontrol agents with any crop, geneti-
cally modifi ed or otherwise, against a multitude 
of pest/pathogens (bacterial, fungal, insect, mites 
nematodes, and others), in most environment. 
The problem is fi nding the right endophyte(s) or 
rather the right combination of organisms, endo-
phyte and plant type, to grow in suitable environ-
mental conditions. All of this relates directly 
back to our lack of knowledge about endophyte 
biodiversity, community, and population dynam-
ics between plant hosts in addition to variable 
abiotic environmental infl uences. 

4.1     Mechanisms of Action Used 
by Effective Biocontrol Agents 

 Biocontrol activity by endophytic organisms can 
be viewed as working indirectly or directly. 
Indirect action may be the simple occupation of 
space by an endophyte within the interior of a 
plant host which prevents a pathogen from estab-
lishing itself. Direct biocontrol activity emphasizes 
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the interaction between the biocontrol and the 
pest/pathogen, such as consumption of the 
pathogen. There is general agreement that the 
mechanisms used by biocontrol agents to antago-
nize plant pest/pathogens can be divided into 
four broad categories: (1) antibiosis, (2) competi-
tion, (3) parasitism, and (4) induction of plant 
defense systems (Handelsman and Stabb  1996 ). 
(1) Antibiosis can specifi cally refer to the pro-
duction of antibiotics, but it also applies more 
broadly to any metabolized compound capable 
of killing (−cidal) or inhibiting (−stasis) the 
growth or reproduction of organisms, such as 
the production of cell-wall degrading enzymes; 
(2) competition for space and nutrients, also 
known as niche exclusion, involves the inhibi-
tion of a pathogen either through substrate denial 
or by outcompeting the pathogen through the 
uptake of nutrients necessary for it to establish; 
(3) parasitism or hyperparasitism refers to the 
parasitizing of a parasite (Fig.  14.4 ); and (4) 
induction of a plant host’s normal defense 
responses involves triggering reactions in a plant 
that would normally happen if the plant was in 
actuality being attacked by pest/pathogen. This 
type of response can be local or systemic 
throughout the plant. Examples of this type of 
biocontrol activity would be initiated by causing 
a local hypersensitive response (HR) that results 

in a rapid death of cells in a small area surrounding 
the initial infection site; this type of response 
will typically precede a slower systemic response 
known as systemic acquired resistance (SAR) or, 
depending on the chemical pathway used by the 
plant, an induced systemic resistance (ISR), in 
which the plant produces a similar response, but 
no HR response is needed for it to occur. Both 
SAR which uses salicylic acid and ISR which 
uses jasmonic acid can stimulate the production 
of numerous plant defense-related compounds, 
such as terpenoids and peroxidase, which are 
needed to help overcome a pest or pathogenic 
attack (Han et al.  2000 ; Ownley et al.  2008 ).

4.2        Surveying and Screening 
Biocontrol Agents Using 
Mechanisms of Action 

 Specifi c examples of bacterial and fungal endo-
phytes using these mechanisms of control abound 
in the endophyte biocontrol literature (Yu et al. 
 2010 ). For example, hyperparasitism has been 
well documented for the relatively common endo-
phytic fungi,  Trichoderma . For this fungus the 
mechanism involves the secretion of chitinases 
and cellulases upon contact with the pathogen. 
Subsequent coiling of hyphae around the hyphae 
of the pathogen enables the biocontrol to enzy-
matically digest the pathogen’s cell walls (Baek 
et al.  1999 ; Russo et al.  2012 ). Most biocontrol 
agents however do not antagonize plant pests/
pathogens with only one mechanism of action and 
will often use several mechanisms to inhibit or 
control pest or pathogenic invaders. For example, 
in survey studies conducted for the purpose of 
fi nding new potential biocontrol agents, plants 
will often be examined for their natural endo-
phytes for two solid reasons: (1) plants often will 
cultivate benefi cial microbes when they are avail-
able and (2) these naturally occurring endophytes 
are already known to be competent, meaning they 
have already successfully colonized and can 
thrive in the plant of interest. These endophytes 
once isolated (Fig.  14.3 ) will then be screened in 
order to determine if the plant naturally hosts 
endophytes which can help defend it against 

  Fig. 14.4    The biocontrol mechanism of hyperparasitism 
in fungi is sometimes accompanied by hyphal coiling. In 
this fi gure, the biocontrol agent  Beauveria bassiana  
(larger hyphae) is observed coiling around the plant 
pathogen  Pythium myriotylum  (Photo courtesy of Mary R. 
Griffi n)       
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harmful organisms. Screening endophytes with 
the use of in vitro assays are typically some of the 
fi rst activities used in surveys for biocontrol or 
bioremediation agents (Fig.  14.5 ). For example, 
in a study conducted for the purpose of examining 
the endophytes which naturally colonized rape 
seed ( Brassica napus ), numerous bacterial and 
fungal specimen were isolated. Following their 
isolation, the endophyte’s abilities were examined 
using in vitro assays, and all of the microorgan-
isms isolated were found to be suppressive against 
the fungus  Verticillium dahliae , a major soilborne 
pathogen, which causes leaf discoloration, wilt-
ing, and at times death in the crop plant. Further 
examination of these isolated bacteria was done, 
using seedlings grown in gnotobiotic assays (gno-
tobiotic assays are very useful when examining 
any potential mutualistic endophyte because the 
assay can be strictly limited to examine the inter-
actions of the plant and endophyte; see Fig.  14.6 ), 
and showed that as a group the bacterial commu-
nity exhibited a wide range of biocontrol mecha-
nisms, including the ability to stimulate an HR 
response, as well as chitinolytic, cellulolytic, pro-
teolytic, and phospholytic enzyme activities. In 
addition many of bacterial isolates examined were 

able to individually exhibit multiple antagonistic 
activities (Alström  2001 ).

    Mechanisms utilized by biocontrol agents 
may also differ based on the type of pest/patho-
gen that is attacking the plant. In a survey study 
of fungal endophytes isolated from healthy 
 Theobroma cacao  tissues to determine potential 
isolates with in vitro antagonism against several 
major pathogens, it was found that several isolates 
demonstrated antagonism against  Moniliophthora 
roreri  (frosty pod rot),  Phytophthora palmivora  
(black bud rot), and  Moniliophthora perniciosa  
(witches broom). The most common antagonistic 
mechanism observed was substrate competition; 
however, some isolates did show antibiosis activity 
and one isolate of  Trichoderma  was parasitic on 
 M. roreri . In later fi eld work, a selected endophyte 
from the same study,  Colletotrichum gloeospori-
oides,  was shown to signifi cantly decrease pod 
loss due to black pod rot (Mejía et al.  2008 ). In 
another survey study also done to screen for 
potential biocontrol agents for potato ( Solanum 
tuberosum ) plants, six fungal endophytes were 
selected for suppression of  Rhizoctonia solani , an 
important soilborne pathogen which requires the 
use of large amounts of pesticides to control. Out of 

  Fig. 14.5    Antibiosis challenge using an in vitro assay. In 
this assay the antibiosis activity of an unidentifi ed actino-
mycete is examined as it grows on three different nutrient 
media and is challenged by a common plant pathogen. 
The actinomycete could survive on each substrate; how-
ever, when challenged by the fungal–plant pathogen 

 Aspergillus niger , its ability to inhibit the fungus was 
linked to the media upon which both organisms were 
growing. In vitro assays are also used in bioremediation 
studies to determine plant and microbial tolerance of toxic 
pollutants (Photo courtesy of Mary R. Griffi n)       

 

M.R. Griffi n



267

the six isolates examined, two  Trichoderma 
atroviride  and  Epiccum nigrum  showed signifi cant 
in vitro inhibition of mycelial growth of  R. solani,  
and in subsequent greenhouse work, both isolates 
improved potato yield signifi cantly (Lahlali and 
Hijri  2010 ). 

 Other biocontrol studies may examine solely 
the effi cacy of as specifi c type of endophyte such 
as nonpathogenic microbial isolates (harmless 
isolates of known pathogenic species) which are 
commonly found in the plants. For instance, the 
nematode ( Radopholus similis ) is a serious pest 
in commercial banana ( Musa  sp.) plants, and in a 
study to determine if colonization and multipli-
cation of the nematodes could be decreased, 
banana plants were inoculated with four stains of 
nonpathogenic  Fusarium oxysporum . Results of 
the study showed that nematode activity was 
indeed decreased in the roots and that none of 
the isolates caused a reduction in plant growth. 
The exact mechanism of action was not deter-
mined however, because the  F. oxysporum  iso-
lates did not demonstrate any direct mechanisms 
of control (Niere et al.  1999 ). In another study 
with cotton ( Gossypium hirsutum ), the ISR 
mechanism utilized by nonpathogenic binucle-
ate  Rhizoctonia  spp. to protect seedlings against 
the damping-off pathogen  R. solani  and  Alternaria 

macrospora , which causes leaf spot, was found 
to be effective against both pathogens (Jabaji-
Hare and Neate  2005 ). 

 Additionally endophytes, which have the 
capability of dual biocontrol activity (activity 
against two or more plant pathogens or against 
insect pests and plant pathogens), are also being 
sought, in part for their commercial viability. 
One such example is  Beauveria bassiana , a 
well- known commercially available entomo-
pathogen effective against twenty orders of 
insects but which can also live successfully as an 
endophyte and has been isolated from numer-
ous plant species (Ownley and Griffi n  2012 ). 
 Beauveria bassiana  was shown to control the 
bacterial pathogen  Xanthomonas malvacearum  
in cotton using the ISR mechanism (Ownley 
et al.  2008 ). As discussed earlier sometimes 
researchers are not always sure what the exact 
mechanism a biocontrol agent is utilizing in 
every study; however, if the biocontrol agent 
shows promise, further work will likely continue 
to elucidate their mechanism(s) of action; in 
addition previous information collected from 
years of research can often help narrow the 
search parameters. This information is also used 
to help researchers select agents with “good 
potential.” For example, the bacterial strain of 

  Fig. 14.6    An example of a sealed gnotobiotic assay with 
carrot seedlings. Carrot seeds were coated with a potential 
mutualistic endophyte and were aseptically planted fol-
lowing the sterilization of test tubes, water, and vermicu-

lite substrate. This technique can also be used to determine 
if a control or a colonized plant seedling can grow in a 
polluted system (Photo courtesy of Mary R. Griffi n)       
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 Paenibacillus polymyxa  (SG-6) was shown to be 
effective at controlling the post- harvest disease 
caused by the green mold ( Penicillium digita-
tum ) on citrus fruit. The strain (SG-6) was origi-
nally isolated from the roots of  Sophora 
tonkinensis  (an herb used in traditional Chinese 
medicine) and identifi ed using 16S rDNA gene 
analysis and Biolog tests. The bacterial strain 
was deemed as a likely biocontrol agent because 
the species has previously been shown to have 
antagonistic activity against several plant patho-
gens in greenhouse and fi eld studies. In the 
study, further in vitro and in vivo assays were 
used to determine  P. polymyxa ’s effi cacy against 
 P. digitatum,  and although the precise mecha-
nism of antibiosis exhibited by this strain was 
not known at the time of the paper’s submission, 
there had been previous studies which showed 
that the species of  P. polymyxa  had the ability to 
produce numerous antimicrobial compounds as 
well as several enzymes key to the control of 
even resistant plant pathogens (Lai et al.  2012 ).  

4.3     Isolation, Identifi cation, and 
Application of Biocontrol or 
Bioremediation Organisms 

 Many techniques such as traditional isolation, in 
vitro challenges, and gnotobiotic assays can be 
used in the screening of potential agents for 
both biocontrol and bioremediation efforts 
(Figs.  14.3 ,  14.5 , and  14.6 ). In laboratory, 
greenhouse, and fi eld settings, the intentional 
inoculation of plants with endophytes can occur 
in a variety of ways. For instance, endophytes 
can be incorporated (infested) into the soil as 
amendments and allowed to colonize plants via 
the roots; other ways include incorporating the 
endophyte in a liquid and dipping plant roots 
into the solution prior to planting (root dip) or 
by directly coating the endophyte onto plant 
seed all of which also encourage natural coloni-
zation of plant tissue. Other inoculation methods 
include direct inoculation into the plant via a 
syringe or for trees, “endotherapy” (trunk injec-
tion). For endophytes which enter via the phyl-
losphere, these are often applied as foliar sprays. 

Today there are a wide variety of commercial 
products containing bio- agents. These commer-
cially formulized products are used for a variety 
of biotechnological efforts and will contain 
additives described as proprietary mixes. These 
proprietary substances are added for different 
reasons such as increasing general effi cacy fol-
lowing application (helping them adhere to 
external plant tissues longer) or to extend the 
bio-agent’s shelf-life expectancy.   

5     Bioremediation 
with Endophytes 

 In addition to their use as biocontrol agents, 
endophytes are also being used in another prom-
ising area of research, the remediation of pol-
luted soil and water. The United States 
Environmental Protection Agency (USEPA) 
defi nes bioremediation as a treatability technol-
ogy, which uses biological activities to reduce 
the concentration and/or toxicity of a pollutant. 
Bioremediation for the reduction of toxic com-
pounds is an issue of growing concern world-
wide especially since the negative effects of 
many widely manufactured and released sub-
stances on human heath are more widely under-
stood. Pollution caused by the release of toxic 
contaminants has become a tragic norm in our 
modern-day society. Many older contaminated 
areas are the result of contaminant releases 
which occurred prior to the understanding of the 
product’s true detrimental long-term impact. 
Unfortunately many releases still occur today 
due to a variety of reasons ranging from break-
downs in oversight to sheer ignorance. Some 
releases (past and present) are even intentional 
because it is cheaper to pollute than pay for con-
tainment of the contaminant. Accidental or oth-
erwise contaminant releases commonly occur 
around point sources such as industrial and agri-
cultural sites. Following their release from a 
point source, these contaminants can then 
migrate outward causing a widespread plume as 
they are carried. In order to make the soil and 
water of these contaminated areas safe again for 
human- related activities, remediation efforts 
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must be done. Unfortunately traditional (ex situ) 
or removal-focused remediation technologies, 
especially for contaminated soils, are environ-
mentally invasive, time consuming, and fi nan-
cially costly. These include excavation, transport 
to specialized landfi lls, incineration, or stabiliza-
tion (Weyens et al.  2009a ). Because of the high 
cost of these traditional remediation techniques, 
degradation or accumulation on-site of toxic 
compounds in environmental soil and water by 
plants and their associated organisms are being 
actively investigated. Bioremediation (in situ) 
technology is generally agreed to be potentially 
a much cheaper alternative. Therefore, the use of 
microscopic organisms capable of degrading or 
accumulating toxic compounds in combination 
with specifi c host plants could offer an effi cient, 
economic, and sustainable remediation technol-
ogy for the future. 

5.1     Types of Bioremediation 

 Bioremediation can generally be broken into 
two main types: intrinsic and engineered. 
Intrinsic bioremediation is also known as natu-
ral attenuation or passive bioremediation. Out 
of the two, intrinsic would be preferred to engi-
neered bioremediation, primarily because its 
cost is much lower. Intrinsic bioremediation 
consists of allowing the naturally occurring 
organisms in the area of concern to degrade or 
accumulate the contaminants without imple-
menting any additional steps to enhance the 
process. This type of bioremediation does natu-
rally occur all the time worldwide without the 
addition of human efforts; however, before pol-
luted land or water areas can be left to solely 
intrinsic mechanisms, three basic requirements 
must be met.    The site must (1) already contain 
a suffi cient number and type of microorganisms 
that can biodegrade the contaminant, (2) have 
good environmental conditions for growth and 
suffi cient availability of nutrients to maintain 
the current populations, and (3) relate to the 
allowable time that the natural processes will 
be given to work. In other words, the land or 
water is essentially unusable until the natural 

bioremediation process is completed. Meeting 
all three of these requirements is often diffi cult 
for sites which have large areas of contamina-
tions or high concentrations of toxins. Also in 
many cases, especially for polluted soils, if 
contamination levels are too high, then micro-
bial populations tend to be decreased (Zhang 
et al.  2012 ), which would greatly affect the 
site’s remediation timeline. Concerning the 
second requirement, particularly with the use of 
endophytes for intrinsic bioremediation efforts, 
environmental conditions and adequate nutrient 
attainment would be directly linked to overall 
plant survival, but many plant species are sensi-
tive to pollutants. 

 Furthermore, studies have shown that even 
plants deemed to be tolerant to a site’s contami-
nant usually do not grow well if pollution levels 
are high enough (Glick  2005 ; Germaine et al. 
 2009 ; Zhang et al.  2012 ). For example, in areas 
contaminated with hydrocarbons (well-known 
toxic compounds associated with the production 
of petroleum), plant growth and development 
are often inhibited, and due to hydrocarbon’s 
hydrophobic properties, plants and microorgan-
isms attempting to grow at a site have reduced 
ability to absorb water and nutrients from the 
soil (Khan et al.  2012 ). The fi nal requirement 
for intrinsic remediation addresses the require-
ment of adequate time duration, which often is 
not feasible. Even with engineered bioremedia-
tion strategies, natural processes usually take a 
long time to work. Intrinsic bioremediation 
efforts therefore can only be used in limited 
situations. 

 Regardless of the method chosen for the 
remediation of a site, ex situ or in situ by intrin-
sic or engineered methods, there are also safety 
requirements which have to be met. All sites 
need to be monitored in order to verify that 
their contaminant plumes are not continuing to 
spread and that they and are indeed being 
reduced overtime. To accomplish this, networks 
of monitoring methods are required to deter-
mine the location and concentration of the con-
taminants over time, the relative numbers and 
types of microbes present, and other appropri-
ate parameters.  
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5.2     Technologies 
of Bioremediation 

 Engineered bioremediation processes are similar 
to intrinsic methods in that they still rely on 
biotic activity to reduce contamination, but this 
method allows for the enhancement of the natu-
ral processes of degradation typically by modi-
fying one or all of the three previously mentioned 
site requirements. Bioremediation is actually a 
broad descriptive term that includes several 
linked technologies such as phytoremediation 
which is used in intrinsic methods as well, but in 
engineered methods it involves the intentional 
selection and planting of specifi cally tolerant 
plants for the toxin(s) present and using them as 
hyperaccumulators, to take up the toxic com-
pounds and partially degrade or store them 
within their internal tissues. Phytoremediation 
depending on the contaminants can involve such 
strategies as phytodegradation and phytovolatil-
ization both of which can be used with sub-
stances such as synthetic organic compounds. 
Phytoextraction would be the term used to 
describe the removal of toxins such as heavy 
metals and metalloids by plants as they accumu-
late them internally (Peer et al.  2005 ). Other 
technologies include bioventing which uses 
microorganisms to degrade organic compounds 
in groundwater; bioleaching, which involves 
accumulation of metals by microorganisms; bio-
augmentation which would involve the inten-
tional release of a natural or genetically 
engineered microorganism to a site; or biostimu-
lation which would involve some modifi cation 
of the environment, such as the release of 
nutrients which can stimulate microorganisms 
in the area to act as better bioremediators. 
Bioremediation using endophytes often will link 
many of these technologies together. For exam-
ple, with phytoremediation, the intentional 
planting of tolerant plant species, with extensive 
root systems is known to facilitate biodegrada-
tion processes. Furthermore, bioaugmentation 
could be used through the inoculation of soil 
with microorganisms known to tolerate or 
degrade a pollutant in the ground or through the 

intentional inoculation of plants with endophytes 
to assist them to degrade accumulating toxic 
compounds coming into the plant. Biostimulation 
technologies are also often utilized at sites of 
concern because introduced organisms need to 
be compatible with the existing conditions of the 
environment, such as physicochemical proper-
ties like water, oxygen, pH, and nutrient levels 
and temperatures. In some cases it may be pos-
sible to alter these in order to facilitate biodegra-
dation activities. 

 Monitoring of engineered bioremediation 
sites is also critical to determine the progress of 
remediation. Engineered bioremediation moni-
toring techniques will vary based on the technol-
ogies used, for instance, in a case utilizing 
bioaugmentation with introduced genetically 
engineered endophytic remediators; monitoring 
gene abundance and expression along with the 
plant health of hosts used in phytoremediation of 
contaminated soils will provide evidence about 
gene persistence and functional activity of the 
applied microorganisms. Quantitative PCR 
(qPCR) could be also used to monitor the pres-
ence of specifi c organisms and functional activity 
of the degrading gene.  

5.3     Studying Bioremediation 
Using Plants and Their 
Microorganisms 

 To date symbiotic interactions among microor-
ganisms and plants have received much atten-
tion because together they have been shown to 
be capable of enhancing pollutant degradation. 
Several contributions have already been docu-
mented using organisms associated with plant 
rhizosphere (Franks et al.  2006 ; Russo et al. 
 2012 ). However, in work with endophytes, 
researchers have also found that many endo-
phytes commonly dwell in the rhizosphere 
before moving into plant internal tissues. 
Therefore, plants and their associated microbial 
communities can have a great impact on the 
success of any bioremediation effort. Currently, 
however, the overwhelming majority of studies 
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which involve the examination of benefi ts with 
endophytes in bioremediation have been suc-
cessfully applied only in laboratory scale exper-
iments, and large- scale fi eld applications are 
still limited (Weyens    et al.  2009a ). The use of 
microbes in general and endophytes in particu-
lar for bioremediation efforts is still relatively 
new, but from the evidence presented in early 
works, it is clear that there is strong potential for 
mutualistic symbionts to make a signifi cant con-
tribution toward cheaper sustainable bioreme-
diation efforts.  

5.4     Bioremediation Success 
with Endophytes Is Linked 
to Plant Health 

 Plant’s exterior symbiotic relationships are asso-
ciated with the overall health of the plant and can 
greatly impact the success of any bioremediation 
effort with endophytes. Regarding the impor-
tance of plant health in the facilitation of biotech-
nologies, it is known that plants cultivate a 
microbial community around their roots. Growing 
plant roots leak relatively large amount of sugars 
and additional compounds such as organic acid, 
amino acids, and vitamins into the surrounding 
environment. These leaked compounds attract 
and feed other highly varied populations of com-
peting microbial species. The root zone is the 
area where bioremediation activities mostly 
occur. This area is known as the “zone of effec-
tiveness” and impacts the success of bioremedia-
tion techniques depending on the location of the 
contaminant in the environment and the depth it 
has reached. This is why not only tolerant plants 
are sought in areas of concern but also those with 
extensive root systems are deemed valuable. 
Thus, plant type but also overall good plant health 
is essential for encouraging colonization by plant 
symbionts. Endophytic colonization may actu-
ally be an enormous advantage to microbes. It 
has been suggested that the unique niche of the 
interior plant environment may allow the desired 
endophyte strain to reach larger population sizes 
due to reduced competition for nutrients and 

space and being physically protected from 
adverse changes in the environment.  

5.5     Advantages for a Plant to 
Have Remediation-Capable 
Endophytes When Growing 
at a Contaminated Site 

 The use of bioaugmentation with endophytes for 
remediation of many toxic compounds found in 
both soil and water has been studied, and overall 
effi ciency of remediation efforts has been shown 
to be associated with the survival of inoculated 
toxin-degrading organisms located in the rhizo-
sphere and endosphere of the plant (Khan et al. 
 2012 ). It has also been shown that artifi cial 
inoculation of plants with desired endophytes 
does enhance plant resistance to contaminant 
stress and increases their acclimation rate and 
biomass formation. Also as discussed above 
plants through the natural release of carbon 
sources can enhance the external microbial pop-
ulation numbers in the rhizosphere as well as the 
internal applied microbial population numbers 
which would enhance their overall degradation 
or accumulation potential. Another important 
advantage of using endophytic pollutant degrad-
ers is to provide continuation of degradation 
efforts within plants following uptake of the con-
taminant. Many plant hyperaccumulators cannot 
completely degrade toxic compounds and may 
store these partially degraded contaminants 
internally. For instance, chlorobenzoates are 
toxic metabolic intermediates produced from 
biodegradation of a variety of compounds that 
are still considered environmental contaminants 
(McGuinness and Dowling  2009 ). Endophytes 
which could continue the degradation process 
internally would reduce phytotoxicity and 
decrease the overall toxic effect of the pollutant 
on any herbivorous fauna (Newman and 
Reynolds  2005 ). In addition endophytes are also 
helpful with some contaminants, which when 
only partially degraded by plants internally can 
become volatized and released. Endophytes have 
been shown to be particularly helpful in reducing 
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evapotranspiration of pollutants from plants 
(Weyens et al.  2009c ).  

5.6     Bioremediation Efforts 
Facilitated with PGPAs and 
the Challenges of Endophytic 
Diversity 

 As discussed earlier a better understanding of all 
plant symbiotic partnerships is needed to fully 
exploit their abilities to enhance the remediation 
of contaminated soils and waters. Essentially 
any activity by an endophyte which can support 
a plant’s efforts to survive in a contaminated area 
will also promote the overall bioremediation 
effort of the plant as well as aid other microbial 
organisms (epiphytic or rhizospheric) that are 
dependent on the plant for survival. Endophytes 
capable of PGPAs, like those used by biocontrol 
agents, have also been found at numerous sites 
requiring remediation efforts. These PGPAs 
include nitrogen fi xation, production of plant 
growth-promoting hormones, and modifi cation 
of sugar-sensing systems in plants. In addition to 
these there is also a particularly important activ-
ity used by some endophytes to assist their host 
plants in overcoming stress responses which 
result in elevated ethylene levels. These benefi -
cial endophytes produce an enzyme known as 
ACC deaminase which can decrease harmful 
ethylene levels within their hosts (Glick  2005 ; 
Arshad et al.  2007 ,  2008 ). As in biocontrol 
efforts, PGPAs by microbial organisms are 
important to the success of either intrinsic or 
engineered bioremediation efforts; however, 
PGPAs in bioremediation can also include the 
ability to degrade toxic compounds in the envi-
ronment. For example, in a study by Dashti et al. 
( 2009 ), it was reported that endophytic bacteria 
possessing both hydrocarbon degradation and 
nitrogen fi xation capabilities could enhance 
hydrocarbon degradation without adding any 
nitrogen source in hydrocarbon-contaminated 
soils. Endophytic bacteria have also been shown 
to indirectly improve plant growth in contami-
nated soils by reducing the growth and activity 
of pathogens through competition for nutrients 

and space and through stimulation of plant 
resistance mechanisms. A recent example of this 
type of biological system support was observed 
in an experiment with pea plants ( Pisum sativum ) 
inoculated with bacteria capable of degrading an 
herbicide. At the end of the study, the experi-
mental pea plants had no accumulation of the 
toxin within their tissues and experienced little 
phytotoxic effects; however, control plants had 
accumulation of the compound internally and 
decreased overall biomass. The researchers also 
reported that a large rhizosphere population was 
present and were in part responsible for the 
enhanced degradation of the compound 
(Germaine et al.  2006 ). In a similar fashion as 
biocontrol surveys, bioremediation surveys are 
conducted in sites where plants and their micro-
bial populations are currently under selective 
pressure. These studies often focus on endophyte 
species diversity and ecology but also seek 
organisms that contain unique genes which code 
for specifi c pathways to degrade environmental 
pollutants (Taghavi et al.  2009 ). For instance, in 
an examination of the endophytic bacteria in 
poplar trees ( Populus  spp.) growing at a BTEX- 
contaminated fi eld site in Belgium, several sur-
vey and diversity studies were conducted. As a 
result many bacteria were isolated and character-
ized by genetic analysis, substrate utilization, 
and sensitivities to antibiotics and heavy metals. 
The work demonstrated that the bacterial com-
munities found in poplar trees were very diverse, 
and from these, several endophytic strains were 
isolated with bioremediation capabilities of vol-
atile organics and herbicides (Germaine et al. 
 2006 ; Porteous-Moore et al.  2006 ). In another 
survey of endophytic bacteria with hydrocarbon-
degrading abilities, Italian ryegrass ( Lolium mul-
tifl orum ) was found to host a high number of 
endophytic bacteria belonging to diverse phylo-
genetic groups; however, birdsfoot trefoil ( Lotus 
corniculatus ) did not host such large numbers. A 
metagenomic study of the endophytic bacteria 
isolated from the roots of rice, grown in uncon-
taminated soil, showed hydrocarbon degradation 
potential (Sessitsch et al.  2012 ). 

 Often in bioremediation genetic surveys, 
researchers are seeking organisms which have 
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unique genes which code for pathways by which 
degradation of toxic compounds can be accom-
plished. For instance, in a study examining the 
prevalence of two genes metabolically active in 
hydrocarbon degradation (alkB and CYP153) 
within the external and internal plant microbial 
community growing in hydrocarbon- contaminated 
soil, it was found that bacteria carrying these 
genes could colonize the rhizosphere and the 
plant interior (Siciliano et al.  2001 ; Afzal et al. 
 2011 ; Yousaf et al.  2011 ). In addition the genes 
that actually control endophytic activity within 
plants as well as enabling endophytic competence 
(ability to maintain the endophytic lifestyle over-
time) within original host plants and alternate 
hosts are also of interest. Microbes that cannot 
prosper internally within a plant at a site of con-
cern will likely not be of use long term. 

 Endophytic activities in original host plants 
versus alternate host also often vary. Variations 
in sensitivity and tolerance levels among differ-
ent plant species or cultivars to pollutants in soils 
might be linked to differences in endophytic bac-
terial population and activities. Many studies 
reveal endophytic bacteria show high coloniza-
tion and degrading activities in different areas of 
plants. For example, in a study, examining three 
different endophytic strains of  Enterobacter lud-
wigii , it was demonstrated that different levels of 
gene abundance and gene-degrading expression 
occurred within different plants species, at dif-
ferent plant growth stages, and even in different 
compartments of the plant. In other studies 
examining the survival and metabolic activities 
of previously isolated hydrocarbon-degrading 
bacteria, these endophytes were found to vary 
distinctly in their biodegrading abilities based on 
the strains (endophyte), plant species, plant 
development, and plant region colonized.   

6     Pollutants and 
Bioremediation Efforts 

 Bioremediation efforts have been shown to be 
benefi cial in the degradation of many environ-
mentally released contaminants. This section 
looks at some of the contaminants for which many 

bioremediation efforts attempt to alleviate. 
Bioremediation research is progressing at a fast 
rate regarding some of these pollutants; however, 
research with others is still sparse. Synthetic 
organic compounds are known to be hazardous 
and have been associated with numerous environ-
mental contamination sites including polychlori-
nated biphenyls (PCBs), pesticides, industrial 
solvents, petroleum products, dioxins and furans, 
explosives, and brominated fl ame retardants. The 
use of many of these pollutants has been generally 
phased out worldwide; however, they are 
extremely resistant to natural breakdown pro-
cesses and can remain stable for even decades. Of 
these many pollutants, twelve specifi c organic 
compounds were listed as persistent organic pol-
lutants (POPS) by the Stockholm Convention on 
Persistent Organic Pollutants, under the United 
Nations Environment Program (UNEP), an inter-
national agreement enforced in 2004, and include 
PCBs, nine pesticides (aldrin, chlordane, dichlo-
rodiphenyltrichloroethane also known as DDT, 
dieldrin, endrin, mirex, heptachlor, hexachloro-
benzene, and toxaphene), and dioxins and furans. 
Effects of exposure to these contaminants in the 
environment include poisoning of plants and ani-
mals, ecosystem alteration, and human health 
risks, such as increased risks for cancer. 

 Please note the brief listing of environmental 
pollutants contained in this chapter is not in any 
way intended to be comprehensive. The high 
number of pollutants in our environment is dif-
fi cult to quantify and beyond the scope of this 
chapter. Many new contaminants are being 
released every day for which we do not know the 
long impacts. 

6.1     Hydrocarbons: Major 
Environmental Contaminants 

 Subgroups of the petroleum product compounds, 
which pose serious concerns to human and envi-
ronmental health, are hydrocarbons which are 
released as gases, tiny particles, or droplets. Most 
releases of hydrocarbons into the environment are 
associated with the use of petrol, diesel, crude oil, 
and oil products in vehicles used for  transportation. 
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Hydrocarbons can be gases (e.g., methane and 
propane), liquids (e.g., hexane and benzene), 
waxes or low-melting solids (e.g., paraffi n wax 
and naphthalene, commercial insecticide), or 
polymers (e.g., polyethylene, polypropylene, and 
polystyrene). Also grouped within the hydrocar-
bons is a group of specifi c compounds known col-
lectively as volatile organic compounds (VOCs). 
As a group VOCs can cause short- and long-term 
adverse health effects. A particular group of VOCs 
are benzene, toluene, ethylbenzene, and xylene 
and are collectively known as (BTEX) com-
pounds. Acute exposure to petrol and its BTEX 
components have been associated with skin and 
sensory irritation, central nervous system depres-
sion, and effects on the respiratory system in 
humans (McGuinness and Dowling  2009 ). The 
presence of hydrocarbon pollutants in the environ-
ment can negatively affect plant growth and devel-
opment as well as soil chemical properties and soil 
microorganisms’ population and activities. 

 Bioremediation of hydrocarbons with bacte-
rial endophytes is currently an active area of 
research. The fi rst report that bacteria isolated 
from the root interior of plants vegetated in 
hydrocarbon-contaminated soils hosted genes 
encoding hydrocarbon degradation (Siciliano 
et al.  2001 ) stimulated much interest. Several 
studies also revealed hydrocarbon-degrading 
endophytic bacteria isolated from different plants 
vegetated in hydrocarbon-contaminated soils 
(Yousaf et al.  2010a ). Bacteria possessing hydro-
carbon degradation pathways and metabolic 
activities also have been shown to improve plant 
tolerance to hydrocarbon pollutants by degrading 
these organic compounds. 

 Furthermore, endophytic bacteria have been 
shown to produce various enzymes to degrade 
hydrocarbons and reduce both the phytotoxicity 
and evapotranspiration of hydrocarbon volatiles 
(Khan et al.  2012 ). In a bioaugmentation study, a 
genetically enhanced endophytic strain from 
poplar  Pseudomonas putida  VM1441 (pNAH7) 
was able to protect inoculated pea plants from the 
toxic effects of naphthalene. It was also shown 
that inoculation of plants with this strain facili-
tated higher (40 %) naphthalene degradation 
rates compared with uninoculated plants in 

 artifi cially contaminated soil (Germaine et al. 
 2009 ). In another survey endophytes were iso-
lated from hybrid poplar trees ( P. trichocarpa  ×  P. 
deltoides ) growing on a BTEX-contaminated site 
in Belgium that were shown to be capable of 
degrading toluene, naphthalene, and the chlori-
nated organic herbicide (2, 4-D). In a different 
study a genetically engineered endophytic strain, 
 Burkholderia cepacia  G4, which contained the 
pTOM (a plasmid, which encodes a pathway for 
the degradation of toluene), was shown in labora-
tory scale experiments to increase yellow lupine 
plant ( Lupinus luteus ) tolerance to toluene and 
decrease the transpiration of toluene into the 
atmosphere by 50–70 %, following inoculation 
within the plant (Barac et al.  2004 ).  

6.2     Additional Environmental 
Pollutants 

    Many groups of synthetic organic explosives 
including trinitrotoluene (TNT), hexahydrotrini-
trotriazine or royal demolition explosive (RDX), 
and octahydro- tetranitrotetraocine or high-melt-
ing explosive (HMX) can contaminate environ-
mental soil.    All these compounds have been 
associated with negative ecosystem and plant, 
animal, or human health risks. Bioremediation 
effects with an endophytic  Methylobacterium  iso-
lated from hybrid poplar trees ( Populus deltoi-
des  ×  Populus nigra  DN34) demonstrate that it 
was capable of degrading the explosives TNT, 
RDX, and HMX. Degradation was accomplished 
by mineralizing approximately 60 % of the RDX 
and HMX to carbon dioxide in approximately 
2 months, suggesting that this endophyte may 
have potential for remediation of environmental 
soil containing explosive nitroaromatic 
compounds.  

6.3     Pesticides and Herbicides 
Used in Agriculture 

 DDT was used worldwide as an insecticide from 
the 1940s until the 1970s, until it was banned in 
the USA and other countries. Other pesticides of 
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concern include tetrachlorophenol (TCP), used 
as an insecticide and bactericide; pentachloro-
phenol (PCP), a fungicide, herbicidal defoliant, 
and disinfectant; and the tin-containing pesti-
cide tributyltin (TBT), a pesticide and antifun-
gal agent. In a study examining endophytes 
capable of degrading these pesticides, a geneti-
cally engineered bacteria expressing a specifi c 
bacterial glutathione-S-transferase (GST) iso-
lated from a  Burkholderia  strain were found to 
be capable of degrading the toxic pesticide 
chlormequat chloride following inoculation into 
pea plants (Compant et al.  2005b ). In additional 
work with two commonly used worldwide 
broadleaf herbicides are 2, 4-dichlorophenoxy-
acetic acid (2, 4-D) and atrazine; there has also 
been promising research. Both of these herbi-
cides are listed by the USEPA as toxic and are 
associated with human health risks; however, 
they are still used on many of the world’s impor-
tant crops (McGuinness and Dowling  2009 ).    In 
a study using pea plants ( Pisum sativum ) 
inoculated with endophytic  Pseudomonas,  bac-
teria originally isolated from hybrid poplars 
( P. trichocarpa  ×  P. deltoides  cv. Hoogvorst) 
were found to be capable of degrading the herbi-
cide 2, 4-D. The inoculated pea plants after 
exposure to 2, 4-D showed no accumulation of 
the herbicide in their tissues and experienced 
little signs of phytotoxicity, whereas control 
plants had signifi cant accumulation of the toxin 
internally and showed overall diminished plant 
vitality (Germaine et al.  2006 ).  

6.4     Bioremediation Using 
Hyperaccumulators of Heavy 
Metals and Metalloids 

 All organisms must contend with the threat of 
metal and metalloid pollution in our increasingly 
industrialized world. Adverse effects caused by 
mercury, lead, nickel, cadmium aluminum, chro-
mium, and arsenic are known and well docu-
mented. Seeking endophytes which can facilitate 
plant’s accumulation of these compounds could 
help remediation efforts greatly. Unlike phyto- 
and biodegradation however, phytoextraction or 

accumulation of heavy metals in plant materials 
facilitates their concentration to above ground 
within the aerial parts of plants. These plant 
materials could then be collected and taken away 
for further remediation concentration or these 
compounds may even be recycled. Current biore-
mediation efforts with endophytes are showing 
much promise. In the survey study of the endo-
phytic bacteria of the plant  Alyssum bertolonii , a 
known Ni hyperaccumulator plant, it was 
observed that  A. bertolonii  actually harbors 
numerous tolerant Ni bacteria (Barzanti et al. 
 2007 ). In another survey study conducted for the 
purpose of seeking hyperaccumulating endo-
phytic bacteria, four bacterial strains were iso-
lated from surface-sterilized  Sedum alfredii , a 
perennial herb plant used in phytoremediation for 
its tolerance and accumulating ability of zinc and 
cadmium. Two bacteria from this survey 
 Sphingomonas  sp. (SaMR10) and  Variovorax  sp. 
(SaNR1) were shown to signifi cantly promote 
plant growth and phytoextraction of both Zn and 
Cd (Zhang et al.  2012 ). In a study of yellow 
lupine, plants grown on nickel-enriched sub-
strates after being inoculated with an engineered 
nickel-resistant bacterium  Burkholderia cepacia  
increased plant tolerance, but in addition plant 
roots were able to signifi cantly increase by 30 %, 
their overall nickel (Ni) concentration 
(Lodewyckx et al.  2001 ). Also in another study 
where tomato plants ( Solanum lycopersicum ) 
were inoculated with  Magnaporthe oryzae  and 
 Burkholderia  sp., the plants had increased bio-
mass and the roots and shoots were able to accu-
mulate Ni and Cd from the soil (Ma et al.  2011 ). 
In an investigation of various PGPB and their 
siderophores within a model system contami-
nated with heavy metals, it was found that 
 Pseudomonas aeruginosa  was able to solubilize 
large amounts of chromium (Cr) and lead (Pb). 
Because  P. aeruginosa  is an opportunistic human 
pathogen however, regulatory agencies would 
never give permission for their deliberate release 
into the environment (Braud et al.  2009 ). It 
also has been suggested that many of these 
metal- resistant endophytes promote plant 
growth by various mechanisms such as nitrogen 
fi xation, solubilization of minerals, production 
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of phytohormones, siderophores, and transfor-
mation of nutrient elements (Rajikumar et al.  2010 ).   

7     Bioengineering for Future 
Biocontrol and 
Bioremediation Efforts 

 Genetic engineering and metagenomic studies 
will help illuminate many of the issues scientists 
face in bioremediation and biocontrol technolo-
gies. Engineered organisms for biocontrol and 
bioremediation will help us to continue to 
advance in our global efforts for international 
food security and remediation of toxic land and 
water sites. One promising technology which 
may be exploited for great benefi t in the future is 
horizontal gene transfer. 

 It has been demonstrated that bacterial endo-
phytes have the ability to provide bioremediation 
technology efforts, an additional advantage 
through the utilization of a natural phenomenon 
known as horizontal gene transfer (Taghavi et al. 
 2005 ). Horizontal gene transfer (HGT), which is 
also sometimes referred to as lateral gene transfer 
(LGT), is any process in which an organism 
incorporates genetic material from another organ-
ism in a manner other than traditional reproduc-
tion. It is known that many endophytic bacteria 
exhibit natural competence for degrading organic 
contaminants and that they may also introduce 
contaminant-degrading genes to local bacterial 
populations by horizontal gene transfer (Yousaf 
et al.  2010a ). Horizontal gene transfer (HGT) can 
result in a natural endophyte population acquir-
ing the capacity to degrade environmental pollut-
ants without the need to establish artifi cial or 
engineered inoculant strains long term. It is has 
been demonstrated that endophytic bacteria are 
capable of expressing necessary catabolic genes 
which could promote degradation of toxic com-
pounds (or their metabolites) as they accumulate 
or translocate within the vascular tissues of the 
host plant and that these genes can be transferred 
via plasmids to other endophytes within the plant. 
It is thought that HGT is actually widespread 
among bacteria particular in environmental 
niches where such genes offer signifi cant sur-

vival enhancement. Gene transfer has also been 
observed between two fungal pathogens where a 
gene encoding for a virulence factor was trans-
ferred from one species to another and allowed 
for the emergence of a new damaging disease of 
wheat (Friesen et al.  2006 ). 

 The activity of HGT by endophytic bacteria 
which promoted more effi cient degradation of 
toluene in poplar plants with the degradative plas-
mid, pTOM-Bu61, was found to have transferred 
naturally to a number of different endophytes in 
planta (Taghavi et al.  2005 ). In another study 
using pea plants with Pseudomonas endophytes 
harboring the plasmids pWWO and pNAH7, it 
was observed that these plasmids had high rates of 
transfer into a range of indigenous endophytes 
(Ryan et al.  2008 ). Horizontal gene transfer is a 
natural phenomenon (previously observed with 
acquired resistance to antibiotic in sensitive popu-
lation of bacteria), it has been speculated in the 
literature that if incompetent organisms could be 
used to transfer gene of value to natural endo-
phytes, then    these resulting engineered or 
“enabled” endophytes may not be considered 
genetically modifi ed microorganisms (GMMs) 
and, therefore, could be exempt from current 
international and national GM legislation. This 
legal status could potentially facilitate their study 
in fi eld situations at an accelerated pace 
(McGuinness and Dowling  2009 ). This approach 
may have tremendous practical applications in 
equipping the natural endophyte populations of 
contaminate sites worldwide with the capacity to 
degrade pollutants and not requiring long-term 
establishment of foreign inoculant strains. 

 In the absence of natural biodegradation abil-
ity, genetically engineered strains of endophytic 
and rhizospheric bacteria could be constructed 
and tailor-made for the desired application. This 
approach is considered one of the most promis-
ing new technologies for remediation of contami-
nated environmental sites. Molecular approaches 
currently in use for the isolation and character-
ization of bacterial endophytes and plant- 
associated bacteria and communities have 
recently been reviewed by Franks et al. ( 2006 ) 
and Russo et al. ( 2012 ); however, this fi eld of 
study is expanding quickly. 
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 Using biotechnology, bacterial and fungal 
strains can be engineered, via natural gene 
transfer or recombinant DNA technology, to 
produce specifi c enzymes, capable of control-
ling pest/pathogens or degrading toxic organic 
pollutants found in the environment. Biocontrol 
and bioremediation work will also be assisted 
by proteomic studies which can examine plant–
pathogen interactions (Mehta et al.  2008 ), three-
way interactions between endophyte and plant 
and pathogen (Maara et al.  2006 ), as well as 
three-way interactions between endophyte and 
plant and toxin. In the future the availability of 
complete genome sequences of key endophytic 
bacteria and fungi will become available.    The 
identifi cation of “endophytic genes,” especially 
those relating to the establishment of endophytic 
competence (genes governing colonization and 
establishment)  in planta , will greatly enhance 
our understanding of these unique microbes. 
Together this information will form the founda-
tion for even further transcriptome and pro-
teome analysis studies. The incorporation of 
this information with well-established tech-
niques such as IVET and other “-omic” tech-
nologies will then offer scientists new abilities 
to search for genes on a global scale that are 
found to be induced or repressed during coloni-
zation of plant tissues.  

8     Reaching for the Future 
and Addressing Potential 
Concerns 

 Research into biocontrol and bioremediation 
activities with endophytes will continue in the 
future. Much of the concerns regarding biotech-
nological efforts utilizing living organisms, such 
as endophytes, have already been discovered, dis-
cussed, and openly debated; however, the poten-
tial advantages and benefi ts these organisms could 
offer have not yet even been fully recognized. In 
this chapter we have discussed how our under-
standing about endophytes has evolved over time 
as well as some of the problems that can arise dur-
ing attempt to implement these technologies. We 
also now know that many of these problems arise 

due to unknown variables linked to the  complexity 
of endophyte diversity and ecology. However, 
despite these challenges, the goal of using mutu-
alistic symbionts, natural organisms for biocon-
trol and bioremediation technologies, is sound. 
Encouraging nature to work for us and not against 
us can and will work, but the study of endophytes 
does force those truly interested in their use to 
understand that there is still a great need to know 
more about the multitude of interactions and 
dynamics occurring within plant microbial ecol-
ogy before we can do what we envision on a con-
sistently successful level. 

 Always in the case of any new technological 
advancement, there are concerns that need to be 
addressed, but humankind has (for better or 
worse) never ceased to stop advancing because 
of the fear of the unknown, despite the chal-
lenges. Concerns, particularly regarding bio-
control safety and innudative biocontrol activity 
with exotic species, have already been addressed 
internationally in many articles and reviews, but 
these concerns will need to be revisited as the 
technology moves forward (Simberloff and 
Stiling  1996 ; Van Lanteren et al.  2003 ). One of 
the primary concerns is that many facultative 
endophytes often recruited by plants come from 
the pool of soil and rhizospheric species and 
from these competent for life  in planta  may 
include opportunistic human/animal pathogens 
(Braud et al.  2009 ). Opportunistic pathogens 
pose the greatest threat to individuals that are 
immunocompromised, and because so many 
people worldwide have immune-related condi-
tions or need to take immunosuppressive drugs, 
these organisms must be monitored more care-
fully. Research will need to continue to estab-
lish potential risks, if any, associated with the 
development of an endophytic niche for any 
biocontrol agent that would be used in wide-
spread biotechnological applications. It is 
known that various opportunistic human bac-
terial pathogens including  Burkholderia , 
 Enterobacter ,  Herbaspirillum ,  Ochrobactrum , 
 Pseudomonas ,  Ralstonia ,  Staphylococcus,  and 
 Stenotrophomonas  have been identifi ed as colo-
nizers of the plant rhizosphere. The fear is that 
these organisms if applied at high ratios could 
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pose human health risks. For example, the endo-
phytic capable bacterium,  Pantoea agglomerans  
(formerly  Enterobacter agglomerans ), is an 
opportunistic human pathogen capable of caus-
ing infections, and in a study examining infec-
tion frequencies at children’s hospital in 
Houston, TX, USA,  P. agglomerans  was iso-
lated a total of 53 times during a 6-year period. 
Infections were observed in bloodstreams, joints 
and bones, and urinary tracts of children (Cruz 
et al.  2007 ).  Pantoea agglomerans  has actually 
been widely studied in the biocontrol literature, 
but like the  P. aeruginosa  example mentioned 
earlier, it would not be released now on a large-
scale basis due to potential risks. Of note, often 
after plant surveys, temperature tests are used. 
Potential opportunist can be quickly weeded out 
by observing if the potential biocontrol can sur-
vive/thrive at 37 °C (human body temperature). 

 In the development of novel biocontrols, how-
ever, whole organisms may not be needed in 
order to be considered effective. In some cases 
there is less risk in using microbial extracts to 
control pests and pathogens (Janisiewicz and 
Roitman  1988 ). Of course the antimicrobial 
structures would have to be elucidated and assess-
ments of their effective biological activity 
obtained; however, the unknown variables which 
often can result from working with whole organ-
isms would be reduced.    For instance,  P. agglom-
erans  as well as other opportunistic bacteria use 
antibiosis as a mechanism of control; these com-
pounds once isolated could be very useful. 
Actually many compounds from bio-agents have 
already been isolated and marketed by pesticide 
companies (Copping and Menn  2000 ). Some 
would argue however that this is only causing the 
same continuously repeating cycle wherein spe-
cifi c chemicals are applied to crops and the pest/
pathogens develop resistance as quickly as they 
have with human-made synthetic compounds. Of 
the two technologies, bioremediation will likely 
have the least public resistance particularly in 
areas where humans can be kept away from con-
taminate sites. This technology will also likely 
increase if controlled HGT technology can be 
fully realized and there are few objections to their 

use.    Valuable genes can be introduced by incor-
porated within incompetent bacterial strains 
intentionally inoculated within plants but 
 incapable of long-term survival in the plant. 
These temporary organisms would theoretically 
live only long enough to share their unique plas-
mids. In conclusion, despite obvious challenges 
it is important to note the use of endophytes for 
biocontrol and bioremediation efforts is still rela-
tively new and biotechnological development for 
both is really just beginning. There really is great 
potential for mutualistic symbionts to make sig-
nifi cant contributions toward cheaper sustainable 
pest/pathogen and pollutant controls.     
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    Abstract  

  Endophytes are the centre of many investigations in the recent years, 
mainly for their role as biological control agents towards various patho-
gens. Of the many types of phytopathogens, wilt pathogens are thought to 
benefi t the most from application of endophytes. Wilt pathogens colonize 
internal plant tissues, especially the vascular tissues, which are also a 
common colonization niche for endophytes. The pre-colonization of bio-
control endophytes has been shown to render some form of protection to 
the host plant, resulting in disease suppression when challenged with the 
pathogen. Investigations to identify potential biocontrol agents are com-
monly initiated by performing extensive isolation and screening of endo-
phytes from various asymptomatic host plants. This is followed by  in 
vitro  assays with selected pathogens, with various mechanisms of their 
antagonistic interaction established. Isolates with strong biocontrol activ-
ities are subsequently tested at the glasshouse and fi eld stage to determine 
biocontrol effi cacy. To date, tremendous progress has been made in 
understanding the diversity and mechanisms of control of endophytes 
against wilt pathogens. Their biocontrol effi cacies are evident in labora-
tory screenings and glasshouse trials. In fi eld trials however, poor control 
effi cacy is often observed, attributed to the infl uence of indigenous micro-
fl ora in the soil and environmental conditions. To address these limita-
tions, bioformulation of endophytes is explored. This article will discuss 
the endophytes identifi ed as biocontrol agents against wilt pathogens, the 
typical methods for biosourcing of these biocontrol endophytes, the chal-
lenges in implementing endophytes for wilt control and strategies to 
address these limitations.  
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1         Introduction 

 The term “endophyte” refers to microorganisms 
that exist and colonize tissues of its host plant 
( endon  Greek for within;  phyton  for plant) with-
out causing any visible symptoms (Petrini  1991 ; 
Wilson  1995 ; Stone et al.  2000 ). The asymptom-
atic nature of the association is crucial to defi ne 
endophytes in recent times, as some pathogens 
(virulent and latent pathogens) and parasites are 
also endophytic (Freeman and Rodriguez  1993 ; 
Marler et al.  1999 ; Sturz and Nowak  2000 ; Sieber 
 2002 ; Sikora et al.  2008 ). In most studies, endo-
phytes refer exclusively to fungi (Carroll  1988 ; 
Clay  1988 ) although they constitute of both bac-
terial and fungal origins. Endophytes have been 
found to infect cells inter- or intracellularly and can 
colonize cells locally or systematically (Stone 
et al.  2000 ). Figure  15.1  illustrates intracellular 
growth of endophytes in roots of wild banana. As 
a result of the different modes of infection and 
colonization, various plant organs can be colonized 
with the typical trend suggesting shoot coloniza-
tion is often localized while root colonization is 
more extensive (Schulz and Boyle  2005 ).

   Endophytes enjoy a “privileged” relationship 
with its host plants. They derive benefi ts by their 
mere existence within the plant tissues, obtain-
ing nutrients and getting buffered from biotic 
and abiotic stresses (Schulz and Boyle  2005 ). 
The host plants also benefi t from this mutualis-

tic symbiotic relationship. Endophytic infection 
improves host plant response to biotic and abi-
otic stresses (Bacon and Hill  1996 ; Schardl 
 2001 ), signifi cantly evident in the mycorrhizal-
root relationship of members of Orchidaceae 
(Gardes  2002 ) and the relationship of balansia-
ceous endophytes with grasses (Schardl  2001 ). 
As the benefi ts of endophyte-host relationship 
become more apparent over the years, endo-
phytes have emerged as the source of intelligent 
screening for biological activities to realize their 
potential in biological control of diseases. To 
date, both bacterial and fungal endophytes have 
shown signifi cant potential as biocontrol agents 
towards wilt pathogens (M’Piga et al.  1997 ; 
Ting et al.  2010b ,  2012 ; Sundaramoorthy et al. 
 2012 ). Improvements are, however, required to 
ensure that the control effi cacy typically 
observed in laboratory and greenhouse experi-
ments is successfully replicated in the fi eld 
conditions.  

2     Major Wilt Diseases in Crops 

 Agricultural crops succumb to both fungal and 
bacterial wilt diseases, with the most common 
wilt diseases in the tropics reported as  Fusarium  
wilt,  Verticillium  wilt and bacterial wilt. 

2.1      Fusarium  Wilt 

  Fusarium  wilt is a devastating disease affecting 
many valuable crops globally. The pathogen, 
 Fusarium oxysporum  (FO), is classifi ed into 
forma specialis (f. sp.) to indicate host specifi c-
ity. This disease is common in banana (Ploetz 
 2005 ), tomato (Larkin and Fravel  1998 ), chilies 
(Sundaramoorthy et al.  2012 ) and a variety of 
legumes (Cobos et al.  2005 ) and cucurbits 
(Freeman et al.  2002 ). Amongst the many crops, 
bananas are the most severely (Sturz and Nowak 
 2000 ) affected by the wilt pathogen as implica-
tions of crop loss are at a global scale and affect 
food supply. Therefore, in this discussion, the 
emphasis is on Fusarium wilt disease of banana, 
caused by  Fusarium oxysporum  f. sp.  cubense  

  Fig. 15.1    Intracellular growth and colonization of endo-
phytes in root tissues of wild banana (×400)       
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(Smith) (Snyder and Hansen) (FOC race 4), 
particularly the tropical strain (Ploetz  2005 ). 
FOC race 4 of the tropical strain is by far the 
most virulent race. This tropical strain is capa-
ble of causing the Panama disease even in resis-
tant cultivars, devastating banana crops, causing 
abandonment of plantations and disrupting sup-
ply of banana as staple food. This pathogen 
invades the vascular tissues of the banana plant 
through root penetration, spreading upwards to 
the corm and pseudostem, resulting in blockage 
to the xylem vessels, leading to wilting and 
death of plants (chlorosis and gradually necro-
sis) (Nelson  1981 ). Early attempts to control 
 Fusarium  wilt include cultural improvements, 
chemical treatments and use of resistant culti-
vars (Nel et al.  2006 ), but were all proven futile. 
This is followed by investigations on the use of 
suppressive soil, antagonistic biocontrol agents 
and transgenic approaches. The use of suppres-
sive soil has been attempted but artifi cial induc-
tion is diffi cult to sustain and replicated under 
various fi eld conditions (Ting et al.  2003 ), espe-
cially when disease suppression is attributed to 
the various interactions of soil physical struc-
tures (type of soil, drainage condition, mont-
morillonite soils, pH), nutritional status (Ploetz 
 2000 ) and concerted effort by microbes (com-
position of fungi, bacteria, actinomyces) 
(Alabouvette et al.  1993 ). A more sophisticated 
strategy using transgenic plants carrying resis-
tance genes has also been attempted but was 
diffi cult to manipulate. This method is also 
costly compared to the conventional use of 
antagonistic microbes. Therefore, for many 
years, antagonistic rhizobacteria remained a 
popular choice as a strategy to manage 
 Fusarium  wilt. Rhizobacteria showed good bio-
control potential but were susceptible to biotic 
and abiotic factors in the environment.    This led 
to the emergence of endophytes as alternative 
biocontrol agents against wilt diseases. 
Endophytes are theorized as an excellent choice 
as they occupy similar colonization and estab-
lishment niche as the wilt pathogen. Introduction 
of endophytes to sterile micropropagated plants 
is expected to benefi t disease management as 
pre- colonization allows early establishment of 

endophyte- host association and exclusion of 
pathogen from niche competition.  

2.2      Verticillium  Wilt 

  Verticillium  wilt, caused by the vascular patho-
gens  Verticillium dahliae  or  V. albo-atrum , is 
widespread in economically important crops 
such as cotton (Bolek et al.  2005 ) and vegeta-
bles such as tomatoes (Sharma and Nowak 
 1998 ). Their persistence, survival and relatively 
high levels of inoculum in tropical soils are 
attributed to their microsclerotia (Schnathorst 
 1981 ). Infected plants display similar symp-
toms as  Fusarium  wilt, beginning with yellow-
ing followed by chlorosis and necrosis of leaves 
occurring on one or both sides of the leaf or the 
whole plant. Subsequently, vascular discolor-
ation and stunting may be apparent. To date, no 
chemical application has been effective against 
 Verticillium  wilt, although crop rotation and 
resistant varieties have been traditionally used 
to achieve a certain degree of control (Uppal 
et al.  2008 ).  

2.3     Bacterial Wilt 

 Bacterial wilt is caused by a variety of patho-
gens, but of the many,  Ralstonia solanacearum  
(Smith) is the most extensively studied. This is 
due to its ability to infect over 200 plant species 
belonging to more than 50 families of economically 
important crops such as tomato, pepper, potato, 
tobacco, eggplant, cowpea, peanut, cashew, 
banana, papaya and olive (Hayward  1991 ; Guo 
et al.  2004 ). The virulence of  R. solanacearum  to 
cause disease is perpetuated by their ability to 
survive in various soil types and their effi cient 
mechanism to invade host plants (Hayward 
 1991 ). Various strategies have been employed to 
manage bacterial wilt by  R. solanacearum,  using 
biofumigants (Pradhanang et al.  2003 ) and trans-
genic resistant plants (Lee et al.  2002 ). However, 
all these strategies met with limited success; 
thus, biological control has emerged as the new 
approach.   
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3     Endophytes as Biological 
Control Agents of Wilt 
Diseases 

 The role of endophytes as biological control 
agents originated from their antagonistic role 
towards feeding herbivores and insects. 
Balansiaceous endophytes and their anamorphs 
( Neotyphodium ) were the fi rst “biocontrol 
agents” as they colonize grasses and produce 
alkaloids that act as natural feeding deterrent 
towards herbivores (Petrini  1996 ; Schardl  2001 ). 
These endophytes occur naturally in the host 
plants and are nonpathogenic. Jumpponen and 
Trappe ( 1998 ) found that roots of plants in the 
natural habitat are often colonized by nonpatho-
genic endophytes. This leads to the hypothesis 
that naturally occurring endophytes may have 
potential to suppress diseases, especially those 
relevant to the host plant. To the scientifi c com-
munity, endophytes present untapped potential as 
biological control agents for wilt diseases. They 
are highly desirable because they can colonize 
the rhizosphere, enter into the plant tissues to sur-
vive and proliferate endophytically in the plants. 
Endophytes are often also suitable as biocontrol 
agents as they are non-host specifi c. For example, 
endophytes isolated from oil palm roots can 
express biocontrol activity towards FOC race 4 
when inoculated into banana plants (Mohd Fishal 
et al.  2010 ). Endophytes produce substances that 
have immeasurable value for exploitation, not 
just for agricultural applications but pharmaceu-
tical and industrial applications as well. 

3.1     Antagonistic Bacterial 
Endophytes 

 Existing literatures would reveal that a variety of 
bacterial endophytes can demonstrate biocontrol 
activity against various wilt pathogens. Key iso-
lates include  Bacillus  sp. and  Pseudomonas  sp. 
which contribute to disease suppression through 
induction of host resistance (M’Piga et al.  1997 ; 
Nejad and Johnson  2000 ; Sundaramoorthy et al. 
 2012 ). Actinobacteria are also found to display 
traits of endophytic infection and colonization 

(Smith et al.  1990 ; El-Abyad et al.  1993 ). 
However, the rate of isolation of Actinobacteria 
is rather low as they were not found in any of the 
54 plants (fruit trees, ornamentals, weeds, medic-
inal) sampled by Ting et al. ( 2009d ). In roots of 
wild bananas, only four of the 341 endophytes 
were Actinobacteria (Ting, unpublished). 
Contrarily, recent developments by Tan et al. ( 2011 ) 
found a variety of Actinobacteria  Streptomyces , 
 Nesterenkonia ,  Arthrobacter ,  Microbacterium , 
 Cellulomonas  and  Propioni bacterium  as natural 
colonizers of tomato roots. Amongst the isolates, 
two of the isolates,  S. virginiae  isolate Y30 and 
E36, showed good biocontrol potential towards 
 Ralstonia solanacearum  by producing sidero-
phores and ACC deaminase activity (Tan et al. 
 2011 ). This strongly suggests the endophytic 
nature of Actinobacteria and their potential as 
biocontrol agents towards wilt pathogens. The 
inclusion of rhizobacteria strains with bacterial 
endophytes has shown ability to enhance biocon-
trol activity (Sundaramoorthy et al.  2012 ). In 
their study, application of endophytic  B. subtilis  
(EPCO16, EPC5) with the rhizobacterium  P. fl uore-
scens  (Pf1) effectively reduced Fusarium wilt 
incidence in chilies. Treated plants recorded 
enhanced activities of peroxidase (PO), polyphe-
nol oxidase (PPO) (peroxidase), phenylalanine 
ammonia lyase (PAL), β-1,3-glucanase, chitinase 
and phenolics, which demonstrates disease sup-
pression via induced host resistance. This 
multi-strain approach is suitable for endophyte-
rhizobacteria mixtures, but may not be as effective 
for endophyte- endophyte combinations. Ting et al. 
( 2008 ,  2009a ,  2010b ) found that banana plantlets 
inoculated with  P. aeruginosa  (UPM13B8) and 
 Serratia marcescens  (UPM39B3) did not enhance 
disease reduction rather the reverse. This was 
also seen by Mohd Fishal et al. ( 2010 ) where 
combination of  Pseudomonas  sp. (UPMP3) and 
 Burkholderia  sp. (UPMB3) produced only inter-
mediate effect, inferior to single treatment with 
 Pseudomonas  UPMP3. In both examples, host 
defence mechanisms were induced but disease 
suppression by multi-strain applications did not 
lead to exceptional biocontrol. 

 In addition to eliciting host defence mecha-
nisms, infection by bacterial endophytes also 
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improved growth and vigour of host plants. 
Improved growth benefi ted the host plants as 
survival of wilt-infected plants is magnifi ed and 
the onset of symptoms is signifi cantly delayed. 
In Ting et al. ( 2008 ), treatment with  S. marces-
cens  (UPM39B3) improved plant height, pseud-
ostem diameter, root mass and total number of 
leaves per plant and was able to delay onset of 
symptoms by 7–10 days compared to plantlets 
without endophytes. In addition, plantlets pre-
treated with endophytes did not collapse even 
after 49 days, while plantlets without endophytes 
died by day 42.  

3.2     Benefi cial Fungal Endophytes 

 The benefi cial fungal endophytes studied for bio-
control properties against wilt pathogens are usu-
ally non-balansiaceous fungi. They include a 
variety of nonpathogenic isolates of  Fusarium 
oxysporum  (FO), as well as  Penicillium  spp., 
 Cladosporium  spp. and mycorrhizal fungi. 
Nonpathogenic  Fusarium oxysporum  isolates are 
the most extensively studied fungal endophytes. 
Ting et al. ( 2008 ,  2009c ) discovered two non-
pathogenic FO isolates (UPM31P1 and 
UPM31F4) from roots of wild bananas capable 
of inducing host defence mechanisms to suppress 
wilt development and improving growth and 
vigour. Other fungal endophytes with biological 
control properties include  Penicillium citrinum  
(BTF08) (Ting et al.  2012 ),  Cladosporium  sp. 
(BTF21, ALF01),  Phomopsis  sp. (MIF21, 
WAA02, WAA03) and  Nigrospora  sp. (BTF05, 
BTF07) (Ting et al.  2009d ). The antagonistic 
nature of these endophytes is new for some iso-
lates such as  P. citrinum  (Ting et al.  2012 ). 
However, for some isolates like  Phomopsis,  their 
biocontrol activity towards FO is rather estab-
lished (Yu et al.  2010 ). In addition to nonpatho-
genic fungi, arbuscular mycorrhizal fungi (AMF) 
are also useful biocontrol agents. However, their 
application is limited as bioactivity is dependent 
on host response to AMF infection. In a study by 
Garmendia et al. ( 2004 ), three  Glomus  spp. were 
investigated for biocontrol activity.  G. intraradices  
was not effective as higher disease incidence (DI) 

was recorded.  G. mosseae  improved plant growth 
but was not able to suppress disease develop-
ment. Only  G. deserticola  improved yield in both 
healthy and diseased plants, attributed to higher 
P intake which diminishes the deleterious effects 
of pathogen on yield difference. 

 The biocontrol activities by endophytes have 
now been exploited for the management of other 
wilt-related diseases. These diseases such as viral 
outbreak and nematode infestation are common 
in wilt-infected plants as the plant health is com-
promised. For bananas, endophytes have been 
used to control Banana Bunchy Top Virus 
(BBTV) of banana and nematode infestations 
through induction of pathogenesis-related pro-
teins to suppress disease development. In BBTV, 
 Pseudomonas  (Pf1) and  Bacillus  strains (EPB22) 
have been successfully inoculated into banana 
plants, to reduce incidence of BBTV by 52–80 % 
(Harish et al.  2009 ). Nonpathogenic  Fusarium 
oxysporum  endophytes (V5w2) have been able to 
reduce  Radopholus similis  infestation in East 
African highland cooking bananas (Paparu et al. 
 2007 ). For cotton and cucumbers, seeds treated 
with  Enterobacter asburiae  (JM22) and 
 Pseudomonas fl uorescens  (89B-61) have shown 
effective control against  Meloidogyne incognita  
(Hallmann et al.  1998 ). All this propel the benefi -
cial use of endophytes as strategies in pest and 
disease management.  

3.3     Mechanisms of Disease 
Suppression 

 Endophytes have various mechanisms to sup-
press growth and spread of pathogens. The main 
mechanisms include antimicrobial activity, 
improved plant growth and vigour and induced 
resistance. Inhibition via production of antimi-
crobial compounds is by far the simplest to detect 
and quantify and can be achieved using plate 
assays and biochemical analysis. Disease sup-
pression via improved plant growth and vigour 
and host-induced resistance is more complex and 
takes into account the soil and environmental fac-
tors. However, it is the interaction of these 
factors- soils, environment and host plant with 
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endophytes, which provides a better understand-
ing on the extent of the bioactivity of endophytes 
under fi eld conditions. 

3.3.1     Inhibition Via Production 
of Antimicrobial Compounds 

 Endophytes produce a variety of antimicrobial 
compounds. Numerous literatures would show 
peptides, quinones, phenols, alkaloids, steroids, 
terpenoids and fl avonoids (Ezra et al.  2004 ), as 
well as a host of enzymes such as hydrolases, chi-
tinases, laminarinases and glucanases (Chernin 
and Chet  2002 ), as main antimicrobial com-
pounds responsible for pathogen inhibition. 
These antimicrobial compounds affect the hyphae 
of pathogen, rendering cellular abnormality 
interfering with growth (Fig.  15.2 ). The antimi-
crobial compounds studied are usually non- 
volatile compounds. Occasionally, some novel 
metabolites are discovered and elucidated for fur-
ther development as bioagents. One example is 
the production of two new antibiotics pyrroci-
dines A and B from  Acremonium zeae , an endo-
phyte of maize, which is able to suppress 
 Aspergillus fl avus  and the wilt fungi  Fusarium 
verticillioides  (Wicklow et al.  2005 ). For bacte-
rial endophytes, important inhibitory molecules 
have also been identifi ed such as bacisubin from 
 Bacillus subtilis  (Liu et al.  2007 ) and pyocyanin, 
siderophores and antibiotics from  Pseudomonas  
spp. (Gupta et al.  2001 ). One crucial advantage of 
the antimicrobial compounds produced by the 

endophytes is the non-host specifi city of the 
compounds (Schulz et al.  2002 ). This allows the 
use of endophytes against various pathogens and 
in a rather wide range of hosts. However, when 
introduced into fi eld, the exact nature of endo-
phytes and their antimicrobial production is not 
known. There were hypotheses indicating that 
the direct synthesis of antimicrobial metabolites 
seldom occurs  in planta,  unlike in cultures 
(Chaurasia et al.  2005 ). In fact, rugulosin is one 
of the few that has been detected as synthesized 
in the host plant ( Pinus sylvestris ) by a non- 
balansiaceous endophyte (Miller et al.  2002 ).

   The potential of endophytes in producing vol-
atile inhibitory metabolites is less explored, pre-
sumably due to the limited application of volatiles 
as a strategy for disease management. Unlike 
non-volatiles where the extracts are easily 
extracted, purifi ed, characterized and amenable 
for further innovation (Liu et al.  2007 ), analysis 
of volatiles requires high-end instrumentation 
such as gas chromatography–mass spectrometry 
(GCMS) to detect and quantify amount produced. 
The analysis is laborious as the profi les of inhibi-
tory volatile compounds were identifi ed based on 
comparisons with controls (non-inhibitory iso-
lates, agar plugs). The technique itself also does 
not discriminate inhibitory volatiles and non- 
inhibitory volatiles. Ting et al. ( 2010a ,  2011a ) 
have tested several bacterial and fungal endo-
phytes against FOC race 4. The volatiles pro-
duced by the bacterial and fungal endophytes 

  Fig. 15.2    ( a ) Scanning electron micrographs ( SEM ) of normal structures of FOC race 4 hyphae in control plate and 
( b ) abnormal hyphae structures upon exposure to endophytes       

 

A.S.Y. Ting



289

were entrapped and extracted with the Solid- 
Phase Microextraction (SPME) technique using 
the SPME syringe equipped with glass fi bre. 
Bacterial endophytes produced between 24 and 
52 volatile compounds, while fungal endophytes 
produced 15–47 volatile compounds. There were 
three notable inhibitory compounds they found in 
bacterial endophytes: methanethiol, 2-pentanone 
3-methyl and 3-undecene. These metabolites 
were consistently detected in  Pseudomonas aeru-
ginosa  (LCB01 and AVA02) which showed 20.3 
and 1.4 % inhibition towards FOC race 4. These 
compounds have not been associated with anti-
fungal activities, but their derivatives are antimi-
crobial (El-Shazly et al.  2002 ). For fungal 
endophytes, volatile inhibitors were identifi ed as 
1-butanol, 3-methyl, B-butyrolactone and 
1- propanol 2-methyl, produced by  Nigrospora  
sp.,  Penicillium citrinum ,  Cladosporium  and 
 Phomopsis  (Ting et al.  2010a ). The production of 
1-butanol, 3-methyl and 1-butanol 2-methyl has 
also been detected in  Gliocladium  spp. which has 
a role in inhibiting  Pythium ultimum  and 
 Verticillium dahliae  (Stinson et al.  2003 ). Strobel 
et al. ( 2001 ,  2008 ) also found butyrolactone pro-
duced by  Gliocladium roseum  and  Aspergillus 
terreus  against  Botrytis cinerea  (Cazar et al. 
 2005 ). The production of multiple volatile com-
pounds does not necessary translate to better 
inhibitory effect. As observed by Ting et al. 
( 2010a ,  2011a ),  Nigrospora  sp. (BTF05) may 
have 29 inhibitory volatile compounds but only 
showed 8.57 % inhibition. Contrary,  Penicillium 
citrinum  (BTF08) produced lesser metabolites 
(13 volatile compounds) but demonstrated 
31.43 % inhibition towards FOC race 4 (Ting 
et al.  2010a ). In both studies, comparison on 
which metabolite was the most effective was not 
further evaluated.  

3.3.2     Improved Plant Growth 
and Vigour 

 Plants benefi t from endophytic infection as when 
growth and vigour is signifi cantly improved, 
disease suppression was also noticeably more 
effective. Endophytes promote growth of plants 
by producing phytohormones and growth- 
promoting substances (Tudzynski and Sharon 

 2002 ). For bacterial endophytes, growth promotion 
is promoted via mechanisms such as phosphate 
solubilization, secretion of growth-inducing phy-
tohormones, enhancing nitrogen fi xation and 
supplying nutrients to the host plant (Wakelin 
et al.  2004 ; Compant et al.  2005 ). Other benefi ts 
of plant-growth improvements due to bacterial 
endophytic infection include improved physio-
logical characteristics (osmotic regulation, 
changes in stomatal, adjustment to root size and 
morphology), modifi cation of N accumulation 
and metabolism and increased uptake of certain 
minerals essential for growth (Compant et al. 
 2005 ). With improved growth and vigour, host 
plants have better tolerance to disease. Bacterial 
endophytes in host tissues are also known to pro-
duce the enzyme ACC deaminase that utilizes the 
plant compound 1-aminocyclopropane-1- 
carboxylate (ACC). ACC deaminase cleaves to 
α-ketobutyrate and ammonia (the ethylene pre-
cursors), reducing the ethylene levels in host 
plants (   Sessitsch et al.  2002 ; Glick et al.  2007 ). 
With reduced ethylene levels, plants do not 
undergo senescence rapidly, thus delaying onset 
of symptoms and prolonging survival and toler-
ance to pathogenic infection. This may explain 
the prolonged survival of endophytically infected 
plants despite succumbing to pathogenic infec-
tion (Ting et al.  2008 ). ACC-possessing bacteria 
are, therefore, generally accepted as far more 
superior than as non-ACC bacteria in promoting 
growth of host plant (Rashid et al.  2012 ). Host 
plants have also been found to respond  differently 
to various endophytic isolates. In a study con-
ducted on banana plantlets of the Berangan- type 
cv. Intan, it was found that the plantlets responded 
better to bacteria compared to fungal endophytes 
(Ting et al.  2008 ). Endophytic infection with 
 Bacillus  sp. (UPM14B1),  S. marcescens  
(UPM39B3) and  Pseudomonas aeruginosa  
(UPM13B8) recorded higher growth values than 
treatments with fungal endophytes. Combinations 
of endophytic isolates have been attempted as 
well to determine their effect on growth. It was 
demonstrated that combinations may not neces-
sarily be benefi cial to promote plant growth. 
Inoculation with nonpathogenic FO with  S. marc-
escens  and a cocktail of  Bacillus ,  P. aeruginosa  
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and  S. marcescens  were all inferior to single 
application of nonpathogenic FO and  S. marces-
cens , refl ected in root mass (Ting et al.  2008 ).  

3.3.3     Induced Host Resistance 
 Induced systemic resistance (ISR) in host plants 
is the most common mechanism expressed 
upon treatments with endophytes. ISR can be 
induced by viable cells or dried mycelium 
(Dong et al.  2006 ). Occurrence of ISR is refl ec-
ted by the elevated levels of key enzymes such 
as peroxidase (PO), polyphenol oxidase (PPO), 
phenylalanine ammonia lyase (PAL), lignothio-
glycolic acid (LTGA), chitinase and β-1,3-
glucanase (Cabral et al.  1993 ; Vidhyasekaran 
 1997 ; Ting et al.  2009c ,  2010b ,  2012 ; Mohd 
Fishal et al.  2010 ). The role of enzymes in plant 
defence is closely associated with the synthesis 
of phytoalexins which are antimicrobial in 
nature (Sundaramoorthy et al.  2012 ). Some of 
these enzymes are also involved in the synthe-
sis of lignin, a valuable substance in cell walls 
that forms a protective barrier to further pene-
tration by pathogens (Pankhurst et al.  1979 ). 
Higher LTGA levels have been found to corre-
late to formation of lignifi ed cell walls and the 
subsequent tolerance to pathogen infection 
(Ting et al.  2009c ,  2010b ). Enzyme activities 
upon endophytic infection are often high, and 
this is sustained throughout even with the sub-
sequent pathogenic infection. In studies by 
Ting et al. ( 2009c ,  2010b ,  2012 ), enzyme levels 
in plantlets treated with the endophyte are not 
signifi cantly different from plantlets subse-
quently challenged with FOC race 4. All these 
are evidences that suggest endophytic infection 
serves as the primary defence and sensitizes the 
plant to pathogenic infection. The enzymatic 
activities are higher in root tissues compared to 
leaf tissues as root tissues are the entry sites for 
endophytes (Ting et al.  2009c ,  2010b ). Levels 
of PO, PPO and PAL are consistently higher in 
root tissues while phenol levels are typically 
higher in leaf tissues. Disease suppression 
achieved via induced host resistance can at 
least prolong plant survival and remained 
symptomless for up to 21 days after infection 
by FOC race 4.    

4     Biosourcing Endophytes 

 The quest to source for benefi cial endophytes for 
wilt management begins with the few basic steps. 
Firstly is to isolate the endophytes and identify 
the potential biocontrol agents, secondly to 
screen for mechanisms of antagonism and thirdly 
to determine their host plant interactions upon 
application and introduction to host plants. 

4.1     Isolation and Identifi cation 
of Endophytes 

 To initiate the isolation process, selection of host 
plants is important. An appropriate host would 
increase the success of discovering endophytes 
that are compatible to the target plants. Schulz 
et al. ( 2002 ) and Strobel ( 2003 ) have proposed 
that selection of endophytes for the control of 
wilt diseases should be kept within plants in the 
tropics as metabolites produced may vary with 
biotope from which they are isolated. The most 
conventional approach is to isolate endophytes 
from close species of plants of interest, members 
within same families, and gradually progressing 
to host plants consisting of wild or resistant culti-
vars and nonrelated random host plants (Ting 
et al.  2008 ,  2009d ). Ting et al. ( 2008 ,  2009d ) 
have embarked on several studies on endophyte 
isolation from a variety of host plants. They dis-
covered that higher numbers of nonpathogenic 
FO were obtained from wild bananas (a related 
host species to commercial banana cultivars) 
compared to any other host plant species. From 
wild bananas, 69 nonpathogenic FOs (56 % of 
total isolates) were recovered with 61 of these 
isolates antagonistic towards FOC race 4 (Ting, 
unpublished). This clearly validates that the 
approach of isolating antagonistic endophytes 
from known host plants such as from wild 
bananas (Ting et al.  2008 ) is strategic. It is also 
apparent that their observations are similar to 
Gloer ( 1997 ) that the production of secondary 
metabolites by the endophytes corresponds to 
respective taxon and ecological niche. Recent 
developments have proposed the isolation of 
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endophytes from plants growing in special habi-
tats (diseased areas, suppressive soil) as well as 
from nonrelated random host plants. Isolation of 
endophytes from resistant or asymptomatic 
plants in disease-infected areas and in suppres-
sive soils is strategic as endophytes in these 
plants would have produced antimicrobial sub-
stances to resist infection (Nel et al.  2006 ). 
Forsyth et al. ( 2006 ) isolated three nonpatho-
genic FO isolates from roots of banana grown in 
Fusarium wilt suppressive soils. One of the iso-
lates (BRIP29089) signifi cantly reduced severity 
of symptom development in FOC race 1- and 
4-infected ladyfi nger and cavendish, respectively. 
Adaptability of plants to grow in these areas is 
therefore the consequence of the presence of 
endophytes in the tissues. For nonrelated host 
plants, random selections of medicinal plants, 
ornamentals, weeds and fruit trees have produced 
interesting results. Ting et al. ( 2009d ) found that 
medicinal plants have the highest number of 
endophytes effective against FOC race 4, fol-
lowed by weeds, ornamental and fruit trees. The 
rate of endophyte recovery per plant was 3.0, 2.3, 
1.8 and 1.3 isolate plant −1  in which 1.5, 1.5, 0.5 
and 0.4 isolate plant −1  from medicinal, weeds, 
ornamental and fruit trees, respectively, were 
antagonistic towards FOC race 4 (Ting et al. 
 2009d ). Investigations using nonrelated hosts 
revolutionized the approach to source for benefi -
cial endophytes, particularly with the exploita-
tion of medicinal plants for endophyte isolation 
(Yu et al.  2010 ). 

 Endophyte isolation is conducted almost 
immediately upon sampling to avoid coloniza-
tion of saprophytes and epiphytes which compli-
cates the recovery of endophytes (Ting, 
unpublished). Surface sterilization using ethanol, 
Tween or sodium hypochlorite is typically 
employed to sterilize the tissues (Silvani et al. 
 2008 ; Ting et al.  2008 ). Sterilizing agents are 
selected carefully as tissues from different plant 
organs or age of plant have varying susceptibility 
to the sterilants (Schulz et al.  1998 ). The tissues 
are then plated on appropriate growth media such 
as tryptic soy agar and malt extract agar for isola-
tion of bacterial and fungal endophytes, respec-
tively (Silvani et al.  2008 ). The effectiveness of 

sterilization method to isolate endophytes has 
been challenged by the possible growth of epi-
phytes rather than endophytes. Epiphytes may be 
present as spores (Petrini  1984 ) and are protected 
from sterilizing agents by plant surface tissue. 
Therefore, the imprinting method has been used 
where tissues were imprinted on agar, and when 
no growth is observed, the sterilization process is 
considered successful (Schulz et al.  1998 ). In 
some studies, endophyte detection is important, 
especially studies with ecological implications 
and host colonization studies. The conventional 
and typical method to detect endophytes is 
through the use of histological observation. This 
is performed by staining with trypan blue solu-
tion. Tissue observations however are inadequate 
to identify the taxon and prevalence of certain 
hyphae morphology (Cabral et al.  1993 ). In 
recent years, more elegant method has been 
introduced such as the use of green fl uorescent 
protein ( gfp ) for detection of endophytes 
(Mikkelsen et al.  2001 ). Molecular methods are 
to detect and identify non-sporing endophytes 
based on non-specifi c 5.8S gene, ITS1 and ITS2 
regions (Wirsel et al.  2001 ). 16S rRNA analysis 
is performed for bacterial endophytes (Sessitsch 
et al.  2002 ).  

4.2     Screening for Biocontrol 
Properties 

 The typical screening procedure to detect bioac-
tivity of endophytes is by co-inoculation of 
 endophytes with test pathogens to detect growth 
inhibition (dual-culture test) (Rihakova et al. 
 2002 ). This technique is appropriate for rapid 
screening of large number of isolates that produce 
non-volatile compounds as their primary mode of 
antagonism. This dual-culture test can be 
employed for both fungal and bacterial endo-
phytes (Ting et al.  2009d ). In some studies, crude 
extracts containing antimicrobial metabolites are 
further extracted using solvents like ethyl acetate, 
where residues are redissolved in methanol for 
antifungal assays through paper disk diffusion 
test, agar dilution assay, disk diffusion assay or 
mycelial radial growth test (Wicklow et al.  2005 ; 
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Yu et al.  2010 ). After bioactivities of substances 
have been tested, a separation test to identify bio-
active compounds is conducted. This can be per-
formed using thin-layer chromatography (TLC) 
and bioautography where the TLC plates are inoc-
ulated or seeded with test pathogens and the inhi-
bition detected. Ultimately, active components 
can be isolated through precipitation-thin- layer 
chromatography, liquid preparation chromatogra-
phy and column chromatography (Hu et al.  2010 ). 
For volatile compounds, detection is based on the 
Solid-Phase Microextraction (SPME) technique. 
In this technique, volatiles are entrapped in a glass 
syringe with glass fi bre and the compounds eluted 
via gas chromatography- mass spectrophotometry 
(GCMS) (Strobel et al.  2001 ; Ting et al.  2010a , 
 2011a ). Although this method allows for the 
detection of volatile compounds, distinguishing 
antimicrobials from non-antimicrobial com-
pounds is diffi cult and laborious. It has been noted 
that the number of volatile compounds produced 
does not necessarily refl ect that the isolate is more 
potent (Ting et al.  2010a ,  2011a ). At the end of the 
screening exercise, endophytic isolates that pro-
vide the best possible bioactivity is selected. This 
is typically achieved based on evidences collated 
from various parameters assessed, primarily the 
antibiosis assays. Although researchers have uni-
versally adopted this approach, it has raised con-
cerns that preliminary laboratory tests may not 
refl ect the true potential of endophytes as the 
approach lacks in mathematical or statistical anal-
ysis to link and substantiate the data. A recent 
study by Cavaglieri et al. ( 2004 ) attests to the reli-
ability of antibiosis assays to select biocontrol 
candidates. They successfully correlated screen-
ing methods to the selection of best candidate for 
the control of  Fusarium verticillioides  in maize 
based on Pearson correlation coeffi cient analysis. 
The correlation analysis determined the effective-
ness of screening method which includes niche 
overlap index (NOI), indices of dominance, 
growth rate, lag phase, antibiosis and fumonisin 
production, with results and bioactivity expres-
sion by four different bacteria in the greenhouse. 
Results based on this correlation test clearly 
showed that antibiosis test correlated signifi cantly 
with greenhouse conditions.  

4.3     Endophyte-Host Plant 
Interactions 

 The interaction of endophytes, particularly arti-
fi cially inoculated endophytes with its host 
plants, must be examined to determine the 
implications of endophytic infection to their 
new hosts and the extent of their colonization  in 
planta  (Garmendia et al.  2004 ; Mohd Fishal 
et al.  2010 ). This would ultimately highlight the 
compatibility of the introduced endophyte as 
biocontrol agent and their effectiveness in ren-
dering benefi cial association with host and in 
disease control. The endophyte- host plant inter-
action is often conducted at the greenhouse 
stage where occurrence of symptoms (if any), 
growth promotion and disease suppression can 
be observed (Ting et al.  2008 ). Selected endo-
phytes are inoculated to target plants, and the 
subsequent response of host plants to endophytic 
infection is recorded. Vegetative growth param-
eters, such as root mass, plant height, pseud-
ostem diameter, number of leaves plant per 
plant, shoot weight and shoot diameter, are few 
examples of key indicators of growth response 
of host plants to endophytic infection (Pillay 
and Nowak  1997 ; Yates et al.  1997 ; Ting et al. 
 2008 ). Occurrence of pathogenic relationship is 
evident with symptom appearance and the 
decline in plant growth. Contrary, mutualistic 
association is  asymptomatic with noticeable 
improved growth of plants. Ideally, the endo-
phytes must be able to enhance plant growth 
without causing any disease or interfere with the 
growth and well-being of plants. At this stage, 
effectiveness of multi-strain applications can 
also be investigated to provide useful informa-
tion for improvements to the application of 
endophytes in the fi eld trials (Mohd Fishal et al. 
 2010 ; Sundaramoorthy et al.  2012 ). The interac-
tion between endophytes and its host plants 
should also include investigations on the extent 
of endophyte colonization  in planta . This inter-
action has become increasingly important in 
recent years due to their infl uence on disease 
suppression. It has been hypothesized that the 
nature of colonization of some endophytes in 
host tissues diluted their antimicrobial effect on 
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pathogens (Boyle et al.  2001 ). The extent of 
endophytic colonization is determined by both 
the host plant and the endophyte. Endophytes 
colonize tissues by secreting extracellular 
enzymes (proteases, amylases, lipases, laccases, 
cellulases, xylanase) that degrade plant surfaces 
and cell walls to enable intracellular or intercel-
lular colonization (Boyle et al.  2001 ). 

 In response, host plants produce host 
defence enzymes that may subsequently lead 
to limited or confined endophytic colonization 
to a single cell (Stone et al.  2000 ; Boyle et al. 
 2001 ; Deckert et al.  2001 ). This delicate bal-
ance of endophytes overcoming host defences, 
and for the host plant to allow endophyte colo-
nization to progress in the tissues, determines 
the extent of endophyte colonization in both 
above-ground and below- ground parts of the 
plant. Figure  15.3  shows the colonization of 
bacterial and fungal endophyte in host tissues. 
In addition, the extent of colonization by 
endophytes is also motivated by anatomical 
differences in tissues of the plant, source-sink 
relationships and permeability of nutrients 
(Schulz and Boyle  2005 ). As such, the practice 
of providing adequate nutrients (fertilizers, 
soil amendments) that enhance plant growth 
can produce better disease suppression as well 
(Ting et al.  2003 ).

5         Challenges to the Use 
of Endophytes as 
Biocontrol Agents 

 The use of endophytes for the control of wilt dis-
eases is rather limited in spite of the discoveries 
of several excellent endophytic isolates as bio-
control agents. The main challenge is that the 
biocontrol mechanism in laboratory or green-
house is poorly translated to the fi eld. In the fi eld, 
endophytes are susceptible to environmental 
infl uences and may suffer from incompatibility 
with new host plants. In addition, some endo-
phytes may also not be amenable for develop-
ment as bioformulations for fi eld application. 
Interactions of these factors with one another 
ultimately lead to the poor survival of endophytes 
and the expression of their bioactivity. 

5.1     Environmental Infl uences 

 Environmental infl uences include factors natural 
or anthropogenic in nature. In natural soils, the soil 
microbiota is composed of various indigenous 
species which could ultimately interact with the 
introduced endophytes and form antagonistic or 
synergistic relationships. For soils exposed to 
anthropogenic activities such as addition of lime 

  Fig. 15.3    ( a ) SEM micrograph showing the presence of 
bacteria in parenchyma cells of banana root tissues and 
( b ) light microscopy (×100) showing endophytic coloni-

zation of fungal endophyte (stained with neutral red stain) 
in xylem vessels and adjacent angular parenchyma cells       
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and fertilizers, these soils experience shifts in the 
relative abundance of the soil microbiota due to 
changes in the substrate availability and physical 
environment (Donnison et al.  2000 ). One example 
is the selection of dominance of endophytic 
mycorrhizal fungi in soils high in P concentrations 
(Sylvia and Neal  1990 ). These changes to the soil 
environment consequently impact endophyte sur-
vival signifi cantly as endophytes are usually intro-
duced to host plants via the root tissues. When 
applied to the roots, they face competition from 
the heterogenous diversity of indigenous soil 
microfl ora and the varying degree of their popula-
tion densities. If the density of the introduced 
endophyte is diminished, the host plants may end 
up “acquiring” other endophytic isolates present in 
the soil into its host tissues, or none at all. 
Therefore, to mitigate this, early establishment of 
endophyte community on root rhizosphere as well 
as in host tissues is highly recommended.  

5.2     Host Factors 

 In biological control practices, endophytes are 
inoculated to micropropagated plantlets to foster 
early colonization of endophytes to generate ben-
efi ts (Sturz and Nowak  2000 ). In a compatible host 
plant, a fi ne balance between progressive endo-
phytic colonization and host response to endo-
phyte virulence is achieved (Bishop  2002 ). Good 
colonization will ensure improved host- ecological 
adaptability, leading to better growth of endophytes 
(Boyle et al.  2001 ), and the subsequent effective 
production and distribution of antimicrobial 
metabolites (Miller et al.  2002 ; Schulz et al.  2002 ). 
It is recommended that the relationship and host 
compatibility of introduced endophytes with every 
intended host plants is examined in greenhouse or 
fi eld trials as different endophytes have different 
host specifi city and may elicit different response 
due to plant tissue sensitivity (Sturz et al.  1999 ).  

5.3     Endophyte Amenability 

 Some endophytes, in spite of their excellent bioac-
tivity in laboratory and greenhouse trials, are not 
developed as bioformulations for fi eld application. 

This could be due to several factors such as the 
nature of the endophyte, poor viability during stor-
age and toxicity to nontargeted organisms. Some 
endophytes, such as  P. aeruginosa  and  S. marces-
cens  (Gyaneshwar et al.  2001 ; Ting et al.  2008 ), 
are opportunistic pathogens towards humans and 
alfalfa, respectively (Goto  1992 ). The antimicro-
bial compounds produced are so unspecifi c that 
they can be toxic towards all other organisms. This 
limits their use as biocontrol agents due to possible 
health risks. Some endophytes are also not ame-
nable to large-scale application as they produce 
very low yield in cultures (Yu et al.  2010 ). The 
prospect of tapping into harnessing bioactive com-
pounds from endophytes for application is pro-
gressing slowly as many of these processes are 
poorly understood, with missing links in biosyn-
thesis and regulation of the antimicrobial products 
and their intermediates (Yu et al.  2010 ).   

6     Improvements and 
Innovations to Enhance 
Use of Endophytes 

6.1     Bioformulation 

 Bioformulation is the development of inoculum 
that allows storage while maintaining the bioac-
tivity of the isolate when applied to the fi eld. 
This approach is essential in biocontrol practices 
to maintain the inoculum level so that effi cacy is 
improved (Spadaro and Gullino  2005 ). The con-
ventional approach involves bioformulation into 
two main formulations: the dry and liquid for-
mulations. These formulations can be adopted 
for endophytic isolates. Dry formulations are 
essentially preferred as high viability and effec-
tive disease suppression is achieved. Sporulating 
fi lamentous fungi benefi ts the most as dry 
conidia can be effectively stored with 80 % via-
bility (Sabuquillo et al.  2010 ). The dried myce-
lium of  P. chrysogenum  collected as waste 
products of the pharmaceutical industry has also 
demonstrated effective control of  FO vasinfec-
tum  and  V. dahliae  in cotton via induced host 
resistance (Dong et al.  2006 ). For bacteria, 
talc-based formulations appear to be suitable for 
 B. atrophaeus  S2BC-2 and mixture with 
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 Burkholderia cepacia  to control  FO gladioli  
(   Shanmugam and Kanoujia  2011 ). Talc-based 
preparation can also be used for fungi as in the 
case of nonpathogenic  Fusarium  sp. for the con-
trol of  Fusarium  wilt on basil (Minuto et al. 
 1997 ). Although dry forms are better, liquid-
based formulations are useful too, especially 
when modernization of agro- techniques neces-
sitates development of liquid inoculants for easy 
delivery. Trehalose, polyvinylpyrrolidone and 
glycerol are key liquid-based amendments that 
can act as liquid inoculants. In a study by 
Manikandan et al. ( 2010 ), glycerol amendment 
was the most effective in maintaining viability 
up to 6 months of storage. In the recent years, the 
formulation of benefi cial microbes has been fur-
ther studied to include enrichment materials or 
stabilizers. The aim is to enhance survivability of 
cells leading to good colonization, dominance in 
fi eld over indigenous microfl ora and the subse-
quent bioactivity. Stabilizers, such as sodium 
alginate, glucose, sucrose, sorbitol, molasses 
and glycerol, have been found to benefi t biofor-
mulations (Jin and Custis  2011 ).  P. frequentans  
have better germinability when 1.5 % sodium 
alginate or 7.5 % glucose is added to the conidia 
prior to drying (Guijarro et al.  2007 ). Shelf life 
and biocontrol effi cacy of  P. oxalicum  was 
enhanced with the incorporation of sodium algi-
nate (1.5 %), glycerol (20 %), sucrose (5 %) and 
sorbitol (5 %) (Sabuquillo et al.  2010 ). Ting 
et al. ( 2009b ,  2011b ) attempted the bioformula-
tion of bacterial endophyte  S. marcescens  
(UPM39B3) using clay-based materials enriched 
with starch, non-fat skimmed milk and para- 
aminobenzoic acid. The effi cacy of the stabiliz-
ers was tested to determine viability and 
bioeffi cacy in response to UV irradiation. It 
was found that stabilizers improved viability 
of  S. marcescens  during storage, but were inef-
fective to protect cells from UV irradiation.  

6.2     Optimization of Endophyte 
Application Procedure 

 Application of endophytes to the host plants 
must be studied and employed correctly to pro-
mote pre-colonization and early adaptation of 

endophytes in host plants. Pre-colonization 
encourages biotization, the metabolic response 
of an  in vitro  plant to microbial inoculant which 
leads to developmental and physiological 
changes (growth promotion), resulting in 
enhanced resistance to biotic and abiotic stress. 
The early adaptation by endophytes in host tis-
sues also benefi ts disease control as it allows the 
exclusion of pathogens from niche competition. 
The key to effective endophyte application is to 
understand how and when best to introduce 
selected endophytes to the host plants. 
Endophytes can be introduced through several 
techniques. They can be inoculated to seeds via 
bacterization and to seedlings or plantlets via 
root dip which have all shown good control 
(Manikandan et al.  2010 ). Some application 
techniques require direct introduction of endo-
phytes to the soil, which is also typically con-
ducted for micropropagated plants. The 
introduction of endophytes at this stage allows 
the plantlets to undergo the “biopriming” (or 
biohardening) stage so that plantlets are 
strengthened against biotic and abiotic stress 
(Nowak  1998 ). Often, increased plant growth is 
also observed as a positive infl uence of 
“biopriming” with endophytes (Jie et al.  2009 ). 
Therefore, introduction to host plants at the 
early stage especially on micropropagated 
plants is highly recommended (Nowak  1998 ). 
The approach on how to apply endophytes is 
further exemplifi ed by Manikandan et al. ( 2010 ). 
They revealed that a combination of seed treat-
ment, seedling dip and soil drenching of liquid 
formulation was the most effective as minimum 
disease incidence (DI) of  Fusarium  wilt on 
tomato was achieved in greenhouse (17.33 %) 
and fi eld (4.81 %) conditions. This observation, 
however, cannot be used to generalize that all 
endophytic applications will benefi t from mul-
tiple techniques of application. The economics 
of implementing combination of techniques 
must also be considered. Similarly, multi-strain 
applications do not necessarily benefi t from dif-
ferences in techniques of application. The tim-
ing of when to introduce the multi-strains is 
irrelevant as similar bioeffi cacy is achieved 
when applied in a mixed or spatially separated 
method (Martinuz et al.  2012 ).  
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6.3     Integrated Management 
to Enhance Biocontrol 

 Integrated management adopts the combination 
of biological methods and chemical applica-
tions to control diseases (Elmer and McGovern 
 2004 ). In recent developments, plant-based 
products have been explored and applied in 
combination with bacterial antagonists. This 
approach is less toxic and organic and was 
first tested on antagonistic rhizobacteria. Leaf 
extracts of  Datura metel  (botanical formulation) 
mixed with  P. fl uorescens  (Pf1) and  B. subtilis  
(TRC54) effectively reduced wilt incidence in 
bananas by 64 and 75 % under greenhouse and 
fi eld conditions (Akila et al.  2011 ). For endo-
phytes, integrated management offers an attrac-
tive alternative to improve biocontrol activity 
because treatment with endophytes alone is 
often inadequate to sustain control. However, 
research on integrated management of endo-
phytes is limited due to the complexity of the 
endophyte-host-environment relationship. As 
such, while the conventional integrated approach 
of implementing chemical pesticide, soil disin-
festations, agronomical practices and mixtures 
of antagonists may favour most antagonist, ben-
efi ts to endophytes remain to be seen (Spadaro 
and Gullino  2005 ).   

7     Conclusions 

 To conclude, endophytes have excellent potential 
as biocontrol agents for wilt pathogens, primarily 
due to their strong mechanisms of antagonism, as 
well as their ability to render benefi ts to host 
plants (growth promotion, induced host resis-
tance). Improvements on the delivery of endo-
phytes and introduction to host plants can be 
made so that the advantage of endophyte pre- 
colonization and adaptation in host plants is fully 
exploited. Biotechnological innovations in bio-
formulations, in optimization of application and 
in elucidating useful bioactive compounds from 
endophytes can all contribute to strengthening 
the role of endophytes for the control of wilt 
diseases.     
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    Abstract  

  Hazardous waste sites around the world result from the manufacturing, 
storage, use, or disposal of compounds such as petroleum hydrocarbons, 
nitroaromatics, organohalogens, pesticides, and metals. Traditional reme-
diation options are expensive and environmentally invasive. In last two 
decades, bioremediation has emerged as a more suitable alternative, 
mainly for the remediation of large polluted sites. Endophytic bacteria and 
fungi have been the subject of considerable study to explore their potential 
for improving the remediation of polluted environments. In case of phytore-
mediation of inorganic pollutants, endophytic bacteria can reduce the 
phytotoxicity and increase the mobilization and accumulation of heavy 
metals in aboveground plant biomass. The competency of several endo-
phytes to degrade organic pollutants and their resistance to heavy metals 
probably originates from their exposure to these compounds, when present 
in the plant/soil niche. A wide range of molecular techniques have been 
applied to illustrate the ecology, diversity, composition, and role of endo-
phytes in bioremediation. Fingerprinting techniques such as terminal 
restriction fragment length polymorphism (T-RFLP), denaturing gradient 
gel electrophoresis (DGGE), real-time PCR, microarrays, and metage-
nomics are being used to characterize the metal-resistant and organic 
pollutant-degrading endophytes.  

        S.   Yousaf      (*) •    R.  N.   Malik    
  Department of Environmental Sciences ,  Quaid-i- 
Azam University ,   Islamabad ,  Pakistan   
 e-mail: syousaf@qau.edu.pk   

    M.   Afzal    
  Environmental Biotechnology, National Institute 
for Biotechnology and Genetic Engineering 
(NIBGE) ,   Faisalabad ,  Pakistan     

 16      Ecology and Functional Potential 
of Endophytes in Bioremediation: 
A Molecular Perspective 

           Sohail     Yousaf     ,        Muhammad     Afzal    ,     Mariam     Anees    , 
    Riffat     Naseem     Malik    , and     Andrea     Campisano   

    M.   Anees    
  Department of Biochemistry ,  Quaid-i-Azam 
University ,   Islamabad ,  Pakistan     

    A.   Campisano    
  Sustainable Agro-ecosystems and Bioresources 
Department ,  IASMA Research and Innovation 
Centre, Fondazione Edmund Mach ,   Via E. Mach 1 , 
 38010   San Michele all’Adige (TN) ,  Italy    



302

1         Introduction 

 Contamination of soil, surface and groundwa-
ter, and ultimately food with organic and inor-
ganic contaminants (such as petroleum 
hydrocarbons, polycyclic aromatic hydrocar-
bons, pesticides, salts, and heavy metals) is 
becoming one of the sternest environmental 
problems all over the world. Higher levels of 
these toxic contaminants in the environment 
have been associated with human health risks 
including cancer (McGuinness and Dowling 
 2009 ). Substantial efforts are being made to 
remediate contaminated environments. In the 
light of the high cost of site remediation, it is 
important to develop and refi ne innovative, 
low-cost, and environment-friendly methods 
for cleaning polluted environments. During the 
last two decades, bioremediation has emerged 
as a potential tool to clean the contaminated 
environments. The remediation of polluted soil 
and water by the use of biological agents such 
as microorganisms or plants is termed bioreme-
diation. Phytoremediation (a type of bioreme-
diation), the use of plants and their associated 
microorganisms for the detoxifi cation of soil 
and water, is a relatively new and promising 
technique. It is a low-cost technique as com-
pared to expensive and destructive mechanical 
methods (Sung et al.  2003 ; Germaine et al. 
 2006 ; Yousaf et al.  2011 ; Afzal et al.  2013 ). 

 Since traditional remediation options cur-
rently available are expensive and environmen-
tally invasive, phytoremediation turns out to be 
a more suitable alternative, mainly for the 
remediation of large polluted sites with diffuse 
contamination (Weyens et al.  2009a ). One of 
the major drawbacks of this technology is that 
plants are sensitive to higher concentration 
of pollutants (Glick  2003 ). Toxicity of organic 
pollutants or their toxic end products inhibit 
plant growth and biomass production and con-
sequently cannot support effective degradation 
and sequestration of pollutants (Puschenreiter 
et al.  2001 ; Rajkumar et al.  2009 ). Moreover, 
the metals at elevated levels are generally toxic 
to most of the plants, impairing their metabolism 

and reducing plant growth (Sheoran et al. 
 1990 ). The toxicity of organic and inorganic 
pollutants can be reduced by the inoculation of 
plants with pollutant- degrading and/or plant 
growth-promoting microorganisms (Weyens 
et al.  2009a ; Glick  2010 ; Yousaf et al.  2011 ; 
Afzal et al.  2012 ; Ahmad et al.  2012 ; Khan 
et al.  2013a ,  b ). 

 The plant–microbe interactions that enhance 
plant growth have been studied widely. Recently, 
many studies have been performed to explore 
the potential of plant-associated microorgan-
isms for increasing the remediation of polluted 
soil and water. Though plant growth-promoting 
rhizobacteria have been in use for a long time as 
inoculants for improving phytoremediation 
activity (Gentry et al.  2004 ; Thompson et al. 
 2005 ; Lebeau et al.  2008 ), endophytic bacteria 
and fungi show an even higher potential for 
improving the remediation of polluted environ-
ment (Weyens et al.  2009b ; Yousaf et al.  2011 ). 
Besides the production of many plant growth-
promoting chemicals, endophytic bacteria have 
often demonstrated a natural competency for 
pollutant degradation, either directly or (as 
vectors) by carrying degradative traits (Weyens 
et al.  2009a ). 

 In case of phytoremediation of inorganic 
pollutants, endophytic bacteria can reduce the 
phytotoxicity and increase the mobilization and 
accumulation of heavy metals in aboveground 
plant biomass. The competency of several endo-
phytes to degrade organic pollutants and their 
resistance to heavy metals probably originates 
from their elevated level of exposure to the com-
pounds present in the plant/soil niche. This natu-
ral potential of endophytic bacteria is being 
explored with regard to enhanced phytoremedia-
tion activity (Weyens et al.  2010 ; Yousaf et al. 
 2011 ; Afzal et al.  2012 ). Different molecular 
techniques have been used to illustrate the ecol-
ogy, diversity, composition, and role of endo-
phytes in bioremediation (Yousaf et al.  2011 ; 
Afzal et al.  2012 ). This book chapter describes 
the ecology and functional potential of endo-
phytes to improve phytoremediation of organic 
xenobiotics and toxic metals in contaminated 
environment.  
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2     Ecology of Endophytes 

 Endophyte can be defi ned as microorganisms 
(bacteria and fungi) that colonize the internal tis-
sues of the plant without causing disease in their 
host (Schulz and Boyle  2006 ), and every plant 
sampled so far has shown to host at least one 
endophytic bacterium and/or fungus (Ryan et al. 
 2008 ; Li et al.  2012 ). The host plant tissues are at 
least transiently symptomless, and the microbial 
colonization inside plant tissues can be observed 
through histological means, by isolation from 
surface-sterilized plant tissues or through direct 
amplifi cation of bacterial or fungal nuclear DNA 
from plant tissues (Stone et al.  2000 ). Endophytes 
have been studied in different geographic and 
ecological regions and were found to be ubiqui-
tous within all tested plants (Li et al.  2012 ). 
Endophytes consist of endophytic bacteria, endo-
phytic fungi, and actinomycetes (Raghukumar 
 2008 ). However, endophytic bacteria and fungi 
were extensively studied and applied to improve 
plant growth and phytoremediation activity. 

 Recently, colonization and metabolic activity 
of endophytic bacteria have been demonstrated in 
rhizo- and endosphere of different plants (Weyens 
et al.  2009a ; Afzal et al.  2012 ). During phytore-
mediation of contaminated soil, endophytes, able 
to degrade and resist pollutants, may colonize 
within the plant tissues that are less toxic than 
soil. From this perspective, the heavy metal- 
resistant and alkane-degrading endophytic bacte-
rial community has been investigated in the roots 
and shoots of different plants vegetated in con-
taminated soils. Recently, high numbers of endo-
phytic bacteria from Italian ryegrass and birdsfoot 
trefoil having alkane monooxygenase ( alkB ) and 
hydroxylase (CYP153) genes with the potential 
to degrade hydrocarbons (Yousaf et al.  2010a ) 
have been isolated. 

 The endophytic microorganisms are secluded 
from environmental changes due to their coloni-
zation inside the plant tissues. Endophytes usually 
colonize the intercellular spaces and have been 
isolated from shoot, root, and seed (Posada and 
Vega  2005 ; Compant et al.  2010 ; Afzal et al. 
 2012 ). Moreover, they have been found in woody 

tree species, such as pear and oak, herbaceous 
crop plants such as maize and sugar beet, and 
grasses such as ryegrass. Endophytes have also 
been isolated from different plants showing toler-
ance/resistance to different pollutants. For exam-
ple, endophytic bacteria were isolated from 
poplar trees, vegetated in hydrocarbon contami-
nated soil, with the potential to degrade different 
hydrocarbon compounds (Porteous-Moore et al. 
 2006 ). In another study, Dashti et al. ( 2009 ) iso-
lated endophytic bacteria from nodules of legume 
crops ( Vicia faba  and  Lupinus albus ), and these 
bacteria were possessing hydrocarbon degrada-
tion activities. Pollutants can shape the microbial 
community of endophytes naturally present in 
the host plant. Even such synthetic chemicals as 
antifungal compounds used in agriculture appear 
to affect the diversity of endophytic microbial 
species (Pancher et al.  2012 ). 

 Heavy metal-resistant endophytic bacteria 
were also isolated from plants vegetated in metal- 
polluted soil (Idris et al.  2004 ; Chen et al.  2010 ). 
These studies demonstrated that within the 
diverse endophytic bacterial communities, several 
endophytic bacterial strains have the potential 
to increase phytoremediation of organic and 
inorganic pollutants. Differences in the resistance 
levels among diverse plant species and even 
cultivars to organic and inorganic pollutants in 
soil and water might relate to variations in their 
endophytic microbial population and activities 
(Weyens et al.  2009c ; Khan et al.  2013a ). 

 Endophytic bacteria are thought to enter 
plant tissues mainly from roots or at sites of 
wounding, but some phyllosphere bacteria may 
also be the source of endophytes (Compant 
et al.  2010 ). Plants are very specifi c to soil 
microorganisms and prefer successful, compe-
tent, and benefi cial endophytes while selecting 
(Sessitsch et al.  2002 ; Hardoim et al.  2008 ; 
Chen et al.  2010 ). Many endophytes can effi -
ciently colonize the rhizosphere as well as 
endosphere. Recently several studies demon-
strated that inoculated endophytic bacteria effi -
ciently colonize the rhizosphere as well as plant 
interior tissues (Yousaf et al.  2011 ; Afzal et al. 
 2012 ). As compared to rhizosphere and phyllo-
sphere bacteria, endophytes are likely to interact 
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more closely with their host. In these very close 
plant–bacteria interactions, plants provide 
nutrients and residency for endophytic bacteria; 
in return endophytic bacteria can enhance plant 
growth and development. The composition of 
bacterial endophytes in various plants was dif-
ferent, with many strains closely related to 
common soil bacteria representative of genera 
such as  Enterobacter ,  Pseudomonas ,  Bacillus , 
 Arthrobacter ,  Burkholderia , and  Methylobacte-
rium  (Lodewyckx et al.  2002 ; Yousaf et al.  2010a ; 
Luo et al.  2011a ,  b ). 

 Different molecular techniques have been 
applied to study the ecology of endophytic bacte-
ria. Clone libraries, fi ngerprinting techniques, 
terminal restriction fragment length polymo rph-
ism (T-RFLP), real-time PCR, microarrays, and 
metagenomics are all being used to characterize 
the metal-resistant and organic pollutant- degrading 
endophytes. For example, the endophytic bacte-
rial community in the roots of  Cyperus rotundus  
L. was investigated by culture- dependent and 
molecular approaches (Jurelevicius et al.  2010 ). 
PCR–DGGE analysis of the 16S rRNA gene 
showed that the alkane- degrading and nitrogen-
fi xing bacterial population in rhizosphere and root 
samples had a high degree of similarity, indicating 
that rhizobacteria are source of endophytes. In 
another metagenomics study, Sessitsch et al. 
( 2012 ) proposed that high more diverse endo-
phytic communities have higher potential for 
plant growth promotion, improvement of plant 
stress resistance, biocontrol against pathogens, and 
bioremediation, regardless of their cultivability. 
Some endophytes possessed alkane-degrading 
genes ( alkB ), indicating their potential application 
in bioremediation. Recently, endophytes were 
observed in roots, stems, and leave of  Sedum 
alfredii , vegetated in heavy metal-contaminated 
soil, with a signifi cantly higher density in roots, 
followed by leave and stems (Xinxian et al.  2011 ). 
These endophytic bacteria were closely related 
phylogenetically to  Pseudomonas ,  Bacillus , 
 Stenotrophomonas , and  Acinetobacter  by 16S 
rRNA sequence analysis. 

 Pollution in soil not only delays plant growth 
but also causes changes in the size, composition, 
and activity of plant-associated microbial 

communities. Numerous studies have demonstrated 
the effect of different pollutants on endophytic 
bacterial diversity, biomass, and activity (Doelman 
 1986 ; Kamnev et al.  2005 ). However, endo-
phytes isolated from plants growing in polluted 
soil are tolerant to high concentration of pollut-
ants than those isolated from plants vegetated in 
uncontaminated soil (Lodewyckx et al.  2002 ; 
Idris et al.  2004 ). For instance, the metal- resistant 
endophytic bacteria have been isolated from 
different plants such as  Alyssum bertolonii , 
 Thlaspi caerulescens ,  Thlaspi goesingense , and 
 Nicotiana tabacum  (Lodewyckx et al.  2002 ; 
   Idris et al.  2004 ; Barzanti et al.  2007 ; Mastretta 
et al.  2009 ). 

 The diversity of endophytic fungi from six 
dominant plant species growing in a Pb–
Zn-contaminated soil was investigated (Li et al. 
 2012 ). Higher endophytic fungi colonization 
was observed in stems than leaves in each plant 
species. Furthermore, it was observed that 
among the isolated endophytic fungi,  Phoma , 
 Alternaria , and  Peyronellaea  were the main 
genera and the relative frequencies were 39.6, 
19.0, and 20.4 %, respectively. Some were 
showing sensitivity to metals and did not grow 
on the media containing 3.6 mM Pb 2+  or 
11.5 mM Zn 2+ . However, growth of some endo-
phytic fungi was stimulated in the presence of 
tested metals. The results indicated that heavy 
metal-resistant fungal population in interior tis-
sues of the plants growing in Pb–Zn-polluted 
soil was moderately abundant and some of the 
isolates have a marked adaptation to Pb 2+  and 
Zn 2+  metals, which has a potential application 
in phytoremediation. Similarly, the highest 
diversity of fungal genotypes was observed in 
the roots of  Thlaspi praecox  (Brassicaceae) 
vegetated in soil containing Cd, Zn, and Pb 
(Pongrac et al.  2008 ). The sequences obtained 
corresponded to  Glomus  species (Glomeromycota) 
to putative dark septate endophytes  Phialophora 
verrucosa  and  Rhizoctonia  sp. and to some 
other fungi from Asco- and Basidiomycota. 
This was the fi rst report of dark septate endo-
phytes occurrence in roots of hyperaccumulat-
ing  T. praecox , a promising candidate for 
phytoextraction.  
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3     Role of Endophytes 
in Enhanced Bioremediation 

 There is an increasing interest in developing the 
potential biotechnological applications of endo-
phytes for improving bioremediation of contami-
nated soil and water as well as the sustainable 
production of nonfood crops for biomass and 
biofuel production (Barac et al.  2004 ; Ryan et al. 
 2008 ). Despite this interest, details on the meta-
bolic cross talk between endophytic microorgan-
ism (with potential to contribute to the plant 
bioremediation effect) and the host plant are far 
from being fully explored. Moreover, for effi cient 
phytoremediation of organic pollutants, plants 
have to host an effi cient pollutant-degrading 
microfl ora. The colonization and metabolic activ-
ity of inoculated alkane-degrading endophytic 
bacteria were determined in the root and shoot of 
Italian ryegrass vegetated in diesel-contaminated 
soil by using quantitative PCR (Andria et al. 
 2009 ). Endophytic bacteria effi ciently colonized 
the rhizosphere and particularly plant interior and 
also showed higher levels of expression of 
alkane-degrading genes ( alkB ) in the rhizosphere, 
shoot and root interior. Similarly, Afzal et al. 
( 2011 ) and Yousaf et al. ( 2011 ) demonstrated the 
colonization and catabolic activity of alkane- 
degrading endophytic bacteria during phytore-
mediation of diesel-contaminated soil. They 
found that endophytic bacteria showed higher 
levels of gene abundance and expression in the 
root and shoot of Italian ryegrass ( Lolium multi-
fl orum  var. Taurus), birdsfoot trefoil ( Lotus cor-
niculatus  var. Leo), and alfalfa ( Medicago sativa  
var. Harpe). These fi ndings indicate that endo-
phytic bacteria can effi ciently degrade the organic 
pollutants  in planta  and therefore can reduce 
both the phytotoxicity and evapotranspiration of 
organic pollutants after their uptake by the plant. 

 Some endophytes can also reduce the toxicity of 
organic and inorganic pollutants through produc-
tion of different chemicals and enzymes such as 
iron chelators, siderophores, organic acids, 1-ami-
nocyclopropane-1-carboxylate (ACC) deaminase, 
and various degrading enzymes (Sheng et al. 
 2008a ; Soleimani et al.  2010a ; Li et al.  2012 ). For 

instance, Germaine et al. ( 2006 ) demonstrated the 
effect of bacterial endophytes, able to degrade her-
bicides, on phytoremediation of the organochlorine 
herbicide 2,4- dichlorophenoxyacetic acid. They 
found that the inoculated endophytic bacterium 
effi ciently colonized the roots and few or no symp-
toms of toxicity were observed. In another study, 
Yousaf et al. ( 2011 ) found that the endophytic 
 Enterobacter ludwigii  strains, possessing alkane 
degradation and plant growth-promoting ACC 
deaminase activity, were more effi cient in plant 
growth enhancement and hydrocarbon degradation 
as compared to the strains possessing only alkane 
degradation activity. Weyens et al. ( 2010 ) observed 
that the engineered endophyte,  Burkholderia cepa-
cia  VM1468 possessing (a) the pTOM-Bu61 plas-
mid, coding for constitutive trichloroethylene 
(TCE) degradation, and (b) the  ncc–nre  Ni resis-
tance/sequestration system, enhanced plant bio-
mass production and decreased phytotoxicity of 
both Ni and trichloroethylene. In another study, 
Madhaiyan et al. ( 2007 ) demonstrated the infl u-
ence of endophytic bacteria  Methylobacterium ory-
zae  and  Burkholderia  sp. inoculation to tomato 
plants vegetated in Ni- and Cd-contaminated soil. 
They found that endophytes reduced the toxicity of 
Ni and Cd in tomato plants and improved plant 
growth under gnotobiotic and pot culture 
experiments. 

 Endophytes produce different phytohor-
mones, small signaling molecules essential for 
plant growth, development, and defense, and 
these play an important role in accelerating 
phytoremediation activity. Among them, 
bacterial ACC deaminase reduces soil con-
tamination-induced plant stress. An ethylene 
precursor, ACC, is degraded into ammonia and 
α-ketobutyrate, resulting in decrease of ethyl-
ene biosynthesis (Hardoim et al.  2008 ). Some 
endophytes can improve plant growth indi-
rectly by producing ACC deaminase to modulate 
the ethylene levels in plants (Chen et al.  2010 ; 
Ma et al.  2011a ,  b ; Zhang et al.  2011 ). Moreover, 
some endophytic fungi can produce enzymes to 
degrade the phenolic acid allelochemicals 
released by decomposing foliage, which have 
negative impacts on the growth of plants and 
microbes in soil, thus potentially alleviating the 
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effects of the ecological suppression via allelo-
chemicals (Chen et al.  2011 ; Li et al.  2012 ). 

 In general the endophytes can improve plant 
growth and enhance plant adaptation in contami-
nated soil by various mechanisms. These include 
pollutant detoxifi cation, nitrogen fi xation, phos-
phate solubilization, indole acetic acid production, 
and the production of siderophores (Verma et al. 
 2001 ; Muthukumarasamy et al.  2002 ; Lee et al. 
 2004 ). Endophytes can also improve plant growth 
and health by improving mineral nutrition or 
increasing resistance or tolerance to contaminants 
(Ryan et al.  2008 ; Khan et al.  2013a ). In addition, 
different benefi cial effects of endophytic microor-
ganisms on plant growth have been observed 
including osmotic adjustment, stomatal regulation, 
modifi cation of root morphology, improved uptake 
of minerals, and alteration of nitrogen accumula-
tion and metabolism (Compant et al.  2005 ). 
Enhanced phytoremediation of organic pollutants 
has also been observed by using engineered endo-
phytes; pollutant- degrading and/or resistance genes 
were introduced into bacteria by genetic engineer-
ing (Barac et al.  2004 ; Newman and Reynolds 
 2005 ; Doty  2008 ; Soleimani et al.  2010a ). 

 More recently, the increasing interest of the 
researchers for endophytes has opened their 
application for the remediation of heavy metal- 
contaminated soils (Chen et al.  2010 ; Glick and 
Stearns  2011 ). Metal-resistant and/or plant 
growth-promoting endophytes are reported to be 
present in various plants growing in metal- 
contaminated soils and play an important role in 
successful survival and growth of plants 
(Rajkumar et al.  2009 ), and endophyte-assisted 
phytoremediation has been documented as a 
promising technology for in situ remediation of 
metal-contaminated soils (Li et al.  2012 ). 
Table  16.1  shows examples of successful applica-
tions of plant–endophyte partnerships for the 
remediation of contaminated soil.

4        Endophytic Bacteria 
and Phytoremediation 

 During phytoremediation of organic pollutants, 
plants can benefi t from their associated endophytic 
bacteria possessing pollutant degradation pathways 

and metabolic activities, leading to the reduction of 
both phytotoxicity and evapotranspiration of vola-
tile contaminants (Weyens et al.  2009b ). 

4.1     Endophytic Bacteria-Assisted 
Phytoremediation of Organic 
Pollutants 

 Several fi ndings reveal that plants draw organic 
pollutants into their rhizosphere to varying extents 
via the transpiration stream (Harvey et al.  2002 ). 
Subsequently organic compound degradation 
may occur in the rhizosphere or in the plant or 
both. However, some organic compounds can be 
taken up into the root symplast and translocated 
via the xylem (apoplast) to the shoot, in the trans-
portation stream. In the shoot the pollutant can be 
taken up into the shoot symplast, where it may be 
sequestered or degraded by the endophytic bacte-
ria (Weyens et al.  2009b ). Although plants can 
sequester or degrade organics, they do not rely on 
organic compounds as a source of energy and car-
bon. So in order to get more effi cient mineraliza-
tion of these organic pollutants, plants rely on 
their associated endophytic microorganisms, 
mainly bacteria and fungi. Endophytic bacteria 
can effi ciently colonize in internal tissues of 
plants as well as being metabolically active in 
organic pollutant degradation (Weyens et al. 
 2009b ; Yousaf et al.  2011 ; Khan et al.  2013a ). 

 Many studies have reported that endophytes 
can improve plant’s adaptation and growth while 
growing in polluted soil by the virtue of their 
plant growth-promoting ACC deaminase activity. 
This bacterial activity plays an important role in 
alleviation of different types of stress in plants, 
including the stress induced by the presence of 
organic pollutants in soil (Glick et al.  1998 ; 
Arshad et al.  2007 ; Weyens et al.  2009b ). 
Endophytic bacteria with appropriate catabolic 
pathways, oftenly encoded on plasmids or trans-
posons, offer more suitable candidates for effi -
cient plant–endophyte partnership for the 
remediation of organic pollutants. The mobile 
elements for such catabolic pathways are believed 
to transfer across endophytic bacteria by horizon-
tal gene transfer (Taghavi et al.  2005 ; Weyens 
et al.  2009b ; Yousaf et al.  2010a ). 
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   Table 16.1    Examples of successful application of plant–endophyte partnership for the remediation of contaminated 
soil   

 Plant  Endophyte   a EB/EF  Contaminant  References 

  Lolium multifl orum    Pantoea  sp. ITSI10, 
 Pseudomonas  sp. 
 Rhodococcus  sp. ITRI43, 
 Enterobacter ludwigii  

 EB  Diesel  Yousaf et al. ( 2010b , 
 2011 ), Afzal et al. 
( 2011 ,  2012 ) 

  Pisum sativum    Pseudomonas putida  
strain POPHV6 

 EB  2,4-Dichlorophenoxy 
acetic acid 

 Germaine et al. 
( 2006 ) 

  Pisum sativum    Pseudomonas putida  
VM1441 (pNAH7) 

 EB  Naphthalene  Germaine et al. 
( 2009 ) 

  Thlaspi goesingense    Methylobacterium  sp. V3, 
 Sphingomonas  sp. pfB27, 
 Curtobacterium  sp. VKM, 
 Curtobacterium  sp. VKM, 

 EB  Ni  Idris et al. ( 2004 , 
 2006 ) 

  Alyssum bertolonii    Microbacterium  O1, 
 Pseudomonas  B7, 
 Curtobacterium  C2, 
 Staphylococcus  A3, 
 Bacillus  B3,  Arthrobacter  
F3B 

 EB  Ni  Barzanti et al. ( 2007 ) 

  Brassica napus    Pseudomonas fl uorescens  
G10,  Microbacterium  sp. 
G16. 

 EB  Pb  Sheng et al. ( 2008a ) 

  Thlaspi caerulescens    Sphingomonas  sp., 
 Methylobacterium  sp. 

 EB  Zn and Cd  Lodewyckx et al. 
( 2002 ) 

  Lycopersicon esculentum    Methylobacterium oryzae  
strain CBMB20 and 
 Burkholderia  sp. 

 EB  Cd  Madhaiyan et al. 
( 2007 ) 

  Ricinus communis    Pseudomonas  sp. M6, 
 Pseudomonas jessenii  
M15 

 EB  Ni, Cu, Zn  Rajkumar and Freitas 
( 2008 ) 

  Brassica juncea    Enterobacter aerogenes , 
 Rahnella aquatilis  

 EB  Ni, Cr  Kumar et al. ( 2009 ) 

  Orychophragmus 
violaceus  

  Flavobacterium  sp.  Zn  He et al. ( 2010 ) 

  Festuca arundinacea , 
 Festuca pratensis  

  Neotyphodium 
coenophialum  

 EF  Cd  Soleimani et al. 
( 2010a ) 

  Festuca arundinacea , 
 Festuca pratensis  

  Neotyphodium 
coenophialum  and 
 Neotyphodium uncinatum  

 EF  Polyaromatic 
hydrocarbons 

 Soleimani et al. 
( 2010b ) 

  Brassica juncea    Acacia auriculaeformis   EF  Cd and Ni  Jiang et al. ( 2008 ) 
 Rape   Mucor  sp. CBRF59  EF  Cd and Pb  Deng et al. ( 2013 ) 
  Triticum aestivum ,  Vigna 
radiata , and  Solanum 
melongena  

 Glomus mosseae  EF  Poly aromatic 
hydrocarbons 

 Rabie  2005  

 Rice   Phomopsis  sp. B3  EF  Phenanthrene  Tian et al. ( 2007 ) 
  Festuca arundinacea    Lewia  sp.  EF  Poly aromatic 

hydrocarbons 
 Cruz-Hernández 
et al. ( 2013 ) 

   a  EB  phytoremediation endophytic bacteria,  EF  endophytic fungi  

 The benefi cial traits of endophytic bacteria 
can improve plant growth and thereby contribute to 
enhance phytoremediation activity. Consequently, 
isolation and characterization of benefi cial traits 

of endophytic bacteria in pollution- tolerant 
plants become frequent practice (Luo et al. 
 2011a ,  b ; Yousaf et al.  2010a ,  2011 ). Several 
endophytic bacteria isolated from different 
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plants have the potential to degrade organic 
pollutants and have been proven to be useful in 
improving phytoremediation activity. Siciliano 
et al. ( 2001 ) were the fi rst to report that endo-
phytes isolated from plants vegetated in 
hydrocarbon-contaminated soil would be natu-
rally rich in alkane-degrading genes and would 
enhance phytoremediation of organic pollutants. 
   Lodewyckx et al. ( 2001 ) observed that endo-
phytes of yellow pine enhanced the phytoreme-
diation activity of inoculated plant. Latter on 
endophytic bacteria isolated from poplar trees 
( Populus deltoides  ×  Populus nigra  DN34) were 
found capable of degrading nitro-aromatic com-
pounds (Van Aken et al.  2004a ). The phytoreme-
diation of explosive compounds is of great 
interest, and an endophytic  Methylobacterium  sp. 
strain (isolated from poplar plant) showed the 
ability to degrade 2,4,6-trinitrotoluene, hexa-
hydro- 1,3,5-trinitro-1,3,5-triazine, and ocyahydro- 
1,3,5,7-tetranitro-1,3,5-tetrazocine (Van Aken 
et al.  2004b ). Barac et al. ( 2004 ) reported that the 
inoculation of plants with an endophytic  B. cepa-
cia , capable of degrading toluene, reduced the 
volatilization of toluene and also the phytotoxic 
effect of toluene on inoculated plant. It may be 
possible that this endophyte played a major role 
in the mineralization of explosive compounds 
present in poplar. Germaine et al. ( 2006 ) inocu-
lated pea ( Pisum sativum ) plant with an endo-
phyte naturally possessing the ability to 
mineralize the 2,4- dichlorophenoxyacetic acid. 
The inoculated strain actively colonized in the 
rhizo- and endosphere of the plant and reduced 
the accumulation of 2,4- dichlorophenoxyacetic 
acid in the aerial tissues. These studies reveal the 
usefulness of bacterial endophytes to enhance the 
phytoremediation of herbicide-contaminated soil 
and to reduce levels of toxic organic pollutants in 
the crop plants. Porteous-Moore et al. ( 2006 ) 
looked at the diversity of endophytic bacteria 
associated with poplar trees vegetated in ben-
zene, toluene, ethylbenzene, and xylene (BTEX)-
contaminated soil. They found that most of the 
endophytic bacteria possessed the ability to 
degrade the BTEX. Later on Barac et al. ( 2009 ) 
observed on the same site that after remediation, 
when the BTEX concentration decreased below 

the detection limit, the degradation capacity of 
the endophytic bacteria disappeared, resembling 
more that of a natural situation. In another study, 
Germaine et al. ( 2009 ) found that an endophytic 
bacterial strain,  Pseudomonas putida  VM1441, 
effi ciently colonized both the rhizosphere and 
interior root tissues. Inoculation with this endo-
phytic strain resulted in the protection of the host 
plant from the phytotoxic effects of naphthalene. 
Furthermore, inoculation facilitated higher 
(40 %) naphthalene degradation as compared to 
uninoculated plants. Recently, Weyens et al. 
( 2010 ) observed that poplar cuttings inoculated 
with  P. putida  W619-TCE promoted plant growth 
and reduced TCE phytotoxicity and the amount 
of TCE present in the leaves. In another study, 
they observed that inoculation with  P. putida  
W619 (wild type) enhanced plant growth, 
reduced activities of antioxidative defense- 
related enzymes, and decreased stomatal resis-
tance (Weyens et al.  2012 ). 

 Weyens et al. ( 2009b ) discussed the advan-
tages of use of endophytic bacteria in bioreme-
diation and emphasized that plant–endophyte 
partnership can be applied to improve plant bio-
mass production even on marginal land. In a 
more recent review, Khan et al. ( 2013a ) men-
tioned some benefi ts of using endophytes in phy-
toremediation of hydrocarbon-polluted soil. 
These can be (a) inoculated endophytic bacteria 
possessing pollutant degradation potential that 
effi ciently colonized the plant; (b) endophytic 
bacteria showing higher levels of abundance and 
expression of bioremediation genes  in planta , 
indicating that toxic pollutants taken up by plant 
may be degraded inside the plant tissues by such 
endophytic bacteria; and (c) inoculation method 
and soil type affecting endophytic bacterial colo-
nization and activity.  

4.2     Endophytic Bacteria-Assisted 
Phytoremediation of Heavy 
Metals 

 Heavy metals found in nature are the main com-
ponent of a variety of enzymes, transcription 
factors, and other proteins. However, their higher 
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concentration in environment is thought of as a 
contaminant. Soil–heavy metals cannot be 
degraded biologically; they can only be trans-
formed into organic complexes. To stimulate 
their remediation, fast-growing plants with high 
metal uptake and biomass production are 
required. However, metal availability, metal 
uptake, and phytotoxicity for the plants are the 
main limiting factors for the application of phyto-
extraction. To improve phytoremediation of 
heavy metals-contaminated soil, plant–endo-
phyte partnerships are considered a promising 
approach. During the phytoremediation of toxic 
metals, the metal-resistant plant growth- 
promoting endophytic bacteria can improve the 
plant health and development, reduce metal 
toxicity, and influence metal translocation and 
accumulation in different plant tissues. 
Endophytic bacteria with sequestration activity 
can also decrease metal phytotoxicity and affect 
metal translocation to the aboveground plant bio-
mass (Weyens et al.  2009b ). 

 Many endophytic bacteria isolated from dif-
ferent plants growing well in metal-contami-
nated soils have been found to be metal resistant; 
the presence of high amounts of heavy metals 
in the plant might directly select endophytes 
able to resist to contaminated environmental 
conditions. It is also possible that plants accu-
mulating high concentration of heavy metals 
may be colonized by heavy metal-resistant 
endophytic bacteria (Idris et al.  2004 ; Rajkumar 
et al.  2009 ; Ma et al.  2011a ). These bacteria 
have been found in different plants, such as 
 Alyssum bertolonii ,  Alnus fi rma ,  Brassica 
napus ,  Nicotiana tabacum ,  Thlaspi caerules-
cens , and  Solanum nigrum . Recently, the poten-
tial use of plant growth- promoting endophytes 
to accelerate phytoremediation of metalliferous 
soils has been reviewed by Ma et al. ( 2011b ). 
During phytoremediation of heavy metal-con-
taminated soil, in some cases, endophytic bacte-
ria may confer to the plants a higher tolerance 
to heavy metal stress. Recently, four heavy 
metals-resistant endophytic bacteria,  Serratia 
nematodiphila  LRE07,  Enterobacter aerog-
enes  LRE17,  Enterobacter  sp. LSE04, and 
 Acinetobacter  sp. LSE06, were isolated from 

 Solanum nigrum  L. vegetated in metal-polluted 
soil (Chen et al.  2010 ). Their plant growth- 
promoting activities such as production of ACC 
deaminase, indole-3-acetic acid (IAA), sidero-
phores, and phosphate-solubilizing acids were 
determined. When these endophytic bacteria 
were inoculated to  S. nigrum , all of these 
enhanced plant growth and Cd extraction from 
soil. All four inoculated strains colonized the 
rhizosphere and even the plant interior tissues. It 
was demonstrated that plant growth-promoting 
endophytic bacteria are a valuable resource 
which could be exploited to enhance phytore-
mediation activity. Truyens et al. ( 2012 ) demon-
strated changes in the population of endophytic 
bacteria present in seeds of transgenerationally 
Cd-resistant  Arabidopsis thaliana . Their data 
support the hypothesis that certain endophytes 
are selected for transmission to the next genera-
tion and that their presence might be important 
for subsequent germination and early seedling 
development. Similarly, Mastretta et al. ( 2009 ) 
demonstrated that Cd-resistant seed endophytes 
improve plant growth and decrease metal toxic-
ity when inoculated to  Nicotiana tabacum . 

 Plant-associated bacteria can improve phy-
toremediation effi ciency by increasing the solu-
bility, availability, and transport of heavy metals 
and nutrients through the production of organic 
acids, release of chelators, or redox changes 
(Puente et al.  2009 ; Shin et al.  2012 ; Zhang et al. 
 2011 ). Some endophytic bacteria can enhance 
heavy metal mobilization through the production 
of low-molecular-mass organic acids. For exam-
ple, Sheng et al. ( 2008b ) found that the water- 
soluble Pb signifi cantly increased, along with a 
decrease in pH, in a suspension with endophytic 
bacterial growth and suggested that this might be 
due to the production of organic acids by endo-
phytic bacteria. Similarly, it was observed that 
the release of 5-ketogluconic acid by the endo-
phytic bacterium,  Gluconacetobacter diazotro-
phicus , increased the solubility of different Zn 
sources such as ZnO, ZnCO 3 , and Zn 3 (PO 4 ), thus 
increasing the availability of Zn for plant uptake 
(Saravanan et al.  2007 ). Kuffner et al. ( 2010 ) also 
reported that some endophytic bacteria could 
produce metal-mobilizing organic compounds 
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into the contaminated soil. However, compared 
to rhizobacteria-assisted phytoremediation, fewer 
studies were performed to explore plant–endo-
phyte partnerships for the remediation of heavy 
metal-contaminated soil (Chen et al.  2010 ). 

 The effectiveness of phytoremediation of 
metal-polluted soil depends mainly on metal 
uptake and accumulation in aboveground bio-
mass. Several studies have shown that endophytic 
bacteria possessing heavy metal-resistant and 
plant growth-promoting activities can enhance 
metal uptake and accumulation in plant. For 
instance, plant growth-promoting endophytic 
bacterium,  Pseudomonas  sp. A3R3, signifi cantly 
enhanced Ni concentration in  Alyssum serpyllifo-
lium  (Ma et al.  2011b ). Similarly, inoculation of 
 Solanum nigrum  with heavy metal-resistant endo-
phytic bacteria increased Cd uptake and accumu-
lation in root, shoot, and leaf tissues (Chen et al. 
 2010 ). In another study, Mastretta et al. ( 2009 ) 
demonstrated that the application of Cd-resistant 
endophyte  Sanguibacter  sp. into  Nicotiana taba-
cum  enhanced Cd accumulation in shoot tissues. 

 Plant–endophytic bacteria partnership can 
also be exploited for the remediation of soil con-
taminated with both organics and heavy metals. 
Generally phytoremediation of such contami-
nated soil is complicated. The presence of haz-
ardous metals potentially decreases microbial 
activities including degradation of organic con-
taminants (Sandrin and Maier  2003 ). A very 
promising simple strategy for the phytoremedia-
tion of contaminated soil with mixed waste is the 
use of endophytic bacteria that are able to (1) 
mineralize organic pollutants and (2) enhance the 
translocation of toxic metals from soil to aboveg-
round plant biomass (Weyens et al.  2009b ).   

5     Endophytic Fungi 
and Bioremediation 

 Although microbial-assisted bioremediation of 
organic and inorganic pollutants from soils has 
been extensively studied, there is limited infor-
mation about the effect of inoculation of endo-
phytic fungi on plants for the remediation of 
polluted sites. 

5.1     Endophytic Fungi-Assisted 
Phytoremediation of Organic 
Pollutants 

 Plant–fungi partnership can also be useful for the 
remediation of soil contaminated with organic 
pollutants. For instance, Escalante-Espinosa 
et al. ( 2005 ) demonstrated that mutual benefi ts 
between  Cyperus laxus  and inoculated 
hydrocarbon- degrading microorganisms (includ-
ing endophytic fungi) enhanced phytoremedia-
tion of hydrocarbon-contaminated soil. 
Phenological characteristics of inoculated plants 
were improved as compared to non-inoculated 
plants. The rhizospheric bacteria and fungi counts 
were higher for planted treatments (inoculated 
and non-inoculated) than for unplanted pots. The 
maximum phytoremediation rate (0.51 mg of 
TPH g −1  of dry plant d −1 ) for inoculated plants 
was attained at day 60 of experiment and was two 
times higher than non-inoculated plants. 
Similarly, the effect of endophytic fungi on reme-
diation effi cacy of wheat, mung bean, and egg-
plant grown in soil spiked with hydrocarbons was 
assessed (Rabie  2005 ). Fungal inoculation sig-
nifi cantly increased degradation of hydrocarbons 
in planted soil compared to uninoculated planted 
soil. Moreover, physiological data indicated that 
plant growth and tolerance increased with endo-
phytic fungi inoculation. As consequence of the 
treatment with fungi, the plants provide a greater 
sink for the contaminants since they survive and 
grow better. Later on Tian et al. ( 2007 ) demon-
strated the degradation of phenanthrene by endo-
phytic fungi,  Phomopsis  sp., with rice plant. The 
degradation rate of phenanthrene was enhanced 
by fungal inoculation. In addition, the presence 
of fungi decreased the injury to rice under the 
condition of phenanthrene stress. In another 
study, endophytic fungi improved phytoremedia-
tion of petroleum oil-contaminated soil 
(Soleimani et al.  2010b ). In this study, the effect 
of inoculation of two grass species ( Festuca 
arundinacea  Schreb. and  Festuca pratensis  
Huds.) by endophytic fungi ( Neotyphodium 
coenophialum  and  Neotyphodium uncinatum ) on 
the remediation of soil polluted with petroleum 
hydrocarbons was assessed. Endophytic fungi 
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inoculation enhanced root and shoot biomass and 
resulted in higher activity levels of water-soluble 
phenols and dehydrogenase in the soil. 
Signifi cantly higher hydrocarbon degradation 
was observed in the rhizosphere of plants inocu-
lated with these endophytic fungi. This study 
concluded that inoculation of grasses with endo-
phytic fungi could be an effi cient approach for 
the remediation of soils, polluted with hydrocar-
bons. Recently, Cruz-Hernández et al. ( 2013 ) 
demonstrated that  Lewia  sp. (endophytic fungus) 
improved the effi ciency of polyaromatic hydro-
carbon removal by  Festuca arundinacea , on both 
perlite and soil, stimulating pyrene accumulation 
in roots. Inoculation with  Lewia  sp. stimulated 
(100 %) root growth in spiked perlite. Inoculated 
plants exhibited higher phenanthrene degradation 
(100 %) as compared to non-inoculated plants in 
perlite and soil.  

5.2     Endophytic Fungi-Assisted 
Phytoremediation of Heavy 
Metals 

 Fungal endophytes have been shown to amelio-
rate metal toxicity for their plant hosts by 
restricting the uptake of toxic metals and by 
improving the supply of essential elements. As 
effective metal phytoremediation strategies 
depend on the ability of the plant to tolerate and 
accumulate metals from the environment, the 
wide  prevalence of endophytic fungi and their 
potential to modulate metal speciation, toxicity, 
and mobility make them a key component of 
any remediation effort (Likar  2011 ). In polluted 
soil, endophytic fungi restored plant biomass 
despite higher Cu and Zn accumulation in plant 
organs, especially roots. Endophytic fungi can 
also enhance expression of certain genes in 
plants vegetated in polluted soil. For example, 
inoculation with the endophytic fungi caused an 
overall induction of  PaMT1 ,  PaMT2 ,  PaMT3 , 
 PaSPDS1 ,  PaSPDS2 , and  PaADC  gene expres-
sion, together with increased free and conju-
gated polyamine levels in plants grown on 
polluted soil, but not in those grown on nonpol-
luted soil (Cicatelli et al.  2010 ). 

 Endophytic fungi may increase host plant 
tolerance to biotic and abiotic stresses. 
Soleimani et al. ( 2010a ) demonstrated the effect 
of inoculation of endophytic fungi on cadmium 
(Cd) tolerance, accumulation, and translocation 
in grasses. Plants inoculated with fungi exhib-
ited higher biomass production (12–24 %) and 
higher potential to accumulate Cd in roots 
(6–16 %) and shoots (6–20 %) than fungi-free 
plants. Maximum photochemical effi ciency of 
photosystem II ( F  v / F  m ) revealed that Cd stress 
was signifi cantly reduced in fungi-infected 
plants compared to noninfected ones. In another 
study, effect of inoculation of  Acacia auriculae-
formis -associated endophytic fungi on the 
growth of mustard [ Brassica juncea  (L.) Coss. 
var. foliosa Bailey] vegetated in Cd- and 
Ni-contaminated soils was assessed for improv-
ing phytoremediation activity (Jiang et al. 
 2008 ). Endophytic  Trichoderma  H8 and rhizo-
sphere  Aspergillus  G16 were applied for rhi-
zoremediation of Cd-, Ni-, and Cd–Ni 
combination-contaminated soils through asso-
ciation with  B. juncea . Compared with the non- 
inoculated control plants, inoculation with 
 Trichoderma  H8 produced 109 %, 41 %, and 
167 % more fresh weight (FW) in the Cd-, Ni-, 
and Cd–Ni-contaminated soils, respectively 
( P  < 0.05). The inoculation also increased the 
translocation factors and metal bioconcentration 
factors. The study suggested that the use of 
plant–fungi association may be a promising 
strategy to remediate metal-contaminated soils. 

 Recently, a fungal endophyte was isolated 
from rapeseed roots grown in a heavy metal- 
contaminated soil and characterized to deter-
mine its potential in improving phytoremediation 
of heavy metals from soil (Deng et al.  2011 ). 
The isolate CBRF59 was identifi ed as  Mucor  sp. 
based on morphological characteristics and 
phylogenetic analysis. The addition of active 
mycelia of CBRF59 signifi cantly increased the 
availability of soil Pb and Cd. The results 
showed that the endophytic fungus was poten-
tially applicable for the decontamination of 
metal-polluted media. 

 Endophytic fungi can also improve plant 
adaptation and growth in heavily contaminated 
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soil, including those contaminated with heavy 
metals. More recently, Deng et al. ( 2013 ) isolated 
protoplasts from endophytic fungi to carry out 
self-fusion of protoplasts for their improvement 
of metal tolerance. Self-fusant CBRF59T3 with 
resistance to 25 mM Cd(II) was constructed by 
self-fusion of inactivated protoplasts from  Mucor  
sp. CBRF59. The dry weight of rapeseed inocu-
lated with CBRF59 and CBRF59T3 was higher 
than that of the uninoculated rapeseed. Inoculation 
of CBRF59T3 further increased the dry weight of 
rapeseed by 62 % than CBRF59 in the higher 
Cd(II) + Pb(II)-contaminated soil. Compared 
with CBRF59, CBRF59T3 inoculation increased 
the concentration of Cd(II) in rapeseed shoots 
by 35–189 % in Cd(II)- and Cd(II) + Pb(II)-
contaminated soils. The inoculation of 
CBRF59T3 also enhanced the translocation of 
Cd(II) from roots to shoots and increased the 
amount of extracted Cd(II) from rapeseed. These 
results proposed that the mutant constructed by 
protoplast fusion is a feasible and effi cient 
method to enhance stress tolerance of uncharac-
terized fungi for phytoremediation of heavy 
metal-contaminated soils. 

 Deram et al. ( 2011 ) studied the effect of non- 
mycorrhizal (dark septate fungi) and mycorrhi-
zal (arbuscular mycorrhizae) fungi in order to 
assess the most effi cient utilization of each type 
in relation to heavy metal uptake and tolerance. 
Mycorrhizal infestation (hyphae, arbuscules, 
and vesicles) was adversely affected by soil pol-
lution almost to exclusion. The intensity of colo-
nization with non-mycorrhizal was very low in 
the presence of arbuscular mycorrhizal in 
 non- contaminated soils but higher in polluted 
soils. Recently, during endophytic fungi-assisted 
phytoremediation of heavy metal-contaminated 
soil, genes belonging to different functional cat-
egories, plus other genes related to heavy metal 
stress (metallothioneins, phytochelatin synthase, 
glutathione synthase, arginine decarboxylase), 
were analyzed by quantitative (q)RT-PCR 
(Cicatelli et al.  2012 ). The levels of gene expres-
sion were generally downregulated, or unaf-
fected, in polluted soil compared with controls, 
the main exceptions being phytochelatin synthase 
and clathrin, and strongly upregulated in the 

presence of arbuscular mycorrhizae fungi, 
especially  Glomus mosseae .   

6     Molecular Tools Used 
in Endophytic 
Bioremediation 

 Bioremediation requires a good understanding of 
the physicochemical characteristics of the con-
taminated environment, as well as a thorough 
description of the microbial communities 
involved in key physiological processes. The 
assessment of the microbial communities, their 
capabilities to degrade the target contaminants, 
and the resilience of these abilities can often be 
the most relevant aspects to take into consider-
ation in the design and implementation of a bio-
remediation application. For such assessments to 
be as complete and momentous as possible, 
microbial communities need to be characterized 
in terms of structure, phenotypic potential, func-
tion, and interactions with the environment 
(Rittmann et al.  2006 ). While 90–99 % of 
microbes living in the environment defy conven-
tional cultivation in the laboratory on synthetic 
solid or liquid media (Amann et al.  1995 ), a 
major methodological revolution in microbial 
ecology occurred in the 1990s which made pos-
sible the application of culture-independent 
molecular tools to study the diversity and dynam-
ics of microbial communities in fi ne detail. Over 
the past few years, such powerful tools are 
enabling the qualitative (e.g., fi ngerprinting tech-
niques) and quantitative (e.g., dot blot and fl uo-
rescence in situ hybridization, real-time PCR, 
pyrosequencing based) depiction of environmen-
tal microbial communities and are helpful in 
identifying new catabolic operons of xenobiotics 
in environmental bacteria. 

 A number of culture-independent molecular 
techniques presently used to study complex 
endophytic microbial communities are compati-
ble with a high-throughput setup. These include 
fi ngerprinting, real-time PCR, microarrays, 
metagenomics, metatranscriptomics, metapro-
teomics, and metabolomics. These techniques are 
discussed below. 
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6.1     Fingerprinting Techniques 

 Genetic fi ngerprinting techniques provide a defi -
nite pattern or profi le of a given microbial com-
munity. They are based on the separation of 
amplicons after PCR amplifi cation of phyloge-
netic (e.g., 16S rRNA) or functional genes using 
universal or specifi c primers. Some of these fi n-
gerprinting techniques have the prospective for 
high-throughput design, such as terminal restric-
tion fragment length polymorphism (T-RFLP), 
denaturing gradient gel electrophoresis (DGGE), 
or automated ribosomal intergenic spacer analy-
sis (ARISA). 

6.1.1     Terminal Restriction Fragment 
Length Polymorphism (T-RFLP) 

 T-RFLP separates fragments obtained by enzy-
matic restriction of PCR amplicons according to 
their size. The use of labeled primers allows a 
rapid, automated, and high-throughput detection 
of polymorphic terminal fragments. The sepa-
rated fragments are visualized by an automated 
DNA sequencer as a pattern of peaks on an elec-
tropherogram. In addition, the identifi cation of 
T-RFLP peaks can be directly obtained by com-
paring them to databases (Marsh et al.  2000 ). 
Yousaf et al. ( 2010b ) studied the hydrocarbon 
degradation potential, colonization, and commu-
nity composition of alkane-degrading endophytic 
bacteria in diesel-contaminated soils by using 
T-RFLP analysis. The diversity of indigenous 
alkane-degrading endophytes was investigated 
on the basis of cytochrome P450-type and  alkB  
alkane hydroxylase endosphere of Italian rye-
grass and birdsfoot trefoil. The effect of compost 
amendment on hydrocarbon degradation and 
alkane-degrading communities during phytore-
mediation of diesel fuel was also examined. 
T-RFLP analysis of alkane degrader showed that 
both uninoculated plants hosted different com-
munities carrying the  alkB  gene. The  alkB  genes 
were detected in the root interior of Italian rye-
grass but not in the endosphere of birdsfoot tre-
foil. Cultivation-independent analysis revealed 
that Italian ryegrass and birdsfoot trefoil, both 
sampled at fl owering, hosted distinct alkane- 
degrading communities. In association with both 

plants,  alkB - as well as CYP153-containing 
microorganisms were detected, and different 
subtypes of alkane degradation genes were 
encountered. 

 T-RFLP analysis was used to study the effect 
of inoculation method (seed imbibement and soil 
inoculation) on endophytic bacterial coloniza-
tion, plant growth promotion, and hydrocarbon 
degradation (Afzal et al.  2012 ). This study dem-
onstrated that the inoculation of hydrocarbon- 
degrading microorganisms decreased the 
potential toxic effects of hydrocarbons. The 
endophytic strain ITSI10 exhibiting alkane deg-
radation as well as ACC deaminase activities was 
highly effi cient in enhancing plant biomass 
(especially root biomass) and consequently 
hydrocarbon degradation and performed better 
than strain MixRI75 lacking ACC deaminase 
activity. Plant growth and hydrocarbon degrada-
tion were correlated with bacterial colonization, 
and T-RFLP analysis confi rmed the presence of 
ITSI strain in the endosphere and rhizosphere of 
ryegrass.  

6.1.2     Automated Ribosomal 
Intergenic Spacer Analysis 
(ARISA) 

 ARISA is a method of microbial community 
analysis which provides an estimation of micro-
bial diversity and community composition with-
out the bias imposed by culture-based approaches 
or the labor and expense involved with 16S rRNA 
gene clone library construction (Fisher and 
Triplett  1999 ). This method has been success-
fully used to evaluate the microbial diversity of 
both bacteria and fungi in environmental samples 
(Ranjard et al.  2001 ). ARISA provides a 
community- specifi c profi le, with each peak ide-
ally corresponding to one kind of organism in the 
original environmental sample. ARISA has been 
successfully used to determine the microbial 
diversity of both bacteria and fungi in marine, 
freshwater, and soil environments (Ranjard et al. 
 2001 ; Brown et al.  2005 ; Kennedy et al.  2005 ). 

 Torzilli et al. ( 2006 ) compared fungal commu-
nities from four salt marsh plants through ARISA. 
By using a semiquantitative transformation of 
ARISA data (individual peak heights/total of 
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peak heights from the entire community), they 
were able to distinguish among the fungal com-
munities associated with four different salt marsh 
plants, two of which ( D. spicata  and  S. perennis ) 
had not been examined previously with molecu-
lar techniques.  

6.1.3     Denaturing Gradient Gel 
Electrophoresis (DGGE) 

 DGGE analysis demonstrated the potential to 
improve phytoremediation of aromatic pollutants 
by inoculating functional endophytic bacterial 
strains. The endophytic bacterial strain 
 Achromobacter xylosoxidans  F3B, which was 
able to utilize aromatic compounds as a sole car-
bon source, was inoculated into vetiver grass. The 
results showed that the endophytic bacteria strain 
F3B could maintain a stable population in plant 
roots without largely interfering with the diversity 
of native endophytes. Furthermore, the strain F3B 
could protect plants against toluene stress and 
maintain chlorophyll content of leaves. A 30 % 
reduction of evapotranspiration through vetiver 
leaves was observed. This research showed the 
potential of the endophytic bacterium  A. xylosoxi-
dans  F3B in reducing phytotoxicity and improv-
ing phytoremediation (Ho et al.  2013 ). 

 The DGGE analysis from soybean roots 
revealed the effect of glyphosate herbicide appli-
cation on some endophytic groups, not observed 
by isolation. These endophytes were exclusive 
for plants cultivated in soil with preplanting 
glyphosate application, such as  Herbaspirillum  
sp., and other groups in plants that were culti-
vated in soil without glyphosate, such as 
 Xanthomonas  sp. and  Stenotrophomonas malto-
philia . Furthermore, only two bacterial species 
 Pseudomonas oryzihabitans  and  Burkholderia 
gladioli  were recovered from soybean plants by 
glyphosate enrichment isolation and showed dif-
ferent sensibility profi les to the glyphosate. These 
results suggest that the application at preplanting 
of the glyphosate herbicide may interfere with 
the endophytic bacterial community’s equilib-
rium. A more complete comprehension of the 
interaction between herbicides and plant- 
associated bacterial communities is an important 
factor for more effective crop management. The 

results from this study indicated that preplanting 
application of glyphosate herbicide infl uenced 
endophytic bacterial communities in soybean 
plants. Increased application of glyphosate may 
change endophytic populations, such as latent 
pathogens and plant growth-promoting bacteria, 
which could result in changes in plant production 
(Sobral et al.  2005 ).   

6.2     Real-Time PCR 

 Real-time PCR monitors the progress of a PCR 
reaction based on the detection and quantifi cation 
of a fl uorescent reporter molecule that binds to 
the target PCR template. From the amount of 
fl uorescence emitted at each cycle in the expo-
nential phase, it is possible to calculate the initial 
amount of target template. Real-time PCR is 
highly sensitive, down to a detection limit of 1–2 
genome copies (Inglis and Kalischuk  2004 ). 
Real-time PCR does not require any tedious post- 
PCR steps for the quantifi cation of amplicons, as 
their amount is monitored in real time. Therefore, 
this is a high-throughput technique with superior 
analytical sensitivity for the detection and quanti-
fi cation of specifi c genes in environmental sam-
ples (Harms et al.  2003 ). 

 A quantitative and real-time PCR enabled 
determination of microbial abundance and 
expression of alkane monooxygenase ( alkB ) 
genes in rhizosphere, shoot and root interior of 
Italian ryegrass ( Lolium multifl orum  L.) (Andria 
et al.  2009 ). To assess the role of endophytes in 
alkane degradation, Italian ryegrass ( Lolium mul-
tifl orum  L.) was grown in sterile soil with 0, 1, or 
2 % diesel and inoculated with alkane-degrading 
endophytes. Plant colonization potential of these 
strains as well as the abundance and expression 
of alkane monooxygenase ( alkB ) genes in rhizo-
sphere, shoot and root interior, was examined. 
Results showed that the endophyte strain better 
colonized the plant, particularly the plant interior, 
and also showed higher expression of  alkB  genes 
suggesting a more effi cient degradation of the 
pollutant. This study suggested that endophytes 
have a high potential to be used in phytoremedia-
tion applications.   
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7     Emerging Technologies 
in Endophytic 
Bioremediation 

 In recent years, a number of technological 
advancements have overcome some of the above 
constraints leading to improved reliability, cost 
effi cacy, and speed of bioremediation. These 
methods range from mere monitoring and 
improvement of intrinsic bioremediation to novel 
ideas of genetically engineering the functional 
genes for bioremediation application. 

7.1     DNA Microarray 

 Microarrays (or microchips) are based on the 
property of a single-stranded DNA or RNA mol-
ecule (“target molecule”) to hybridize to a com-
plementary molecule (“probe”) attached to a 
solid support (Zhou  2003 ). Compared to conven-
tional nucleic acid membrane hybridization, 
microarrays offer the advantage of effi ciency 
(thousands of probes can be spotted on a slide), 
high sensitivity, and rapid (“real-time”) detec-
tion (Eyers et al.  2004 ). In environmental genom-
ics, three main classes of microarrays have been 
developed: (i) phylogenetic oligonucleotide 
arrays (POAs), which contain oligonucleotide 
probes targeting taxonomic genes (e.g., 16S 
rRNA gene); (ii) functional gene arrays (FGAs), 
where probes target genes encoding key enzymes 
involved in particular processes; and (iii) com-
munity genome arrays (CGAs), which are con-
structed from whole genomic DNA of many 
different strains or species (Zhou  2003 ). To 
explore the structure of environmental microbial 
communities, successful hybridization of micro-
bial community DNA amplifi ed using the phi29 
DNA polymerase was performed, and its appli-
cation to groundwater samples containing sub- 
nanogram quantities of microbial DNA was 
demonstrated (Wu et al.  2006 ). When the objec-
tive is to examine not just existing but tran-
scribed, i.e., functioning genes (mRNA based 
analysis), a T7 polymerase-based linear amplifi -
cation approach using fusion primers provides 

ample and representative amounts of mRNAs for 
functional analysis of microbial communities 
(Gao et al.  2007 ). This suggests great application 
potential of microarrays to investigate the endo-
phytic microbial communities involved in biore-
mediation of pollutants.  

7.2     Pyrosequencing-Based 
Metagenomics 

 Environmental microbes represent a central 
source of genetic material with biotechnological 
interest and applications across all key industries 
including bioremediation. More than 99 % of 
microbes are uncultivable under existing labora-
tory regime, which prevents access to the vast 
variety of their products which have the potential 
for industrial utilization. Metagenomics promises 
continuous source of novel pollutant-degrading 
genes for increased effectiveness and service of 
transgenic (microbes and plants) technologies for 
direct use in bioremediation sectors. Additionally, 
the technology can be used to manufacture novel 
degrading enzymes from uncultivable bacteria 
for improved enzymatic remediation technology. 
In recent years, metagenomic approaches have 
started yielding some novel industrial products 
including bioremediation gene/enzyme from 
uncultivable microbes. Using such an approach, 
Fan et al. ( 2012 ) isolated a novel thermo stable 
pyrethroid-hydrolyzing enzyme which could be 
used in the detoxifi cation of pyrethroids. 
Following a similar metagenomic approach in 
cow rumen, a novel gene responsible for the deg-
radation of 3,5,6-trichloro-2-pyridinol, a persis-
tent and toxic metabolite of the insecticide 
chlorpyrifos, was isolated (Renukaradhya and 
Shah  2010 ). Exploring the microbial community 
structure by using DNA-dependent molecular 
and metagenomic techniques is helping to better 
understand the role of these endophytes in biore-
mediation. Further analysis of sequenced 
genomes, the characterization of yet unknown 
genes, and the identifi cation of genes expressed 
during degradation of different organic and/or 
inorganic pollutants will help to improve our 
understanding of endophytes and their role in 
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bioremediation. It will not be surprising if some 
new factors, functions, as well as genes required 
for endophytic lifestyle of microorganisms will 
be identifi ed in the near future.      
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    Abstract  

  Recent studies have shown that the asymptomatic fungal endophytes may 
infl uence the outcome of forest trees’ interactions with pathogens and herbi-
vores, raising a promise that endophytes might be utilized as biocontrol 
agents in integrated pest and disease management. However, practical 
applications for forest protection based on endophytes are still rare, in 
particular in the case of the economically and ecologically important 
large trees and their diseases. A better understanding of the ecological and 
biological background of the protection provided by endophytes may help 
to design new forest protection strategies that utilize endophytes in 
control of tree diseases. More information is also needed regarding the 
effects of silvicultural methods on endophyte communities at the level of 
single trees and forest stands. In this chapter, we discuss the motivation for 
continued research on endophyte-based biocontrol of forest tree diseases 
and some ecological aspects related to the topic.  
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 17      Ecological Aspects 
of Endophyte-Based Biocontrol 
of Forest Diseases 

           Johanna     Witzell     ,     Juan     A.     Martín,     
and     Kathrin     Blumenstein   

1         Introduction 

 Asymptomatic infections by fungal endophytes 
have been found to be present in different parts of 
forest trees, including leaves, bark, wood, seeds, 
and roots (Carroll  1988 ,  1995 ; Petrini  1991 ; Petrini 

and Fisher  1990 ; Danti et al.  2002 ; Ganley and 
Newcombe  2006 ; Sieber  2007 ; Saikkonen  2007 ). 
Endophyte communities of forest trees seem to 
be highly diverse: in several studies, saturating 
species accumulation curves have not been 
obtained, and thus only a fraction of the endo-
phyte diversity in forest trees has probably been 
described so far (Unterseher  2011 ). Because of 
their omnipresence and apparently high diversity 
in trees (Arnold et al.  2000 ), infections by endo-
phytic fungi have a potential to infl uence the 
physiology, metabolism, and ecological interac-
tions of the trees in various ways. However, the 
functions of tree endophytes are in many cases as 
poorly known as their diversity and community 
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structure. Particularly little is known about the 
temporal and spatial variations in endophyte 
communities in large, long-lived forest trees 
(Jumpponen and Jones  2010 ). Moreover, the 
xylem-bound endophyte communities have gen-
erally received less attention in research, as com-
pared to the endophyte communities in leaves 
and bark (Rodriguez et al.  2011 ). 

 Prompted by the studies that demonstrated 
how the seed-transmitted fungal endophytes of 
grasses protect their hosts from herbivory (e.g., 
Clay  1988 ,  1996 ; Clay and Holah  1999 ), also 
many tree-endophyte studies have set out to test 
the hypothesis that endophytes protect their hosts 
against natural enemies, herbivores, and patho-
gens. Indeed, the results of several studies indi-
cate that the presence, diversity, or frequency of 
tree endophytes may be linked to patterns of 
defense or expression of resistance against natural 
enemies (Bettucci and Alonso  1997 ; Arnold et al. 
 2003 ; Gennaro et al.  2003 ; Ragazzi et al.  2003 ; 
Clay  2004 ; Santamaría and Diez  2005 ; Ganley 
et al.  2008 ; Mejia et al.  2008 ; Albrectsen et al. 
 2010 ). These results raise an attractive prospect 
of using endophytes as tools in forest protection 
(Newcombe  2011 ). 

 Active research on endophytic fungi of forest 
trees has been carried out during last decades, 
and at least in a few cases, there seems to be 
adequate evidence demonstrating the  proof of 
principle  for endophyte-based biocontrol of pests 
and pathogens of forest trees (e.g., Webber  1981 ; 
Dvorák et al.  2006 ; Martín et al.  2013 ). So far, 
however, the contribution of endophytes to inno-
vative solutions for practical forest protection has 
been modest, in particular when it comes to dis-
eases of large trees that often have high economic 
and ecological importance. Furthermore, some 
studies have emphasized the ecologically and 
evolutionarily non-static nature of the host plant- 
endophyte interactions and the conditioning 
effect of environment on the outcome of these 
interactions and their cost to the host plants (e.g., 
Saikkonen et al.  1998 ; Faeth and Fagan  2002 ; 
Lehtonen et al.  2005 ). Thus, it is maybe timely to 
revisit the rationale behind and need for contin-
ued research and development in the topic and to 
unearth the different factors that can either delay 

or promote the progress with innovations and 
practical solutions. 

 In a recent review, Newcombe ( 2011 ) analyzed 
some of the main challenges that are holding 
back the use of endophytes in forest manage-
ment, considering not only the potential of endo-
phytes in disease control but also in growth 
promotion and stress tolerance. Here, we aim to 
contribute to the discussion about the application 
potential of tree endophytes by bringing up some 
additional aspects. We fi rst consider the funda-
mental rationale behind the research and devel-
opment of endophyte-based biocontrol of tree 
diseases. Then we will examine some ecological 
aspects related to the mechanisms of protection. 
We limit our main scope to the potential of endo-
phytes in biocontrol of diseases in mature, large-
sized trees that are important in production and 
recreation forests and also have high ecological 
values. Finally, we discuss the possibility to 
engineer endophyte communities at forest stand 
or landscape level, using silvicultural actions.  

2     The Rationale Behind 
Research on Endophyte- 
Based Biocontrol of Forest 
Diseases 

2.1     Pros and Cons of Biocontrol 
in Forestry 

 Although the acceptance and enthusiasm has var-
ied during the years, the concept of biological 
control (use of living organisms to control pests; 
Waage and Greathead  1988 ) appears to be rather 
well established in agricultural systems today 
(   Pal and McSpadden Gardener  2006 ) and 
accepted as a part of integrated pest management 
(IPM) strategies (Bale et al.  2008 ). The success 
stories of biological control come mainly from 
control of weeds and insects, including also some 
examples in forest environments, e.g., the use of 
entomophthoralean fungus  Entomophaga mai-
maiga  Humber, Shimazu, and Soper in control of 
gypsy moth ( Lymantria dispar ) (Hajek  1997 ; 
Hajek et al.  1997 ; Lacey et al.  2001 ) and the use 
of the saprophytic  Phlebiopsis gigantea  fungus 
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to control  Heterobasidion  root and butt rot 
(Holdenrieder and Greig  1998 ; Pratt et al.  1998 ). 

 The anticipated benefi ts of biocontrol include 
the safety to people and animals and the possibil-
ity to reduce the use of broadscale fungicides and 
pesticides in our environment (Pal and McSpadden 
Gardener  2006 ). In large-scale production, how-
ever, the cost-effectiveness of biocontrol may eas-
ily appear inferior to other control methods. For 
instance, chemical treatments have a history of 
being both fast and reliable (in the absence of 
developed resistance), and because the production 
and distribution of biocontrol agents is often a 
bottleneck, it is generally much easier to get hold 
of the chemical products in volumes and at time 
points needed (Bale et al.  2008 ). Resistance 
breeding, although slow in its traditional form, is 
attractive because of its sustainability. Boosted by 
the recent advances in genetic engineering, it can 
also be rather fast (Strauss et al.  2004 ). In recent 
years, also a method that was fi rst met with great 
skepticism, i.e., the utilization of chemically or 
biologically induced plant responses for increased 
resistance (Solla and Gil  2003 ; Hubbes  2004 ; 
Blodgett et al.  2007 ; Schiebe et al.  2012 ), has 
gained increasing interest as an environmentally 
sound way to suppress pests and pathogens of 
forest trees and may appear as an attractive 
alternative to biocontrol in cases where the more 
natural methods are preferred. 

 The potential nontargeted effects, and the 
diffi culty in predicting them, are obviously one 
of the major ecological concerns in the use of 
any biocontrol. Louda et al. ( 2003 ) reviewed ten 
cases of released biocontrol agents, which had 
been studied for the nontargeted effects. Although 
the included case studies represented biocontrol 
of weeds and insects control, some of the conclu-
sions should be relevant also for biocontrol of 
diseases and be at least to some extent transfer-
able to forest tree systems. Louda et al. ( 2003 ) 
found that the closely related species had the 
highest risk of getting non-intentionally targeted. 
They also point out that the nontarget effects 
of biocontrol species can be indirect. Through 
indirect effects, even highly specifi c biocontrol 
agents may infl uence other than the targeted 
species (see also Pearson and Callaway  2005 ). 

 A related ecological concern is the host 
specifi city of endophytes or, rather, the lack of it 
that would make uncontrolled host shifts by 
nonspecialized endophytes possible. Reports 
regarding the host specifi city of endophytes 
have been confl icting (Arnold and Lutzoni  2007  
and references within). Clearly, many of the 
common, readily isolated tree endophytes are to 
be considered generalists (e.g.,  Phomopsis , 
 Xylaria ,  Colletotrichum ,  Fusarium , and  Botryo-
sphaeria ), while more specialized interactions 
may be found in the slow growing or uncultur-
able fractions (Arnold and Lutzoni  2007 ). In its 
classical form, biocontrol is based on specialist 
enemies of the pest to be controlled (Müller-
Schärer et al.  2004 ), which minimizes the prob-
ability of nontargeted effects. For this reason, 
a high degree of specifi city could be a desirable 
trait also in endophytes that are selected to 
be utilized in biocontrol of forest tree diseases. 
Yet, from the pragmatic point of view, it is the 
endophytes that are readily culturable in standard 
conditions that would be most useful for the 
biocontrol purposes, because their maintenance 
and multiplication would be cheap and easy. 

 Another common concern in biological control, 
its slowness (Bale et al.  2008 ), is not likely to be 
as disturbing in the long-lived trees as it can be, e.g., 
in greenhouse environments. However, in the 
specifi c case of large trees, little is known about 
the duration and spatial extent of the potential 
protection provided by endophytes.  

2.2     Challenges of Endophyte- 
Based Biocontrol of Forest 
Diseases 

 Obviously, the cryptic lifestyle of endophytes 
may bring about extra diffi culties in the use of 
these fungi in biological control, in terms of 
stability, intensity, and reliability. In fact, the 
mere rationale of research investments on 
endophyte- based biocontrol of forest diseases is 
often questioned also by members of researcher 
community. Frequent criticism includes state-
ments that tree breeding, especially with the 
current possibilities to enhance tree resistance 
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using gene technologies (Harfouche et al.  2011 ), 
outcompetes biocontrol because of its power and 
robustness; that forest disease control based on 
mechanisms where fungi control fungi has been 
successful enough to be commercialized and to 
be applied in practical forestry only in few excep-
tional cases, such as the saprophytic  Phlebiopsis 
gigantea  that controls  Heterobasidion  root and 
butt rot; and that the use of any endophyte-
derived fungicidal or antifungal chemicals will 
bring about the same environmental concerns as 
any other chemicals. Considering all these reser-
vations, it seems warranted to carefully revise the 
motivation for continued investments into 
research and development activities that specifi -
cally target fungal endophytes as biological con-
trol against forest diseases. 

 It is likely that the lack of breakthroughs with 
endophyte-based biocontrol applications in for-
estry refl ects the fact that our knowledge about 
the fundamental biology and environmental reg-
ulation of endophytes and their assemblages in 
trees is still rudimentary. This, in turn, is likely 
to be partly caused by the practical diffi culties in 
studying the fungal communities in vivo, inside 
the living, large-sized trees (Albrectsen and 
Witzell  2012 ). However, the rapid development 
of molecular methods such as pyrosequencing to 
study fungal communities (Margulies et al. 
 2005 ; Hamady et al.  2008 ; Amend et al.  2010 ; 
Mardis  2011 ) and phenotype microarrays to 
explore the substrate utilization profi les of the 
fungi (Garland  2006 ; Borglin et al.  2012 ), 
together with bioinformatics to effectively mine 
the high-throughput data, have opened up new 
possibilities also for tree-endophyte research. 
While it is conceivable that proper identifi cation 
of the sterile endophyte isolates will be a strug-
gle for some more years (Nilsson et al.  2011 ; 
Seifert  2009 ), our possibilities to study the com-
munity-level responses and functional conse-
quences of endophyte infections are signifi cantly 
better today than they were only 10 years ago, 
thanks to the advances in molecular and physio-
logical techniques and know-how and the solid 
basic research that has been carried out using 
mainly cultivation-dependent approaches during 
the past decades. Therefore, it seems reasonable 

to expect that the scientifi c knowledge base 
covering the biology and regulation of endo-
phytes will be considerably broadened only in 
the very the near future (Albrectsen and Witzell 
 2012 ). This development is likely to remove 
some obstacles on the way towards practical 
applications in forestry. 

 Newcombe ( 2011 ) draws attention to the 
diffi culties in selection-based assays, to the 
importance of microbial community interac-
tions, and to the interdependency between tree 
genotype and endophytes. He also reminds of 
the possibility that nontargeted, unintentional 
effects, such as host shifting or invasiveness, 
may occur if endophytes are introduced into an 
area. Introduction of nonindigenous endophyte 
species or enrichment of certain existing endo-
phyte species might also alter the tree-associ-
ated microbial communities, including the 
benefi cial symbionts such as mycorrhiza (cf. 
Louda et al.  2003 ). In fungi, the taxonomic rela-
tions are not as straightforward as in insects and 
plants, which complicates the analysis of non-
targeted effects of endophyte-based biocontrol 
on microbial communities. To avoid such 
effects, it would be important to map the charac-
teristic microbial profi les in the healthy individ-
uals of the tree species of interest, with special 
emphasis on the rare microbes that inhabit these 
trees, and to test as rigorously as possible how 
the putative biocontrol agent (endophyte) inter-
acts with these microbes. This task alone is a 
huge challenge for researchers.  

2.3     Future Prospects for 
Endophyte-Based Biocontrol 
of Forest Diseases 

 Despite the obviously many and extensive chal-
lenges, there are also many reasons to continue 
studies on endophyte-based biocontrol of forest 
diseases. One of the most important and prag-
matic motivation for continued investigations is 
that the character of many forest disease prob-
lems is changing, because of the alterations in the 
general operational environment for forestry 
(Foley et al.  2005 ; Schröter et al.  2005 ; Millar 
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et al.  2007 ; Santini et al.  2013 ). The old forest 
protection methods, designed for the earlier 
prevailing conditions, may not be functional or 
effective enough in the new situations. A central 
factor driving this development is the changing 
climate that may increase the frequency and 
intensity of disturbances (Dale et al.  2001 ), 
some of which may directly or indirectly involve 
forest diseases. The directional changes, such as 
increasing temperatures or humidity, may alter 
the distribution patterns of pest and pathogens 
(Brasier and Scott  1994 ). For instance, warmer 
winters were identifi ed as a major factor behind 
the outbreak of mountain pine beetles in western 
North America (Kurz et al.  2008 ) and the popula-
tions of fungal associates of the beetles, e.g., 
 Ophiostoma  sp. and  Leptographium  sp. (Lee et al. 
 2006 ) benefi tted from this development. 

 The future operational environment for for-
estry is also characterized by intensifi cation, glo-
balization, and diversifi cation (cf. Anderson et al. 
 2004 ), which all call for new forest protection 
solutions. For example, the threats by alien inva-
sive species in forests are expected to further 
increase in the future, due to intensive global 
trade that provides rapid dispersal routes for 
pathogens to new areas and due to the changing 
climate that may create opportunities for patho-
gens to establish and thrive in areas that have 
been climatically unfavorable for them earlier 
(Sturrock et al.  2011 ;    Santini et al.  2013 ). 
Dispersal of alien pathogens to forests increases 
the probability of hybridizations between alien 
and native species, possibly creating progenies 
that are more aggressive than the parents as forest 
pathogens. Cases where hybridization of patho-
gens brought together by human activity has 
resulted in the emergence of new pathotypes are, 
for example, the causal agents of Dutch elm dis-
ease,  Ophiostoma novo-ulmi  races EAN and 
NAN, and the emergence of a new  Phytophthora  
species, pathogenic of alder ( Alnus  spp.) in 
Europe (Brasier et al.  1999 ; Brasier  2001 ). 
Anderson et al. ( 2004 ) conclude that emergence 
of new pathogen strains owing to hybridization 
between agents that are not naturally sympatric is 
a repeating phenomenon behind emerging infec-
tious diseases (EIDs) of plants. Characteristic 

traits to these diseases are increased incidence 
(geographic or host range), changed pathogenesis, 
or newly evolved causal agents. EIDs can lead to 
extinction of host species and thus pose a concrete 
threat to biodiversity (Anderson et al.  2004 ; 
Fisher et al.  2012 ). 

 At the same time when the pathogen pollu-
tion is spreading, there is interest in forestry to 
gain superior growth or quality yields by grow-
ing tree species outside their natural habitats 
(exotic or introduced trees), which further pro-
motes the global biological homogenization in 
time and space. Introduced trees can be less 
troubled by diseases in the new habitat because 
they escape the specialist pests from the earlier 
habitat (enemy release hypothesis), but they 
may get affected by new generalist pests against 
which they have not developed tolerance (biotic 
resistance hypothesis) (Morrison and Hay  2011 ). 
Intensifi ed forestry is further characterized, e.g., 
by interest in plantation forestry, sometimes 
using monoclones, shorter rotation times, and 
fertilization (Martín-García et al.  2011 ; Edenius 
et al.  2012 ), all of which have the potential to 
affect the biodiversity associated with forest 
trees, as well as the vulnerability of trees to 
diseases. The new operational conditions for for-
estry and control of forest diseases also include 
the increasing environmental concerns from the 
society that imposes limits for use of chemical 
treatments (Bazoche et al.  2012 ) and the ongoing 
afforestation processes where forests are estab-
lished to areas not classifi ed as forest lands 
(Smith  2002 ). In order to meet all the new 
challenges, it seems highly justifi ed to revise 
and update the tool box for forest protection and 
to complete it by exploring new and innovative 
solutions, such as the potential endophyte-based 
biocontrol. 

 Newcombe ( 2011 ) concludes his review by 
pointing out the importance of information 
transfer from research communities to end users 
and by suggesting that the adoption of endo-
phytes as tools in forest management could be 
promoted by a better inclusion of endophytology 
into the forestry curriculum. In addition, also 
other relevant professional groups, e.g., arborists, 
landscape engineers, and nature conservationists, 
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could be informed more actively in order to 
promote the recognition of endophytes as a func-
tional layer in tree and forest protection. Because 
commercial actors are the usual channel for the 
production and distribution of possible products, 
they should also be included in the dialogue as 
early as possible. In fact, professional analyses 
of the commercial prospects, revenues, and cost-
effectiveness scenarios in cases where the  proof 
of principle  for endophyte-based biocontrol is 
convincing could create powerful arguments for 
practical implementations in forestry. Clearly, 
the ethical aspects of commercialization process 
need to be carefully considered on case-to-case 
basis. However, before innovations and practical 
forest protection solutions, based on endophytes, 
can be made available, more basic research is 
needed, for example, regarding the stability and 
reliability of endophytes as potential forest pro-
tection tools.  

2.4     Endophyte Research: Frontier 
of Biological Research 

 A further argument for continued studies on the 
endophytic biodiversity is that rather than being 
outdated by the progress of gene technology in 
tree breeding, biocontrol using endophytes is 
currently in the very front line of biological 
research. The interest in endophytes as regula-
tors of tree fi tness is congruent with the increas-
ing, general scientifi c interest in microbiome as 
an epigenetic domain affecting the functions and 
health of an organism (Cho and Blaser  2012 ). 
For several decades, the research has focused on 
the genome of the organisms as the ultimate reg-
ulator of traits and performance. However, the 
recently emerging view seems to be that the joint 
metagenome of the organism and its associated 
microbiome may be crucial for many functions 
and interactions. In particular the intestinal 
microbiome of humans has received attention in 
this context and is sometimes referred to as our 
additional or forgotten organ, or our second 
genome (Bruls and Weissenbach  2011 ; Qin et al. 
 2010 ), to emphasize the intimate and functional 
relation between microbes and human body. 

Evidence supporting the importance of microbes 
as a functional interface between different tro-
phic levels is accumulating from other systems 
as well: for instance, Becher et al. ( 2012 ) found 
that the attraction, oviposition, and development 
of fruit fl ies ( Drosophila melanogaster ) are in 
fact not regulated by volatile signals from the 
fermenting fruits, but by yeasts that inhabit these 
fruits. Thus, there is an increasing scientifi c 
interest to continue endophytological studies, 
including the study systems that involve forest 
trees and their health. One of the most important 
aspects to be studied is the mechanisms that 
allow endophytes to suppress tree diseases in 
different cases. A proper understanding of these 
mechanisms is the key for design of successful 
biocontrol strategies. In the following section, 
we consider the ecological basis of the mecha-
nisms that have been described for endophytes in 
literature and discuss potential strategies that are 
based on these mechanisms and aim at biologi-
cal control of forest tree diseases.   

3     Biocontrol of Tree Diseases 
by Endophytes: Ecological 
Considerations 

3.1     Mechanisms of Protection 
Provided by Endophytes 
in Forest Trees 

 It has been suggested that endophytes can shape 
their hosts’ resistance against pathogens through 
several mechanisms that may act simultaneously 
or in concert in a certain plant-endophyte inter-
action (Gao et al.  2010 ). Some of the described 
mechanisms are based on the direct interaction 
between the endophyte and pathogen, such as 
mycoparasitism (endophyte feeding on the 
pathogen), competitive exclusion by differential 
ability to utilize the substrates, or inhibition of 
pathogen by extracellular chemicals produced 
by the endophyte (Rodriguez and Redman  1997 ; 
Strobel and Daisy  2003 ; Arnold  2007 ). On the 
other hand, the endophytes may affect the trees’ 
resistance through their indirect effect on the 
host tree, e.g., by stimulating the defensive 
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metabolism (White and Torres  2010 ). Webber 
( 1981 ) described a mechanism where an endo-
phyte ( Phomopsis oblonga ) provides the host 
trees, elms, protection against Dutch elm disease 
through negative effects on the vector insects, 
bark beetles. Existence of even more complex 
indirect interactions with protective outcomes 
cannot be excluded. 

 Perhaps the best characterized mechanisms of 
protection by endophytes are derived from stud-
ies with grasses. The clavicipitalean endophytes 
of grasses are primarily vertically transmitted (in 
seeds) and infect the hosts systematically 
(Saikkonen et al.  2002 ; Rodriguez et al.  2009 ). 
Their protective action has been coupled to the 
toxic or deterring metabolites, mainly alkaloids, 
which they produce inside their hosts (Bush et al. 
 1997 ; Clay and Schardl  2002 ). Interestingly, 
alkaloids have been detected in low concentra-
tions in bark samples of forest trees such as 
Norway spruce ( Picea abies ), and variation 
between samples was found to be high (Schiebe 
et al.  2012 ). Norway spruce is otherwise known 
to rely heavily on carbon-based phenolics and 
terpenoids in its defensive chemistry (Witzell and 
Martín  2008 ; Schiebe et al.  2012 ). In another 
conifer, Sitka spruce ( Picea sitchensis ), piperi-
dine alkaloids were studied by Gerson and Kelsey 
( 2002 ) who found that the total alkaloid concen-
tration, as well as diversity of individual alkaloid 
compounds, was higher in bark than in needles of 
Sitka spruce. It cannot be excluded that fungal 
endophytes might contribute to the observed 
patchy patterns of alkaloids in trees: for example, 
piperine has been detected in an endophytic 
fungus (Verma et al.  2011 ), and endophyte assem-
blage can show tissue-specifi c variation (e.g., Sun 
et al.  2011 ; Martín et al.  2013 ). More targeted 
research is needed to explore the overlapping 
chemical domains of endophytes and their host 
trees. In general, however, the potential role of 
endophytes as a factor causing variation in “plant 
chemistry” has been neglected, despite the 
accumulating evidence showing how some endo-
phytes have the ability to produce the same or 
similar bioactive compounds as those originated 
from their host plants (Stierle et al.  1993 ; 
Eyberger et al.  2006 ; Kusari et al.  2008 ; Zhao 

et al.  2011 ). Thus, many bioactive metabolites 
that have been regarded as plant products in fact 
can be partly or completely fungal products. The 
contribution of endophytes to plant defensive 
chemistry should thus be better incorporated 
in future studies on chemical ecology also in the 
case of forest trees. 

 In contrast to the vertically transmitted grass 
endophytes, tree endophytes generally spread 
horizontally from the environment with wind and 
rain, and the colonizations may be localized 
(Saikkonen et al.  1998 ,  2004 ; Saikkonen  2007 ). 
Thus, while a lot of the information gathered 
from grass-endophyte studies is likely to be rele-
vant also for the tree-endophyte interactions, it is 
important to keep in mind the special traits of the 
trees that may affect the expression and function-
ality of the endophyte activities. As long-lived, 
large-sized plants, trees are likely to be exposed 
to attacks by pathogens (and pest) continuously 
and simultaneously during their whole life time. 
Diseases like stem rots or cankers often develop 
under long time periods, in the beginning often 
without external symptoms. Therefore, the 
spatial and temporal scales for the protection 
differ considerably between large forest trees and 
annual plants and perennial herbs. Even within 
the tree, the mechanisms of protection by endo-
phytes are likely to differ. Nutritious leaf tissues 
are readily exposed to environmental inocula and 
may support generalist endophytes better than 
the less nutritive woody tissues. The xylem of the 
trees is protected by the bark and tends to support 
an endophyte fl ora with less and more specialized 
species that can cross the anatomical borders 
(Baum et al.  2003 ). The woody parts of trees are 
known for their ability to compartmentalize dam-
ages like stem rot or cankers by formation of 
tyloses, strengthening of cell walls, and buildup 
of reaction zones (Shigo  1984 ). Whether endo-
phyte infections affect these processes is not 
known. Endophyte communities in wood may, 
however, contribute to the wood degradation in 
senescing and dead wood (Schwarze et al.  2000 ; 
Baum et al.  2003 ). 

 In addition to the ecological dependencies of 
endophyte-based biocontrol of tree diseases, we 
also need to better understand the anatomical, 
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physiological, and molecular mechanisms behind 
it. Upon entrance and during spread and growth 
inside the trees, endophytic and pathogenic fungi 
are likely to encounter the same or similar tree 
defensive mechanisms of the host. Because endo-
phytes and pathogens seem to possess many of 
the same virulence factors (Schulz and Boyle 
 2006 ), their microbe-associated molecular pat-
terns (MAMPs, molecular signatures typical of 
whole classes of microbes; Boller and Felix 
 2009 ) may be recognized in a similar manner by 
the host plant. In coevolved plant-endophyte 
interactions, the virulence of the fungus and the 
defensive responses of the host tree are in a bal-
ance that does not result in development of dis-
ease (Schulz and Boyle  2006 ). However, if, for 
example, the defensive mechanisms affecting 
pathogenic fungi are enhanced by resistance 
breeding or by forest management actions, such 
as use of fertilizers, the conditions for benefi cial 
endophyte infections might become less favor-
able. For instance, elm ( Ulmus minor ) trees with 
low susceptibility against Dutch elm disease also 
harbored a poorer endophyte diversity and fre-
quency in xylem tissues than the conspecifi c trees 
that were known to be more susceptible to the 
disease (Martín et al.  2013 ). Thus, it is possible 
that inoculations with endophytes are less suc-
cessful or effective in tree genotypes that show 
high resistance to pathogens.  

3.2     Biocontrol Strategies 

 In order to utilize the abovementioned mecha-
nisms in biological control of tree diseases, two 
general approaches can be envisioned: (1) appli-
cation of endophytes, mixtures of endophytes, or 
bioactive products from endophytes on trees and 
(2) management of the endophyte communities 
at the habitat level, e.g., within a forest stand. Of 
these two general strategies, the fi rst is best fi tted 
for smaller spatial scales, e.g., urban forest stands 
with limited number of trees to be treated, while 
the second could be applied also on larger areas 
with higher number of trees to be treated, e.g., 
production forests or larger recreation forests. 
For the fi rst approach, two temporal strategies can 

be employed: (a) preventive application, before 
the targeted pathogen attacks, and (b) therapeutic 
application, after the disease is discovered. The 
second option, habitat level management, would 
be likely to require a longer period to reach a full 
effect and could be seen mainly as a preventive 
method. 

 Some endophytes exist as latent pathogens or 
dormant saprophytes (Saikkonen et al.  2004 ). 
Triggered by environmental or tree intrinsic sig-
nals, some endophytes may switch to a sapro-
phytic or pathogenic lifestyle, and, for example, 
the wood-inhabiting endophytes may start to 
decompose wood as the tree gets senescent 
(Saikkonen  2007 ; Sieber  2007 ; Rodriguez et al. 
 2011 ). This possibility needs to be carefully 
taken into consideration in planning biocontrol 
strategies based on endophytes. If alien endo-
phytes would be introduced, as in the  classical 
biocontrol  strategy (Waage and Greathead  1988 ; 
Eilenberg et al.  2001 ), they might become inva-
sive and show higher virulence towards their 
hosts in the introduced conditions, as compared 
to their native conditions (cf. Keane and Crawley 
 2002 ). Therefore, the classical version of bio-
logical control cannot be considered as the fi rst 
choice strategy in endophyte-based biocontrol of 
forests. Effective use of another established bio-
control strategy,  inundation , defi ned by Eilenberg 
et al. ( 2001 ) as “the use of living organisms to 
control pests when control is achieved exclu-
sively by the released organisms themselves” 
(i.e., the progeny of the released population is 
not counted for and the desired effect is correc-
tive) is obscured by the spatial and temporal con-
tinuum of fungal generations. In contrast, 
biocontrol based on  inoculation , “the intentional 
release of a living organism as a biological con-
trol agent with the expectation that it will multi-
ply and control the pest for an extended period, 
but not permanently” (Eilenberg et al.  2001 ), 
appears as an applicable strategy for forest 
tree protection using endophytes. Yet another 
applicable strategy,  conservation , is discussed in 
the end of this chapter. 

 From the ecological point of view, the opera-
tional basis of biocontrol, which relies on the activ-
ity of a microbe or microbes (e.g., endophytic 
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fungus or fungi) and is targeted against other 
microbes (e.g., disease-causing fungi or oomyce-
tes), may differ considerably from the classical 
biocontrol of weeds and herbivores. In the classi-
cal biocontrol, the  top-down  regulation (natural 
enemies, predators) controls the population (Bale 
et al.  2008 ). Except for direct mycoparasitism, 
fungal interactions leading to biocontrol are more 
likely to involve  bottom-up  regulation, e.g., the 
quality of the wood as a substrate for the endo-
phyte and the pathogen. This kind of regulation 
might include higher nonspecifi city than the 
prey-predator or parasite-host interactions. For 
instance, it is likely that the niches of some benefi -
cial fungi overlap with that of the pathogen (Fodor 
 2011 ). An endophyte that effectively competes 
with a pathogen might therefore also outcompete 
several other fungi, some of which might be ben-
efi cial for the host tree or functionally important 
for other partners in the forest ecosystem (e.g., as 
a wood- degrading entity). Yet another difference 
between endophyte- based and classical biocontrol 
systems could be that the density-dependent 
feedbacks, which regulate the populations of 
some biocontrol agents (Bale et al.  2008 ), may 
not function in a similar manner in fungal popula-
tions. Nevertheless, it is known that fungi can show 
developmental transitions induced by environ-
mental factors. For instance, Hornby et al. ( 2004 ) 
found that  Ceratocystis  ( Ophiostoma )  ulmi , the 
causal agent of Dutch elm disease, went through 
a developmental switch between yeast and fi la-
mentous type in response to density- dependent 
extracellular signal (possibly lipophilic isopren-
oids), which did not cross-react with another 
fungus ( Candida albicans ). The quorum-sensing 
mechanisms in dimorphic fungi are also an essential 
research fi eld for future studies.   

4     Engineering of Endophyte 
Communities for Improved 
Tree Health? 

 Several environmental factors may have an 
impact on the outcome of the interactions 
between trees, endophytes, and pathogens. The 
effect of environment can operate through 

direct effects on any of the partners. For 
instance, temperature and humidity can strongly 
regulate the development of pathogen or endo-
phyte populations. Indirect effects, e.g., fertil-
ization of trees that alters their chemical quality 
(Edenius et al.  2012 ), could have consequences 
for the microbial activity within the trees. For 
example, the alkaloid production of endophytes 
may respond to the nitrogen status of their hosts 
(Lehtonen et al.  2005  and references therein), 
potentially resulting in altered endophyte-based 
defense in fertilized trees. Interestingly, this 
kind of endophyte- mediated mechanisms could 
explain some of the ambiguous results that have 
been obtained in studies testing the effects of 
nitrogen fertilization on herbivory in the con-
text of plant defense theories and carbon-based 
metabolites (Witzell and Martín  2008 ). If unex-
plored, such dependencies between endophyte 
infections, environment, and tree genotypes 
may profoundly destabilize and reduce the 
effectiveness of endophyte- based forest protec-
tion solutions. On the other hand, such depen-
dencies may also provide possibilities to 
manipulate the available endophyte inoculum 
in a way that promotes tree health. 

 Different silvicultural actions may alter the 
quality of woody tissues as a substrate and habitat 
for endophytes. Silvicultural actions, e.g., 
removal of slash (Bernhold et al.  2008 ) or utili-
zation of nurse plants (Jensen et al.  2012 ), may 
also modify the surrounding vegetation that is a 
source of inoculum for both pathogens and 
endophytes and regulate the microclimate that 
is important for microbes. Helander et al. 
( 2006 ) investigated the effects of silviculture 
and local environmental variables on endophyte 
frequencies in silver birch ( Betula pendula  Roth) 
leaves, sampled from seedling stands, managed 
mature forest, and old natural forest. They 
found that the sapling stands had the highest 
endophyte frequency, possibly because of a 
high availability of spores or favorable micro-
climate. The managed forest had the lowest total 
infection frequency, and the old natural forest 
tended to have the most diverse identifi ed fungal 
species community, but the difference was not 
statistically signifi cant (Helander et al.  2006 ). 
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In a study with endophytes in plantation-cultured 
poplars, Martín- García et al. ( 2011 ) emphasize 
that silvicultural factors such as rotation length, 
site quality, and possible fertilization regime 
may affect the endophytic fungi. They found 
that fungal species richness and relative isola-
tion frequency were higher in young stands 
than in adult stands and that the lowest richness 
levels were observed in adult stands located in 
poor sites. 

 Biocontrol through  conservation  method is 
defi ned as “modifi cation of the environment or 
existing practices to protect and enhance specifi c 
natural enemies or other organisms to reduce the 
effect of pests,” and unlike the other methods, it 
does not include actual release of organisms 
(Eilenberg et al.  2001 ). Treatment of forest trees 
with selected endophytes is not always a practi-
cally or ecologically feasible method, and there-
fore the conservation method, applied in a 
landscape perspective (Tscharntke et al.  2007 ), 
could be a better option for disease control in 
larger forests. However, in order to engineer the 
endophytic diversity in forests so that it would 
support the vitality and disease resistance of 
trees, we need more information about the base-
line endophyte communities in healthy trees. It 
can be of special interest to characterize the 
endophytic microbiome of tree individuals that 
remain vital in areas that otherwise are severely 
affected. Similar to the discovery of “suppressive 
soils,” rich with plant growth-promoting bacteria 
(Compant et al.  2005 ) that promote plant resis-
tance, it might be possible to discover endophytic 
communities that suppress forest tree diseases.     
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    Abstract  

  All plants in natural ecosystems appear to be symbiotic with endophytes. 
This includes many economically important agricultural products as well 
as essential food crops. The endophytes confer fi tness benefi ts to their 
hosts in various and variable aspects such as growth enhancement and 
increased reproductive success and confer tolerance to biotic and abiotic 
stresses. In this chapter we will focus on the biocontrol activity of endophytes, 
i.e., the biological effects of endophytes on herbaceous or non-herbaceous 
host plants and the mechanisms, if known, by which the endophytes 
increase the fi tness of their hosts.  
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1         Introduction 

 All plants in natural ecosystems appear to be 
symbiotic with fungal endophytes (Rodriguez 
and Redman  2008 ; Rodriguez et al.  2009b ;    Singh 
et al.  2011a ). It is estimated that 20–30 % of 
grass species worldwide, including many eco-
nomically important forage and turf grasses, are 
associated with endophytic fungi (Leuchtmann 
 1992 ). Throughout its motionless life, the plant 
is exposed to various biotic and abiotic stresses, 
from which it can either escape or mitigate 
(Rodriguez and Redman  2008 ). However, since 
grasses lack the biosynthetic capacity for 
the production of secondary metabolites, which 

are useful in the long-term survival strategy 
(Kuldau and Bacon  2008 ), their dependence on 
microorganisms that produce secondary metabo-
lites is more pronounced. 

 Symbiosis is defi ned as “the permanent 
association between two or more specifi cally 
distinct organisms, at least during a part of the 
life cycle” (de Bary  1879 ). The association of 
fungal symbionts with plants can be in a form of 
endophyte or as mycorrhizal fungi (Singh et al. 
 2011a ). Unlike mycorrhizal fungi that colonize 
plant roots and grow into the rhizosphere, 
endophytes reside entirely within plant tissues 
and may grow within roots, stems, and/or leaves, 
emerging to sporulate at plant or host-tissue 
senescence, and their presence in the plant tissue 
causes no symptoms of disease (Sherwood and 
Carroll  1974 ; Hallmann et al.  1997 ; Carroll     1988 ; 
Stone et al.  2004 ). Similarly, a variety of bacteria 
have been reported to maintain endophytic lifestyle 
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in plants (Reinhold-Hurek and Hurek  2011 ; Mei 
and Flinn  2010 ; Dudeja et al.  2012 ; Rosenblueth 
and Martinez-Romero  2006 ). It is generally 
assumed that many bacterial endophyte commu-
nities are the product of a colonizing process 
initiated in the root zone (McInroy and Kloepper 
 1995 ; Sturz et al.  2000 ; Welbaum et al.  2004 ). 
However, they may also originate from other 
sources such as the phyllosphere, the antho-
sphere, or the spermosphere (Hallmann et al.  1997 ). 
In contrast to extensively studied grass endo-
phytes, endophytes associated with woody 
angiosperms are poorly known (Arnold et al. 
 2003 ). Even though examples of endophytes and 
woody plants associations are published exten-
sively in the last few years. 

 In this chapter, we will focus on the biocontrol 
activity of endophytes (both fungi and bacteria), 
i.e., the biological effects of the endophytes on 
herbaceous or non-herbaceous host plants. 
Endophytes confer fi tness benefi ts to their hosts 
in various and variable aspects. These aspects 
include growth enhancement and tolerance to 
biotic and abiotic stresses. The mechanisms of 
each of these aspects and their signifi cance are 
detailed below.  

2     Herbaceous Plants 

 Herbaceous plants from the family Poaceae 
(known as “true grasses”) contribute to the devel-
opment of humankind since there are several 
important species that serve as essential food 
crops (e.g., wheat, rice, maize, and barley), as 
forage of livestock, and for recreational and 
conservation purposes (Kuldau and Bacon  2008 ). 
Other herbaceous plants such as Fabaceae and 
Asteraceae families also comprise a valuable 
source of food. Here, we review the biocontrol 
effects of endophytes on herbaceous host plants. 

 In general, endophytic fungi of grasses can be 
classifi ed into two main groups, constitutive 
mutualists and inducible mutualists (Carroll 
 1988 ). It is generally accepted that the former 
represents clavicipitaceous endophytes while 
the latter represents nonclavicipitaceous endo-
phytes (Singh et al.  2011a ). These two groups are 

different in evolutionary relatedness, taxonomy, 
plant hosts, and ecological functions (Rodriguez 
et al.  2009b ). The clavicipitaceous endophytes 
represent a small number of phylogenetically 
related clavicipitaceous species that exhibit a 
narrow host range (limited only to some cool- 
and warm-season grasses) and extensively colo-
nize plant shoot and rhizome, mainly with one 
dominant fungal isolate/genotype (Bischoff and 
White  2005 ; Rodriguez et al.  2009b ; Wille et al. 
 1999 ). The transmission of clavicipitaceous 
endophytes is mainly vertical, i.e., maternal 
plants passing fungi onto offspring via seed 
infections (Saikkonen et al.  2002 ). The clavicipi-
taceous endophytes may further be subdivided 
into three types (Clay and Schardl  2002 ); how-
ever, in this review we will discuss the biocon-
trol effects of type III only, because of their 
symptomless behavior. On the other hand, the 
nonclavicipitaceous endophyte group represents 
a broad host range – these endophytes can be 
recovered from asymptomatic tissues of every 
major lineage of land plants (Rodriguez et al. 
 2008a ; Higgins et al.  2007 ), and from all terres-
trial ecosystems (Arnold and Lutzoni  2007 ), and 
considered to be the largest group of fungal sym-
bionts (Petrini  1996 ). These endophytes are 
capable of forming limited to extensive coloni-
zation in the host tissue, their transmission pat-
tern can be either vertical or horizontal, and they 
are able to colonize both above- and below-
ground tissues (Rodriguez et al.  2009b ; Singh 
et al.  2011a ). The nonclavicipitaceous endo-
phytes can be further subdivided into three func-
tional classes based on host colonization pattern, 
mechanism of transmission between host gener-
ations,  in planta  biodiversity levels, and ecologi-
cal function (Rodriguez et al.  2009b ), yet, in this 
article, we generalize and refer to the nonclavi-
cipitaceous endophyte as one functional group. 

2.1     Increased Plant Growth 

2.1.1     Clavicipitaceous Endophytes 
 Endophyte infection increases growth rate of 
perennial ryegrass and tall fescue (Clay  1988 ). 
Controlled environmental studies conducted on 

O. Liarzi and D. Ezra



337

single cultivars and natural ecotypes of the 
grasses tall fescue ( Festuca arundinacea ), 
meadow fescue ( Lolium pratense ), and perennial 
ryegrass ( Lolium perenne  L.) suggest that their 
epichloe endophytes ( Neotyphodium coenophi-
alum ,  N. uncinatum , and  N. lolii , respectively) 
enhance biomass production, tiller numbers and 
survivor, seed production, and root growth 
(Belesky et al.  1989 ; de Battista et al.  1990b ; 
Funk et al.  1993 ; Latch et al.  1985b ; Clay  1987 ; 
Joost  1995 ). In tall fescue and meadow fescue, 
the endophytes increase root growth, extend root 
hairs, and decrease root diameter (Malinowski 
et al.  1999b ; Malinowski and Belesky  2000 ). An 
increase in the rate of growth and herbage yield 
may be due to physiological response of the grass 
from an increase in endogenous levels of plant 
hormones, which may be an additive effect from 
the fungal endophyte or from an increase in the 
water and nutrient content (Kuldau and Bacon 
 2008 ). Enhanced    plant growth observed in 
endophyte- infected grasses is attributed to either 
or both production of synthetic growth hormones 
or phytohormones, such as indole acetic acid 
(IAA), which controls tillering in grasses (Joost 
 1995 ), and has been demonstrated to accumulate 
in vitro in cultures of  N. coenophialum  (de 
Battista et al.  1990a ) and related species (Porter 
et al.  1985 ). The fi nding of small molecular 
weight indole compounds such as indole-3-acetic 
acid   , indole-3- ethanol, and several indole glycerols 
in in vitro cultures of endophytes suggests that 
these chemicals may serve as synthetic growth 
hormones secreted by the endophyte and promote 
plant growth (Porter et al.  1977 ,  1985 ). In addi-
tion, it has been suggested that loline alkaloids, 
secondary metabolites secreted by the endophyte, 
serve as allelochemicals responsible for allelopa-
thy phenomenon found in plants, particularly 
rosaceous species, grown in soils planted pre-
viously with endophyte-infected tall fescue 
(Petroski et al.  1990 ). The results of such a phe-
nomenon produce a competitive edge for infected 
grasses, resulting in an increase in population 
density. It was found that the infl uence of  N. coe-
nophialum  on the growth of tall fescue begins at 
germination because endophyte-infected seeds 
exhibit higher germination rates than endophyte-

free seeds in half of the genotypes tested 
(Pinkerton et al.  1990 ), probably in a mechanism 
that involves reduction of the relative water gain 
during imbibitions (Rice et al.  1990 ). Lower ger-
mination and seedling vigor of endophyte-free 
tall fescue grass caused 20 % reduction in ground 
cover relative to endophyte-infected plants (Joost 
 1995 ). Recent evidence suggests that morpho-
logical changes in the endophyte  Neotyphodium 
lolii  affect its host ( Lolium perenne ) phenotype: 
old mycelium- induced dwarf symptoms in a non-
mutational manner (Simpson et al.  2012 ). It 
should be noted that the growth promotion 
activity of the  endophyte might be dependent 
on environmental conditions. For example, in 
symbiotic  Agrostis perennans  plants, the enhanced 
infl orescence occurs under conditions of res-
tricted light availability (Davitt et al.  2010 ). 

 To conclude, the exact biochemical basis for 
endophyte-induced growth is still obscure, but it 
is suggested that production of indole acetic acid 
and/or other phytohormones may play a role in 
plant growth alternations (de Battista et al.  1990a ; 
Yue et al.  2000 ).  

2.1.2     Nonclavicipitaceous 
Endophytes 

 Most nonclavicipitaceous endophytes increase 
host shoot and/or root biomass, probably in a 
mechanism that involves induction of plant 
hormones by the host and/or biosynthesis of 
plant hormones by the fungi (Rodriguez et al. 
 2009a ; Tudzynski and Sharon  2002 ). Nevertheless, 
the exact nature of plant growth promotion effects 
is not always clear (Druege et al.  2007 ; Pham 
et al.  2004 ). The plant-root-colonizing basidio-
mycete fungus  Piriformospora indica  has been 
obtained from the rhizosphere soils of the 
woody shrubs  Prosopis julifl ora  and  Zizyphus 
nummularia  in the sandy soils of the arid Thar 
Desert (Verma et al.  1998 ). This fungus exhibits 
strong promotion of vegetative growth during 
its symbiosis with species from various plant 
families, including cereal crops, rice, wheat, 
and barley as well as Dicotyledoneae (reviewed 
in Franken  2012 ), and this growth-promoting 
effect can occur also under abiotic stress condi-
tions (Shahabivand et al.  2012 ).  P. indica  is also 
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important due to its ability to increase tomato 
fruit biomass under indoor production conditions 
(Fakhro et al.  2010 ).  P. indica  promotes the initial 
stages of plant development and therefore an 
earlier switch to generative stages (Barazani et al. 
 2005 ; Achatz et al.  2010 ; Andrade-Linares et al. 
 2012 ). The mechanism for this promotion is 
probably based on acceleration of root develop-
ment (Waller et al.  2005 ; Baltruschat et al.  2008 ) 
and earlier expression of age-dependent genes 
(Waller et al.  2008 ). In addition,  P. indica  pro-
duces auxin (Sirrenberg et al.  2007 ) and induces 
auxin-regulated genes in barley (Schäfer et al. 
 2009 ) and Chinese cabbage (Lee et al.  2011 ), 
which cause strong growth- promoting effect of 
the roots. Yet, evidence suggests that indole-
3-acetic acid is not required for growth promo-
tion in barley, but is involved in the establishment 
of biotrophic colonization in the roots (Hilbert 
et al.  2012 ). Moreover, evidence suggests that 
 P. indica  inhibits ethylene signaling and thereby 
contributes to plant growth promotion (Barazani 
et al.  2007 ; Schäfer et al.  2009 ). Additional 
phytohormones synthesized or manipulated by 
 P. indica  include cytokinins (Vadassery et al. 
 2008 ), gibberellins, brassinosteroids, and abscisic 
acid (Schäfer et al.  2009 ). The latter is proposed 
to enhance plant growth via calcium (Vadassery 
et al.  2009 ), phosphoinositide, and protein 
kinases (Camehl et al.  2011 ). Thus, a wide set of 
phytohormones and their signaling networks 
appear to be involved in increasing early root 
growth promotion, which leads to greater bio-
mass.  P. indica  also activates nitrate reductase 
that plays a role in nitrate acquisition and also a 
starch-degrading enzyme glucan water dikinase 
involved in early events of starch degradation in 
the plants as tobacco and  Arabidopsis  (Sherameti 
et al.  2005 ). 

 More examples for nonclavicipitaceous 
endophytes that promote plant growth are the 
endophytic fungi  Phoma glomerata  LWL2 and 
 Penicillium  sp. LWL3 that both promote host- 
cucumber plant growth probably in a mecha-
nism that involves the phytohormones 
gibberellins and indole acetic acid that they 
secrete (Waqas et al.  2012 ). Additional strain of 
 Penicillium  ( Penicillium citrinum  KACC43900) 

is a growth promotion fungal endophyte isolated 
from the roots of the sand dune fl ora ( Ixeris 
repenes  (L.) Gray) and exerts gibberellin-pro-
ducing capacity (Khan et al.  2008 ).  Epicoccum 
nigrum  is an important sugarcane endophyte 
fungus that increases root system biomass 
(Fávaro et al.  2012 ). This phenomenon could be 
the outcome of plant hormone production by 
the endophyte, previously observed in culture 
medium (Rowan and Latch  1994 ). The culture 
fi ltrate of  Paecilomyces formosus  LHL10, an 
endophytic fungus isolated from cucumber 
roots, signifi cantly increases the growth of 
gibberellin- defi cient mutant rice cultivars. 
Analysis of this culture fi ltrate revealed the 
presence of both gibberellins and indole acetic 
acid phytohormones (Khan et al.  2012a ). 
Another fungal endophyte from cucumber, 
 Exophiala  sp. LHL08, also promotes its host 
growth by production of gibberellins (Khan 
et al.  2011b ). The endophyte PGP-HSF, iso-
lated from  Mentha piperita , enhances its vege-
tative growth (Mucciarelli et al.  2002 ), and it is 
localized in peppermint green tissues and 
improves peppermint metabolic and photosyn-
thetic apparatus (Mucciarelli et al.  2003 ). In 
rice ( Oryzae sativa ), the growth and develop-
ment is regulated epigenetically by a fungal 
endophyte: in symbiotic plants the resources 
are preferentially allocated into root growth 
until root hairs are established, therefore 
increasing the rate of expansion of the symbi-
otic roots (Rodriguez et al.  2009a ). Also, the 
rice endophyte  Pantoea agglomerans  YS19 
promotes host plant growth probably due to 
endophytic production of phytohormones, 
enhancing the transportation of photosynthetic 
assimilation products from the fl ag leaves 
(source) to stachys (sink) (Feng et al.  2006 ). 

 Not only fungal endophytes promote growth, 
but also bacterial endophytes exert plant growth 
effects (Sturz et al.  2000 ; Welbaum et al.  2004 ; 
Compant et al.  2005a ; Dudeja et al.  2012 ). 
 Burkholderia phytofi rmans  strain PsJN is a 
plant- promoting bacterial endophyte, isolated 
from surface-sterilized onion roots (Sessitsch 
et al.  2005 ) exhibiting a broad host range 
including potatoes, tomatoes, grape vines, rice, 
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and the bioenergy crop candidate switchgrass 
( Panicum virgatum  L.) cv. Alamo (Compant 
et al.  2005b ; Barka et al.  2000 ; Mattos et al. 
 2008 ; Conn et al.  1997 ; Nowak et al.  2003 ; Kim 
et al.  2012 ). This endophyte produces high level 
of 1-aminocyclopropane- 1-carboxylic acid 
(ACC) deaminase (Sessitsch et al.  2005 ) that 
catalyzes the cleavage of 1-aminocyclopropane-
1-carboxylic, the immediate precursor of ethyl-
ene, and therefore lowers the ethylene levels in 
host plants, leading to stimulation of plants 
growth (Glick et al.  1998 ). It is also capable to 
produce auxin that may have a stimulatory 
effect on plant development (Mattos et al.  2008 ). 
Evidence suggests that the activity of quino-
linate phosphoribosyltransferase plays a role in 
the signal pathway for promotion of plant 
growth by the endophyte  Burkholderia  sp. strain 
PsJN (Wang et al.  2006 ). The endophytic bacte-
ria  Gluconacetobacter diazotrophicus  isolate 
IS100 can colonize sugarcane roots and signifi -
cantly improve plant growth and nutrient uptake 
(Suman et al.  2005 ; Saravanan et al.  2008 ). 
Additional examples for plant growth promo-
tion and biomass yield increase by microbial 
endophytes can be found in the reviews by Mei 
and Flinn ( 2010 ) and Hardoim et al. ( 2008 ). 

 The major sources of nitrogen for agricul-
tural soils are from mineral fertilizers and bio-
logical nitrogen fi xation (Sturz et al.  2000 ). 
Rhizosphere- based diazotrophic bacteria tend 
to retain the products of nitrogen fi xation for 
their own use, and therefore the benefi t to the 
crop is only realized after the bacterial death 
(van Berkum and Bohlool  1980 ; Okon  1985 ). 
In contrast, endophytic nitrogen-fi xing bacteria 
are believed to be capable of contributing 
directly to the nitrogen requirements of their 
host in sugarcane (Boddey et al.  1995 ; Sevilla 
et al.  2001 ), rice (Ladha and Reddy  1995 ; Yanni 
et al.  1997 ; Hurek and Reinhold-Hurek  2003 ), 
and wheat (Webster et al.  1997 ). Additional 
examples for endophytic nitrogen- fi xing bacte-
ria can be found in the interior roots of rice, 
maize, and grasses as reviewed in Sturz et al. 
( 2000 ). For more general modes of actions for 
plant growth enhancement by bacterial endo-
phyte, see Sturz et al. ( 2000 ).   

2.2     Stress Tolerance 

 Fitness benefi ts conferred by the endophyte 
contribute to or are responsible for plant adapta-
tion to stress (Stone et al.  2000 ; Rodriguez et al. 
 2004 ). Therefore, the endophytes are acting as 
biological triggers that control the activation of 
host stress response (Rodriguez et al.  2004 ). We 
differentiate between biotic and abiotic stress. 
Biotic stress could be the outcome of interspe-
cifi c competition, invertebrate pests, herbivory of 
mammals, and diseases caused by phytopatho-
gens. Abiotic stress could be the outcome of 
heavy metal pollutions, drought, salinity, and 
temperature stresses. Abiotic stress is the primary 
cause of crop loss worldwide, reducing average 
yields for most major crop plants by more than 
50 % (Boyer  1982 ; Bray et al.  2000 ; Sturz et al. 
 2000 ; Singh et al.  2011a ). The mechanisms by 
which endophytes confer stress tolerance are 
described below. 

2.2.1     Biotic Stress 
   Interspecifi c Competition 
  Centaurea stoebe  is an invasive forb in North 
America. The presence of Alternaria endophyte 
enhances its competitive ability without increas-
ing its size. The mechanism by which the endo-
phyte increases its host competiveness is 
unknown, but it is not related to increased growth 
(Aschehoug et al.  2012 ). It is suggested that the 
mechanisms for interspecifi c competition involve 
increased clonal growth and lateral spread, pro-
duction of allelochemicals, increased seedling 
vigor and seed yield (Kuldau and Bacon  2008 ; 
Bush et al.  1997 ; Malinowski et al.  1999a ), as 
well as increased number of tillers, greater leaf 
elongation rate, and altered root architecture 
(Malinowski and Belesky  2000 ). In fi eld experi-
ments, infected tall fescue suppressed other 
grasses and forbs relative to uninfected fescue 
(Clay and Schardl  2002 ). The following evidence 
emphasizes the competitive advantage of 
endophyte- infected grasses: the number of white 
clover ( Trifolium repens  L.) plants declined in 
pastures dominated by endophyte-infected, 
compared with noninfected, perennial ryegrass 
(Percival and Duder  1983 ; Sutherland and 
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Hoglund  1989 ). An example for involvement of 
allelochemicals is the fi nding that seed extracts of 
endophyte-infected tall fescue inhibit germina-
tion of  Trifolium  spp. (Springer  1997 ). It is 
suggested that loline alkaloids enhance the 
competitive ability of endophyte-infected grasses 
by retarding the establishment of competitors in a 
sward. This is based on the fi nding that loline 
alkaloids are the only group of endophyte-related 
alkaloids shown to reduce germination rate of 
monocot and dicot seeds (Petroski et al.  1990 ). 
It should be noted that endophyte infection seems 
to improve the ability of tall fescue plants to 
survive environmental stresses, whereas no dif-
ference in the plant survival observed under 
temperate locations (Bouton et al.  1993 ; Joost 
 1995 ). On the other hand, it was shown that the 
presence of the fungal endophyte  Neotyphodium 
schardlii  in its host grass ( Cinna arundinacea ) 
results in reduction of host survival but increases 
regeneration, and therefore the negative effect on 
plant survival is overwhelmed by the benefi cial 
effect on regeneration (Rudgers et al.  2012 ). 
Recently, it was demonstrated that hybridization 
of symbiotic  Neotyphodium  endophytes may 
increase the competitive potential of its host 
( Festuca arizonica ) in stressful environments, 
and this may enable niche expansion of Arizona 
fescue in the environments with low resources 
(Saari and Faeth  2012 ).  

   Invertebrate Pests 
 Endophytic fungi belonging to the genus 
 Neotyphodium  confer resistance to infected host 
grasses against insect pests. This can be achieved 
by the production of endophyte-related alkaloids 
or alkaloid groups, peramine, lolitrem B, ergova-
line, and the lolines. For example, the corn fl ea 
beetle ( Chaetocnema pulicaria  Melsheimer) 
feeding and survival is reduced by infection of 
tall fescue with  N. coenophialum , and the sug-
gested mechanism is antixenosis (Ball et al. 
 2011 ). Seed predation is lower in endophyte- 
containing tall fescue grasses by cocksfoot moth 
(Saari et al.  2010 ). Similarly, in a native grass 
experiment, herbivores show a signifi cant prefer-
ence for endophyte-free plant material, and the 
presence of endophyte reduces the performance 

of the Orthoptera  Schistocerca americana  
(Crawford et al.  2010 ). Endophyte in ryegrass 
reduces Argentine stem weevil oviposition, 
feeding, and also larval survival (Barker et al. 
 1984a ,  b ). This is achieved by the production of 
secondary metabolite by the endophyte such as 
peramine (being the most potent (Tanaka et al. 
 2005 )), ergovaline (Popay et al.  1990 ), and loliterm 
B (Prestidge and Gallagher  1985 ). Endophyte 
presence in ryegrass deters the adult black beetle 
( Heteronychus arator ) resulting in fewer eggs 
and larvae (Ball and Prestidge  1992 ), and this 
effect is mediated by ergovaline (Ball et al.  1997 ). 
The presence of endophyte in ryegrass reduces 
mealy bug ( Balanococcus poae ) numbers (Pennell 
et al.  2005 ), probably due to failure of the dis-
persing crawler stage of the bug to establish on 
plants (Pearson  1989 ). In perennial ryegrass, 
 Lolium perenne  L., the hairy chinch bug ( Blissus 
leucopterus hirtus  Montandon) damages and 
population density decreases linearly as the pro-
portion of  Neotyphodium  endophyte infection 
increases (Richmond and Shetlar  2000 ). The 
deterrent activities of the lolines and peramine 
against sucking insects may also help to reduce 
infections by plant viruses vectored by those 
insects (Mahmood et al.  1993 ). It should be noted 
that loline alkaloids represent an inducible 
defense in the symbiotum since its level increases 
in response to clipping (Bush et al.  1997 ; 
Craven et al.  2001 ). Similarly, endophyte genes 
for secondary metabolite biosynthesis are only 
expressed in the plant and under conditions of 
restricted growth (Tanaka et al.  2012 ). 

 In general,  Neotyphodium-  and  Epichloë-   
infected grasses deter approximately 45 species 
of invertebrate pests belonging to the following 
families: Aphididae, Chrysomelidae, Cicadidae, 
Curculionidae, Gryllidae, Lygaeidae, Miridae, 
Noctuidae, Pyralidae, Scarabaeidae, and Teneb-
rionidae (Kuldau and Bacon  2008 ). Studies sug-
gest that secondary metabolites of the fungal 
endophyte contribute to insect toxicity, espe-
cially pyrrolopyrazine alkaloid peramine (Ball 
et al.  1995 ; Rowan et al.  1986 ), and for a broader 
range ergot alkaloid ergovaline, pyrrolizidine 
loline alkaloids (Siegel et al.  1990 ; Wilkinson 
et al.  2000 ; Riedell et al.  1991 ), and janthitrems 
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(Tapper and Lane  2004 ). A detailed list of insect 
and nematodes pests deterred by  Neotyphodium / 
Epichloë  species can be found in Kuldau and 
Bacon ( 2008 ). 

 In addition to the grass species, the endophyte 
 Fusarium oxysporum  strain 162 confers resis-
tance to the nematodes  Meloidogyne incognita  
in tomato (Dababat and Sikora  2007 ) and 
 Radopholus similis  in banana in combined appli-
cation with the egg pathogen  Paecilomyces 
lilacinus  strain 251 and the antagonistic bacteria 
 Bacillus fi rmus  (Mendoza and Sikora  2009 ). 
Interestingly,  N. coenophialum  is localized in 
the aboveground tissues of tall fescue, whereas 
the root-knot nematodes ( Meloidogyne mary-
landi ) attack the roots. It is suggested that the 
endophyte- induced structural changes in the root, 
i.e., thickening of endodermal cell walls, might 
reduce the ability of the nematode to penetrate 
the stele (Gwinn and Bernard  1993 ; Kimmons 
et al.  1990 ). However, the migratory nematode 
 Pratylenchus scribneri  is able to penetrate the 
roots of  N. coenophialum - infected  tall fescue; 
yet, its reproduction is inhibited by the endophyte 
presence in an unknown mechanism (Kimmons 
et al.  1990 ). 

 It should be noted that the effects of endophyte- 
infected grasses on the preference and perfor-
mance of phytophagous insects may be variable 
(Clement et al.  2011 ; Tintjer and Rudgers  2006 ). 
It was found that for the black cutworm  Agrotis 
ipsilon  (Hufnagel),  Neotyphodium  endophyte- 
mediated resistance is based mainly on  N -acetyl 
norloline and peramine, whereas ergovaline exhib-
its smaller effect (Baldauf et al.  2011 ). Recently, 
it was demonstrated that the insect- pathogenic 
fungus  Metarhizium robertsii  (Clavicipitaceae) is 
not only rhizosphere competent but also displays 
endophytic association with  Panicum virgatum  
and  Phaseolus vulgaris  roots and this association 
results in the proliferation of root hairs (Sasan 
and Bidochka  2012 ).  

   Herbivory of Mammals 
 In the 1930s, tall fescue ( Lolium arundinaceum ) 
was bred and widely used in the United States, 
due to its improved characteristics such as 
considerable longevity, stress tolerance, and its 

capacity to prevent soil erosion. However, in the 
mid-1970s, the problem of fescue toxicosis in 
cattle and the livestock had been recognized, with 
symptoms resembling ergot poisoning caused by 
 Claviceps purpurea  (Schardl et al.  2004 ). A rela-
tionship between health disorders in cattle and a 
high level of endophyte infestation in tall fescue 
from toxic pastures in the United States was fi rst 
shown by Bacon et al. ( 1977 ) (Bacon et al.  1977 ), 
and of particular importance is ergovaline (Lyons 
et al.  1986 ).  Neotyphodium lolii  is identifi ed as 
the ryegrass endophyte causing staggers (Fletcher 
and Harvey  1981 ). Lolitrems are indole diterpene 
alkaloids produced by  N. lolii  that cause tremor- 
inducting neurotropic activity (Gallagher et al. 
 1984 ; Rowan  1993 ; Tor-Agbidye et al.  2001 ). 
Similarly to the resistance against invertebrates, 
the ergot alkaloid levels greatly increases in 
 Festuca rubra -endophyte symbiosis upon clip-
ping, suggesting that an epichloe metabolite can 
represent an inducible plant defense (Bazely 
et al.  1997 ). Several examples for the effect of 
endophyte-infected grasses on livestock are 
decrease in productivity (Burke and Rorie  2002 ; 
Cross et al.  1995 ; Paterson et al.  1995 ; Porter and 
Thompson  1992 ), increase in systemic relaxin in 
pregnant pony mares (Ryan et al.  2001 ), altera-
tion in hemograms and serum biochemical ana-
lytes of steers (Oliver et al.  2000 ), lower 
phagocytic activity (Saker et al.  1998 ), and 
abdominal lipomatosis in deer (Wolfe et al. 
 1998 ). Also, the presence of  Neotyphodium coe-
nophialum  endophyte in tall fescue ( Festuca 
arundinacea  Schreb.) lowers the copper concen-
trations in the plant, and this may contribute to 
lower copper status in animals and therefore to 
the etiology of fescue toxicity (Dennis et al. 
 1998 ). Additional examples for the effect of the 
secondary metabolites produced by the endo-
phyte and livestock health can be found in Powell 
and Petroski ( 1992 ), Bacon ( 1995 ), Malinowski 
and Belesky ( 2000 ), Schardl ( 2001 ), and 
Rodriguez et al. ( 2008a ), as well as strategies to 
control their effects in di Menna et al. ( 2012 ). 

 It should be noted that since perennial rye-
grass is the most important pasture species in 
New Zealand, it has been estimated that the total 
cost of ryegrass staggers to the New Zealand 
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livestock industry is more than 40$ million 
(Prestidge et al.  1991 ). Similarly, tall fescue 
( Festuca arundinacea ) is the most important 
cool-season grass in the United States, providing 
the primary ground cover on some 35 million 
acres, and therefore the estimated cost to beef 
producers, due to decreases in productivity, is 
more than 600$ million annually (Porter and 
Thompson  1992 ; Paterson et al.  1995 ). 

 Additional endophyte-infected grasses that 
cause related symptoms are drunken horse grass 
( Achnatherum inebrians ) in Asia and sleepygrass 
( Achnatherum robustum ) in North America, 
which are associated with ergot alkaloids that 
induce stupor and aversion to future grazing 
(Miles et al.  1998 ; Petroski et al.  1992 ). Dronkgras    
( Melica decumbens ) in South Africa and  Poa 
huecu  (causing the lethal heucú toxicosis) in 
Argentina are associated with tremors due to the 
effects of indole diterpene (Coetzer et al.  1985 ; 
Moon et al.  2002 ; Pimilio et al.  1989 ). Endophyte 
affects also populations of small mammals. 
For example, endophyte-infected tall fescue 
reduces vole reproduction (Fortier et al.  2000 ). 
 Neotyphodium  presence in  Lolium multifl orum  
reduces seed removal by rodents (Uchitel et al. 
 2011 ). Rabbit weight gain and intake is reduced 
by feeding endophyte-infected tall fescue seed 
diets (Filipov et al.  1998 ). 

 Locoweeds are toxic to mammals due to the 
presence of the alkaloid swainsonine, produced 
by the endophytic fungus  Undifi lum oxytropis . 
There is a correlation between swainsonine con-
centration and the proportion of endophytic 
DNA in plant nonreproductive tissues (Achata 
Böttger et al.  2012 ). Also, there is a correlation 
between swainsonine produced by the endo-
phyte  Embellisia  sp. and dinitrogen fi xation by 
 Rhizobium  in the perennial legume  Oxytropis 
sericea , with the latter increasing the production 
of swainsonine of the former (Valdez Barillas 
et al.  2007 ).  

   Plant Disease 
 Clavicipitaceous endophytes suppress plant 
pathogens in both in vitro and fi eld experiments, 
in a mechanism that involves production of deg-
radative enzymes and antibiotics by the endo-

phyte (Siegel and Latch  1991 ; White and Cole 
 1985 ). Specifi c chemicals, such as several indole 
compounds sesquiterpene, diacetamide, and 
unidentifi ed volatile compounds (Yue et al.  2000 , 
 2001 ), have been associated with  Epichloë  
species for resistance to leaf spot,  Cladosporium 
phlei , and stem rust,  Puccinia graminis , on 
infected  Phleum pratense  (Koshino et al.  1988 , 
 1989 ; Yoshihara et al.  1985 ), and the mitigation 
effect of these diseases by the endophyte was 
further confi rmed in fi eld studies (Greulich et al. 
 1999 ; Welty et al.  1993 ). The maize endophyte 
 Acremonium zeae  produces antibiotics that aug-
ment host defenses against a variety of pathogen, 
whereas protective endophytes, including myco-
parasites which grow asymptomatically within 
healthy maize tissues, show little sensitivity to 
these antibiotics (Wicklow et al.  2005 ; Wicklow 
and Poling  2009 ). Additional fungal pathogens 
that are controlled to some level by endophyte 
infections are reviewed in Kuldau and Bacon 
( 2008 ) and Schardl ( 2001 ). 

 Yet, the fungal disease suppression in endophyte- 
infected grasses is not always clear (Kuldau and 
Bacon  2008 ): There is a resistance to  Sclerotinia 
homoeocarpa  in chewing fescue, hard fescue, 
and strong creeping red fescue, but there is an 
increase in disease incidence to  Pythium  blight 
in  N. coenophialum -infected tall fescue (Clarke 
et al.  2006 ; Blank  1992 ). Mixed results also 
obtained with the ryegrass endophyte  Neoty-
phodium lolii . This endophyte inhibits the growth 
of  Colletotrichum graminicola ,  Limonomyces 
rosipellis , and  Rhizoctonia zeae  but did not affect 
 Bipolaris sorokiniana ,  Pythium aphaniderma-
tum ,  Sclerotinia homoeocarpa ,  Gaeumannomyces 
graminis ,  Rhizoctonia solani ,  Leptosphaeria kor-
rae ,  Phialophora graminicola , and  Magnaporthe 
poae  (Siegel and Latch  1991 ). In vitro, this endo-
phyte exerts only limited antibiotic effects against 
fungal pathogens (Siegel and Latch  1991 ; White 
and Cole  1985 ). Furthermore, there is no correla-
tion between the presence of  Neotyphodium 
lolii  in Tasmanian pastures and barley yellow 
dwarf virus (Guy  1992 ) nor effect on the virus 
vector  Rhopalosiphum padi  (Latch et al.  1985a ). 
In contrast, Mahmood et al. ( 1993 ) demonstrated 
that the presence of the endophyte signifi cantly 
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reduces the virus indirectly due to reduction of 
virus spread by controlling the aphid vector 
(Mahmood et al.  1993 ). In accordance, evidence 
suggests that this endophyte manages to increase 
plant’s growth in the presence of the virus (Hesse 
and Latch  1999 ) and that in symbiotic  Lolium 
pratense , endophyte infection protects its host 
by reducing the percentage of barley yellow 
dwarf virus infection as well as the number of its 
aphid vector (Lehtonen et al.  2006 ). 

 Many nonclavicipitaceous endophytes protect 
their hosts against fungal pathogens (Danielsen 
and Jensnen  1999 ; Narisawa et al.  2002 ; 
Campanile et al.  2007 ; Rodriguez et al.  2009a ; 
Mei and Flinn  2010 ). This protection might 
be achieved via the production of secondary 
metabolites harmful to plant pathogens (Schulz 
et al.  1999 ), fungal parasitism (Samuels et al. 2000), 
induction of systemic resistance (Vu et al.  2006 ; 
Waller et al.  2005 ; Compant et al.  2005a ), activa-
tion of host defenses upon exposure to virulent 
pathogens (Redman et al.  1999 ), and competition 
between the endophyte and the pathogen for 
resources or niche space (Rodriguez et al.  2009a ; 
Combès et al.  2012 ). 

 Several mechanisms are proposed for disease 
control by microbial endophytes in plants 
(Kuldau and Bacon  2008 ; Reinhold-Hurek and 
Hurek  2011 ): (A) The endophyte induces plants’ 
systemic resistance (Chen et al.  1995 ; Kloepper 
and Beauchamp  1992 ; Kunkel et al.  2004 ; 
Roberts et al.  1992 ; Waller et al.  2005 ; Serfl ing 
et al.  2007 ; Waller et al.  2008 ). (B) Niche exclu-
sion by the endophyte – the epiphyllous mycelia 
nets found in several clavicipitaceous endophyte- 
grass associations may oppress the pathogen 
(Moy et al.  2000 ). Niche exclusion has been 
demonstrated also for bacterial endophyte (Cook 
and Baker  1983 ) and for dark septate endophytic 
fungus (Khastini et al.  2012 ). (C) The endophyte 
fortifi es plant cell wall strength; for example, 
 P. fl uorescens  WCS417r causes thickening tomato 
cell walls (Duijff et al.  1997 ) and dark septate 
endophytic fungus causes thickening of barley cell 
walls and thus limits the ingress of the  Verticillium 
longisporum  pathogen into adjacent cells 
(Narisawa et al.  2004 ). (D) Endophyte- induced 

accumulation of pathogenesis-related proteins 
(M’Piga et al.  1997 ; Seo et al.  2012 ). (E) 
Additional biocontrol mechanisms such as pro-
duction of antifungal or antibacterial agents, 
nutrient competition (reviewed in Sturz et al. 
 2000 ), siderophore (Khastini et al.  2012 ), down-
regulation of the activity of antioxidant enzymes 
and thereby reduction of disease severity (Kumar 
et al.  2009 ), and production of chitinase by the 
biocontrol endophyte ( Trichoderma virens  223) 
against the pineapple disease pathogen ( Cerato-
cystis paradoxa ) in sugarcane (Romão- Dumaresq 
et al.  2012 ). 

 The protection conferred by the endophytic 
fungal isolate  Fusarium solani  to tomato plants 
against the root pathogen  Fusarium oxysporum  
f. sp.  radicis-lycopersici  is mediated through 
 ethylene signaling pathway, whereas the jasmonic 
acid pathway is not essential for the biocontrol 
activity (Kavroulakis et al.  2007 ). However   , the 
exact pathway for conferring resistance is not 
always known. For example, in rice, the endo-
phytic bacteria  Azospirillum  sp. B510 enhances 
the resistance against the virulent rice blast 
fungus  Magnaporthe oryzae  and the virulent 
bacterial pathogen  Xanthomonas oryzae , without 
salicylic acid accumulation or expression of 
pathogenesis-related genes in the rice plants. 
Therefore, it is suggested that this endophyte is 
able to induce disease resistance in rice by 
activating unknown resistance mechanism 
independent of salicylic acid-mediated defense 
signaling (Yasuda et al.  2009 ). 

 The ability to act as bioprotectants by triggering 
induced systemic resistance (ISR) has been dem-
onstrated also for bacterial endophytes (Compant 
et al.  2005a ; Kloepper and Ryu  2006 ). There is no 
compelling evidence for an overall ISR signal 
produced by bacteria (Haas et al.  2002 ). However, 
possible candidates are bacterial traits (i.e., 
flagellation and production siderophores and 
lipopolysaccharides), volatile organic compounds 
secreted by the endophyte, triggering salicylic 
acid-dependent signaling pathway or activating 
independent salicylic acid pathway involving 
jasmonate and ethylene signals (reviewed in 
Compant et al.  2005a ; Sturz et al.  2000 ). 
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 Several examples for disease protection by 
bacterial endophytes: ISR is triggered by 
 Burkholderia phytofi rmans  PsJN against  Botrytis 
cinerea  on grapevine, in a mechanism that 
involves disrupting cellular membrane and induc-
ing cell death (Barka et al.  2000 ,  2002 ), and 
 Verticillium dahliae  on tomato (Sharma and 
Nowak  1998 ).  Pseudomonas denitrifi cans  1–15 
and  Pseudomonas putida  5–48 against  Fusarium 
oxysporum  f. sp.  radicis-lycopersici  on tomato 
(M’Piga et al.  1997 ) and  Pythium ultimum  and 
 Fusarium oxysporum  f. sp.  pisi  on pea roots 
(Benhamou et al.  1996a ).  Bacillus pumilus  SE34 
against  Fusarium oxysporum  f. sp.  pisi  on pea 
roots (Benhamou et al.  1996b ) and  Fusarium 
oxysporum  f. sp.  vasinfectum  on cotton roots 
(Conn et al.  1997 ). Pre-inoculation of  Arabidopsis  
with the endophytic bacteria Streptomyces iso-
late IFB-A03 activates the salicylic acid- mediated 
plant defense response upon exposure to patho-
genic  Streptomyces scabies , and it is suggested 
that the endophyte acts at the upstream of sali-
cylic acid accumulation in the defense signaling 
pathway associated with systemic acquired resis-
tance (Lin et al.  2012 ). Endophytic actinobacteria 
prime the defense pathways by inducing low- 
level expression of systemic acquired resistance 
and jasmonic acid/ethylene genes. Upon patho-
gen infection, the defense genes are strongly 
upregulated and exhibit high-defense gene 
expression (Conn et al.  2008 ). A strain of  Bacillus 
subtilis  (Lu144) reduces disease incidence of 
bacterial wilt of mulberry if inoculated prior to 
the pathogen (Ji et al.  2008 ). Systemic-induced 
resistance can act also against nematodes. For 
example, the bacterial endophyte  Rhizobium 
etli  strain G12 (and also the fungal endophyte 
 Fusarium oxysporum  strain (Fo162)) has been 
shown to systemically induce resistance in tomato 
plants toward  Meloidogyne incognita  (Martinuz 
et al.  2012 ). 

 It should be noted that the positive effect of 
the endophyte on its host is not only restricted 
to suppress plant’s disease but also to promote 
growth under pathogen attack. Recent evidence 
demonstrates that the endophyte  Fusarium verti-
cillioides  modulates the growth of the pathogen 
 Ustilago maydis  in maize and decreases its 

aggressiveness toward the plant, by interfering 
with early infection process (Lee et al.  2009a ), 
as well as the coinfected plant growth was similar 
to that which could be gained in the absence of 
the pathogen (Rodriguez Estrada et al.  2012 ). 

 Interestingly, in some cases, the protective 
effect of an endophyte requires interplay between 
the endophyte and the plant. For example, the 
 Verticillium dahliae  Kleb. nonhost isolate Dvd- 
E6 protects Craigella tomatoes ( Lycopersicon 
esculentum  Mill.) from pathogenic  V. dahliae  
Kleb. race 1 (Vd1), only in  in planta  context, 
whereas culturing Dvd-E6 and Vd1 (separate or 
together), the growth rates remain similar and 
neither is inhibitory to the other (Shittu et al. 
 2009a ) and the protection conferred by Dcd-E6 is 
range restricted (Shittu et al.  2009b ). Similarly, 
the endophytic bacteria  Methylobacterium  spp. 
strains have varying effects on plant disease 
resistance against  Pectobacterium atrosepticum , 
 Phytophthora infestans , and  Pseudomonas 
syringae  pv. tomato DC3000 in potato ( Solanum 
tuberosum  L.). These effects are modulated 
through endophyte community of the host 
(Ardanov et al.  2012 ). 

 Endophyte can also confer local disease resis-
tance, i.e., the disease resistance is localized to 
tissues that the endophyte has colonized and is 
not systemic. For example, a nonpathogenic 
 Colletotrichum  mutant confers disease resistance 
in watermelon and cucumber in a rapid and 
strong activation of biochemical processes that 
confer resistance such as peroxidase and phenyl-
alanine ammonia lyase activity and lignin 
deposition (Redman et al.  1999 ; Rodriguez and 
Redman  2008 ). 

 An alternative approach for biocontrol is 
engineering the endophyte in order to improve its 
biocontrol abilities. For    example, introduction of 
the gene of the major chitinase of  Serratia 
marcescens , ChiA, to the endophytic strain of 
 Pseudomonas fl uorescens  resulted in effective 
biocontrol properties against the phytopathogenic 
fungus  Rhizoctonia solani  on bean seedlings 
under growth chamber conditions (Downing and 
Thomson  2000 ). Another example is the expression 
of  N -acyl-homoserine lactonase gene (inhibiting 
production of quorum-sensing signals) from 
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 Bacillus thuringiensis  in the bacterial endophyte 
 Burkholderia  sp. KJ006, and this reduces the 
disease incidence of rice seedling rot caused 
by the pathogenic  Burkholderia glumae  in situ, 
since the latter is controlled in a population- 
dependent manner (Cho et al.  2007 ).   

2.2.2       Abiotic Stress 
   Heavy Metals Pollution 
 Evidence suggests that the presence of endophyte 
enhances heavy metal tolerance to their hosts: 
aluminum tolerance of fi ne fescues ( Festuca  
spp.) (Zaurov et al.  2001 ),  Neotyphodium 
lolii  induces tolerance to zinc stress in  Lolium 
perenne  (Fabien et al.  2001 ), and the endophyte 
 Neotyphodium gansuense  improves infected 
 Achnatherum inebrians  plant growth under high 
cadmium concentration, in a mechanism that 
involves anti-oxidative enzyme activities (Zhang 
et al.  2010b ). Endophyte infection enhances 
perennial ryegrass tillering ability and reduces 
leaf elongation under cadmium stress condition 
by alleviating the detrimental effects of cadmium 
(Ren et al.  2006 ). In the presence of cadmium, the 
root endophyte  Piriformospora indica  reduces 
cadmium content in the shoot of  Triticum aesti-
vum  cv. Sardari39 plants as well as increases 
its growth parameters (Shahabivand et al.  2012 ). 
Endophyte infection of  Lolium arundinaceum  
increases tiller number and biomass under both 
control and cadmium stress conditions (Ren et al. 
 2011 ). Similarly, under cadmium stress, the pres-
ence of Neotyphodium endophytes in the grasses 
 Festuca arundinacea  and  Festuca pratensis  
results in higher biomass production and higher 
potential to accumulate cadmium in roots and 
shoots (Soleimani et al.  2010a ,  b ). 

 The endophytic fungus Sordariomycetes sp., 
which was isolated from leaves of  Suaeda salsa  
and introduced into rice ( Oryza sativa ), improves 
rice growth under moderate lead levels in a mech-
anism that involves enhancement of photosyn-
thesis and antioxidant activity (Li et al.  2012b ). 
The endophyte  Neotyphodium coenophialum  con-
fers aluminum tolerance to tall fescue in a 
mechanism that involves aluminum sequestering 
on root surfaces and root tissues. This seques-
tration is capable probably due to increased 

exudation of phenolic-like compounds from 
roots of endophyte-infected plants that chelate 
the aluminum (Malinowski and Belesky  1999 ). 
Another example is of the dark septate endophyte 
 Exophiala pisciphila  H93 that promotes the roots 
and shoots growth of maize under heavy metals 
(lead, zinc, and cadmium) stress conditions 
and the improve tolerance of maize to the heavy 
metals pollutant is archived by restricting the 
translocation of the heavy metal ions from roots 
to shoots (Li et al.  2011 ).  

   Drought and Water-Stress Tolerance 
 Clavicipitaceous endophytes such as  Neotypho-
dium  sp.,  Acremonium  sp.,  Phialophora  sp., and 
 Curvularia  sp. confer drought tolerance in grasses 
(Bacon and Hill  1996 ; Bacon  1993 ; West  1994 ; 
Joost  1995 ; Singh et al.  2011a ). Additional 
examples for enhanced drought tolerance of 
endophyte-infected species can be found in 
Kuldau and Bacon ( 2008 ). 

 Drought tolerance is achieved by osmoregu-
lation and stomatal regulation (Bacon and Hill 
 1996 ), as well as accumulation of drought- 
protective osmolytes in the grass tissues 
(Richardson et al.  1992 ). The production of 
loline alkaloids affects the osmotic potential and 
therefore reduces the effects of drought stress 
(Bush et al.  1997 ). The level of these alkaloids 
increases in response to heat or drought, and 
if their level is suffi cient to affect the osmotic 
balance, they might protect macromolecules 
from denaturation and/or scavenge reactive 
oxygen species associated with drought stress 
(Malinowski and Belesky  2000 ). However, there 
is no signifi cant correlation between symbioti-
cally conferred stress tolerance and increase 
osmotic potential or abscisic acid (Rodriguez 
et al.  2008b ). Another possible mechanism is 
the involvement of dehydrin proteins (Carson 
et al.  2004 ). In addition, since endophyte-
infected grasses exhibit increase rate and length 
of root growth (Richardson et al.  1990 ; 
Richardson et al.  1993 ), it can be expected to 
play a role also in drought protection (Kuldau 
and Bacon  2008 ). Under water stress condi-
tions, clavicipitaceous endophytes are associ-
ated with increasing cell wall elasticity (White 
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et al.  1992 ), as well as effecting root physiology: 
increasing root growth, prolonging root hairs, 
and decreasing root diameter (Malinowski et al. 
 1997 ,  1999b ). Reduced stomatal conductance 
is associated with water conservation in  Festuca 
arizonica- Neotyphodium   sp. interactions (Morse 
et al.  2002 ). 

 In their review, Malinowski and Belesky 
( 2000 ) suggested that the adaptations conferred 
by the clavicipitaceous endophytes for drought 
are: (A) Drought avoidance through morpho-
logical adaptations to maintain favorable water 
status. This can be achieved by improving water 
uptake from the soil by an extensive root system, 
reducing transpiration losses and maintaining 
higher water storage in plant tissues. (B) Drought 
tolerance through physiological and biochemical 
adaptations that enable plant tissues to with-
stand water defi cits. This can be achieved by 
accumulation and translocation of assimilates, 
osmotic adjustment, and maintenance of cell 
wall elasticity. (C) Recovery from drought by 
increasing water-use effi ciency (Malinowski 
and Belesky  2000 ). 

 Increasing amounts of evidence demonstrate 
the involvement of nonclavicipitaceous endo-
phytes in conferring drought tolerance (reviewed 
in Singh et al.  2011a ). The fi nding that symbiotic 
plants (e.g., rice and tomato) consume less water 
than nonsymbiotic plants regardless of the colo-
nizing endophyte, taken together with the fact 
that these symbiotic plants achieve increase bio-
mass levels, suggests that symbiotic plants 
exhibit increase water-use effi ciency that may 
provide a unique mechanism for symbiotically 
conferred drought tolerance (Singh et al.  2011a ). 
The endophytic fungus  Piriformospora indica  
improves plant drought tolerance (Sherameti 
et al.  2008 ), which is in accordance with its natural 
desert origin (Verma et al.  1998 ). In     Arabidopsis , 
 P. indica  confers drought tolerance in a mechanism 
that is associated with priming of expression 
of stress-related genes in the leaves (Sherameti 
et al.  2008 ; Oelmüller et al.  2009 ). In Chinese 
cabbage, drought tolerance conferred by  P. indica  
is achieved in three targets: antioxidant enzyme 
activities (such as peroxidases, catalases, and 
superoxide dismutases) in the leaves, upregulating 

drought-related genes (such as DREB2A, CBL1, 
ANAC072, and RD29A), and increasing the 
amount of CAS protein (Sun et al.  2010 ). In 
cucumber, the presence of the endophyte fungi 
 Phoma glomerata  LWL2 and  Penicillium  sp. 
LWL3 increases the plant biomass under drought 
conditions (Waqas et al.  2012 ). Yet, the benefi cial 
effect of the endophyte is dependent on the host 
genotype (Cheplick  2004 ). 

 Bacterial endophytes also increase drought 
resistance (Sturz et al.  2000 ).  Pseudomonas strain  
PsJN improves stomata function and reduces 
transplanting shock through improved water 
management (Nowak et al.  1995 ). Wheat seedlings 
cocultured with  Azospirillum brasilense  strain 
SP245 exhibit improved water relations under 
osmotic stress (Creus et al.  1998 ).  

   Salinity 
 Soil salinization is an extensive threat to crop 
productivity (Singh et al.  2011a ). Approximately 
7 % of the global land surface is covered with 
saline soils (Ruiz-Lozano et al.  1996 ), and 5 % of 
the cultivated land is affected with excess salt 
content (Munn et al.  1999 ). In barley, the endo-
phyte  Piriformospora indica  eliminates the salt 
stress effects, probably due to elevation of the 
metabolic activity in the leaves and therefore 
compensating the salt-induced inhibition of the 
leaf metabolic activity, induction of changes in 
the fatty acid composition in the leaves of the 
host plant, and upregulation of the activity of 
antioxidant enzymes (Baltruschat et al.  2008 ). 
Additional mechanism involves enhancement of 
the ratio of reduced to oxidized ascorbate and 
induction of DHAR activity (Waller et al.  2005 ). 
Moreover,  P. indica  abolishes the detrimental 
effect of moderate salt stress and increases barley 
biomass (Waller et al.  2005 ).  P. indica  also 
induces ethylene biosynthesis in barley roots, 
and ethylene signaling may be required for plant 
salt tolerance (Cao et al.  2006 ). 

 Symbiotic plants containing root endophytes 
activate stress response systems more quickly 
and strongly than nonsymbiotic plants (Rodriguez 
et al.  2004 ). The newly isolated endophytic fungus 
 Paecilomyces formosus  LHL10 from cucumber 
enhances its host shoot length under salinity stress. 
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This could be achieved by accumulation of proline 
and antioxidants and maintaining plant water 
potential and consequently reducing the electro-
lytic leakage and membrane damage of the host 
(Khan et al.  2012a ). Similarly, the endophytic 
fungi  Phoma glomerata  LWL2 and  Penicillium  sp. 
LWL3 increase the plant biomass and enhance 
assimilation of essential nutrient under salinity 
conditions. The symbiotic association mitigates 
stress by compromising the activities of reduced 
glutathione, catalase, peroxidase, and polyphenol 
oxidase. In addition, under stress conditions, 
the presence of the endophyte modulates stress 
in a mechanism that involves downregulation 
of abscisic acid, alters jasmonic acid, and ele-
vates salicylic acid contents (Waqas et al.  2012 ). 
Recently, two different strains of  Penicillium  
( Penicillium minioluteum  LHL09 and  Penicillium 
funiculosum  LHL06) isolated from  Glycine max.  
L. promote growth characteristics under salinity 
stress conditions. These endophytes ameliorate 
the effects of the salt stress by infl uencing bio-
synthesis of the plant’s hormones and fl avonoids 
(Khan et al.  2011a ). In addition,  Exophiala  sp. 
LHL08, an endophyte isolated from cucumber, 
confers salinity stress tolerance by elevating the 
level of salicylic acid (Khan et al.  2011b ). 
Additional examples for nonclavicipitaceous 
endophyte-induced tolerance for salt stress can 
be found in a review by Singh and colleagues 
(Singh et al.  2011a ). 

 The symbiotically conferred stress tolerance 
is a habitat-specifi c phenomenon: introduction 
of nonclavicipitaceous endophytes into stress- 
sensitive commercial rice varieties achieved tol-
erance to salt, drought, and cold stresses, as well 
as increase growth characteristics (Redman et al. 
 2011 ). Another example is the dunegrass  Leymus 
mollis  that colonize the endophyte  Fusarium 
culmorum , which confers salt tolerance in a 
habitat- specifi c manner (Rodriguez et al.  2008b ).  

   Heat and Cold Stresses 
 Endophytes protect host plants from extreme 
temperature damages. For example, inoculation 
of  Dichanthelium lanuginosum  plants with the 
fungal endophyte  Curvularia  enabled them to toler-
ate high soil temperature in which non- inoculated 

plants are dead (Redman et al.  2002 ), and this 
tolerance is dependent on viral infection of the 
endophytic fungus (Márquez et al.  2007 ). Since 
only endophytes isolated from geothermal plants 
confer heat tolerance (Rodriguez et al.  2008b ), it 
is suggested that this ability is a habitat- adapted 
phenomenon (Rodriguez and Redman  2008 ). 
A possible mechanism for heat tolerance involves 
osmoprotectants such as trehalose, glycine 
betaine, and taurine in the heat response, as well 
as the fungal pigment melanin and heat shock 
protein (Morsy et al.  2010 ). In contrast,  Cucumis 
sativus  plants inoculated with the endophytic 
fungus  Paecilomyces formosus  LHL10 display 
higher plant growth only under high- temperature 
stress. This suggests that the endophyte has 
varying effects in response to temperature stress 
(Khan et al.  2012b ). Similarly, introduction of 
the endophytic bacterium  Clavibacter  sp. strain 
Enf12 into  Chorispora bungeana  plantlets 
improves their tolerance to chilling stress through 
enhancement of the antioxidant defense system 
(Ding et al.  2011 ).     

3     Trees and Woody Plants 

 As mentioned above, endophytes, both fungi and 
bacteria, can be found in most, if not all, plants in 
nature (Petrini  1986 ; Rodriguez et al.  2008a ). 
Nonclavicipitaceous endophytes can be recov-
ered from ferns, conifers, and seed plants from 
the arctic tundra to the tropics (Strobel  2006 ; 
Arnold and Herre  2003 ; Arnold and Lutzoni 
 2007 ; Rodriguez et al.  2008a ; Aly et al.  2010 ). In 
contrast to extensively studied grass endophytes, 
endophytes associated with woody angiosperms 
are poorly known (Arnold et al.  2003 ). Very few 
published reviews discuss trees and woody plant 
endophytes and their role in the host protection 
and benefi t (Albrectsen and Witzell  2012 ; Pirttilä 
 2001 ; Pirttilä and Frank  2011 ). Two major meth-
ods for the analysis of the diversity within host 
plant are currently used: isolation and cultivation 
of fungi and bacteria from the plant tissue and 
DNA-based techniques. It has been estimated 
that less than 1 % of bacterial species and less 
than 5 % of fungal species are currently known, 
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suggesting that millions of microbial species 
remain to be discovered (Gunatilaka  2006 ). The 
biodiversity of endophytes in woody plants can 
be remarkable and varies from single species 
(Arnold et al.  2000 ,  2003 ; Arnold and Herre 
 2003 ; Arnold  2008 ; and many more) to more 
than 100 taxa per plant (González and Tello 
 2011 ). Mechanisms by which endophytes benefi t 
plants (discussed above in details) may overlap – a 
single endophyte can employ several of them 
(Porras-Alfaro and Bayman  2011 ). As an example, 
many plant-growth-promoting bacteria (PGPB) 
promote plant growth, support nitrogen fi xation, 
and prime plants’ induced systemic resistance 
(Compant et al.  2005b ). 

 In this subchapter we will try to review the 
knowledge present for the involvement of endo-
phytes in biocontrol of trees and woody plants. 

3.1     Increased Plant Growth 

 Induction and/or synthesis of plant-growth- 
promoting phytohormones (auxins, cytokinins), 
N 2  fi xing, synthesis of enzymes/peptides that 
provide nutrient availability (phosphatases, sid-
erophores, etc.), improvement of nutrient, water 
uptake, and tolerance to various types of stresses 
are among the direct mechanisms through which 
endophytes promote plant growth (Hanada et al. 
 2010 ; Barka et al.  2000 ). Growth stimulation 
may also act indirectly through the biocontrol of 
phytopathogens in the root zone and induction 
of phytohormone synthesis by the plant (Sturz 
et al.  2000 ). 

 Some liverworts and mosses, hornworts, the 
fern genus  Azolla  de Lamarck, Cycads, the angio-
sperm  Gunnera  L., and various orchids evolved 
symbiotic relations with endophytic cyanobacte-
ria. The primary benefi t to the plant in these rela-
tions is fi xed nitrogen originating from N 2 -fi xation 
of the cyanobacteria (Krings et al.  2009 ). Only 
few examples of endophytes associated with 
woody plants with the ability to fi x nitrogen are 
present: the nitrogen-fi xing bacteria associated 
with woody plants are  Frankia  sp. – fi lamentous 
bacteria that convert atmospheric N 2  gas into 
ammonia.  Frankia  fi xes nitrogen while living in 

root nodules on “actinorhizal plants,” which are 
plants that colonize soils that are low in combined 
nitrogen (Benson and Silvester  1993 ). Some 
Acacia koa trees form a symbiosis with  Rhizobium  
and  Bradyrhizobium  sp. that not only fi x nitrogen 
in the root but can also form “canopy nodulation” 
in which they fi x nitrogen (   Leary et al.  2004 ). 
 Acetobacter diazotrophicus , a nitrogen- fi xing 
Acetobacteria, was isolated from coffee plants 
surface-sterilized stems and roots (Jimenez-
Salgado et al.  1997 ). Some abundant bacteria 
with the ability to fi x nitrogen were isolated from 
poplar ( Populus trichocarpa ) and willow ( Salix 
sitchensis ) (Doty et al.  2009 ; Xin et al.  2009b ). 
It will not be an exaggeration to assume that there 
are many more endophytic microorganisms 
involved in nitrogen fi xation in woody plants, 
waiting to be discovered. 

 Barka et al. ( 2000 ) demonstrated that grape-
vine plantlet roots ( Vitis vinifera  L. cultivar 
“Chardonnay”) cocultured with  Burkholderia  sp. 
strain PsJN grow faster and had signifi cantly 
more secondary roots compared to the uninocu-
lated control (Barka et al.  2000 ; Compant et al. 
 2005b ). Fungi and bacteria have been illustrated 
to produce and secrete plant hormones as part of 
their pathogenicity process or manipulate the 
plant for their benefi t (Baca and Elmerich  2003 ). 
Plant hormone-secreting endophytes are described 
in many herbaceous plants (Jacobson et al.  1994 ; 
Dai et al.  2008 ; Khan and Doty  2009  and many 
more); however, the involvement of phytohor-
mones in growth promoting of woody plants is 
much less demonstrated. In a study by Pirttilä 
( 2001 ) of endophytes from scots pine ( Pinus 
sylvestris  L.), the endophytes  Methylobacterium 
extorquens ,  Pseudomonas synxantha , and 
 Rhodotorula minuta  were examined for possible 
plant hormone production (gibberellins, auxins, 
or cytokinins); none were detected. On the other 
hand,  Rhizoctonia  sp. isolated from scots pine 
and Norway spruce were found to enhance the 
growth of inoculated seedlings of scots pine. The 
researchers concluded that this growth is due to 
the production of plant growth regulators (Doty 
 2011 ; Gronberg et al.  2006 ). Additional growth-
promoting endophyte bacterium is  Enterobacter  
sp. 638, which genome was sequenced lately, 
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isolated from  Populus trichocarpa  ×  deltoides  cv. 
H11-11. This bacterium improves poplar growth 
and development through the production of the 
phytohormones indole acetic acid, acetoin, and 
2,3-butanediol. Interestingly, the production of 
the two latter phytohormones is induced by the 
presence of sucrose, the major plant sugar, there-
fore linking between the availability of sucrose in 
the host plant and the synthesis of plant-growth- 
promoting phytohormones by the endophytic 
bacterium (Taghavi et al.  2010 ). 

 Another example is of endophytic yeasts iden-
tifi ed as  Rhodotorula graminis  and  R. mucilaginosa , 
both isolated from Populus, Cottonwood. These 
endophytes convert plant-derived  L - tryptophan  to 
phytoactive IAA. The presence of the endophyte 
on the trees’ seedlings was expressed as very 
rapid growth of roots (Xin et al.  2009a ).  

3.2     Stress Tolerance 

 Recent studies indicate that fi tness benefi ts 
conferred by mutualistic fungi contribute to or 
are responsible for plant adaptation to stress. 
Collectively, mutualistic fungi may confer toler-
ance to drought, salinity, metals, and extreme 
temperatures. It has become apparent that at least 
some plants are unable to tolerate habitat imposed 
abiotic and biotic stresses in the absence of fun-
gal endophytes (Rodriguez et al.  2004 ,  2008b ; 
Redman et al.  2002 ; reviewed by Singh et al. 
 2011a  and many more). The term “induced sys-
temic tolerance” (IST) for plant-growth-promot-
ing rhizobacteria (PGPR) was proposed by Yang 
et al. ( 2009 ) to PGPR-induced physical and 
chemical changes in plants that result in enhanced 
tolerance to abiotic stress, including salinity and 
temperature. This term may be applicable to 
endophytic bacteria and fungi as they activate 
many of the same mechanisms of induction in 
nonwoody plants (Yang et al.  2009 ). 

 On the other hand, only few examples of such 
contribution to woody plants are published. 
 Trichoderma hamatum  (DIS 219b), isolated from 
cacao ( Theobroma cacao ), was found to induce 
several cacao-expressed sequence tags (ESTs) 
sharing homology with genes reported to function 

in plant responses to environmental stresses 
and abiotic stresses such as drought and to biotic 
stresses including plant disease (Bailey et al. 
 2006 ; Bae et al.  2009 ). These fi ndings led to the 
assumption that this endophyte may contribute 
to drought tolerance. Bae et al. ( 2009 ) found that 
colonization of the cacao seedlings by  T .  hama-
tum  DIS 219b enhances root growth, resulting in 
improve water acquisition and increase water 
content. The roots of colonized seedlings per-
ceive the dry soils and respond while the leaves 
take advantage of the increased water availability 
through the roots, resulting in a delayed drought 
response. Khan et al. (    2012c ) inoculated herbal 
crop varieties with endophytic bacteria and yeasts 
isolated from poplar and willow trees, fi nding 
them to promote growth and increase plant toler-
ance to drought in some of the crops (Khan et al. 
 2012c ). This fi nding does not necessarily prove 
the ability of these endophytes to act for abiotic 
tolerance in poplar and willow trees or any other 
woody plant, but it demonstrates the possibility of 
existence of abiotic stress-tolerance-inducing 
endophytes in tress waiting to be revealed. The 
bacterial endophyte  Burkholderia phytofi rmans  
strain PsJN increases grapevine growth at low 
temperature and improves its host ability to 
endure cold stress (Barka et al.  2006 ). 

 The role of endophytes as bioremediators will 
not be discussed in this review. For information 
about endophytes and bioremediation, see Li 
et al. ( 2012a ), Ryan et al. ( 2008 ), Ma et al. ( 2011 ), 
or Soleimani et al. ( 2010b ) for woody and herba-
ceous plants.  

3.3     Mechanisms of Biocontrol 

 Mechanisms of inhibition of plant pathogens by 
endophytes may be of several means, including 
direct effect, indirect effects, and ecological 
effects (Gao et al.  2010 ). Direct effect involves 
direct interaction between the endophytes and 
the pathogens. The most commonly reported 
mechanism of biological control is antagonism. 
Antagonism includes the more specifi c mecha-
nisms of antibiosis – the secretion of secondary 
metabolites or enzymes by the endophytes to 
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their surrounding area, competition over food 
source and nutrient, and mycoparasitism – direct 
parasitism on the hyphae of the pathogen 
(Kloepper and Ryu  2006 ; Meji’a et al.  2008 ; Gao 
et al.  2010 ). 

 Many of the natural products occurring in 
endophytes have been shown to have antimicro-
bial activity. In many cases this activity is impli-
cated in protecting the host against pathogens 
(Gunatilaka  2006 ; Aly et al.  2010 ). Yet, in most 
cases, evidence for the production of these 
metabolites  in planta , in woody plants, is still 
absent (Aly et al.  2010 ). 

 Gonzalez and Tello ( 2011 ) described the iso-
lation of fungal endophytes from several varieties 
of grapevines ( Vitis vinifera ). Many of which 
possess antifungal properties that are useful 
against a number of plant pathogens. For exam-
ple,  Fusarium proliferatum  has been employed to 
control grapevine downy mildew caused by 
 Plasmopara viticola  (Bakshi et al.  2001 ; Falk 
et al.  1996 ). In these studies  F. proliferatum  is 
considered a mycoparasitic, cold-tolerant fungus, 
capable of controlling the development of  P. viti-
cola  via secretion of extracellular glucanolytic 
enzymes (Bakshi et al.  2001 ; Pancher et al.  2012 ). 
 Epicoccum nigrum  represents another promising 
biocontrol agent, capable to produce secondary 
metabolites with antibiotic activity (Martini 
et al.  2009 ). Some authors have indicated the 
biocontrol properties of  E. nigrum  against 
pathogens such as  Monilinia  (Larena et al.  2005 ), 
as well as other several grapevine pathogens like 
 Plasmopara viticola  (Kortekamp  1997 ) or  Botrytis 
cinerea  (Fowler et al.  1999 ). Another fungus with 
potential for its use as microbial antagonist is 
 Aureobasidium pullulans . This taxon is known to 
possess activity against a wide range of grape-
vine pathogens, including postharvest fungi 
(Schena et al.  1999 ,  2003 ).  A. pullulans  was also 
found in apples from organic orchards consid-
ered to be a potential biocontrol for apple storage 
pathogens (Granado et al.  2008 ).  Phaeosphaeria     
 nodorum  isolated from plums ( Prunus domestica ) 
was found to secrete to its growth medium inhibitory 
substances suppressing the growth of  Monilinia 
fructicola  and  Colletotrichum gloeosporioides , 
two pathogens causing brown rot, blossom blight, 

twig blight, and anthracnose on plum (Pimenta 
et al.  2012 ). In wild banana ( Musa acuminata ), two 
endophytes ( Cordana  sp. and  Nodulisporium  sp.) 
exhibit potential activity against  Colletotrichum  
(Nuangmek et al.  2008 ). Pirttilä and colleagues 
have studied endophyte involvement and infl uence 
on scots pine growth and disease resistance in a 
number of publications. One example is the 
antagonistic activity of endophytes isolated 
from scots pine, which was studied in vitro. In 
this study,  Hormonema dematioides  was found 
to inhibit the growth of two strains of  Gremme-
niella abietina  (HR3 and KR), a fungal pathogen 
responsible for the Brunchorstia disease of 
coniferous and  Hymenoscyphus ericae . Other 
endophytes in this study produced antagonistic 
substances toward  H. dematioides  (Pirttilä  2001 ). 

 Only few examples of endophytes from trees, 
shown to be active both in vitro and in vivo, have 
been published to date. One example of such is a 
complex of endophytes, isolated from cacao trees 
( Theobroma cacao ) in Panama. When inoculated 
into leaf tissues, the endophytes signifi cantly 
reduce damage by an important foliar pathogen – 
 Phytophthora  sp. The anti-pathogen defense is 
localized to endophyte-infected tissues (Arnold 
et al.  2003 ). This suggests that direct or indirect 
interactions between endophytes and the 
 Phytophthora  pathogen are responsible for limit-
ing the pathogen’s spread (Arnold  2008 ). Another 
example is of  Trichoderma martiale , an endo-
phytic  Trichoderma  sp. isolated from cacao tree 
in Brazil, when spore inoculum (of about 
5 × 10 7  ml −1 ) in a formulation of vegetable oil and 
sucrose was sprayed on cacao pods, it reduced 
black pod disease severity for at least 30 days 
post-inoculation (Hanada et al.  2009 ). The most 
likely mode of action of  Trichoderma  in this 
case is parasitism on the pathogen. A second 
possible mode of biocontrol action is stimulation 
of resistance reaction in the host toward the para-
sites (Hanada et al.  2008 ,  2009 ). Two other 
important pathogens of cacao  Moniliophthora 
roreri  and  Moniliophthora perniciosa  are con-
trolled by endophytes isolated from a healthy 
cacao tree (Meji’a et al.  2008 ). An endophytic 
 Gliocladium catenulatum  reduces up to 70 % 
incidence of witches’ broom disease in cacao 
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(Rubini et al.  2005 ). Campanile et al. ( 2007 ) 
examined the ability of endophytic fungi 
( Trichoderma viride ,  Epicoccum nigrum , 
 Fusarium tricinctum ,  Alternaria alternata , 
 Sclerotinia sclerotiorum and Cytospora  teleo-
morph:  Valsa  sp.) to control  Diplodia corticola , 
an oak dieback disease agent in the Mediterranean, 
both in vitro and  in planta . Their result indicates 
that although in vitro dual culture tests indicated 
strong inhibition of the pathogen by few of the 
inspected endophytes,  in planta  results were not 
in full agreement. Moreover, the distance between 
endophyte and pathogen inoculation affects dis-
ease severity. While close inoculation (3 cm) is 
effective in reducing pathogen development, 
6 cm distance indicates no differences from the 
control. This fi nding is in accordance to local 
infl uence as found by Arnold et al. ( 2003 ). 

 A few examples of endophytic bacterial iso-
lates of  Bacillus ,  Erwinia , and  Pseudomonas  
from oak have been proven biologically active 
against the oak wilt pathogen ( Ceratocystis 
fagacearum ) (Brooks et al.  1994 ).  Pseudomonas  
sp. introduced into Elm trees to control Dutch 
elm disease (Myers and Strobel  1983 ), and 
 Bacillus  sp. against  Verticillium  wilt of maple 
trees (Hall et al.  1986 ) display antibiosis biologi-
cal activity in vitro and reduction of disease and 
trees mortality in vivo. Arau’jo et al. ( 2002 ) 
found a higher frequency of  Curtobacterium 
fl accumfaciens  in asymptomatic citrus plants 
suggesting a role for this bacterium in the resis-
tance of  Citrus sinensis  to Citrus variegated 
chlorosis (CVC), a disease caused by  Xylella fas-
tidiosa . Another example in citrus is the attempt 
to use isolate of  Pseudomonas  sp. as endophytic 
bacteria for the control of  Phoma tracheiphila , a 
pathogenic fungus causing the Mal secco disease 
of lemons and other citrus in the Mediterranean 
basin (Lima et al.  1994 ; Coco et al.  2004 ; Migheli 
et al.  2009 ). 

 In addition, some endophytic bacteria from 
trees have been demonstrated to secrete antibac-
terial (Guan et al.  2005 ; Castillo et al.  2002 , 
 2003 ), antifungal (Li et al.  2007 ), antiviral 
(Guo et al.  2000 ), and other biological active 
metabolites against human parasites, i.e., malaria 
(Castillo et al.  2002 ; Ezra et al.  2004a ) and 

anticancer metabolites (Strobel et al.  1993 ). 
Mejia et al. ( 2008 ) argue that endophyte isolates 
that outcompete or displace pathogens by out-
growing them tend to be those that are commonly 
isolated from cacao in their fi eld survey. In con-
trast, endophytes showing antibiosis tend to be 
slower growing and are relatively less abundant. 
At the same time, less abundant endophytes in 
cacao tissues in those surveys are relatively poor. 
The outcome of these arguments for biocontrol 
strategies is that if the researcher choose isolates 
that show in vitro antibiosis activity against a par-
ticular pathogen, one needs to recognize that 
effectively introducing and keeping them inside 
the tree tissues may be more challenging than 
assumed. It must be taken into account that even 
when a specifi c endophyte displays antibiosis 
activity against a particular pathogen in in vitro 
experiments, when transferred into the host plant, 
the presence of fast growing insensitive to its 
active metabolites might outgrow the biocontrol 
endophyte, preventing it from protecting the 
plant against pathogen attack (Meji’a et al.  2008 ). 

 Another aspect is the possibility of introducing 
an endophyte, proven active by in vitro experi-
ments, from one host into another, expecting it to 
establish and protect the new host against patho-
gens. While in some cases the endophyte would 
not establish in the new host, in others the intro-
duced endophyte will not provide protection to 
the new host (Wäli et al.  2006 ). Another possibility 
is that the new endophyte, although established 
in the host, causing no visible symptoms, when 
the pathogens are introduced to the host plant, 
disease severity is expressed in a much higher 
degree than demonstrated on control plants lack-
ing the endophyte in it. In this case it is obvious 
that the endophyte exerts a negative infl uence on 
host’s capability to resist the pathogen. An exam-
ple for the latter possibility is given by Ardanov 
et al. ( 2011 ). In vitro-grown potato cultivar 
Blue Congo was inoculated at high and low inoc-
ulation densities with  Methylobacterium  sp. 
IMBG290 against  Pectobacterium atrosepticum . 
Low inoculation density resulted in resistance, 
while high density led to susceptibility toward 
the pathogen, but no obvious mechanism behind 
the phenomenon was identifi ed. The researchers 
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report that the inoculation of the plants (potato 
and pine) with a  Methylobacterium  sp. caused a 
change in the population structures of innate 
endophytic communities, which correspond with 
plant responses toward pathogens (Ardanov et al. 
 2011 ). 

 Genetically modifi ed endophytes (GME) for 
the protection of their hosts against pests and 
plant diseases and the promotion of plant growth 
are one more possible use of endophytes for 
biological control application. Introduction of 
heterologous genes in endophytic bacteria may 
confer new characteristics useful in biocontrol of 
diseases and pests that harm the host plant. For 
example, the endophytic bacterium  Clavibacter 
xyli  subsp.  ynodontis , a xylem colonizer of differ-
ent plant species, was genetically modifi ed to 
express the gene  cry A(c) from  Bacillus thuringi-
ensis  which its protein product controls the larvae 
of  Ostrinia nubilalis  (Lampel et al.  1994 ). 
Andreote et al. ( 2004 ) observed that the bacterial 
community, endophytically associated with citrus 
seedlings, is affected by the introduction of 
GMEs expressing different heterologous genes. 
This study was done as part of a future effort to 
use GME in citrus for the control of CVC 
(Andreote et al.  2004 ).  

3.4     Induction of Plant Resistance 

 An important mechanism for biological control 
is that of fungal and bacterial presence or their 
metabolites, affecting the plant by increasing the 
plant’s resistance to pathogens, a process termed 
induced systemic resistance (ISR) (Kloepper and 
Ryu  2006 ; Compant et al.  2005a ). Endophytic 
fungi or bacteria can induce systemic resistance 
in plants against pathogens after actively pene-
trating and colonizing the host, promoting the 
synthesis of biologically active compounds or 
causing changes in plant morphology and/or 
physiology (Hanada et al.  2010 ). Resistance can 
also be elicited in plants by the application of 
chemicals or necrosis-producing pathogens, and 
this process is termed systemic acquired resis-
tance (SAR). Pieterse et al. ( 1998 ) proposed that 
ISR and SAR can be differentiated not only by 

the elicitor but also by the signal transduction 
pathways that are elicited within the plant. 
Accordingly, ISR is elicited by rhizobacteria or 
other nonpathogenic microorganisms, while 
SAR is elicited by pathogens or chemical com-
pounds (Kloepper and Ryu  2006 ). Endophyte-
mediated resistance in forest trees was 
demonstrated for Western white pine ( Pinus 
monticola ). Fungal endophytes isolated from 
Western white pine increase the survival of 
seedlings against  Cronartium ribicola , the White 
pine blister rust pathogen, and this effect persists 
over time. It is not indicated how the endophytes 
function to reduce disease symptoms and delay 
mortality in the host but the researchers concluded 
according to their results that the endophytes are 
involved in the host defense (Ganley et al.  2008 ). 
Signifi cant reductions in fusiform rust disease 
caused by  Cronartium quercuum  f. sp.  fusiforme  
was reported by Enebak and Carey ( 2000 ). 
The potential elicitation of ISR by  Bacillus 
sphaericus  SE56 and  B. pumilus  strains INR7, 
SE34, SE49, and SE52 against a suspension 
of  C. quercuum  basidiospores was demonstrated 
in this study. Bacteria were applied at seeding, 
and  C. quercuum  basidiospores were sprayed 
onto the pine seedlings at fi ve different times. 
Disease symptoms were evaluated 6 months 
after last application of basidiospores. All strains 
except SE49 resulted in signifi cant reductions 
in disease incidence (Kloepper and Ryu  2006 ). 
Recently, Ardanov et al. ( 2012 ) reported that 
 Methylobacterium extorquens  DSM13060 
induces the expression of plant defense genes 
in pine. 

 Endophytes involved in the protection of 
cacao and cupuacu ( Theobroma grandifl orum ) 
trees against  Phytophthora palmivora  constitute 
an indirect example of plant-induced resistance, 
as the mode of control was undefi ned, but strong 
antagonistic activity was not found for the iso-
lated endophytes described (Hanada et al.  2010 ). 

 Secondary metabolites produced by trees and 
woody plants for their protection against plant 
pathogens are well known and have been studied. 
Among these metabolites are phytoalexins 
including fl avonoid and terpenoids (Smith  1996 ). 
Plants also produce for their protection 
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polyphenols and defense-related enzymes 
including phenylalanine ammonia lyase, peroxi-
dase, catalase, and superoxide dismutase. 
Endophytes may promote the plant production of 
these molecules. Gao et al. ( 2011 ) reported that 
addition of an elicitor produced by an endophytic 
isolate of  Fusarium  sp. from  Euphorbia pekinen-
sis  to the plant suspension cultures causes cell 
stimulation to produce polyphenol, terpenoids, 
and antioxidant enzymes including peroxidase, 
superoxide dismutase, and catalase that are all 
in higher concentration in the presence of the 
elicitor than in the control. However, the activity 
of these enzymes is much lower in intensity 
for long period than indicated for induction by 
pathogens. Elicitors such as lipopolysaccharides, 
polysaccharides, and glycoprotein stimulate 
plant defense and plant secondary metabolites 
and suppress pathogen attack effi ciently (Gao 
et al.  2010 ,  2011 ). This may indicate the involve-
ment of endophytes in the induction of plant 
defense by stimulation of induced resistance in the 
host, making the plant prepared for a “real” attack 
by phytopathogens, resembling the “priming” 
effect achieved by inoculation of plants by non-
pathogenic rhizobacteria (Ardanov et al.  2012 ; 
van Loon  2007 ). 

 Compant et al. ( 2005a ) observed a localized 
accumulation of phenolic compounds in several 
cortical cells of grapevine plantlet following 
inoculation and colonization by  Burkholderia  sp. 
strain PsJN. They concluded that this bacterium 
can induce a host defense response in the plants 
root. The colonization of grapevine by the bacte-
rium causes strengthening of hosts cell walls 
(Compant et al.  2005a ). The thickening of the 
cell wall is due to the deposition of callose and 
the accumulation of phenolic compounds at the 
site of pathogen attack (Benhamou et al.  1998 ). 
Moreover, vines inhabited by the bacteria 
expressed resistance to grapevines’ gray mold 
disease caused by  Botrytis cinerea  (Barka et al. 
 2000 ,  2002 ). 

 Endophytes may also produce secondary 
metabolites that directly inhibit insects or patho-
gens or produce elicitors that stimulate the plant 
to produce this type of secondary metabolites. 
Furthermore, a single endophyte may offer 

protection from both fungal pathogens and 
insects. For example,  Beauveria bassiana  
inhibits both fungal pathogens and insects, 
mostly by production of secondary metabolites. 
 Lecanicillium  spp. and  Trichoderma  spp. are 
both mycoparasites and insect parasites, although 
they also produce inhibitory metabolites (Ownley 
et al.  2010 ; Porras-Alfaro and Bayman  2011 ). 
Another example is of fungal endophytes iso-
lated from  Picea rubens  (red spruce) needles 
showing toxicity against  Choristoneura fumifer-
ana , the eastern spruce budworm (Sumarah et al. 
 2010 ; Porras- Alfaro and Bayman  2011 ).  Meira 
geulakonigii , an endophytic fungus isolated from 
grapefruit peel, has been shown to reduce popu-
lations of citrus rust mite (CRM;  Phyllocoptruta 
oleivora ) on citrus leaves and fruits, both in fi eld 
and laboratory (Paz et al.  2007 ). Examples of 
endophytes controlling pathogenic nematodes 
have been reviewed by Sikora et al. ( 2008 ). 
Mainly inoculation with  Fusarium oxysporum  
and, to a lesser extent, species of  Trichoderma  
reduces populations of nematodes in roots of 
banana and tomato plants (Sikora et al.  2008 ).  

3.5     Ecological Niche Occupation 

 Given that biological populations of an ecosystem 
interact with one another, positive interactions 
(commensalism, mutualism, and synergism) may 
enable some populations to function as a community 
within this habitat. Viewed as such, one mechanism 
by which systemic acquired resistance operates 
may be through the utilization of the so-called 
system-level effects among established endophyte 
communities. For example, positive interactions 
among autochthonous populations are usually better 
developed in mature communities than in newly 
established communities. Thus, the new colonist 
(invader or pathogen) will encounter severe nega-
tive interactions with autochthonous populations 
(Sturz et al.  2000 ). In essence, the invading popu-
lation is prevented from becoming established 
by the dynamics of the ecosystem it is trying to 
invade, a form of defensive mutualism (Clay 
 1988 ). Thus, the network of connections among 
species in a mature (established) ecosystem 
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protects those member species from outside 
competition, which benefi ts the plant if the puta-
tive colonist is a phytopathogen (Sturz et al. 
 2000 ). Fungal endophytes are generally thought 
to protect a plant by rapid colonization and thereby 
exhausting the limited available substrates so that 
none would be available for pathogens to grow 
(Pal and Gardener  2006 ). It is reasonable to assume 
that the colonization of tree tissues occurs over long 
periods of time. In these tissues, the endophyte 
diversity may be mainly limited by competition 
from resident fungi that occupy the relatively poor 
nutrient niche or microhabitat. This effect may 
limit invasion of the tissue by other microorgan-
isms, endophytes, or pathogens (Albrectsen and 
Witzell  2012 ).  

3.6     Volatile Emitting Endophytes 

 Another yet very unique application of endo-
phytes for biological control of plants and plant 
products is volatile organic compounds    (VOCs) 
emitting fungi and bacteria. Fungal VOCs have 
been used as part of biological control strategies 
to prevent the growth of plant pathogens. In addi-
tion, VOCs’ plant-growth- promoting effects have 
created increasing interest recently (Morath et al. 
 2012 ). One known example is  Muscodor albus , 
an endophytic fungi from certain tropical trees 
and vine species mainly from Central and South 
America, Australia, and Thailand (Atmosukarto 
et al.  2005 ; Woropong et al.  2001 ,  2002 ; Sopalun 
et al.  2003 ; Ezra et al.  2004b  and many more) that 
have been used by Mercier and Manker ( 2005 ) to 
control soilborne diseases. Addition of  M. albus  
to soil mixtures provides control to pathogens as 
 Rhizoctonia solani , which causes damping-off of 
broccoli, and  Phytophthora capsici , which causes 
root rot of bell pepper. 

 Although not recorded as endophytic fungi, 
soilborne VOCs emitting fungi may benefi t 
plants by activating defense responses and prim-
ing of plants against future pathogen attack 
(Morath et al.  2012 ). Mixtures of bacterial VOCs 
induce a defense response in plants (Ryu et al. 
 2003 ). For example, exposure of  Arabidopsis 
thaliana  to 1-octen-3-ol (“mushroom alcohol”), a 

major fungal VOC, causes defense genes upregu-
lation and provides protection against  Botrytis 
cinerea  (Kishimoto et al.  2007 ). Although not 
described as a phenomenon in woody trees, a 
very interesting fi nding by Ryu et al. ( 2003 , 
 2004 ) describes VOCs secreted by the endophyte 
 Bacillus amyloliquefaciens  IN937a that elicit 
plant growth promotion (Ryu et al.  2003 ) and 
ISR (Ryu et al.  2004 ). 

 Examination of  Muscodor albus  for biocon-
trol application against plant pathogens demon-
strated that  M. albus  produces VOCs that inhibit 
and kill plant pathogenic fungi and bacteria 
(Strobel et al.  2001 ), as well as grain pathogens 
(Goates and Mercier  2009 ). Additionally, the 
VOCs produced by  Muscodor yucatanensis , 
 Muscodor fengyangensis , and a second isolate 
of  M. albus  all inhibit pathogenic species of 
bacteria, fungi, and oomycota (Atmosukarto 
et al.  2005 ; Macias-Rubalcava et al.  2010 ; Zhang 
et al.  2010a ).  Muscodor crispans  was found to 
produce a mixture of VOCs that inhibits a wide 
range of plant pathogens, including the fungi 
 Mycosphaerella fi jiensis  (the black sigatoka 
pathogen of banana) and the serious bacterial 
pathogen of citrus,  Xanthomonas axonopodis  pv. 
 citri  (Mitchell et al.  2010 ). Other fungi were 
found to emit active VOCs as well. Pimenta 
et al. ( 2012 ) isolated an endophytic fungus, 
 Phaeosphaeria nodorum , from plums ( Prunus 
domestica ), producing inhibitory VOCs to 
 Monilinia fructicola.  A  Phoma  sp. isolated from 
creosote bush emits VOCs that may contribute to 
this shrub survival in harsh desert habitats 
(Strobel et al.  2011 ). This  Phoma  sp. produces a 
unique mixture of VOCs that inhibit or kill a 
range of plant pathogens, including  Verticillium , 
 Ceratocystis ,  Cercospora , and  Sclerotinia  
(Strobel et al.  2011 ). 

 The term “mycofumigation” was given to the 
use of volatile emitting fungi and their VOCs for 
the control of other organisms, pathogenic on 
fruit, vegetables, and food products in posthar-
vest (Stinson et al.  2003 ). VOCs of  M. albus  are 
toxic to the peach pathogens,  Penicillium 
expansum ,  B. cinerea , and  Monilinia fructicola , 
as determined in vitro. Furthermore, the volatiles 
prevent fungal contamination of postharvest 
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peaches over 7 day of storage (Mercier and 
Jimenez  2004 ). Muscodor TM  a product based on 
 M. albus  was introduced by AgraQuest for use in 
postharvest of different fruits, nuts, seed, soil 
treatment, and more (AgraQuest  2005 ). VOCs of 
 Oxyporus latemarginatus  EF069, an endophyte 
isolated from red peppers, reduce postharvest 
decay of apples caused by  B. cinerea  and 
 Rhizoctonia  root rot of moth orchid (Lee et al. 
 2009b ).  Phomopsis  spp.,  Nodulisporium  spp., 
and  Hypoxylon  spp. produce volatile compounds 
that control fruit decay as well (Park et al.  2010 ; 
Tomsheck et al.  2010 ; Singh et al.  2011b ). 
Suwannarach et al. ( 2013 ) reported on the isola-
tion of a  Nodulisporium  spp. CMU-UPE34 with 
the ability to control green mold decay on  Citrus 
limon  caused by  Penicillium digitatum  and blue 
mold decay of  Citrus aurantifolia  and  Citrus 
reticulata  caused by  Penicillium expansum . 

 Not only fungi are able to produce and emit 
VOCs but some bacterial strains, such as 
 Bacillus subtilis ,  Pseudomonas chlororaphis , 
 Pseudomonas fl uorescens ,  Serratia odorifera , 
and  Stenotrophomonas maltophilia , all non- 
endophytic from nonwoody plants (Kai et al. 
 2007 ; Athukorala et al.  2010 ), have also been 
shown to produce volatile organic compounds 
active against  Alternaria ,  Colletotrichum , 
 Fusarium ,  Rhizoctonia ,  Pythium ,  Sclerotium , 
 and Verticillium  (Suwannarach et al.  2013 ). It is 
very reasonable that endophytic bacteria with 
the ability to produce and emit biologically 
active VOCs will be found in woody and non-
woody plants in the future. 

 Insecticidal properties of fungal VOCs are 
also being investigated.  Muscodor  spp. produc-
ing nitrosoamide have been demonstrated to 
kill insects (Strobel et al.  2010 ).  M. vitigenus  
produces naphthalene, an effective insect 
repellent (Daisy et al.  2002 ). The volatile 
mixture produced by strain CZ-620 has some 
nematicidal and insecticidal activities (Lacey 
and Neven  2006 ; Riga et al.  2008 ). In addition, 
VOCs’ profi les correlate with varying levels 
of pathogenicity of entomopathogenic fungi 
 Beauveria bassiana  and  Metarhizium aniso-
pliae  studied for their potential as biocontrol 
agents to reduce termite populations (Hussain 
et al.  2010 ).   

4     Concluding Remarks 
and Future Prospects 

•     Microbial endophytes appear to be symbiotic 
with all plants in natural ecosystems and have 
profound impacts on the survival and fi tness 
of plants.  

•   Microbial endophytes benefi t plants by pro-
moting plant growth, and thereby increase 
crop yields, and confer tolerance to both biotic 
(interspecifi c competition, invertebrate pests, 
herbivory of mammals, and diseases caused 
by phytopathogens) and abiotic (heavy metal 
pollutions, drought, salinity, and temperature) 
stresses. Endophytes also produce novel 
 substances that may have signifi cance to 
human health. These characteristics establish 
endophytes as good candidates for both bio-
control and bioremediation agents. Thus, if 
such endophytes can be identifi ed and confer 
benefi ts in mechanized, agricultural systems, 
they would be increasingly important in agri-
cultural production.  

•   The use of microbial endophytes for biocon-
trol holds much promise for the reasons dis-
cussed above. However, there are challenges 
due to the complexity of the system – the 
endophyte-host associations are highly plastic 
(Malinowski and Belesky  2000 ). In order to 
achieve the biotechnological potential of these 
microbes, understanding of the mechanisms 
enabling endophytes to interact with plants is 
needed (Jalgaonwala and Mahajan  2011 ; 
Kuldau and Bacon  2008 ). The complexity of 
interactions among endophytes, pathogens, 
insects, and plants demonstrates the diffi culty 
of predicting the outcomes for plant protec-
tion by the endophytes. In addition, there 
likely remain much undescribed endophytes, 
especially regarding woody plants and trees 
(Arnold and Herre  2003 ).  

•   To date, although an enormous amount of 
literature on the possible use of endophytes as 
biological control and growth-promoting agents 
was published (reviewed by Albrectsen and 
Witzell  2012 ; Mei and Flinn  2010 ), it has not 
become an established part of most pest 
management systems. This may be due to 
great expectation by researchers, as well as the 
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consequence of simplifi ed screening systems, 
where candidate biocontrol agents are tested 
using newly recovered isolates, under con-
trolled environmental conditions, against one 
disease and on one crop (Sturz et al.  2000 ). 
For example, the application of an endophyte, 
exhibiting in vitro antibiosis properties against 
a systemic pathogen, into the tree’s xylem, 
where chemical control is less effi cient, may 
potentially play a role in the pathogens control. 
Yet, at least for mal secco disease of citrus, 
none of the attempts were proven to be useful 
(Lima et al.  1994 ; Coco et al.  2004 ; Ezra et al. 
unpublished).  

•   The question whether the introduction of an 
endophyte into a new environment might have 
an infl uence on the ecosystem should be 
evaluated by research. The possibility that 
endophytes could be pathogenic to other 
members of the native forest cannot be ruled 
out. It should be of a practice to confi rm that 
the biocontrol agents exert no pathogenic 
effects on both the target host and on other 
plant species that are part of agro systems, 
polycultures, or native vegetation associated 
with the target host (Meji’a et al.  2008 ).  

•   Future plans for endophytes include the intro-
duction of native and novel or transformed 
endophytes expressing specifi c and desirable 
characteristics for plant improvement. For 
example, in grasses the uses of transformed 
endophytes are for delivery of pesticides, 
delivery of genes for enhanced biotic and abi-
otic stress resistance, accelerated seedling 
emergence and subsequent plant development, 
increasing or improving nutritional qualities, 
and increase herbage yield (Kuldau and Bacon 
 2008 ). In addition, endophytic fungi have the 
potential for use as vectors for transformation 
of useful products that can be expressed  in 
planta  (Kuldau and Bacon  2008 ).  

•   Endophytes are, undoubtedly, an integrated 
part of the plants environment, yet most of the 
microbial endophytes are still obscure. Also, 
their impact on the host and their relations 
with it are still vague. However, endophytes’ 
potential benefi ts for human kind are huge. 
They may contain the solution to the world’s 

food shortage, by increasing crop yield, as 
well as to climate changes, by increasing the 
plant’s tolerance to stresses. Therefore, it is 
research duty in the future to discover and 
utilize the full potential they still pose.        
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    Abstract  

     Incidence of cancer keep increasing worldwide may be due to genetic 
aberration, environmental effect, diet, socioeconomic factors, and various 
types of infections. Our previous studies revealed an association of 
 Helicobacter pylori  ( H. pylori ) and their species,  Salmonella  Typhi ( S.  Typhi), 
and  Mycobacterium  with various gastrointestinal tract (GI) cancers including 
oral, oropharyngeal, esophageal, gastric, gallbladder, pancreatic, and anal-canal 
cancers. We experience that poor cure rate is reported due to failure of 
conventional medicine, drug resistance, and failure to know the exact cause. 
As we are a group of oncologist and basic researcher, it is our experience 
that surgical procedures and chemotherapy are better adjuvant therapeutic 
option for cancer treatment. The area of chemotherapy is enhanced, but 
basic foundation is devised from natural products, which are used directly 
or as synthetic derivatives as stand-alone or in different combinations. 
Microorganisms, either bacteria or fungi that live inside plant tissue 
(endophytes) system, are big source of natural antimicrobial compound. 
It is known that endophytic alkaloids, taxoids, podophyllotoxins, etc., 
have an antineoplastic activity. Keeping these facts in mind, this chapter 
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1         Introduction 

 More than hundred types of cancers exist and 
they can affect any part of the body. In the 
present scenario approximately 70 % of all can-
cer deaths occur in low- and middle-income 
countries. Worldwide, the fi ve most common 
types of cancers associated with lung, stomach, 
liver, colorectal, and esophagus are responsible 
for major death cases. The curative procedure is 
either chemotherapy- based surgery or radiother-
apy. The cancer chemotherapy based on natural 
origin is used as a potential therapeutic applica-
tion for cancer treatment from prehistoric time 
till date. Natural products from    several sources 
have been used for cancer treatment as alone as 
well as in combination to combat cancer with 
the emergence of taxol (Fig.  19.1 ). The main 
sources of these successful compounds are 
microbes such as bacteria, fungi, and plants of 
different ecosystem. These microbes give out a 

major source of natural products with cancer 
therapeutic activity. Plant alkaloids, taxoids, 
and podophyllotoxins are biologically active 
metabolites of endophytes, which can be used 
effectively in cancer treatment. The search for 
novel cancer chemotherapeutic drugs is still a 
priority due to the rapid development of resis-
tance pattern. In addition, the high toxicity, 
usually associated with some cancer chemother-
apy drugs, and their undesirable side effects 
increase the demand for novel antitumor drugs 
active against untreatable tumor, with fewer side 
effects and with greater therapeutic effi ciency. 
In this context there are many research works 
and reviews available, but among them only a 
few are relevant to its implication with cancer 
chemotherapy.

   In our experience the study area, Varanasi, 
U. P., India, had a higher load of cancer patients 
(Fig.  19.2 ) and low rate of therapeutics (Tewari 
et al.  2008a ,  b ).    This chapter points out recent 
update which focuses in the identification, 
production, and implication of the cancer 
chemotherapeutic compounds in the future. We will 
also try to correlate the present cancer burden 
and role of endophytic metabolite and their 
derivatives in cancer chemotherapy.

2        Cancer Burden and Etiology 

 Cancer is multifactorial and may occur due to result 
of multistep pathway. It seems a high load of new 
cases and deaths will be added due to cancer alone 
(Table  19.1 ) (Parkin et al.  2001 ). The variation in 
the incidence rate of cancer is infl uenced by envi-
ronmental and socioeconomic factors with genetic 
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  Fig. 19.1    Taxol: the fi rst billion dollar anticancer mole-
cule of endophytic origin       

points out the active exploration and implication of endophytic metabolite 
and their derivatives in cancer chemotherapy in near future. Obtained data 
were analyzed and result showed that the endophytic metabolites may be 
potential source of newer cancer chemotherapeutic drugs. It concluded 
that in the fi eld of cancer chemotherapy, search for novel drugs from 
endophytic origin is still a priority.  
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aberration (Maurya et al.  2010 ), epigenetic changes 
(   Tewari et al.  2013a ,  b ), overexpression/suppress 
expression of gene (Tewari et al.  2013a ,  b ), and 
various types of infection such as  Helicobacter 
pylori  ( H. pylori ) and their species (Mishra et al. 
 2010 ,  2011 ),  Salmonella  Typhi ( S.  Typhi), 
 Mycobacterium  (Tewari et al.  2009 ,  2010 ), etc.

3        Conventional and Newer 
Approaches for Cancer 
Treatment 

 Conventional cancer chemotherapy has the limita-
tion of multidrug resistance (MDR) caused by over-
expression of integral membrane transporters, 

  Fig. 19.2    ( a ) Estimated burden and observation status 
of four common cancers in Varanasi region of north 
India since 1990–2007. ( b ) Male and female distribution 

of Out Patient Department, Sir Sunder Lal Hospital, 
Institute of Medical Sciences, Surgical Oncology Wing       

   Table 19.1    Fifteen common cancers of worldwide with their estimated numbers of new cases and deaths in male and 
female under thousand   

 S. no  Site of cancer 

 Male ( n  = 1,000)  Female ( n  = 1,000) 

 Incidence  Mortality  Incidence  Mortality 

 1  Lung  902  810  337  293 
 2  Breast  –  –  1,050  370 
 3  Colorectal  499  255  446  234 
 4  Stomach  558  405  318  241 
 5  Liver  398  384  166  165 
 6  Prostrate  543  204  –  – 
 7  Cervix  –  –  471  233 
 8  Esophagus  279  227  133  111 
 9  Bladder  260  99  76  33 
 10  Non-Hodgkin lymphoma  167  93  121  68 
 11  Leukemia  144  109  113  86 
 12  Oral cavity  170  81  97  47 
 13  Pancreas  116  112  101  101 
 14  Kidney  119  57  71  34 
 15  Ovary  –  –  192  114 

  After Parkin et al. ( 2001 )  
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such as P-gp, which can effl ux intracellular 
anticancer drugs thus decreasing drug accumula-
tion (Galmarini and Galmarini  2003 ). MDR 
cells are resistant to cytotoxic effects of various 
structurally unrelated chemotherapeutic agents. 
Developing new anticancer drugs that are effi cient 
to MDR cells is a feasible strategy to overcome 
MDR (Galmarini et al.  2012 ). Folic acid antago-
nist, 4-aminopteroyl-glutamic acid, antagonist 
of pteroylglutamic acid, bis(2-haloethyl) amines, 
sulfi des, and “mustard gas” are in therapeutic 
applications and provide the necessary stimulus 
for the development of other anticancer agents 
(Farber and Diamond  1948 ; Gilman  1946 ; Law 
 1951 ; Philips  1950 ; Seeger et al.  1947 ; Stevens 
et al.  1950 ). Few newer approaches such as 
dendritic cell therapy (Tewari et al.  2012 ) and 
endophytic metabolite-based cancer therapy are 
also under consideration (Philips  1950 ). 

 Since half of the century, natural products are 
only compounds used to serve us in cancer 
therapy. The main sources of these successful 
compounds are microbes and plants from various 
parts of the ecosystem. The    major source of natural 
products with antitumor activity evaluated with 
the emergence of antibiotics. Few alkaloids, 
taxoids, and podophyllotoxins are also biological 
metabolites that can be obtained from the plant 
systems which can be used for effective cancer 
treatment. Few polymer conjugated to the anti-
cancer protein neocarzinostatin is accumulated 
more in tumor tissues than did neocarzinostatin. 
This tumoritropic accumulation was studied 
with radioactive (51Cr-labeled) proteins of various 
molecular sizes (M, 12,000–160,000) and other 
properties in combination of dye-complexed serum 
albumin to visualize the accumulation in tumors 
of tumor-bearing animal model indicating 
macromolecular therapeutics approach in cancer 
chemotherapy is established in spite of others 
(Matsumura and Maeda  1986 ).  

4     Recognition and Emergence 
of Endophytic Metabolite 

 Endophytes reside inside the leaf, stem, or roots 
of higher plants. They are the source of secondary 
metabolites with promising chemotherapeutic 

activity. Fewer cancer treatment options with 
higher side effects and high cost make cancer 
treatment very diffi cult. Endophytic fungi are an 
emerging potential source of chemotherapeutic 
compounds from different chemical classes. 
From endophytic origin more than hundred 
compounds have been evaluated with signifi cant 
cytotoxicity. In our experience paclitaxel is used 
frequently form last decade, and interestingly it 
has been isolated from fungus. Vincristine is 
another chemotherapeutic agent reported from 
a fungal source in the twentieth century. After    
that interest on endophytic-based chemotherapy 
is enhanced, nowadays we have approximately 
ten anticancer and hundreds of compounds with 
 signifi cant cytotoxic activity (Kharwar et al.  2009 ). 

 Endophytic bacteria have been studied; it 
improves the biomass production and the carbon 
sequestration potential from  Populus  spp. It    is 
reported that 78 bacterial endophytes isolated 
from willow tree ( Salix   sp.).  Gammaproteobacteria  
dominated in the above collection, which 
include  Enterobacter  spp. strain 638 and 
 Stenotrophomonas maltophilia . It draws design 
and strategies for improvement of biomass pro-
duction with the interactions between endophytic 
bacteria and their host plants (Taghavi et al. 
 2009 ). Endophytic microbes may promote plant 
growth and confer enhanced resistance to various 
pathogens. In the case of  Oryza sativa , endophytes 
isolated and used as the test plant produced two 
types of interactions; fi rst are biofi lms (bacteria 
attached to mycelia) and mixed cultures with 
no such attachments. Indoleacetic acid-like 
substances (IAAS) of biofi lms were observed 
higher in fungi or bacteria. In vitro production    
and application of benefi cial biofi lm inoculation 
of endophytes are important for improved plant 
production in agroecosystem (Bandara et al.  2006 ). 
In 2009, 34 bacterial endophytes were isolated 
and characterized from stem of  Chelidonium 
majus  L. and evaluated for antifungal activity 
(Goryluk et al.  2009 ). 

 Biodiversity of endophytes may yield prod-
ucts of great use to humans (Smith et al.  2008 ). 
Recently, many endophytic bioactive metabolites 
known as well as new substances, possessing a 
wide variety of biological activities as antibiotic, 
antitumor, anti-infl ammatory, antioxidant, etc., 
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have been identifi ed. Different bioactive secondary 
metabolites produced by endophytic microor-
ganisms as well as microbial sources of these 
metabolites and their host plants are well catego-
rized (Firakova et al.  2007 ). 

 Penicillin (source  Penicillium notatum ) opened 
discovery of novel bioactives from microbial 
metabolites. Bioactive natural products from 
endophytic microbes have enormous potential 
as the source of new medicinal products. The 
cloning of the genes of endophytic metabolites 
has begun to open up attractive screening possi-
bilities for the direct identifi cation of endophytic 
strains (Zhang et al.  2001 ). It seems that 
endophytes are the group of poorly investigated 
microorganisms. They have reliable source of 
bioactive and chemically novel compounds with 
potential for exploitation in a wide variety of 
medical importance (Strobel and Daisy  2003 ). 
Endophytes of ethnomedicinal plants could 
be a good source of antibacterial substances. 
Endophytic fungi were isolated from surface- 
sterilized leaves and small branches of  Garcinia 
mangostana  plant found in Indonesia. The crude 
extracts of ethyl acetate (EtOAc) of the 24 fer-
mentation broths from 24 endophytic fungi were 
tested for their antibacterial activity against 
 Staphylococcus aureus  ATCC 25923,  Bacillus 
subtilis  ATCC 6633,  Escherichia coli  ATCC 
25922,  Pseudomonas aeruginosa  ATCC 27853, 
 Salmonella typhi  ATCC 14028, and  Micrococcus 
luteus  (ATCC 10240), opening newer future 
prospects of endophytes. The minimum inhibi-
tory concentration (MIC) of the crude ethyl 
acetate extracts of isolate RGM-02 inhibited  S. 
aureus  (MIC 25 μg/ml),  B. subtilis  (MIC 50 μg/
ml),  M. luteus  (MIC 25 μg/ml),  E. coli  (MIC 
200 μg/ml),  S. typhi  (MIC 200 μg/ml), and 
 P. aeruginosa  (MIC 100 μg/ml), respectively. 
The molecular identification revealed that the 
isolate RGM-02 represented  Microdiplodia 
hawaiiensis  CZ315 (Radji et al.  2011 ). 

 In  Prunus mume ,  Rosaceae , an endophytic 
bacterial strain ZZ120 was isolated from stems 
and identifi ed as  Bacillus subtilis . ZZ120 culture 
fi ltrate contains  n -butanol extract which is a 
strong growth inhibitor against disease and phy-
topathogens including  Fusarium graminearum , 
 Alternaria alternata ,  Rhizoctonia solani , 

 Cryphonectria parasitica , and  Glomerella 
 glycines . Antifungal compounds were isolated 
from  n -butanol extract as a mixture of its iturins 
which had strong antifungal activity for  B. subti-
lis  ZZ120, and its bioactive components might 
provide an alternative agent for the biocontrol 
of replant diseases (Li et al.  2012 ). Brazilian 
mangrove plant     Laguncularia racemosa  (L.) 
used for identifi cation of 70 endophytic fungal 
strains. These fungal metabolites were active 
towards bacteria,  Staphylococcus aureus ,  Bacillus 
subtilis ,  Enterococcus faecalis ,  Micrococcus 
luteus ,  Escherichia coli , and  Pseudomonas aeru-
ginosa . Among 70, thirty-four (48.6 %) endophytic 
fungi strains were identifi ed to produce secondary 
metabolites having an antimicrobial activity. 
Crude extracts of  Aspergillus niger ,  Curvularia 
pallescens ,  Guignardia bidwellii ,  Paecilomyces 
variotii , and  Mycelia sterilia  presented good 
results (Silva et al.  2011 ). 

 Rigorous studies on animal microbial world 
and plant system show that these harbor a 
wide range of diverse bacteria. Depending on 
the colonized compartment, these bacteria are 
rhizospheric (root colonizers), endophytic (colo-
nizing the endosphere, the bulk of internal tissues), 
and phyllospheric (Pini et al.  2012 ). Roots of 
 Pongamia glabra  from Jalgaon, Maharashtra 
(India), were used for the identifi cation of endo-
phytic bacteria under different environmental 
conditions (Jalgaonwala and Mahajan  2011 ). 
   In total 3, 16 endophytic antibacterial products 
were isolated; few are possessing great antifungal 
activity. In spite of extensive research, scientist 
mainly focused on endophytic fungi for pro-
ducing plant-derived bioactive compounds 
such as paclitaxel, podophyllotoxin, camptothe-
cine, vinblastine, hypericin, and diosgenin (Zhao 
et al.  2010 ). 

 From the roots of     Oryza sativa  L., 192 positive 
clones in the 16S rDNA library of endophytes 
and 52 OTUs (Operational Taxonomic Units) 
were identifi ed based on the similarity of the 
amplifi ed ribosomal DNA restriction analysis 
(ARDRA), banding profi les.  Betaproteobacteria  
(27.08 % of the    total clones) traced, and the most 
dominant genus was  Stenotrophomonas . More 
than 14.58 %    were uncultured bacteria and may 
be member of endophytic bacterial community 
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(Sun et al.  2008 ). Another genome sequence    of 
strain RR-10 from endophyte  Stenotrophomonas 
maltophilia  which was isolated from a rice root 
in a rice fi eld of China (Zhu et al.  2012 ). 853 
endophytic strains were isolated from aerial 
tissues of four agronomic crop species and 27 
prairie plant species. Among them endophytes 
exhibiting the most promising levels of coloniza-
tion and an ability to persist were identifi ed as 
 Cellulomonas ,  Clavibacter ,  Curtobacterium , 
and  Microbacterium  isolates by 16S rRNA gene 
sequence, fatty acid, and carbon source utiliza-
tion analyses.  Microbacterium testaceum  defi nes 
for the fi rst time the endophytic nature which is 
useful for biocontrol and other applications 
(Zinniel et al.  2002 ). 

 Endophytes are divers and useful for biological 
control of pathogens and plant growth promo-
tion. Twenty-one isolates of endophytes had 
been identifi ed, belonging to 11 genera ( Alternaria , 
 Bipolaris ,  Colletotrichum ,  Glomerella ,  Guignardia , 
 Lasiodiplodia ,  Marasmius ,  Phlebia ,  Phoma , 
 Phomopsis , and  Schizophyllum ); one isolate was 
identifi ed only to the order level (Diaporthales). 
The phylogenetic analysis confi rmed the molecular 
identifi cation of some isolates to genus level, while 
for others it was confi rmed at the species level 
(Orlandelli et al.  2012 ). Root, stem, petiole, leaf, 
and seed are main parts of host plants where 
endophytes can reside.  Panax notoginseng  is an 
example which is evaluated for antagonistic 
activity against  Fusarium oxysporum ,  Ralstonia  
sp., and  Meloidogyne hapla . Thousands of 
endophytic bacterial strains were evaluated in 
vitro; 104 strains exhibited antagonistic proper-
ties against at least one of these three pathogens 
belonging to four clusters:  Firmicutes ,  Proteobac-
teria ,  Actinobacteria , and  Bacteroidetes / Chlorobi  
(Ma et al.  2012 ).  

5     Endophytic Metabolite 
in Cancer Chemotherapy 

 Cancer is increasing with alarming rate due to 
changing lifestyle, nutrition, global warming, 
genetic aberration/changes, and infections (Maurya 
et al.  2010 ; Tewari et al.  2009 ,  2010 ,  2013a ,  b ; 

Mishra et al.  2010 ,  2011 ). The cancer therapy is 
costly with several side effects and immunomod-
ulations (Mishra et al.  2013 ). So the assumption 
is that the natural products derived from medicinal 
plants have gained signifi cance in cancer chemo-
therapy. Natural products and    their derivatives 
are used from prehistoric in clinical uses .  The 
National Cancer    Institute (NCI) of the United 
States of America (USA) has screened more than 
lacks extracts from an estimated about 35,000 
plant samples against a number of tumor systems 
(Cragg and Boyd  1996 ). In the twentieth century 
approximately 92 anticancer drugs were com-
mercially available, approximately 62 % can be 
related to natural origin (Cragg et al.  1997 ), and 
few are under uses (Boopathy and Kathiresan 
 2010 ). In the Table  19.2 , plant-derived natural 
products, paclitaxel and camptothecin were 
estimated to account for nearly one third of the 
global anticancer market (Oberlies and Kroll 
 2004 ). Over the last few decades, signifi cant efforts 
have been made, by both pharmaceutical 
companies and academic institutions, to isolate 
and identify new natural products, especially 
from fungal species (Jimeno et al.  2004 ).

   With the all    aspects of the ecology of bacterial 
endophytes evaluated for the potential use of 
bacterial endophytes for benefi cial purposes 
(Lodewyckx et al.  2002 ). Other applications in 

   Table 19.2    Ten common anticancer compounds derived 
from natural resources used in chemotherapy   

 S. 
no.  Source of origin  Anticancer compound 

 1   Catharanthus roseus   Vinblastine and vincristine 
 2   Podophyllum peltatum   Epipodophyllotoxin, an 

isomer of podophyllotoxin 
 3   Taxus baccata   Paclitaxel 
 4   T. brevifolia   Paclitaxel 
 5   T. canadensis   Paclitaxel 
 6   Camptotheca 

acuminata  
 Camptothecin 

 7   Cephalotaxus 
harringtonia  var. 
 drupacea  

 Homoharringtonine 

 8   Bleekeria vitensis   Elliptinium 
 9   Dysoxylum 

binectariferum  
 Flavopiridol 

 10   Ipomoea batatas   Ipomeanol 
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industry may also be discovered among the 
novel products produced by endophytic microbes 
are under consideration (Strobel et al.  2004 ). 
Anticancer activity of 14 anthracenedione deriva-
tives separated from the secondary metabolites 
of the mangrove endophytic fungi  Halorosellinia  
sp. (No. 1403) and  Guignardia  sp. (No. 4382) had 
been reported (Zhang et al.  2010 ).    One hundred 
thirty endophytic fungi that were isolated from 
12 Chinese traditional medicinal plants were 
tested for antitumor and antifungal activities 
by MTT assay on human gastric tumor cell line 
BGC-823 and the growth inhibition test against 7 
phytopathogenic fungi. The results showed that 
fermentation broths from 9.2 % of the isolates 
exhibited antitumor activity and 30 % exhibited 
antifungal activity; moreover, some of them 
exhibited broad-spectrum antifungal activity. 
The active isolates were identifi ed to 32 taxa. 
The results indicate that the endophytic fungi 
of Chinese traditional medicinal plants are 
promising sources of novel bioactive compounds 
(Li et al.  2005a ,  b ). Taxol is an active agent 
derived from plant  Taxomyces andreanae  of plant 
association  Taxus brevifolia  confi rmed as anticancer 
(Stierle et al.  1993 ).  

6     Evaluation of Anticancer 
Activity of Endophytic 
Metabolites 

 Several endophytic metabolites were evaluated 
till now, among which we identifi ed few com-
pounds (Ryan et al.  2008 ) with their structure, 
source of origin, and endophyte with their 
activity on various cell lines (Verma  2012 ) 
(Table  19.3 ).  Xylaria  sp. produces benzoquinone 
metabolites, and penicillenols B1, B2, C1, and 
C2, [17, 18, 19, 20] were identifi ed from 
 Penicillium  sp. GQ-7, from fungus  Aegiceras 
cornice  (Xu et al.  2008 ). Leaf of  Kandelia candel  
was evaluated to isolate cyclic depsipeptides, 
1962A and 1962B, from the mangrove endo-
phytic fungus (No. 1962). The MTT bioassay, 
1962A, showed weak activity against human 
breast cancer MCF-7 cells (Huang et al.  2007 ). 
Preussomerin EG2 [21] and preussomerin EG3 

[22] and palmarumycin CP2 were isolated 
from the mycelium of  Edenia gomezpompae  
present on the leaves of  Callicarpa acuminata  
(Verbenaceae). Three other polyke-tides, penicil-
lenone [23], arugosin I [24], and 9-demethyl FR- 
901235 [25], were isolated from the  Penicillium  
sp. JP-1, an endophytic fungus isolated from 
 Aegiceras corniculatum . Tyrosol [26] was iso-
lated from  Glomerella cingulata , the most com-
mon endophytic fungus associated with  V. 
arenaria , but this was inactive. Metabolites such 
as phomopsin B [27] and C [28] were isolated 
from the mangrove endophytic fungus  Phomopsis  
sp. ZSUH76 (Xu et al.  2008 ). Mangrove endo-
phytic fungus  Xylaria  sp. is a potent resource of 
metabolites. Xyloketal B [29] and Xyloketal J 
[30], Xyloester A [31], and Xyloallenolid B [32] 
were isolated from the  Xylaria  sp. (Xu et al.  2008 ). 
Five new metabolites, (+)-(5 S , 10 S )-4′-hydro-
xymethylcyclozonarone [33], phyllospinarone 
[34], 3-ketotauranin [36], 3α-hydro xy tauranin 
[37], and 12- hydroxytauranin [38], together with 
tauranin [35], were isolated from  Phyllosticta 
spinarum , a fungal endophyte in  Platycladus ori-
entalis . All these natural products were evaluated 
for in vitro antiproliferative activity against a 
panel of fi ve sentinel cancer cell lines, NCI-H460 
(non-small cell lung), MCF-7 (breast), SF-268 
(CNS glioma), PC-3 M (prostate), and MIA Pa 
Ca-2 (pancreatic). Only tauranin [35] showed 
antiproliferative activity against the cancer cell 
lines tested (Kithsiri Wijeratne et al.  2008 ; Ryan 
et al.  2008 ).

   Five new metabolites, (+)-(5 S , 10 S )-4′-hydro-
xymethylcyclozonarone [31]  phyllospinarone 
[32] together with tauranin [33] 3-ketotauranin 
[34] 3α-hydroxytauranin [35], 12 hydroxytau-
ranin [36], were isolated from  Phyllosticta 
spinarum , a fungal endophyte in  Platycladus ori-
entalis . All these natural products were evaluated 
for  in vitro  antiproliferative activity against a 
panel of fi ve sentinel cancer cell lines, NCI-H460 
(non-small cell lung), MCF-7 (breast), SF-268 
(CNS glioma), PC-3 M (prostate), and MIA Pa 
Ca-2 (pancreatic). Only tauranin [37] showed 
anti proliferative activity against the cancer 
cell lines tested (Kithsiri Wijeratne et al.  2008 ; 
Ryan et al.  2008 ).
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7          Prevention of  Helicobacter 
pylori  Infection Using 
Endophytic Metabolites 
Opens Preventive Strategy 
of Gastric Cancer 

  H. pylori  is Gram-negative, spiral-shaped bacte-
rium that colonizes the gastrointestinal tract of 
human (Marshall and Windsor  2005 ; Mishra 
et al.  2010 ,  2011 ) and other zooans    (Wadstrom 
and Hanninen  1999 ). Several case-control studies 
have shown signifi cant association between  H. 
pylori  infection and the risk gastric cancer 
(Munoz et al.  1968 ). For example, intestinal-type 
tumors predominate in countries with high 
 prevalence of  H. pylori , e.g., East Asia, while 

diffuse- type tumors have more uniform 
 geographic distribution (Nomura et al.  1995 ). 
Prospective studies have also supported the asso-
ciation between  H. pylori  infection and gastric 
cancer risk (Konturek et al.  2002 ). Perhaps the 
most compelling evidence for establishing the 
link between  H. pylori  infection and gastric can-
cer comes from prospective studies on 1526 
Japanese  H. pylori -infected patients during a 
7-year study. It was observed that 2.9 % of 
infected patients developed cancer, whereas other 
subject remained safe. In  H. pylori , 4.7 % of 
patients with non- ulcer dyspepsia developed gas-
tric cancer (Uemura et al.  2002 ). Many antimi-
crobial agents are poorly secreted in the mucosa 
or are inactivated in the acid environment of the 
stomach. Because of this, sometimes  H. pylori  

   Table 19.3    Metabolites isolated from the defi ned endophytic origin with their structure   

 Metabolites with 
structure [no.]  Source  Endophyte  Cytotoxic test  Reference 

 2-chloro-5-methoxy-3- 
methylcyclohexa-2, 
5-diene-1,4-dione [1] 
and xylariaquinone A 
[2] 

  Sandoricum 
koetjape  

  Xylaria  sp.  African green monkey 
kidney fi broblasts (Vero 
cells) 

 Tansuwan et al. ( 2007 ) 

 Penicillenols A1 
and B1 [3-4] 

  Sandoricum 
koetjape  

  Xylaria  sp.  HL-60 cell line  Lin et al. ( 2008a ) 

 Nigerasperone 
A-B [5-6] 

  Aegiceras 
corniculatum  

  Penicillium  sp. GQ-7  A549 and SMMC- 7721 
tumor cell lines 

 Zhang et al. ( 2007 ) 

 Nigerasperone C [7]   Aegiceras 
corniculatum  

  Penicillium  sp. GQ-7,  Candida albicans  Zhang et al. ( 2007 ) 

 Excelsione [8]   Knightia 
excelsa  

 Unidentifi ed fungus  P388 murine leukemia 
cells 

 Lang et al. ( 2007 ) 

 Preussomerin EG1[9]   Callicarpa 
acuminata  

  Edenia 
gomezpompae  

 –  Macías-Rubalcava et al. 
( 2008 ) 

 Leptosphaerone C [10]   Aegiceras 
corniculatum  

  Penicillium  sp. JP-1  A-549 cells  Lin et al. ( 2008b ) 

 Nectriapyrone [11]   V. arenaria    Glomerella cingulata   JURKAT T leukemia 
cells and B16F10 
melanoma cells 

 Guimarães et al. ( 2008 ) 

 Phomopsin A [12]  South China 
Sea plants 

  Phomopsis  sp. 
ZSUH76 

 –  Huang et al. ( 2008 ) 

 Phyllospinarone [13]   Platycladus 
orientalis  

  Phyllosticta 
spinarum  

 NCI-H460 (non-small 
cell lung), MCF-7 
(breast), SF-268 (CNS 
glioma), PC-3 M 
(prostate), MIA Pa Ca-2 
(pancreatic) 

 KithsiriWijeratne et al. 
( 2008 ) 

 Dipeptide 
trichodermamide A–C 
[14–16] 

 Culture broth   Eupenicillium  sp.  Human colorectal 
carcinoma HCT116 

 Davis et al. ( 2008 ) 
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show  susceptibility to antibiotics in vitro but has 
proved diffi cult to eradicate in vivo. Amino-
penicillins, macrolides, tetracyclines, nitroimid-
azole, and proton pump inhibitor are commonest 
agents that are generally used for the treatment of 

 H. pylori . The therapy of  H. pylori  should be 
planned as monotherapy or dual therapy or triple 
therapy or quadruple therapy (Table  19.4 ) (Hunt 
 1997 ). Surgical procedure and active chemother-
apy in combination with various anti- H. pylori  
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drugs are the therapeutic option for its treatment. 
In our experience poor cure rate is reported in  H. 
pylori  infection due to failure of conventional 
medicine that may be due to antibiotic drug resis-
tance. This problem enhanced area of emergence 
of chemotherapy against  H. pylori  infection. 
Natural products, which are used directly or as 

synthetic derivatives as alone, as well as in 
 combination, are an alternative for its prospective 
therapy, because it appears that endophytic alka-
loids, taxoids, and podophyllotoxins have an 
antineoplastic activity with full antimicrobial 
potentials. Recently  Rhizoctonia  sp. (Cy064)   , 
an endophytic fungus in the leaf of  Cynodon 
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   Table 19.4    The following agents are generally used for the treatment of  H. pylori    

 Therapy  Antibiotics/combination of antibiotics  Eradication rate (%) 

 Monotherapy  Amoxicillin  20 
 Erythromycin  20 
 Clarithromycin  54 
 Ranitidine bismuth citrate  20 

 Dual therapy  Tripotassium dicitratobismuthate + Amoxicillin  40 
 Tripotassium dicitratobismuthate + Metronidazole  80 
 Clarithromycin + Omeprazole  58–83 
 Colloidal bismuth subcitrate + Omeprazole  30–40 
 Amoxicillin + Omeprazole  72–84 
 Colloidal bismuth subcitrate + Erythromycin  40–60 
 Ranitidine bismuth citrate + Amoxicillin  40–60 
 Ranitidine bismuth citrate + Clarithromycin  44–82 

 Triple therapy  Omeprazole + Amoxicillin + Clarithromycin  96.9 (12 days) 
 Omeprazole + Clarithromycin + Tinidazole  82.2 (6 days) 
 Lansoprazole + Amoxicillin + Clarithromycin  92–94 
 Pantoprazole + Amoxicillin + Metronidazole  85 
 Lansoprazole + Azithromycin + Tinidazole (Ultrashort therapy for 3 days)  82 
 Lansoprazole + Azithromycin + Rebamipide  75 
 Omeprazole + Amoxicillin + Plaunotol  83.4 (4 weeks) 

 Quadruple 
therapy 

 Omeprazole + Colloidal bismuth subcitrate (CBS), Tripotassium 
dicitratobismuthate (TDB) + Tetracycline + Metronidazole 

 98 

 Omeprazole + Amoxicillin + Clarithromycin + Metronidazole  96 
 Omeprazole + Amoxicillin + TDB + Metronidazole  95 
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 dactylon , opens opportunity for detection of 
newer therapeutic metabolites. It contains rhizoc-
tonic acids (benzophenone) in combination with 
monomethylsulochrin, ergosterol, and 3b, 5a, 
6b-trihydroxyergosta-7, 22-diene. These metabo-
lites were isolated through bioassay-guided frac-
tionations from the culture of  Rhizoctonia  sp. 
(Cy064). 5-hydroxy-2-(2-hydroxy-6-methoxy-4- 
methylbenzoyl)-3-methoxybenzoic acid struc-
ture is elucidated by spectral analysis, and 
monomethylsulochrin was confi rmed by  13 C- NMR  
analysis. These metabolites were subjected to a 
more detailed in vitro assessment of their anti-
bacterial action against fi ve clinical isolates and 
one reference (ATCC 43504)  H. pylori  strains 
(Maa et al.  2004 ).

   It proves endophytic metabolites have a versa-
tile capacity of antimicrobial agents. Few endo-
phytes have been shown to possess superior 
biosynthetic capabilities owing to their  presumable 
gene recombination with the host, while residing 
and reproducing inside the healthy plant tissues. 
In another study 32 endophytic fungi were iso-
lated from the medicinal herb  Cynodon dactylon  
(Poaceae). The ethyl acetate extracts of the cul-
tures were examined in vitro for the anti- H . pylori  
activity. It was reported among 32, sixteen endo-
phyte culture extracts have potent anti- H. pylori  
activities. Four metabolites,  helvolic acid, mono-
methylsulochrin, ergosterol, and 3b-hydroxy-5a, 
8a-epidioxy- ergosta-6, 22-diene, were identifi ed 
with good minimum inhibitory concentration 
(Li et al.  2005a ,  b ). The antimicrobial spectrum of 
helvolic acid is most active against  H. pylori.  The 
study strategies (Maa et al.  2004 ; Li et al.  2005a , 
 b ) opening newer pathway to detect endophytic 
metabolites in the prevention of  H. pylori  infec-
tion may open preventive strategy of gastric 
cancer.  

8     Future Prospect 

 It is established that an endophyte may be a good 
source of secondary metabolites with promising 
cancer chemotherapeutic activity. It is very tough 
to search new anticancer agents frequently because 
sources are limited. Paclitaxel, the well- defi ned 

fungal endophytic metabolite, initiated us to work 
in this fi eld. Apart from paclitaxel several com-
pounds from endophytic origin had been reported 
with signifi cant cytotoxicity, but their active impli-
cation is limited because of poor work plan. 

 As per given    proposal plan for the development 
of newer anticancerous molecule from endophytic 
origin (Fig.  19.3 ), the following steps will be 
included:
•     Step 1: Isolation and identifi cation of endo-

phytes and extraction and isolation of crude 
ethyl acetate extracts from fungal fermenta-
tion broths  

•   Step 2: Test of microorganisms with antimi-
crobial screenings and determination of mini-
mum inhibitory concentration and analysis 
with their cytotoxic activity on cell lines  

•   Step 3: Development of animal model  
•   Step 4: Result analysis using statistical parameter 

and consideration of newer cancer chemother-
apeutics with their active trial     

9     Conclusion 

 The lifestyle, global warming, malnutrition, 
genetic aberration/epigenetic changes, and 
various environmental factors increase the 
incidences of cancer. Cancer is a global prob-
lem with less curative rate and indication of 
poor survival with various side effects. Natural 
derived compounds can be assumed to play an 
important role to prevent the cancer incidences. 
Our ecosystems, including aerial, terrestrial, 
and marine, have a potential source of antican-
cer compounds, but they are least explored till 
now. In this chapter we mainly focus on such 
limited compounds. Owing to a diverse chemi-
cal ecology, it is concluded that endophytic 
metabolites have a great promise for provid-
ing potent, inexpensive, and safer anticancer 
drugs, which deserve an extensive investigation 
in near future.     
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1         Introduction 

 There is a need to search for new antimicrobial 
agents because infectious diseases are still a 
global problem because of the development and 

spread of drug-resistant pathogens (Pillay and 
Zambon  1998 ; Espinel et al.  2001 ). Novel anti-
cancer drugs are also required due to the high 
worldwide mortality (Pisani et al.  1999 ). Cancer 
is a group of diseases that can affect various 
organs of the body and is characterized by the 
uncontrolled growth of abnormal cells and 
invasion into normal tissue. Cancer cells can 
also spread to other parts of the body and pro-
duce new tumors. If the spread of cells becomes 
uncontrolled, it can lead to death. Today, cancer 
accounts for one in every eight deaths worldwide – 
more than HIV/AIDS, tuberculosis, and malaria 
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combined. In 2008, there were an estimated 
12.7 million cases of cancer diagnosed and 
7.6 million deaths from cancer around the world. 
More than 60 % of all cancer deaths lack the 
medical resources and health systems to support 
the disease burden. Moreover, the global cancer 
burden is growing at an alarming pace; in 2030 
alone, about 21.4 million new cancer cases and 
13.2 million cancer deaths are expected to occur, 
simply due to the growth and aging of the popula-
tion, adoption of behaviors, as well as lifestyle and 
environmental infl uences including smoking, poor 
diet, physical inactivity, and reproductive patterns 
(American Cancer Society  2013 ).    The treatment 
of the disease is very diffi cult due to limited 
number of cancer chemotherapies, their deleterious 
side effects, and high cost of the drugs. 

 The discovery of new chemotherapeutic agents 
is a key goal for natural product and medicinal 
chemists because many existing therapies do not 
effectively treat certain cancers and multidrug-
resistant tumors exacerbate treatment challenges. 
Secondary metabolites (natural products) have 
played an important role in the discovery and 
development of medicinal agents. Many impor-
tant anticancer drugs have been isolated from 
plant sources. These compounds include the vinca 
alkaloids such as vinblastine and vincristine, 
which were isolated from the Madagascar peri-
winkle,  Catharanthus roseus  (Noble et al.  1958 ; 
Johnson et al.  1959 ) and paclitaxel (Wani et al. 
 1971 ), which is currently used for the treatment 
of breast cancer. Unfortunately, plant- derived 
natural products, being potent cytotoxic metabo-
lites, are often produced in very low quantities by 
the source organisms. For instance, paclitaxel 
constitutes only 0.01–0.03 % of the dry phloem 
weight of  Taxus  (Cragg and Newman  2005 ). 
   Supply is one of the serious issues because; if a 
source plant is endangered or has been collected 
in a politically quixotic part of the world. Many 
of the anticancer chemotherapeutics widely pre-
scribed today – including tubulin inhibitors, 
alkylating agents, and compounds that target 
DNA topoisomerases I and II – are cytotoxic 
(cell-killing) agents.    These secondary metabolite 
compositions make the re-isolation of a desired 
compound problematic because of environmental 

variations. Many researchers have looked to 
endophytic microorganism’s natural products as a 
source of new compounds to combat the complex 
of diseases called cancer. Most of these bioactive 
compounds interact with enzyme targets and 
help the organism survive against a wide array of 
challenges. Each new microbe has the potential 
for yielding as yet undiscovered compounds with 
bioactivity that can be adapted for medicinal 
purposes. It has been estimated by Demain 
( 2000 ) and others that fewer than 16 % of the 
fungal species that have been described have 
been cultured and studied. These described 
species probably represent fewer than 5 % of 
the total fungal species that await exploration. 
The focus of this report is anticancer agents 
produced by fungal endophytes.  

2     Endophytic Fungi 

2.1     Defi nition of an Endophyte 

 Endophytes are microorganisms that internally 
infect living plant tissues without causing any 
visible manifestation of disease and live in 
mutualistic association with plants for at least a 
part of their life cycle (Bacon and White  2000 ). 
The term “endophyte” (Gr. endon, within; phyton, 
plant) was fi rst contrived by de Bary ( 1866 ). All 
types of microorganisms (fungi, bacteria, and 
actinomycetes) have been discovered as endo-
phytes. The most frequently encountered endo-
phytes are fungi (Staniek et al.  2008 ). Fungal 
endophytes constitute an inexplicably diverse 
group of polyphyletic fungi ubiquitous in plants 
and maintain an indiscernible dynamic relation-
ship with their hosts for at least a part of their life 
cycle. The existence of fungi inside the tissues of 
asymptomatic plants has been known since the end 
of the nineteenth century (Guerin  1898 ). Evidence 
of plant-associated microorganisms found in the 
fossilized tissues of stems and leaves has revealed 
that endophyte-plant associations may have 
evolved from the time higher plants fi rst appeared 
on the earth (Redecker et al.  2000 ). However, 
except for some infrequent studies, it was not 
until the end of the twentieth century that fungal 
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endophytes began to receive more attention from 
scientists. Since endophytes were fi rst described 
in  Lolium persicum  (Freeman  1904 ), various 
investigators have isolated endophytes from dif-
ferent plant species. These discoveries led to a 
worldwide search for novel endophytes for the 
better understanding and applicability of such a 
promising group of microorganisms. On the one 
hand, the ecological aspects of endophytic fungi 
such as host range, evolutionary relatedness, 
infection, colonization, transmission patterns, 
tissue specifi city, and mutualistic fi tness benefi ts 
have been investigated relating to a plethora of 
plants (Arnold et al.  2003 ,  2007 ; Arnold  2005 , 
 2007 ; Stone et al.  2004 ; Schulz and Boyle  2005 ; 
Rodriguez et al.  2009 ). Several endophyte-derived 
natural products have shown potential as anti-
microbial, insecticidal, cytotoxic, and anticancer 
activity agents against a variety of plant and 
human pathogens (Verma et al.  2009 ).  

2.2     Collection and Isolation 
Techniques of Endophytes 

 A number of methods for isolation of endophytes 
are described in literatures. After a plant is 
selected for study, it is identifi ed, and its location 
is plotted using a global positioning device. Small 
stem pieces are cut from the plant and placed in 
sealed plastic bags after excess moisture is 
removed. Every attempt is made to store the 
materials at 4 °C until isolation procedures can 
begin (Shrestha et al.  2001 ; Strobel et al.  2002 ). 
In the laboratory, plant materials are thoroughly 
surface treated with 70 % ethanol, sometimes 
they are fl amed, and ultimately they are air dried 
under a laminar fl ow hood. This is done in order 
to eliminate surface-contaminating microbes. 
Then, with a sterile knife blade, outer tissues are 
removed from the samples, and the inner tissues 
are carefully excised and placed on water agar 
plates. After several days of incubation, hyphal 
tips of the fungi are removed and transferred to 
potato dextrose agar. The endophytes are encour-
aged to sporulate on specifi c plant materials and 
are eventually identifi ed via standard morpho-
logical and molecular biological techniques and 

methods. Eventually, when an endophyte is 
acquired in pure culture, it is tested for its ability 
to be grown in shake or still culture by the use of 
various media and growth conditions. It is also 
placed in storage under various conditions, 
including 15 % glycerol at −70 °C. Ultimately, 
once appropriate growth conditions are found, 
the microbe is fermented and extracted, and the 
bioactive compound(s) is isolated and characte-
rized. Virtually all of the common and advanced 
procedures for product isolation and characteri-
zation are utilized in order to acquire the 
product(s) of interest. Central to the processes of 
isolation is the establishment of one or more bio-
assays that will guide the compound purifi cation 
processes. One cannot put too much emphasis on 
this point since the ultimate success of any natural- 
product isolation activity is directly related to the 
development or selection of appropriate bioassay 
procedures. These can involve target organisms, 
enzymes, tissues, or model chemical systems that 
relate to the purpose for which the new com-
pound is needed (Strobel and Daisy  2003 ).  

2.3     Biodiversity and Distribution 
of Fungal Endophytes 

 Endophytes have been found in every plant 
studied to date. There are over 300,000 higher 
plant species, and it can be assumed that each of 
these species hosts a complex community of 
endophytic microbes (Saikkonen et al.  1998 ). 
Fungal endophytes are a diverse and versatile 
group of microorganisms that colonize plants in 
the Arctic and Antarctic, and in geothermal soils, 
deserts, oceans, rainforests, mangrove swamps, 
and coastal forests (Fisher et al.  1995 ; Regina 
et al.  2002 ; Strobel  2002 ; Bashyal et al.  2005 ; 
Suryanarayanan et al.  2005 ; Wang et al.  2006 ; 
   Lin et al.  2008a ,  b ; Rosa et al.  2009 ). They have 
been isolated from the root complexes and aerial 
parts of a diverse range of hosts including algae, 
bryophytes, pteridophytes, gymnosperms, and 
angiosperms (Swatzell et al.  1996 ; Wang et al. 
 2006 ; Kralj    et al.  2006 ; Gond et al.  2007 ; Silvia 
et al.  2008 ; Hoffman and Arnold  2008 ; Kharwar 
et al.  2008 ). Fungal endophytes are an important 
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component of microbial biodiversity. Endophytic 
fungal symbionts can have profound effects on 
plant ecology, fi tness, and evolution. Diverse 
group of this organism are able to produce num-
ber of bioactive agents (Brundrett  2006 ). The fos-
sil record indicates that plants have been 
associated with endophytic fungi, for >400 mil-
lion year, and were likely associated when plants 
colonized land, thus having an important role in 
driving the evolution of life on land. 
   Clavicipitaceous endophytes are class I endo-
phytes that represent a small number of phyloge-
netically related Clavicipitaceous species that are 
fastidious in culture and limited to some cool and 
warm season grasses (Stone et al.  2004 ; Bischoff 
and White  2005 ). Transmission of class I endo-
phytes is primarily vertical, with maternal plants 
passing fungi on to offspring via seed infections 
(Saikkonen et al.  2002 ). The benefi ts conferred 
by these fungi appear to depend on the host 
species, host genotype, and environmental condi-
tions (Faeth et al.  2006 ). Diversity of class II 
endophytes in individual host plants is quite 
limited. Class II endophytes comprise a diversity 
of species, all of which are members of the 
Dikarya (Ascomycota or Basidiomycota). They 
have ability to confer habitat-specifi c stress 
tolerance to host plants (Rodriguez et al.  2008 ). 
Researchers proposed that Clavicipitaceous 
endophytes are defensive mutualists of host 
grasses, and this hypothesis gets widely accepted 
on endophytes natural history, evolution, ecology, 
and physiology and followed by a number of 
researchers (Lane et al.  2000 ; Panaccione  2005 ; 
Panaccione et al.  2006 ; Koulman et al.  2007 ). 
Class III endophytes are distinguished on the 
basis of their occurrence and horizontal transmis-
sion. This includes vascular, nonvascular plants, 
woody, and herbaceous angiosperms in tropical 
forest and Antarctic communities (Davis et al. 
 2003 ; Higgins et al.  2007 ; Murali et al.  2007 ; 
   Davis and Shaw  2008 ). Class III endophytes are 
especially known for their great diversity within 
individual host tissues, plants, and populations. 
Individual leaves may harbor up to one isolate 
per 2 μM of leaf tissue and contain a number of 
species. A single plant may harbor hundreds of 
different endophytic fungi. Class IV endophytes 

have darkly melanized septa and restricted to 
plant roots. They are generally Ascomycetes 
fungi which are conidial or sterile and that form 
melanized structures like inter- and intracellular 
hyphae and microsclerotia in the roots. This class 
of endophytes is found in host plants like non- 
mycorrhizal from Antarctic, Arctic, alpine, subal-
pine, temperate zones and tropical ecosystems 
(Jumpponen  2001 ). 

 To investigate the secondary metabolites of 
microorganisms from unusual or specialized 
niches may increase the chances of fi nding novel 
compounds. Scientists often focus their efforts on 
fungi that cause problems either as animal or 
plant pathogens. Plant endophytes are more subtle, 
rarely causing problems, coexisting with their 
hosts under most circumstances. They are gener-
ally nonpathogenic in nature but may produce 
secondary metabolites that enable them to sur-
vive in the competitive world of plant interstitial 
space. An overview of recent literature indicated 
that 51 % of bioactive substances isolated from 
endophytic fungi were previously unknown, 
compared to 38 % from soil fungi.    Since the 
discovery of a fungus that produced more than 
100 compounds with demonstrated anticancer 
activity have been isolated from endophytic 
fungi including several compounds originally 
found in other higher plants. This chapter will 
describe each of these compounds in terms of 
their source microorganism, plant host, and bio-
logical activity.   

3     Cytotoxic Secondary 
Metabolites from Fungal 
Endophytes 

3.1     Contribution of Endophytic 
Fungi to the Discovery of 
Novel Anticancer Molecules 

 The fi rst chemotherapeutic agent was discovered 
quite by accident over 50 years ago. “   During World 
War I, mustard gas (1,5-dichloro-3-thiapentane)” 
that decreases white blood cells was used as a 
chemical warfare agent (Goodman et al.  1946 ). 
Scientists reasoned that an agent that damaged 
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the rapidly growing white blood cells might have 
a similar effect on certain cancers of the blood. 
Many of the anticancer chemotherapeutics widely 
prescribed today – including antimetabolites, 
tubulin inhibitors, alkylating agents, and com-
pounds that target DNA topoisomerases I and II – 
are cytotoxic (cell-killing) agents. These 
compounds are designed to kill cancer cells more 
effectively than normal cells because they gener-
ally target the more rapidly dividing cancer cells. 
However, this is not always the case. Bone mar-
row cells, hair follicles, and epithelial cells such 
as those lining the GI tract also divide rapidly and 
are often the targets of side effects that can range 
from unpleasant to seriously debilitating. Despite 
the problems associated with the use of cytotoxic 
agents, cytotoxicity assays using a wide array of 
cancer cell types have played an important role in 
the discovery of compounds like paclitaxel, 
camptothecin, and the vinca alkaloids that target 
cancer cells (Thurston  2007 ; Wu  2006 ). In this 
report anticancer activity is generally associated 
with the cytotoxicity of the compounds described. 

 The anticancer drugs show nonspecifi c toxic-
ity to proliferating normal cells, possess enor-
mous side effects, and are not effective against 
many forms of cancer (Gangadevi and Muthumary 
 2008 ; Pasut and Veronese  2009 ). Thus, the cure of 
cancer has been enhanced mainly due to diagnosis 
improvements which allow earlier and more pre-
cise treatments (Pasut and Veronese  2009 ). There 
are some evidences that bioactive compounds 
produced by endophytes could be alternative 
approaches for  discovery of novel drugs, since 
many natural products from plants, microorgan-
isms, and marine sources were identifi ed as anti-
cancer agents (Fir et al.  2007 ). The anticancer 
properties of several secondary metabolites from 
endophytes have been investigated recently. 
Endophytic fungi have received less attention 
than their more pathogenic relatives because they 
reside within plant tissue. Studies of these organ-
isms indicate that they are prolifi c producers of 
compounds that can be exploited as both agro-
chemical and medicinal agents. The search for 
new compounds is certainly important. Of equal 
importance, however, has been the discovery that 
some endophytes produce compounds that have 

been exclusively  isolated from higher plants 
(Stierle et al.  1993 ).    Since the initial report of the 
production of anticancer compound paclitaxel 
from a Northwest Pacifi c yew endophyte in 1993, 
several other important anticancer agents from 
fungal endophytes including camptothecin and 
several analogues, vincristine, and podophyllo-
toxin have been reported by researchers (Stierle 
et al.  1993 ; Zhang et al.  2000 ; Lingqi et al.  2000 ; 
Yang et al.  2004 ; Puri et al.  2005 ,  2006 ; Eyberger 
et al.  2006 ; Rehman et al.  2008 ; Kusari et al. 
 2009 ). More than a hundred of anticancer com-
pounds belonging to 19 different chemical classes 
with activity against 45 different cell lines have 
been isolated from over 50 different fungal spe-
cies belonging to 6 different endophytic fungal 
groups. Of the total compounds isolated from 
endophytic fungi, 57 % were novel or were ana-
logues of known compounds. There has been a 
signifi cant increase in the number of anticancer 
compounds isolated from endophytic fungi fol-
lowing the fi rst report of the production of pacli-
taxel by a fungus (Stierle et al.  1993 ). In this 
report, compounds will be listed by chemical 
classifi cation, although some compounds could 
be assigned to multiple chemical classes.  

3.2     Anticancer Compounds 
from Endophytic Fungi 

3.2.1     Alkaloids 
    Alkaloids are naturally occurring chemical 
 compounds and have been studied as potential 
anticancer agents secreted by both host plant 
and endophytic fungi (Table  20.1 , Fig.  20.1 ). 
Endophytes have usually been associated with a 
host organism that has also been reported to pro-
duce the compound of interest. Camptothecin 
(CPT) is a pentacyclic quinoline alkaloid that 
inhibits topoisomerase I (topo I), an enzyme 
involved in DNA replication. The compound 
exerts its cytotoxic effect by inhibiting the dis-
sociation of the DNA–topoisomerase I complex 
during replication (Ling-Hua et al.  2003 ; Pommier 
 2006 ). Camptothecin was initially isolated from 
the wood of  Camptotheca acuminata  (Nyssaceae) 
called “xi shu” or the “happy tree,” which is 
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   Table 20.1    Alkaloids isolated from endophytic fungi   

 Compound  Activity 
 Cell line/target 
enzyme  Host  Fungal endophyte  Reference 

 Penochalasin A  40.0 μM a   KB cell line   Imperata 
cylindrica  

  Chaetomium 
globosum  

 Ding et al. ( 2006 ) 

 9-Deacetoxy 
fumigaclavine 

 3.10 μM a   K562   Cynodon 
dactylon  

  Aspergillus 
fumigatus  

 Ge et al. ( 2009 ) 

 Emindole DA  5.5 μg/mL a   36 human 
tumor 

  Mediterranean 
green alga  

  Emericella 
nidulans  

 Kralj et al. ( 2006 ) 

 Cytochalasin 1  3.91, 15.6, 
3.91 μg/mL b  

 A2780S, 
HCT-116, 
SW-620 

  Tripterygium 
wilfordii  

  Rhinocladiella  sp.  Lee ( 1995 ) 

 Cytochalasin 2  15.6, 62.5, 
15.6 μg/mL b  

 A2780S, 
HCT-116, 
SW-620 

  Tripterygium 
wilfordii  

  Rhinocladiella  sp.  Lee ( 1995 ) 

 Cytochalasin 3  3.91, 
15.6 μg/mL b  

 A2780S, 
SW-620 

  Tripterygium 
wilfordii  

  Rhinocladiella  sp.  Lee ( 1995 ) 

 Cytochalasin E  <0.015, 
0.98 μg/mL b  

 A2780S, 
HCT-116 

  Tripterygium 
wilfordii  

  Rhinocladiella  sp.  Lee ( 1995 ) 

 0.244 μg/mL b   SW-620   Tripterygium 
wilfordii  

  Rhinocladiella  sp.  Lee ( 1995 ) 

 Cytoglobosin C  2.26 μM a   A549   Ulva pertusa    Chaetomium 
globosum  

 Cui et al. ( 2010 ) 

 Cytoglobosin D  2.55 μM a   A549   Ulva pertusa    Chaetomium 
globosum  

 Cui et al. ( 2010 ) 

 Chaetominine  21.0, 
28.0 nM a  

 K562, 
SW1116 

  Adenophora 
axillifl ora  

  Chaetomium  sp. 
IFB-E015 

 Jiao et al. ( 2006 ) 

 Chaetoglobosin  3.125, 
6.25 μg/mL a  

 H22, MFC   Curcuma 
wenyujin  

  Chaetomium 
globosum  L18 

 Wang et al. 
( 2012 ) 

 Chaetoglobosin U  16.0 μM a   KB cell line   Imperata 
cylindrical  

  Chaetomium 
globosum  

 Ding et al. ( 2006 ) 

 Chaetoglobosin C  34.0 μM a   KB cell line   Imperata 
cylindrical  

  Chaetomium 
globosum  

 Ding et al. ( 2006 ) 

 Chaetoglobosin F  52.0 μM a   KB cell line   Imperata 
cylindrical  

  Chaetomium 
globosum  

 Ding et al. ( 2006 ) 

 Chaetoglobosin E  48.0 μM a   KB cell line   Imperata 
cylindrical  

  Chaetomium 
globosum  

 Ding et al. ( 2006 ) 

 Camptothecin  –  A549, HEP-2   Nothapodytes 
foetida  

  Entrophospora 
infrequens  

 Puri et al. ( 2005 ) 

 Camptothecin  –  –   Camptotheca 
acuminata  

  Neurospora 
crassa  

 Rehman et al. 
( 2008 ) 

 Camptothecin  –  OVCAR-5   Camptotheca 
acuminata  

  Fusarium solani   Kusari et al. 
( 2009 ) 

 9-Methoxy 
camptothecin 

 –  –   Camptotheca 
acuminata  

  Fusarium solani   Kusari et al. 
( 2009 ) 

 10-Hydroxy 
camptothecin 

 –  –   Camptotheca 
acuminata  

  Fusarium solani   Kusari et al. 
( 2009 ) 

 Vincristine  –  –   Catharanthus 
roseus  

  Fusarium 
oxysporum  

 Zhang et al. 
( 2000 ), Yang 
et al. ( 2004 ) 

   a IC 50  

  b IC 100   
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native to mainland China, and exhibited potent 
 antileukemic and antitumor activities in animals 
(Wall et al.  1966 ). In recent years, however, camp-
tothecin has been isolated from fungal endophytes 
of these plants. Camptothecin (CPT) was isolated 
in 2005 from a fungal endophyte isolated from the 
inner bark of  Nothapodytes foetida . Three years 
later CPT was isolated from a  C. acuminata  seed 
endophyte,  Neurospora crassa  (Rehman et al. 
 2008 ). Both authentic CPT and fungal CPT were 
tested against human cancer cell lines A549 (lung 
cancer), HEP-2 (liver cancer), and OVCAR-5 
(ovarian cancer) with comparable results (Rehman 
et al.  2008 ). The following year camptothecin and 
two of its analogues, 9-methoxycamptothecin 
and 10-hydroxycamptothecin, were isolated from 
 Fusarium solani , endophytic fungi of Camptotheca 
acuminata (Kusari et al.  2009 ). Both analogues are 
more water soluble than camptothecin and more 
potent inhibitors of DNA topoisomerase I (Kusari 
et al.  2009 ). Although camptothecin itself is not 
used as a drug, two water-soluble derivatives of the 
parent camptothecin are among the most recently 
FDA-approved anticancer agents. Camptosar® 
(irinotecan hydrochloride) has been approved 
for the treatment of colorectal carcinomas, and 
Hycamtin® (topotecan), the fi rst orally available 
CPT derivative, has been approved for the treat-
ment of ovarian cancers and non-small cell lung 
cancers. It has also been approved for the treat-
ment of cervical cancer when used in conjunction 
with cisplatin.

    Cytochalasins are a class of fungal meta-
bolites characterized by a highly substituted 
perhydroisoindol- 1-one moiety usually fused to 
either an 11- or 13-membered macrocyclic ring. 
Fungal endophytes have contributed four novel 
members to this class of molecules. Cytochalasins 
have been reported as cytotoxic agents from the 
endophytic fungus  Rhinocladiella  sp. associated 
with the perennial twining vine  Tripterygium 
wilfordii  (Wagenaar et al.  2000 ). It was previ-
ously reported from this same fungal isolate (Lee 
 1995 ). These compounds were identifi ed as 
22-oxa cytochalasins and were tested against 
three different tumor cell lines: A2780S (ovarian 
tumor cell line), HCT-116 (colon tumor cell line), 
and SW-620 (colon tumor cell line). Cytochalasin 

exhibited IC 100  values of 3.91, 15.6, and 3.91 μg/
mL, respectively. Cytochalasins are known to 
induce apoptosis by inhibiting cell division due 
to their ability to bind with, and inhibit the 
polymerization of, actin fi laments (Haidle and 
Myers  2004 ). Cytoglobosins C and D were iso-
lated and identifi ed from endophytic fungus 
 Chaetomium globosum  QEN-14. The compounds 
displayed very similar cytotoxicity profi les, with 
IC 50  values of 2.26 and 2.55 μM against the A549 
tumor cell line (Cui et al.  2010 ).  Chaetomium  sp. 
IFB-E015, an endophytic fungus on apparently 
healthy  Adenophora axillifl ora  leaves, produced 
an alkaloid, chaetominine, which was cytotoxic 
against the human leukemia K562 and colon can-
cer SW1116 cell lines with corresponding IC 50  
values of 21.0 and 28.0 nM. Its potency was 
greater than that of 5-fl uorouracil, with IC 50  values 
of 33.0 and 76.0 nM, respectively (Jiao et al. 
 2006 ). Vincristine, or leurocristine, is a vinca 
alkaloid originally isolated from  Catharanthus 
roseus , a member of the family Apocyanaceae 
(Svoboda  1961 ). It has been isolated from the 
 Catharanthus roseus  endophyte  Fusarium oxys-
porum  (Zhang et al.  2000 ; Lingqi et al.  2000 ; 
Yang et al.  2004 ). Among its many activities in 
cellular systems, vincristine binds irreversibly to 
both microtubules and spindle proteins in the S 
phase of the cell cycle. It interferes with the for-
mation of the mitotic spindle and consequently 
arrests tumor cells in the metaphase. Chaeto-
globosin U is a cytochalasin-based alkaloid iso-
lated from  Chaetomium globosum  IFB- E019, an 
endophytic fungus residing within the stem of 
healthy plant. It exhibited cytotoxic activity 
against the human nasopharyngeal epidermoid 
tumor KB cell line with an IC 50  value of 16.0 μM 
comparable to that of 5-fl uorouracil co- assayed 
as a positive reference (14.0 μM).     C. globosum  
L18 was also reported from  Curcuma wenyujin  
and produces chaetoglobosin. It exhibited cyto-
toxic activity against MFC (gastric cancer cells in 
mice) and H22 (hepatic cancer cells in mice) cell 
lines with an IC 50  value of 3.125 and 6.25 μg/mL, 
respectively (Wang et al.  2012 ). The four previ-
ously isolated analogues of chaetoglobosin U, 
named chaetoglobosins C, F, and E and penocha-
lasin A, showed moderate activity against the 
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same cell line, with IC 50  values of 34.0, 52.0, 
48.0, and 40.0 μM, respectively (Ding et al. 
 2006 ). 9-Deacetoxyfumigaclavine C was isolated 
from the endophyte  Aspergillus fumigatus , which 
was obtained from a healthy stem of  Cynodon 
dactylon . It exhibited potent cytotoxicity against 
human leukemia cells (K562) with an IC 50  value 
of 3.1 μM, which was similar to that of doxoru-
bicin hydrochloride (1.2 μM), a drug which is 
currently used for the treatment of leukemia 
(Ge et al.  2009 ). Indole alkaloid emindole DA 
was isolated from  Emericella nidulans  var.  acris-
tata , an endophyte of unspecifi ed Mediterranean 
green alga (Kralj et al.  2006 ). It exhibited antitu-
mor activity against 36 human tumor cell lines 
representing 11 different tumor types, with a 
mean IC 50  value of 5.5 μg/mL compared to the 
reference compound Adriamycin tested in parallel 
in the same assays with an IC 50  value of 0.16 μg/mL 
(Kralj et al.  2006 ).  

3.2.2     Terpenes 
 Periconicin B is a fusicoccane diterpene 
(Table  20.2 , Fig.  20.2 ) isolated from the endo-
phytic fungus  Periconia atropurpurea , associated 
with  Xylopia aromatica  (Teles et al.  2006 ). 
Periconicin B exhibited potent cytotoxic activity 
against the two mammalian cell lines, HeLa 
(cervical cancer) and CHO (Chinese hamster 
ovary). It decreased cell viability of HeLa cells 
and CHO cells with an IC 50  of 8.0 μM, showing 
potency similar to that of cisplatin, a well-known 
antineoplastic agent (IC 50  5.0 μM) used as a cyto-
toxic positive control (Teles et al.  2006 ).

    It could be reasonably argued that no other 
secondary metabolite has had such a dramatic 
effect on cancer chemotherapy as Taxol (pacli-
taxel) (Kingston  2005 ; Cragg and Newman 
 2005 ). This highly functionalized diterpene is the 
prototypical taxane, isolated from the bark of the 
Northwest Pacifi c yew tree  Taxus brevifolia  for 
the fi rst time by Wani et al. ( 1971 ). Unfortunately, 
as paclitaxel garnered more attention for its 
unique mode of action and potential as a chemo-
therapeutic agent, it also gained attention because 
of problems associated with the supply issue. 
Early estimates suggested that the population of 
Northwest Pacifi c yew trees could not adequately 

supply the projected demands for paclitaxel. 
Alternative sources were considered for the com-
pound including total synthesis, semi-synthesis, 
and tissue culture (Kingston  2005 ). Stierle et al. 
( 1993 ) took another approach and reported the 
isolation of a fungal endophyte from the needles 
of  T. brevifolia  that produced paclitaxel indepen-
dently of the tree. The fungus had not been previ-
ously described and was designated  Taxomyces 
andreanae  in honor of its discoverer (Stierle et al. 
 1993 ). Stierle later reported the discovery of 
paclitaxel by a second fungus,  Penicillium raist-
rickii , isolated from the inner bark of a yew tree. 
Kumaran also reported this compound from 
 Taxus cuspidata  and isolated from two different 
endophytic fungi  Pestalotiopsis neglecta  and 
 Pestalotiopsis versicolor  (Kumaran et al.  2010 ). 
Several other scientists have since reported the 
isolation of paclitaxel from different endophytic 
fungi associated not only with  Taxus  sp. but with 
other host plants as well. Strobel reported the 
production of paclitaxel from  Pestalotiopsis 
microspora  isolated from  Taxus wallichiana  
(Strobel et al.  1996 ) and a second isolate of 
 Pestalotiopsis microspora  from bald cypress, 
 Taxodium distichum  (Li et al.  1996 ). Paclitaxel 
also reported from  Morinda citrifolia  isolated 
from  Lasiodiplodia theobromae  (Pandi et al. 
 2011 ). It has been reported from  P. pausiceta  iso-
lated from  Cardiospermum helicacabum  
(Gangadevi et al.  2008 ) and from  Pestalotiopsis 
terminaliae , an endophytic fungus of  Terminalia 
arjuna  (Gangadevi and Muthumary  2008 ). It has 
also been reported from  Chaetomella raphigera , 
a second endophytic paclitaxel producer reported 
from  Terminalia arjuna  (Gangadevi and 
Muthumary  2009a ,  b ). The same scientists also 
reported the production of paclitaxel by 
 Bartalinia robillardoides , an endophyte of  Aegle 
marmelos  (Gangadevi and Muthumary  2009a ). 
This is not a comprehensive list of paclitaxel- 
producing endophytes, and more producers are 
reported every year. Fungal paclitaxel has been 
tested by apoptotic assay against a number of dif-
ferent cancer cell lines, including BT220, H116, 
HLK210, HL251, and INT-407. As the paclitaxel 
concentration increased from 0.005 to 0.05 μM, 
paclitaxel induced cell death through apoptosis 
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increased accordingly, but the level of cell death 
only increased slightly with a further increase to 
0.5 μM, while a further increase to 5 μM resulted 
in a dramatic decrease in cell death (Gangadevi 
and Muthumary  2008 ). 

 Four cytotoxic sesquiterpene compounds, 
8-deoxytrichothecin, trichothecolone, 7α-hydro-
xytrichodermol, and 7α-hydroxyscirpene, were 
isolated from fungal isolate KLAR 5, which the 
authors identifi ed as a “sister taxon of  Acremo-
nium crotocinigenum ,” a mitosporic Hypocreales 
found in a healthy twig of the Thai medicinal 
plant  Knema laurina  (Chinworrungsee et al. 

 2008 ). Trichothecolone and 7α-hydroxyscirpene 
exhibited selective activity against BC-1 (human 
breast cancer cells), with effective IC 50  values of 
0.88 and 2.37, respectively, and against NCI-
H187 (human small-cell lung cancer cells) with 
IC 50  values of 1.48 and 1.73 μM, respectively, 
compared to the standard drug ellipticine that 
exhibited an IC 50  value of 0.63 μM against the 
BC-1 cell line. These compounds were not active 
against the KB cell line (human epidermoid can-
cer of the mouth) (Chinworrungsee et al.  2008 ). 
Compounds trichothecolone and 7 α-hydro-
xyscirpene were moderately active against all 
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  Fig. 20.2    Chemical structure of terpenes isolated from endophytic fungi       
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three cancer cell lines with IC 50  values of 10.06, 
11.31, 12.90 μM and 21.53, 27.76, 8.47 μM, 
respectively (Chinworrungsee et al.  2008 ). A new 
eudesmane sesquiterpene, ent-4(15)-eudesmen-
11-ol-1-one, was isolated from the endophytic 
fungus  Eutypella  sp. BCC 13199 associated with 
 Etlingera littoralis  (Earth ginger) (Isaka et al. 
 2009 ). It showed weak cytotoxic activity against 
human cancer cells NCI-H187, MCF-7, KB, and 
Vero, with IC 50  values of 11, 20, 32, and 32 μM, 
respectively (Isaka et al.  2009 ). Merulin A 
(nor- chamigrane endoperoxide) and merulin C 
(chamigrane endoperoxide) are two new sesqui-
terpenes produced by the endophytic fungus 
XG8D, a basidiomycete isolated from the man-
grove plant  Xylocarpus granatum  (Meliaceae). 
Both compounds exhibited signifi cant cytotoxic-
ity against human breast cancer (BT474) and 
colon cancer (SW620) cell lines with IC 50  values 
of 4.98 and 1.57 μg/mL for BT474 and 4.84 and 
4.11 μg/mL for SW620, respectively, compared 
to doxorubicin used as a positive control with IC 50  
values of 0.53 and 0.09 μg/mL against BT474 
and SW620 cell lines, respectively (Chokpaiboon 
et al.  2010 ). Three novel eremophilane-type ses-
quiterpenes were isolated from the endophyte 
 Xylaria  sp. BCC 21097 associated with  Licuala 
spinosa  (Isaka et al.  2010 ). The three compounds, 
eremophilanolides 1, 2, and 3, exhibited moder-
ate cytotoxic activity with IC 50  values of 3.8–
21 μM against cancer cell lines KB, MCF-7, and 
NCI-H187 (Isaka et al.  2010 ).  Phyllosticta spina-
rum  was isolated from  Platycladus orientalis , a 
plant of the Sonoran Desert (Wijeratne et al. 
 2008 ). Although the fungus produced a series of 
compounds, only tauranin exhibited cytotoxic 
activity against several cancer cell lines: NCI-
H460 (non-small cell lung cancer), MCF-7 
(breast cancer), SF-268 (CNS cancer – glioma), 
PC-3 M (metastatic prostate cancer), and MIA Pa 
Ca-2 (pancreatic carcinoma) at values of 4.3, 1.5, 
1.8, 3.5, and 2.8 μM, respectively (Wijeratne 
et al.  2008 ).  

3.2.3     Quinone 
 Torreyanic acid is unusual dimeric quinine 
(Table  20.3 , Fig.  20.3 ) isolated from  Pestalotiopsis 
microspora , an endophyte of  Torreya taxifolia  

(Lee et al.  1996 ). In general, torreyanic acid was 
found to be 5–10 times more potent against cell 
lines that are sensitive to protein kinase C (PKC) 
agonists, and it was suggested that torreyanic 
acid causes cell death by apoptosis. IC 50  values 
for torreyanic acid were between 3.5 μg/mL for 
human colorectal neuroendocrine cell carcinoma 
(NEC) and 45 μg/mL for human adenocarci-
nomic alveolar basal epithelial cells (A549), with 
a mean value of 9.4 μg/mL for 25 different cell 
lines. Torreyanic acid also showed G1 arrest of 
G0 synchronized cells at the 1–5 μg/mL level 
depending on the cell line (Lee et al.  1996 ). Five 
novel compounds an unresolved mixture of alter-
porriol G and its atropisomer alterporriol H 
exhibited the most potent cytotoxicity, with an 
EC 50  value of 2.7 μg/mL. The previously reported 
compound 6- O -methylalaternin also exhibited 
potent cytotoxicity, with an EC 50  value of 4.2 μg/
mL. Kahalalide F was tested as a positive control 
and exhibited an EC 50  value of 6.3 μg/mL. The 
compounds were also tested for kinase inhibitory 
activity in an assay involving 24 different kinases. 
The atropisomers and compound 6- O -methyla-
laternin were the most potent kinase inhibitors, 
displaying EC 50  values between 0.64 and 1.4 μg/
mL towards individual kinases. The authors sug-
gested that the inhibition of protein kinases could 
be the basis of the observed cytotoxic activity 
(Debbab et al.  2009a ,  b ).    

Endophytic fungi  Alternaria alternata  and 
 Aspergillus niger  were isolated from  Tabebuia 
argentea  and produce lapachol (Sadananda 
et al.  2011 ).      Later on endophytic fungi 
 Alternaria  sp. also isolated from  Aegiceras cor-
niculatum  produced bianthraquinone derivatives 
(alterporriol K, L) and other endophytic fungi 
 Mycosphaerella  sp. were isolated from  Psychotria 
horizontalis  produced cercosporin, showed cyto-
toxicity against different cell lines (Huang et al. 
 2011 ; Moreno et al.  2011 )   . Another endophytic 
fungi  Chaetomium  sp. was isolated from the stem 
of  Salvia offi cinalis , produced two cytotoxic 
compound cochliodinol and isocochliodinol, 
tested for cytotoxicity against L5178Y mouse 
lymphoma cells (Sekita  1983 ; Debbab et al. 
 2009a ). Compound cochliodinol was an order of 
magnitude more potent than its isomer, with an 

V. Kumar et al.



401

   Ta
b

le
 2

0
.3

  
  Q

ui
no

ne
s 

is
ol

at
ed

 f
ro

m
 e

nd
op

hy
tic

 f
un

gi
   

 C
om

po
un

d 
 A

ct
iv

ity
 

 C
el

l l
in

e/
ta

rg
et

en
zy

m
e 

 H
os

t 
 Fu

ng
al

 e
nd

op
hy

te
 

 R
ef

er
en

ce
 

 A
lte

rp
or

ri
ol

 K
 

 13
.1

 μ
M

 a   
 M

D
A

-M
B

-4
35

 
  A

eg
ic

er
as

 c
or

ni
cu

la
tu

m
  

  A
lt

er
na

ri
a  

sp
. Z

J9
-6

B
 

 H
ua

ng
 e

t a
l. 

( 2
01

1 )
 

 A
lte

rp
or

ri
ol

 L
 

 29
.1

 μ
M

 a   
 M

C
F-

7 
 C

er
co

sp
or

in
 

 4.
68

 a
nd

 3
.5

6 
μM

 a   
 V

er
o,

 M
C

F7
 

  P
sy

ch
ot

ri
a 

ho
ri

zo
nt

al
is

  
  M

yc
os

ph
ae

re
ll

a  
sp

. 
 M

or
en

oa
 e

t a
l. 

( 2
01

1 )
 

 L
ap

ac
ho

l 
 – 

 – 
  Ta

be
bu

ia
 a

rg
en

te
a  

  A
lt

er
na

ri
a 

al
te

rn
at

a  
 Sa

da
na

nd
a 

et
 a

l. 
( 2

01
1 )

 
 L

ap
ac

ho
l 

 – 
 – 

  Ta
be

bu
ia

 a
rg

en
te

a  
  A

sp
er

gi
ll

us
ni

ge
r  

 Sa
da

na
nd

a 
et

 a
l. 

( 2
01

1 )
 

 To
rr

ey
an

ic
 a

ci
d 

 3.
5,

 4
5.

0 
μg

/m
L

 a   
 N

E
C

, A
54

9 
  To

rr
ey

at
ax

if
ol

ia
  

  Pe
st

al
ot

io
ps

is
 m

ic
ro

sp
or

a  
 L

ee
 e

t a
l. 

( 1
99

6 )
 

 9.
5 
μg

/m
L

 (
m

ea
n)

 a   
 25

 tu
m

or
ce

ll 
lin

es
 

 M
ix

tu
re

 o
f 

al
te

rp
or

ri
ol

 
G

 a
nd

 a
lte

rp
or

ri
ol

 H
 

 2.
7 
μg

/m
L

 b   
   

 L
51

78
Y

 
  M

en
th

a 
pu

le
gi

um
  

  St
em

ph
yl

iu
m

 g
lo

bu
li

fe
ru

m
  

 D
eb

ba
b 

et
 a

l. 
( 2

00
9b

 ) 

 6-
 O

 -M
et

hy
la

la
te

rn
in

 
 4.

2 
μg

/m
L

 b   
 L

51
78

Y
 

 C
oc

hl
io

di
no

l 
 7.

0 
μg

/m
L

 b   
 L

51
78

Y
 

  Sa
lv

ia
of

fi c
in

al
is

  
  C

ha
et

om
iu

m
  s

p.
 

 D
eb

ba
b 

et
 a

l. 
( 2

00
9a

 ) 
 Is

oc
oc

hl
io

di
no

l 
 71

.5
 μ

g/
m

L
 b   

 L
51

78
Y

 
 2-

C
hl

or
o-

5-
m

et
ho

xy
-3

- 
m

et
hy

lc
yc

lo
he

xa
-2

,
5-

di
en

e-
 1,

4-
di

on
e 

 1.
35

 μ
M

 a   
 V

er
o 

ce
lls

 
  Sa

nd
or

ic
um

 k
oe

tj
ap

e  
  X

yl
ar

ia
  s

p.
 

 Ta
ns

uw
an

 e
t a

l. 
( 2

00
7 )

 

 X
yl

ar
ia

qu
in

on
e 

A
 

 >
18

4 
μM

 a   
 V

er
o 

ce
lls

 
 A

nt
hr

ac
en

ed
io

ne
 1

 
 57

.3
2,

 9
0.

86
 μ

M
 a   

 K
B

, K
B

v2
00

 
 M

an
gr

ov
ep

la
nt

 
  H

al
or

os
el

li
ni

a  
sp

. 
 Z

ha
ng

 e
t a

l. 
( 2

01
0 )

 
 A

nt
hr

ac
en

ed
io

ne
 5

 
 86

.4
5 
μM

 a   
 K

B
v2

00
 

 A
nt

hr
ac

en
ed

io
ne

 6
 

 3.
17

, 3
.2

1 
μM

 a   
 K

B
, K

B
v2

00
 

 A
nt

hr
ac

en
ed

io
ne

 7
 

 56
.5

6 
μM

 a   
 K

B
 

 A
nt

hr
ac

en
ed

io
ne

 9
 

 38
.0

5,
 3

4.
64

 μ
M

 a   
 K

B
, K

B
v2

00
 

 A
nt

hr
ac

en
ed

io
ne

 1
4 

 68
.3

9 
μM

 a   
 K

B
 

   a  I
C

 50
  

  b  E
C

 50
   

20 Endophytic Fungi: Novel Sources of Anticancer Molecules



402

H3CO

H3CO

O OH

OHOOH

OH

OH

OH

O

O

OH

alterporriol G and H

O

OOH OH

OH

H3CO

6-O-methylalaternin

HO

N
H

OH

N
H

O

O

cochliodinol

HO

N
H

OH

N
H

O

O

isocochliodinol

O

OCH3

Cl

O

2-chloro-5-methoxy-3-methyl 
cyclohexa-2,5-diene-1,4-dione

O

O

O

OCH3

OH

xylariaquinone A

O

O

R1

R2

R3

R4R5

R6

R7

R8

anthracenedione derivative1      R1=R3=OCH3, R6 =CH3

anthracenedione derivative5      R1=R4=OH, R7 =CH3

anthracenedione derivative6      R1=OH,R3=CH3

anthracenedione derivative7      R1=R8=OH

anthracenedione derivative 9     R1=R3=OH, R6 =OCH3,R8=CH3

anthracenedione derivative14    R1=OH, R2=R4 =OCH3,R7=CH3

undefined R=H

OR
O

O

O

OR
O

OOR

OR O

cercosporin 1    R= H

cercosporin 1    R = Ac

O OH

O O
OH

OHOOH

OO

HO

alterporriol K

O OH

O O

OOH

OO

HO

OH

OH
OH

alterporriol L

  Fig. 20.3    Chemical structure of quinones isolated from endophytic fungi       

 

V. Kumar et al.



403

EC 50  of 7.0 μg/mL, compared to 71.5 μg/mL for 
compound isocochliodinol (Debbab et al.  2009a ). 
Two novel benzoquinone derivatives, 2-chloro-
5-methoxy-3- methylcy clohexa-2, 5-diene-
1,4-dione and xylariaquinone A, were isolated 
from  Xylaria  sp., an endophytic fungus of 
 Sandoricum koetjape . These compounds showed 
potent cytotoxicity against African green monkey 
kidney fi broblasts (Vero cells) with an IC 50  value 
of 1.35 μM compared to the positive control 
ellipticine, with an IC 50  value of 2.03 μM 
(Tansuwan et al.  2007 ). 

 Five novel and eight known compounds were 
isolated from  Stemphylium globuliferum , an 
endophyte of the Egyptian medicinal plant 
 Mentha pulegium  (Debbab et al.  2009a ,  b ). Each 
of the compounds isolated from this fungus was 
tested for cytotoxicity against L5178Y mouse 
lymphoma cells. Of the 14 previously reported 
anthracenedione derivatives were isolated from 
 Halorosellinia  sp. (no. 1403) and  Guignardia  sp. 
(no. 4382), fungal endophytes of an unspecifi ed 
mangrove plant (Zhang et al.  2010 ). All fourteen 
compounds exhibited some degree of cytotoxicity, 
but six anthracenedione compounds 1, 5, 6, 7, 9, 
and 14 exhibited the greatest potency. These 
compounds, anthracenedione derivatives, exhi-
bited cytotoxicity towards KB and KBv200 cell 
lines, with IC 50  values between 3.7 and 70 μM. 
Anthracenedione 6 compound was the most 
potent, with an IC 50  value of 3.17 μM (KB) and 
3.21 (KBv200). Anthracenediones 1, 5, and 9 
also exhibited cytotoxicity against KBv200, with 
IC 50  values between 3.21 and 91 μM. The litera-
ture suggests that both the number and location 
of hydroxyl groups play a key role in cytotoxicity. 
Anthracenedione 6 has a single hydroxyl group 
and is the most potent cytotoxic agent against 
both cell lines (Zhang et al.  2010 ).  

3.2.4     Polyketides 
 The novel oblongolides Y and Z were isolated 
from  Phomopsis  sp. BCC 9789 associated with 
 Musa acuminate  (wild banana) (Taridaporn et al. 
 2010 ). Oblongolide Y showed cytotoxic activity 
against human breast cancer cell line BC with an 
IC 50  value of 48 μM, while oblongolide Z exhibited 
cytotoxicity against KB (human oral epidermoid 

cancer), BC, and NCI-H187 (small-cell lung can-
cer), and nonmalignant (Vero) cell lines with IC 50  
values of 37, 26, 32, and 60 μM, compared to 
doxorubicin as a positive control, which had IC 50  
values of 0.24 μM (KB), 0.30 μM (BC), and 
0.08 μM (NCI-H187) (Taridaporn et al.  2010 ). 
An endophytic  Alternaria  sp., isolated from the 
Egyptian medicinal plant  Polygonum senegalense , 
produced several tricyclic lactone polyketides 
including the known alternariol, alternariol 
5- O -sulfate, and alternariol 5- O -methyl ether. 
Alternariol 5- O -sulfate has not been previously 
reported (Aly et al.  2008 ). These compounds 
were cytotoxic to L5178Y mouse lymphoma 
cells with EC 50  values of 1.7, 4.5, and 7.8 μg/mL, 
respectively, compared to the positive control 
kahalalide F, which had an EC 50  value of 6.3 μg/
mL (Table  20.4 , Fig.  20.4 ).

   The same fungal endophyte also produced two 
bicyclic acid derivatives – the known altenusin 
and the novel desmethylaltenusin (Aly et al. 
 2008 ). These compounds also exhibited signifi -
cant cytotoxic activity against L5178Y cells, 
with EC 50  values of 6.8 and 6.2 μg/mL, respec-
tively, compared to the positive control kaha-
lalide F (Aly et al.  2008 ). Leptosphaerone C and 
penicillenone are novel polyketides isolated from 
 Penicillium  sp. JP-1, an endophytic fungus asso-
ciated with the mangrove plant  Aegiceras cor-
niculatum  (Lin et al.  2008a ,  b ). Leptosphaerone 
C showed acti vity against A549 cells (adenocar-
cinomic human alveolar basal epithelial) with an 
IC 50  value of 1.45 μM, and penicillenone exhib-
ited cytotoxi city against P388 leukemia cells 
with an IC 50  value of 1.38 μM (Lin et al.  2008a , 
 b ). Another mangrove endophyte  Phomopsis  sp. 
ZSU-H76 was the source of 2-(7′-hydroxyoxooctyl)-
3-hydroxy-5- methoxybenzeneacetic acid ethyl 
ester, a new polyketide. The endophyte was iso-
lated from the stem of  Excoecaria agallocha  
from Dong Zhai   , Hainan, China (Huang et al. 
 2009 ). This compound exhibited cytotoxicity 
towards Hep-2 and HepG2 cell lines, with IC 50  
values of 25 and 30 μg/mL (Huang et al.  2009 ). 
Arugosins A and B are benzophenone polyketides 
isolated from  Eme ricella nidulans  var.  acristata , 
an endophyte of a Mediterranean green alga 
(Kralj et al.  2006 ). Both compounds showed 
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moderate antitumor activity against 7 out of 36 
human tumor cell lines at a concentration of 
10 μg/mL (Kralj et al.  2006 ). The reference com-
pound Adriamycin, tested in parallel in the same 
assays, was more potent, with an IC 50  value of 
0.016 μg/mL. 

 Bikaverin, a polyketide isolated from  Fusa-
rium oxysporum  strain CECIS, an endophyte of 
 Cylindropuntia echinocarpa , exhibited cytoto-
xicity against a panel of four sentinel cancer cell 
lines, NCI-H460 (non-small cell lung), MIA Pa 
Ca-2 (pancreatic), MCF-7 (breast), and SF-268 
(CNS glioma) with IC 50  values of 0.43, 0.26, 
0.42, and 0.38 μM, respectively. It was compared 

to the standard compound doxorubicin, which 
exhibited IC 50  values of 0.01, 0.05, 0.07, and 
0.04 μM, respectively (Zhan et al.  2007 ). 

 Two novel polyketides, sequoiatone A and B, 
were isolated from the endophyte  Aspergillus par-
asiticus  from the bark of  Sequoia sempervirens  
(Stierle et al.  1999 ). The compounds showed mod-
erate and somewhat selective inhibition of human 
tumor cells, with greatest effi cacy against breast 
cancer cell lines. Most of the GI 50  values were 
between 4 and 10 μM, with LC 50  values >100 μM 
(Stierle et al.  1999 ). Botryorhodines A and B are 
benzophenone polyketides isolated from  Bidens 
pilosa , an endophyte of  Botryos phaeria rhodina  

  Fig. 20.4    Chemical structure of polyketide isolated from endophytic fungi           
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(Abdou et al.  2010 ), and peni citides A and B 
isolated from  Penicillium chrysogenum , an endo-
phyte of  Laurencia  (Gao et al.  2011 ). Both com-
pounds showed moderate antitumor activity 
against HeLa and HepG2 cell lines at a concentra-
tion of 96.97, 36.41, and 27.3 μM, respectively 
(Abdou et al.  2010 ; Gao et al.  2011 ). 

 Kasanosins A and B are novel azaphilones iso-
lated from cultures of  Talaromyces  sp. derived 
from seaweed (Kimura et al.  2008 ). These com-
pounds were not evaluated for cytotoxicity against 
specifi c cancer cell lines. Instead, the authors 
focused on the ability of these compounds to selec-
tively inhibit specifi c DNA polymerases. 
Kasanosins A and B specifi cally inhibited eukary-
otic polymerases β and γ. Kasanosins A was more 
potent than Kasanosins B, with IC 50  values of 27.3 
(DNA polβ) and 35.0 μM (DNA polγ). DNA poly-
merases are important target molecules of antitu-
mor agents, especially for antimetabolite 
nucleosides that include 1-β- d -
arabinofuranosylcytosine (araC) and 2′-deoxy-
2′,2′-difl uorocytidine (gemcitabine) ( Miura and 
Izuta  2004 ). Kasanosins A and B have very high 
specifi city for families of DNA polymerases, which 

might be useful in the development of a drug design 
strategy for immunosuppressive and/or anticancer 
chemotherapy agents (Kimura et al.  2008 ). 

 The same endophyte yielded sequoiamonas-
cins A and B, which exhibited cytotoxic activity 
against MCF7 (breast), NCI-H460 (lung), and 
SF-268 (CNS) when tested by NCI in their 
human cell line screen (Stierle et al.  2003 ). The 
NCI Drug Therapeutic Program reported the 
activity in terms of percent of growth of treated 
cells compared to untreated cells; values below 
32 % were considered active. At concentrations 
of 10 μM, sequoiamonascins A allowed 1, 1, and 
2 % (percent of growth), respectively, for each 
treated cell type; sequoiamonascins B allowed 
19, 4, and 15 % (percent of growth) of treated 
cancer cells, respectively (Stierle et al.  2003 )   . In 
the 60-human cell line assay, sequoiamonascins 
A had a median log GI 50  of –5.00, below the 
potency threshold established by NCI to warrant 
further study. Sequoiamonascins A showed selec-
tive activity towards all six leukemia cell lines, 
one breast cancer cell line, and two melanoma 
cell lines, with median log GI 50  values approa-
ching –6.00 (Stierle et al.  2003 ). 

V. Kumar et al.



409

 Hypericin, along with emodin, was isolated 
from a stem endophyte similar to  Chaetomium 
globosum  of  Hypericum perforatum  harvested in 
India (Kusari et al.  2008 ). The organism was 
 ultimately identifi ed as  Thielavia subthermophila  
(Kusari et al.  2009 ). The fungal extract contain-
ing both compounds exhibited photodynamic 
cytotoxicity against the human acute monocytic 
leukemia cell line (THP-1) in two different 
assays. In the resazurin-based assay, dark vs. 
light cell viability was 92.7 vs. 4.9 %, and in the 
ATPlite assay, dark vs. light cell viability was 
91.1 vs. 1.0 % (Kusari et al.  2009 ). The known 
naphtha-γ-pyrone rubrofusarin B was isolated 
from  Aspergillus niger  IFB-E003, an endophyte 
of  Cynodon dactylon . It was cytotoxic to colon 
cancer cell line SW1116, with an IC 50  value of 
4.5 μg/mL, compared to the positive control 
5-fl uorouracil at 5 μg/mL (Song et al.  2004 ). 
Rubrofusarin B also reversed multidrug resis-
tance of human epidermal KB carcinoma cells 
(Song et al.  2004 ).  

3.2.5     Some Other Anticancer 
Compounds Produced by 
Endophytic Fungi 

   Chromones 
 Pestalotiopsone F (5-carbomethoxy-methyl- 7-
hydroxy- 2-pentylchromone) is a novel chro-
mone isolated from the fungus  Pestalotiopsis  
sp., an endophyte of the Chinese mangrove 
plant  Rhizophora mucronata  (Xu et al.  2009 ). 
Compound displayed moderate cytotoxicity 
against the murine cancer cell line L5178Y, 
with an EC 50  value of 8.93 μg/mL (Xu et al. 
 2009 ). Four novel isoprenylated chromone 
derivatives, pestalofi ciol I-L (heterodimer), 
were isolated from  Pestalotiopsis fi ci , a fungal 
endophyte of  Camellia sinensis . The IC 50  val-
ues of the 4 compounds ranged between 8.7 
and >136.1 μM for HeLa cells and between 
17.4 and >153.8 μM for MCF7 cells, compared 
to the positive control 5-fl uorouracil with IC 50  
values of 10.0 and 15.0 μM, respectively (Ling 
et al.  2009 ). It exhi bited the most potent cyto-
toxicity, with IC 50  values of 8.7 and 17.4 μM, 
respectively (Table  20.5 , Fig.  20.5 ).

       Benzo[j]fl uoranthenes 
 Daldinone C and daldinone D were isolated from 
 Hypoxylon truncatum  IFB-18, an endophyte of 
 Artemisia annua . Both compounds exhibited 
potent cytotoxicity against SW1116 cells (human 
colorectal cancer cell line), with IC 50  values of 
49.5 and 41.0 μM, respectively, comparable to 
that of 5-fl uorouracil (37.0 μM) (Gu et al.  2007 ) 
(Table  20.5 , Fig.  20.5 ).  

   Cyclohexanones 
 The known compound epiepoxydon (Nagasawa 
et al.  1978 ; Nagata et al.  1992 ; Iwamoto et al. 
 1999 ) was isolated from a marine endophyte, 
 Apiospora montagnei  of the North Sea alga 
 Polysiphonia violacea  (Klemke et al.  2004 ). In 
the brine shrimp assay, the compound was 
strongly cytotoxic. It exhibited an LC 50  of 3.6 μg/
mL for the breast adenocarcinoma cell line MCF7 
and GI 50  concentrations of 0.7 μg/mL for the 
human gastric carcinoma HM02, 0.75 μg/mL for 
the human liver carcinoma HepG2, and 0.8 μg/
mL for MCF7. Total growth inhibition (TGI) for 
these cell lines was also determined and was 
found to be 1.0 μg/mL for HM02, 4.6 μg/mL for 
HepG2, and 1.5 μg/mL for MCF7. In the case of 
HM02 and HepG2 cells, the LC 50  of compound27 
was >10 μg/mL. Epiepoxydon was previously 
reported to have an ED 50  of 0.2 μg/mL towards 
the P388 lymphocytic leukemia cell line 
(Iwamoto et al.  1999 ) (Table  20.5 , Fig.  20.5 ).  

   Depsidones 
 Depsidone 1 was isolated from an endophytic 
fungus of the order  Pleosporales  (BCC 8616) 
that was isolated from an unidentifi ed leaf of the 
Hala-Bala evergreen forest (Pittayakhajonwut 
et al.  2006 ). Its exhibited weak cytotoxic activity 
against KB and BC cell lines, with IC 50  values of 
6.5 and 4.1 μg/mL, respectively (Pittayakhajonwut 
et al.  2006 ) (Table  20.5 , Fig.  20.5 ).  

   Depsipeptides 
 Beauvericin is a depsipeptide isolated from 
 Fusarium oxysporum  EPH2RAA, an endophytic 
fungus of the Sonoran Desert plant  Ephedra fas-
ciculata  (Zhan et al.  2007 ). It has previously been 
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  Fig. 20.5    Chemical structure of anticancer compounds isolated from endophytic fungi         
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isolated from several other fungi (Hamill et al. 
 1969 ; Bernardini et al.  1975 ; Deol et al.  1978 ). 
Beauvericin exhibited cytotoxic activity against 
four different cell lines, NCI-H460 (human non- 
small cell lung cancer), MIA Pa Ca-2 (human 
pancreatic carcinoma), MCF-7 (human breast 
cancer), and SF-268 human CNS cancer (glioma) 
with IG 50  values of 1.41, 1.66, 1.81, and 2.29 μM, 
respectively, compared to the standard compound 
doxorubicin with values of 0.01, 0.05, 0.07, 
and 0.04 μM, respectively (Zhan et al.  2007 ) 
(Table  20.5 , Fig.  20.5 ).  

   Ergochromes 
 Ergofl avin were fi rst isolated from the ergot 
fungus  Claviceps purpurea , as well as  Phoma 
terrestris ,  Pyrenochaeta terrestris ,  Penicillium 
oxalicum , and  Aspergillus  sp. (Deshmukh et al. 
 2009 ). It has been isolated from a leaf ascomy-
cetous endophyte of  Mimusops elengi  (‘Bakul’) 
designated PM0651480. Ergofl avin exhibited 
cytotoxicity against the following human cancer 
cell lines: renal ACHN, lung H460, pancreatic 
Panc1, colorectal HCT116, and lung Calu1 
cancer cell lines, with IC 50  values of 1.2 ± 0.20, 
4.0 ± 0.08, 2.4 ± 0.02, 8.0 ± 0.45, and 1.5 ± 0.21 μM, 
respectively. Flavopiridol, a known anticancer 
compound, was used as a standard for evaluating 
the cytotoxicity of ergofl avin with IC 50  values in 
the following cancer cells: ACHN, 0.84 ± 0.03 μM; 
H460, 0.38 ± 0.01 μM; Panc-1, 0.23 ± 0.07 μM; 
HCT116, 0.25 ± 0.03 μM; and Calu1, 
0.41 ± 0.09 μM. It also signifi cantly inhibited 
human TNF-α and IL-6, with IC 50  values of 
1.9 ± 0.1 and 1.2 ± 0.3 μM compared to dexameth-
asone, with IC 50  values of 0.06 ± 0.007 and 
0.01 ± 0.0 μM for TNF-α and IL-6 inhibition, 
respectively (Deshmukh et al.  2009 ) (Table  20.5 , 
Fig.  20.5 ). 

  Phomopsis longicolla  is an endophytic fungus 
of the rare mint  Dicerandra frutescens  (Deol et al. 
 1978 ).  D. frutescens  is found in only a dozen sites 
within a few hundred acres in central Florida. The 
plant is on the Federal Endangered Species List 
but has been the subject of much study due to its 
rich chemistry (Eisner et al.  1990 ; McCormick 
et al.  1993 ). The fungal endophyte produced three 
compounds designated dicerandrols A, B, and C, 

which have been classifi ed as ergochromes 
because they have the same tricyclic C 15  system 
with a similar arrangement of substituents 
(Wagenaar and Clardy  2001 ). The dicerandrols 
exhibited signifi cant cytotoxicity against two 
human cancer cell lines, lung adenocarcinoma 
epithelial cell line A549 and colorectal HCT-116. 
The IC 100  value of dicerandrols A against both cell 
lines and the value of dicerandrols C against HCT-
116 was 7.0 μg/mL. The IC 100  value of diceran-
drols C against A549 and of dicerandrols B 
against both cell lines was 1.8 μg/mL. These val-
ues are signifi cantly better than the standard anti-
cancer drug etoposide, which has IC 100  values of 
30.0 μg/mL against A549 and 125.0 μg/mL 
against HCT-116 (Wagenaar and Clardy  2001 ). 
Secalonic acid D was isolated from the mangrove 
endophytic fungus no. ZSU44 (Zhang et al.  2009 ). 
It was fi rst isolated in 1970 from  Penicillium oxa-
licum  and was found to be extremely toxic and 
teratogenic (Zhang et al.  2009 ). Secalonic acid D 
showed potent cytotoxicity to HL60 and K562 
cells, with IC 50  values of 0.38 and 0.43 μM, 
respectively. Further testing with the Annexin 
V-FITC/PI assay and Western blot indicated that 
secalonic acid D induced apoptosis in HL60 and 
K562 cells. Secalonic acid D also led to cell cycle 
arrest of G1 phase related to down regulation of 
c-Myc (Zhang et al.  2009 ) (Table  20.5 , Fig.  20.5 ).  

   Esters 
 Globosumones A and B are orsellinic acid esters 
isolated from a well-studied endophytic fungus, 
 Chaetomium globosum  isolated from Mormon 
tea,  Ephedra fasciculata  (Bashyal et al.  2005 ). 
Both compounds exhibited cytotoxic activity 
against NCI-H460 (non-small cell lung cancer), 
MCF-7 (breast cancer), SF-268 (CNS glioma), 
and MIA PaCa-2 (pancreatic carcinoma) and 
WI-38 normal human fi broblast cells (Bashyal 
et al.  2005 ) (Table  20.5 , Fig.  20.5 ).  

   Lactones 
 Brefeldin A has been isolated from several fungal 
species including  Curvularia ,  Alternaria , 
 Ascochyta ,  Phyllosticta ,  Penicillium , and 
 Cercospora  (Wang et al.  2002 ). The compound 
has antifungal, anticancer, and antiviral activities. 
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Brefeldin A was isolated from two different 
endophytic fungi,  Aspergillus clavatus  and 
 Paecilomyces  sp., which were isolated from the 
tissues of Chinese  Taxus mairei  and  Torreya 
grandis . This compound showed strong cytotox-
icity against HL-60, KB, HeLa, MCF-7, and Spc-
A- 1 cell lines, with IC 50  values of 10.0, 9.0, 1.8, 
2.0, and 1.0 ng/mL, compared to the standard 
anticancer compound paclitaxel, which had IC 50  
values of 1.2, 0.16, 1.8, 5.0, and 0.8 ng/mL, 
respectively (Wang et al.  2002 ). Brefeldin A was 
also isolated from a new species of  Acremonium  
which was isolated from a healthy twig of the 
Thai medicinal plant  Knema laurina  (Chinwor-
rungsee et al.  2008 ). In this study, brefeldin A 
showed potent activity against the following 
human cancer cell lines: KB (epidermoid cancer 
of the mouth), BC-1 (breast cancer), and NCI-
H187 (small-cell lung cancer), with IC 50  values of 
0.18, 0.04, and 0.11 μM, respectively (Chinwor-
rungsee et al.  2008 ) (Table  20.5 , Fig.  20.5 ). 

 The known compound radicicol was isolated 
from  Chaetomium chiversii , an endophytic fun-
gus of  Ephedra fasciculata , as part of an ongoing 
investigation of the endophytes of Sonoran 
Desert plants and of inhibitors of HSP90 (heat 
shock protein). Hsp90 may play a critical role in 
the cancer phenotype and thus provide an effec-
tive target for cancer chemotherapy. Cancer cells 
frequently express high levels of Hsp90, presum-
ably in response to the stress conditions within the 
tumor microenvironment. Radicicol also exhibi-
ted antiproliferative activity against breast cancer 
cell line MCF-7, with an IC 50  value of 0.03 μM 
(Turbyville et al.  2006 ). Six novel benzofuranone- 
derived γ-lactones, photinides A–F, were isolated 
from  Pestalotiopsis photiniae , an endophyte of 
 Roystonea regia  (Ding et al.  2009 ). All six 
γ-lactones exhibited cytotoxicity against breast 
cancer cell line MDA-MB-231 with inhibitory 
rates of 24.4, 24.2, 23.1, 24.4, and 24.6 %, respec-
tively, at a concentration of 10 μg/mL. Eutypellin 
A is a γ-lactone that exhibited cytotoxic activity 
against NCI-H187 (human small-cell lung cancer 
cells), MCF-7, KB, and nonmalignant Vero cells 
with IC 50  values of 12, 84, 38, and 88 μM com-
pared to the standard ellipticine, which exhibited 
IC 50  values of 3.6, 2.5, and 5.5 μM, respectively 

(Isaka et al.  2009 ). Eutypellin A was isolated 
from the endophytic fungus  Eutypella  sp. BCC 
13199, itself isolated from  Etlingera littoralis  
(Earth ginger) (Isaka et al.  2009 ).  

   Lignans 
 The aryltetralin lignan podophyllotoxin is an 
important natural product which was originally iso-
lated in 1950 from the higher plant  Podophyllum 
emodi  (Leiter et al.  1950 ). Podophyllotoxin is the 
precursor to three anticancer drugs, the topoisom-
erase I inhibitors etoposide, teniposide, and etopo-
side phosphate (Eyberger et al.  2006 ; Puri et al. 
 2006 ). Endophytes capable of producing podo-
phyllotoxin and related analogues (Eyberger et al. 
 2006 ; Puri et al.  2006 ). Puri isolated  Trametes 
hirsute  from the dried rhizomes of  Podophyllum 
hexandrum  collected from the Himalayan region, 
India (Puri et al.  2006 ), while Porter and colleagues 
isolated two different strains of  Phialo cephala for-
tinii  from rhizomes of  Podophyllum peltatum  
(Eyberger et al.  2006 ) (Table  20.5 , Fig.  20.5 ).  

   Peptides 
 Leucinostatin A was isolated almost 40 years 
ago from cultures of  Penicillium lilacinum  (Arai 
et al.  1973 ). Scientists have found that it inhib-
its prostate cancer growth through the reduction 
of insulin- like growth factor-I expression in 
prostate stromal cells (Kawada et al.  2010 ). 
 Acremonium  sp. isolated from  Taxus baccata  
was also shown to produce Leucinostatin A 
when grown in liquid culture (Strobel and Hess 
 1997 ). The fungal endophyte also produced leu-
cinostatin A di-O-β- glucoside, a glycosylated 
analogue of leucinostatin A which had an LD 50  
of >25 nM against breast cancer cell line BT-20, 
compared to leucinostatin A, which had an LD 50  
of 2 nM (Strobel and Hess  1997 ) (Table  20.5 , 
Fig.  20.5 ).  

   Spirobisnaphthalenes 
 The spirobisnaphthalenes are a relatively new 
class of compounds that was fi rst reported in 
1990. They possess two naphthalene-derived 
C 10  units bridged through a spiroketal linkage. 
Spiromamakone A was isolated from an 
unspecifi ed nonsporulating endophytic fungus 
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(Mycelia sterilia) isolated from the native New 
Zealand tree  Knightia excelsa  (rewarewa) 
(van der Sar et al.  2006 ). Spiromamakone A 
exhibited potent cytotoxic activity against P388 
(murine leukemia cell line), with an IC 50  value 
of 0.33 μM. The compound also exhibited 
potent antimicrobial activity (van der Sar et al. 
 2006 ). This endophytic fungus  Preussia  sp. was 
isolated from a mature stem of  Aquilaria sinen-
sis  (Thymelaeaceae), collected from Guangxi 
Medicinal Arboretum (Chen et al.  2009 ). It pro-
duced a series of novel spirobisnaphthalenes, 
one of which, spiropreussione A, exhibited in 
vitro cytotoxicity against the A2780 human 
ovarian carcinoma cell line and the BEL-7404 
human liver carcinoma cell line, with IC 50  
 values of 2.4 and 3.0 μM, respectively. 
Spiropreussione A was inactive (IC 50  > 10 μM) 
against the HCT-8 (colon carcinoma), BGC-
823 (gastric carcinoma), and A549 (lung adeno-
carcinoma) human cancer cell lines. None of 
the other novel compounds exhibited cytotoxic-
ity in these assays at the concentrations tested 
(Chen et al.  2009 ) (Table  20.5 , Fig.  20.5 ).  

   Xanthones 
 Phomoxanthones A and B, two novel xanthone 
dimers, were isolated from the fungus  Phomopsis  
sp. BCC 1323, an endophyte of  Tectona grandis . 
Both compounds exhibited impressive cytotoxic 
activity against KB cells, BC-1 cells, and nonma-
lignant Vero cells. Phomoxanthone A had IC 50  
values of 0.99, 0.51, and 1.4 μg/mL, respectively, 
while phomoxanthone B had IC 50  values of 4.1, 
0.70, and 1.8 μg/mL, compared to the standard 
compound ellipticine, which had IC 50  values of 
0.46 μg/mL for KB cells and 0.60 μg/mL for 
BC-1 cells, respectively (Isaka et al.  2001 ) 
(Table  20.5 , Fig.  20.5 ).  

   Aldehydes 
 Chaetopyranin was evaluated for its radical scav-
enging abilities using DPPH (1,1-diphenyl-2- 
picrylhydrazyl). This compound is a benzaldehyde 
derivative isolated from the endophytic fungus 
 Chaetomium globosum  associated with the 
marine red alga  Polysiphonia urceolata  (Wang 
et al.  2006 ). Chaetopyranin exhibited moderate 

or weak cytotoxic activities against three human 
tumor cell lines: HMEC (human microvascular 
endothelial cells), SμMC-7721 (hepatocellular 
carcinoma cells), and A549 (human lung epithe-
lial cells) with IC 50  values of 15.4, 28.5, and 
39.1 μg/mL, respectively. This compound showed 
moderate activity with an IC 50  value of 35 μg/mL, 
compared to an IC 50  value of 18 μg/mL for the 
positive control BHT (butylated hydroxytoluene) 
(Wang et al.  2006 ) (Table  20.5 , Fig.  20.5 ).     

4     Conclusion 

 Endophytic fungi are prolifi c producers of secon-
dary metabolites, in particular, are of consider-
able interest to researchers and pharmacists due 
to their ability to synthesize a wide range of eco-
nomically important bioactive molecules. This 
chapter highlights the importance of endophytic 
fungi – those hidden, subtle inhabitants of the 
interstitial spaces in plants – as a source of sec-
ondary metabolites with promising anticancer 
activity. Access to a limited number of cancer 
chemotherapies, their serious side effects, and 
high cost make treatment particularly challeng-
ing. In addition, many therapies do not effectively 
treat certain cancers, and multidrug-resistant 
tumors exacerbate treatment complexity. The 
search for new anticancer agents and for new 
sources of potent plant-derived compounds is 
critical, considering the number of deaths associ-
ated with cancers on an annual basis and the like-
lihood that this number will increase in the future. 
The discovery of new chemotherapeutic agents is 
therefore a key goal for natural product and 
medicinal chemists. Many of the compounds dis-
cussed in this chapter had IC 50  values comparable 
to those of the standard reference drugs, making 
the search for anticancer compounds isolated 
from endophytic fungi a promising one. In the 
past 10 years, more than 100 compounds with 
signifi cant cytotoxicity were reported from endo-
phytic fungi, and the isolation of anticancer com-
pounds has been increasing over 5 year intervals 
– it is interesting to note from 1990 to 1995, only 
a single novel anticancer agent was reported from 
endophytic fungi. This discovery spurred interest 
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not only in fungal endophytes as a source of 
novel anticancer agents but also in endophytes as 
an alternative source of valuable higher-plant 
metabolites. A fungal source of a desired antican-
cer agent is of particular value, as fungal fermen-
tation provides a virtually inexhaustible source of 
desired metabolites. As natural products chemists 
turn their attention to endophytic fungi, the num-
ber of new compounds isolated should increase 
over the next 5 years. Novel compounds or previ-
ously isolated compounds are readily available 
and accessible to whatever specifi c anticancer 
screens researchers use for isolation and evalua-
tion. As our understanding of the mechanisms 
associated with the onset and metastasis of can-
cers increases, our ability to use this knowledge 
to select for ever more potent and selective com-
pounds should increase commensurately. 
Endophytic fungi will continue to provide a fer-
tile arena for these quests.     
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1         Introduction 

 Since the development of the germ theory, 
most scientists, working with plant- and animal- 
infecting microbes, have focused their research 
efforts on microbes that cause disease (Ainsworth 
 1981 ). Endophytes (fungi and/or bacteria that 
live within tissues of plants) largely appear to be 
the inverse of plant pathogens since generally 
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    Abstract 

 Over the past several decades, it has become clear that numerous 
 nonpathogenic or weakly pathogenic microbes inhabit plants both inter-
nally and externally. The challenge for plant biologists who study endo-
phytism lies not only in the discovery of endophytes in plants but also in 
articulating the precise mechanisms whereby these endophytes function to 
support the growth and survival of their plant hosts. In this chapter, we 
discuss the phenomenon of microbial endophytism from a functional 
 perspective. We propose that endophytic microbes in plants comprise a 
critical part of the plant’s functional systems. We propose three broad cate-
gories of endosymbiotic systems, including (1)  Defensive Endosymbiotic 
Systems , (2)  Stress Tolerance Endosymbiotic Systems , and (3)  Nutritional 
Endosymbiotic Systems . We will also consider potential interactions 
between endosymbiotic organisms of plants and relativity of function of 
endosymbionts. A particular endophyte may serve multiple functions in 
the ecology of its host plant, and predominant functions of an endophyte 
may change depending on the ecological circumstances affecting its host. 
Only now are we beginning to realize how important endophytic microbes 
are to plants. Much research is needed to elucidate the  mechanisms of 
action and the roles that endophytes play in modulating host plant ecology 
and enhancing plant growth and survival.  

      A Functional View of Plant 
Microbiomes: Endosymbiotic 
Systems That Enhance Plant 
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they represent cryptic benign infections of 
healthy plants. Although we cannot cite any sta-
tistics, experience with endophytic microbial 
populations in plants suggests that they outnum-
ber plant pathogens many times to one (Bills 
 1996 ; Suryanarayanan et al.  1998 ; Arnold et al. 
 2001 ). Recent diversity studies of microbial 
endophytes would seem to support this view 
(Arnold et al.  2001 ; West et al.  2010 ; Lucero 
et al.  2011 ; Porras-Alfaro and Bayman  2011 ; 
Zimmerman and Vitousek  2012 ). In fact, endophyt-
ism is so common among microbes (as compared 
to pathogenicity) that it may well be that endo-
phytism is the normal state for most plant- 
infecting microbes and pathogenicity is the 
“out-of- balance” condition (Schulz and Boyle 
 2005 ). In this chapter, we discuss the current 
state of knowledge in the domain of endophyte 
biology and highlight those areas that we believe 
represent future fertile ground for expanding our 
understanding of the functioning of “endosymbi-
otic systems” and their roles in biology or ecol-
ogy of host plants. We further posit that analyzing 
the phenomenon of endophytism from a func-
tional systems perspective will permit us to 
develop a better understanding of the ecological 
context in which these endosymbioses function. 

 Endophytic microbes have for much of history 
been perceived as having limited function. 
Scientists have viewed fungal endophytes in 
particular as parasites, weak pathogens, or sapro-
phytes that enter plants but cannot function until 
the host is weakened or senescent (Saikkonen 
et al.  2004 ). Other endophytes are speculated to 
be degenerate pathogens whose life cycles have 
been curtailed by genetic phenomena or partial 
host incompatibility resulting in microbes that 
are trapped in hosts and unable to reproduce or 
evolve (White  1988 ; Schardl and Phillips  1997 ; 
Schardl and Craven  2003 ; Moon et al.  2004 ). If 
these models of endophyte functionality were, in 
fact, correct, endophytes would be largely non-
functional and perhaps have only negative 
impacts on host plants. However, there exists a 
body of empirically anchored research that indi-
cates that the reverse appears to be correct. 
Endophytic microbes are increasingly being 
found to have positive impacts on host plant 

fi tness, with infections frequently resulting in 
greater growth, fecundity, herbivore deterrence, 
disease resistance, abiotic stress tolerance, etc. 
(Cheplick and Clay  1988 ; Clay  1988 ; Bashan 
et al.  1989 ; Wilkinson et al.  2000 ; Malinowski 
et al.  2005 ; Malinowski and Belesky  2006 ; Waller 
et al.  2005 ; Clarke et al.  2006 ; Feng et al.  2006 ; 
Ortíz-Castro et al.  2008 ;    Puente et al.  2009 ; 
Álvarez-Loayza et al.  2011 ; Bacon and Hinton 
 2011 ). Although we previously proposed that 
fungal endophytes were trapped in host plants, 
we have since discovered that they actually pos-
sess cryptic conidial states on surfaces of plants 
where they disseminate horizontally (White et al. 
 1996 ; Moy et al.  2000 ; Dugan et al.  2002 ; Tadych 
et al.  2012 ). An increasing body of research fur-
ther suggests that endophytes are not functionless 
at all but instead have defi nable functions in 
plants and ecosystems (Clay  1988 ; Puente and 
Bashan  1994 ; Saikkonen et al.  1996 ; White et al. 
 2001 ; Rudgers et al.  2004 ,  2005 ; Kuldau and 
Bacon  2008 ). It is becoming evident that endo-
phytes are adapted to hosts, express different life 
cycle stages at distinct stages of host develop-
ment, and transmit with seeds to succeeding gen-
erations of the hosts (Latch et al.  1987 ; White 
 1987 ; White et al.  1991 ; Afkhami and Rudgers 
 2008 ; Rodriguez et al.  2009b ; Álvarez-Loayza 
et al.  2011 ; White et al.  2012a ,  b ). The adaptation 
to hosts and seed transmission aspects of many 
endophytes both emphasizes the importance of 
endophytes to their plant hosts. Endophytic 
microbes, whether bacteria or fungi, inhabit 
niches within plants that result in enhancements 
of host fi tness and the subsequent ability to 
enable hosts to colonize and reproduce in a par-
ticular ecological niche within a larger ecosystem 
(Matthews and Clay  2001 ; Rudgers et al.  2005 ; 
Rodriguez et al.  2009b ). Rodriguez et al. ( 2009a , 
 b ) demonstrated that endophytic associations 
with plants were habitat-adaptive symbioses, 
serving to enable host plants to survive and repro-
duce in habitats where hosts could not otherwise 
grow (see also Redman et al.  2011 ). Thus, it has 
become clear that a more accurate and appropri-
ate view of endophytic microbe has emerged: 
They constitute endosymbiotic systems of plants 
that enable plants to thrive in particular ecological 
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niches. We believe that one important course for 
future lines of investigation will be to better 
defi ne the endosymbiotic systems and elucidate 
how they function to enable plants to compete 
with other species and adapt to their environ-
ments. In this chapter, we will provide evidence 
to support the existence and functioning of three 
broad categories of endosymbiotic systems, 
including (1)  Defensive Endosymbiotic Systems , 
(2)  Stress Tolerance Endosymbiotic Systems , and 
(3)  Nutritional Endosymbiotic Systems . Lastly, 
we look to move the study of endophytes beyond 
individual species associations in order to recog-
nize the complexity of interactions between 
endophytes and effects of microbial endophyte 
consortia on plants.  

2     Defensive Endosymbiotic 
Systems 

 There exists a large body of work that supports a 
defensive function for certain fungal endophytes 
(Cheplick and Clay  1988 ; Lewis et al.  1993 ; 
White et al.  1993 ; Azevedo et al.  2000 ; Clay and 
Schardl  2002 ; Arnold et al.  2003 ; Schardl et al. 
 2004 ; Spiering et al.  2005 ; Álvarez-Loayza et al. 
 2011 ). Much of this work focuses on various 
clavicipitaceous fungal endophytes found within 
grasses. In cool-season and some warm-season 
grasses, species of the clavicipitaceous fungal 
genera  Epichloë  (including  Neotyphodium ) and 
 Balansia  systemically colonize plants and pro-
duce alkaloids (and possibly other metabolites) 
that reduce or alter herbivory (Panaccione  2005 ; 
Panaccione et al.  2006 ; Clay and Cheplick  1989 ). 

 Certain species of morning glories ( Ipomoea  
spp.; Convolvulaceae) have long been regarded as 
toxic and avoided by herbivores due to possession 
of high levels of ergot alkaloids (Austin  1973 ). 
In recent years, it has been shown that ergot alka-
loids that toxify certain species of morning glories 
are produced by clavicipitaceous endophytes or 
epiphytes (Steiner et al.  2006 ; Markert et al.  2008 ; 
Leistner and Steiner  2009 ). Even though much of 
the work on endophytes in Convolvulaceae has 
yet to be done, it is diffi cult to ascribe any function 
other than defense to these symbionts. 

 While some controversy arises with regard to 
defi ning fungal endophytes universally as anti- 
herbivorous (Faeth et al.  1999 ; Saikkonen et al. 
 1999 ), it seems apparent that some do appear to 
function in this capacity and thus may constitute 
an herbivory defensive system (Clay  1988 ). 
Herbivory defensive systems may function 
through production of toxins by the endophytes 
themselves or through endophyte-induced upreg-
ulation of host defensive compounds. Clavi-
cipitaceous fungal endophytes in grasses have 
been shown to have a “reprogramming effect” on 
host plants. Grasses bearing these particular 
endophytes have increased levels of phenolics 
and other potential anti-feeding compounds 
(Waller et al.  2005 ; Sullivan et al.  2007 ; Kumar 
et al.  2009 ; White and Torres  2010 ; Torres et al. 
 2012 ). This “reprogramming effect” is a topic of 
current interest since it may be key to understand-
ing the mechanism of endophyte-host interac-
tions. For any given endophyte-plant association, 
observed anti-herbivory could be the result of (1) 
endophyte-induced anti-herbivore compounds, 
(2) endophyte produced anti-herbivore compounds, 
or (3) a combination of both. 

 Another specifi c example of a defensive 
endosymbiotic system is the  Diplodia -palm 
association.  Diplodia mutila  (Botryosphaeriaceae; 
Ascomycota) is an endophyte of the neotropical 
palm  Iriartea deltoidea  (Álvarez-Loayza et al. 
 2011 ).  Diplodia  is an asymptomatic endophyte in 
the leaves and stems of mature palm populations. 
The fruits of the palm transmit the fungus, which 
often forms a black carbonaceous mycelium on 
the surface of fruits. Mature plants containing 
 Diplodia  were also found to be resistant to stem 
borer insects. While mature palm plants show no 
symptoms of infection by  Diplodia , the fungus 
may be mortally pathogenic to seedlings of the 
palm under certain environmental conditions. In 
high sunlight conditions (e.g., under the gaps in 
the rainforest canopy),  Diplodia  expresses a 
pathogenic phase where the fungus causes exten-
sive necrosis of seedling tissues to such an extent 
that many seedlings in high light areas do not sur-
vive. If seedlings bearing the endophyte grow in 
the shaded areas of the forest understory, the fun-
gus does not cause disease. Instead, it remains as 
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an asymptomatic endophytic defensive mutualist 
of the plant (Álvarez-Loayza et al.  2011 ). Studies 
conducted on cultures of  Diplodia  provide a 
 possible explanation for how light affects the 
expression of the pathogenic phase of the endo-
phyte. Cultures of  Diplodia  that were exposed to 
high light were shown to have enhanced secretion 
of hydrogen peroxide (H 2 O 2 ). Hydrogen peroxide 
acts as an important defense signal molecule that 
triggers a hypersensitive response in some plants 
that results in cell/tissue death (Heath and Packer 
 1968 ). The extent to which endophytes produce 
hydrogen peroxide in plant tissues appears to 
determine whether the fungus remains a defen-
sive mutualist or becomes a pathogen capable of 
killing plant tissues, colonizing them, and later 
producing conidia and ascospores on the necrotic 
tissues. 

 Defensive protection that results from endo-
phyte infection may include pathogen protection. 
Bacterial endophytes are frequently found to 
protect hosts from fungal pathogens (Cho et al. 
 2007 ). Clavicipitaceous endophytes in grasses 
have been shown to protect grass hosts from cer-
tain fungal diseases including dollar spot, caused 
by  Sclerotinia homoeocarpa , and red thread 
disease caused by  Laetisaria fuciformis  (Clarke 
et al.  2006 ; Bonos et al.  2005 ). Defensive mecha-
nisms against pathogens are generally not clear, 
but could involve antibiosis-like antagonisms 
(White and Cole  1985 ), physical exclusion phe-
nomena (White et al.  1996 ), or physical coloniza-
tion of the pathogens by endosymbiotic microbes. 
We have observed numerous instances in which 
fungal hyphae within plant tissues become colo-
nized by endophytic bacteria (unpublished data). 
What interactions occur between fungi and 
bacteria in such circumstances is completely 
unknown.  

3     Stress Tolerance 
Endosymbiotic Systems 

 An increasing body of work suggests that many 
endophytes enhance host plant tolerance to abiotic 
stresses; however, the mechanism that facilitates 
this enhancement is not clear (Zhang and Nan 

 2007 ; Kuldau and Bacon  2008 ; Hamilton et al. 
 2012 ). This endosymbiotic system has a parallel 
in animal biology where it has been shown that 
intestinal microbes may enhance the ability of 
animals to cope with stress, but the facilitating 
mechanism also remains unclear (Bravo et al. 
 2011 ). It is likely that these endosymbiotic sys-
tems in plants increase oxidative stress resistance 
and enhance host tolerance to soils having high 
salinity, heavy metals, extreme heat, extremely 
arid conditions, and various biotic and abiotic 
assaults to plants that manifest as increased oxi-
dative stress. In animals or plants, enhanced oxi-
dative stress resistance could stem from nutrients 
that the host obtains directly from the endophyte 
(Bravo et al.  2011 ). This is a logical hypothesis to 
explain increased stress  tolerance in plants and 
cannot be discarded; unfortunately, we have little 
evidence for this mechanism at the present time. 

 Some research suggests that fungal endo-
phytes of plants may produce antioxidants that 
could modulate oxidative stress through the scav-
enging of reactive oxygen generated during biotic 
or abiotic stress events. Endophytic fungi have 
been shown to be the producers of numerous 
antioxidant compounds that may play a role in 
enhancing stress tolerance in host plants (Schulz 
et al.  2002 ; Rasmussen et al.  2008 ). Huang et al. 
( 2007 ) examined the total antioxidant capacity 
and total phenolic content of 292 endophytic fun-
gal isolates and demonstrated a high correlation 
between phenolic content and antioxidant capac-
ity, suggesting that the endophytes themselves 
may be producing phenolic antioxidants. These 
investigators identifi ed phenolic acids, fl avonoids, 
tannins, hydroxyanthraquinones, and phenolic 
terpenoids as potential antioxidants. From the 
endophyte  Pestalotiopsis microspora , the 
potent antioxidants pestacin and isopestacin 
have been identifi ed. These compounds scavenge 
superoxide and hydroxyl free radicals (Strobel 
and Daisy  2003 ). 

 Fungal endophytes may also produce carbo-
hydrate compounds that have antioxidant capacity. 
The fungal sugar alcohol mannitol has been 
shown to have antioxidant activity (Jennings 
et al.  1998 ). Richardson et al. ( 1992 ) reported 
higher concentrations of mannitol and other 
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potential fungal carbohydrates with antioxidant 
activity in the apoplasts of tall fescue grass 
 tissues infected by the endophytic fungus 
 Neotyphodium coenophialum . Mannitol is used 
by fungi as a common storage sugar, and it has 
been hypothesized that it functions as an osmo-
protectant in plants that also produce it. Mannitol 
is produced by the endophytic pathogen 
 Alternaria alternata . Some scientists have sug-
gested that mannitol suppresses reactive oxygen 
species (ROS)-mediated plant defense responses 
in Alternaria’s tobacco host (Jennings et al. 
 1998 ). Fungal antioxidants of all forms may 
 contribute to enhance overall oxidative stress tol-
erance in plants. The “habitat-adapted symbiosis” 
phenomenon proposed by Redman et al. ( 2002 ) 
could be explained by this mechanism. Here dif-
ferent endophytes may produce antioxidants that 
differ in their capacities to quench various types 
of reactive oxygen or may differ in their capaci-
ties to reach specifi c tissues undergoing stress. 

 Other researches propose a more general 
mechanism for stress tolerance in endophyte- 
infected plants. Torres et al. ( 2012 ) and Hamilton 
et al. ( 2012 ) proposed that enhanced oxidative 
stress tolerance in grasses infected by clavicipit-
aceous endophytes was the result of induced 
upregulation of plant-produced antioxidants and 
other stress defensive compounds due to secre-
tion of ROS and auxins by the endophyte into 
plant tissues. In particular, the secretion of 
hydrogen peroxide into plant tissues, a known 
plant defense signal molecule, may be responsible 
for increasing the readiness of many endophyte- 
infected grasses to endure biotic and abiotic 
stresses. 

 Antioxidants may increase the tolerance of 
plants to many oxidative stresses and also 
increase the resistance to pathogens that use ROS 
to incite disease (Clarke et al.  2006 ). Therefore, 
ROS-producing endophytes may increase the 
hardiness of plant hosts in multiple ways. In 
some food crop plants, ROS-producing endo-
phytes may increase the nutritional value of the 
crop by enhancing production of antioxidant 
nutrients. An example of such an application 
could be in a crop like cranberries where endo-
phytic fungi are common in fruits and leaves 

(Jeffers  1991 ). Some of these fungi may be latent 
pathogens and responsible for fruit rot or other 
diseases, but others appear to be nonpathogenic 
(Oudemans et al.  1998 ). In a preliminary study of 
seven of the most common endophytes in cran-
berry, we identifi ed several that secreted observable 
amounts of ROS in cultures. The leaf, stem, and 
fruit endophyte  Pestalotia vaccinnii  produced 
notable quantities of superoxides in potato dex-
trose agar cultures, while the endophytic fi eld rot 
pathogen  Phyllosticta vaccinii  produced signifi -
cant amounts of hydrogen peroxide in potato 
dextrose agar cultures as well. Several other 
endophytic pathogens ( Colletotrichum gloeospo-
rioides ,  Physalospora vaccinii , and  Strasseria 
geniculata ) produced weak reactions to stains for 
peroxides and superoxides. 

 An understanding of the mechanism by which 
endophytic microbes enhance stress tolerance of 
host plants remains elusive. New approaches to 
answer the “mechanism” question will most 
likely involve carefully controlled experiments 
combined with genome expression analyses to 
determine precisely what genes in the host and 
endophyte upregulate under particular stress 
conditions.  

4     Nutritional Endosymbiotic 
Systems 

 Healthy plants are colonized by many different 
endophytes and epiphytes, both fungal and 
 bacterial (Döbereiner  1992 ; James  2000 ; 
Alvarez- Loayza et al.  2011 ; Bacon and Hinton 
 2011 ; Stone et al.  2000 ; Fürnkranz et al.  2012 ; 
Taulé et al.  2012 ). The ability of many bacterial 
endophytes to fi x atmospheric nitrogen implicates 
them as key components of Nutritional Endo-
symbiotic Systems (Rosenblueth and Martínez-
Romero  2006 ; Reinhold-Hurek and Hurek  2011 ). 
There is a large body of research on “associative 
nitrogen fi xation” that seeks to determine if plants 
are obtaining fi xed nitrogen from endophytic 
diazotrophic bacteria (Döbereiner  1992 ; Döbereiner 
et al.  1994 ; James et al.  1994 ; Kloepper  1994 ; 
Hurek et al.  1988 ,  1994 ; James  2000 ; Mantelin 
and Touraine  2004 ; Zhang et al.  2008 ; Dakora 
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et al.  2008 ; Magnani et al.  2010 ). Generally, 
investigators either use an assay such as acety-
lene reduction or isotopic nitrogen tracking to 
ascertain whether gaseous nitrogen is being 
assimilated into plants (Stewart et al.  1967 ; 
Radajewski et al.  2000 ). However, the question 
of whether nitrogen moves into plant tissues or 
remains associated with microbes in any substan-
tial manner is generally not answered clearly. Other 
studies focus on plant growth enhancements due 
to the presence of specifi c microbes on plants 
(   Kloepper  1994 ). This work is complicated by 
the fact that endophytes frequently produce 
growth regulators. Furthermore, any growth 
enhancements in plants may be attributed to the 
growth regulatory compounds rather than to the 
nitrogen derived from the microbes (Barazani 
and Friedman  1999 ). Recently, we have found 
evidence for a mechanism whereby grass seed-
lings obtain nutrients from seed- transmitted 
diazotrophic bacteria through oxidation using 
plant-secreted reactive oxygen (White et al. 
 2012a ). We denominated this mechanism “oxida-
tive nitrogen scavenging” (ONS) since the plant 
employs ROS (specifi cally H 2 O 2 ), to degrade 
microbes and oxidize their constituent protein 
components prior to proteolysis and absorption. 
Our studies have centered on documenting ONS 
in pooid grasses, including  Poa annua ,  Poa pra-
tensis ,  Festuca arundinacea ,  Festuca rubra , and 
 Lolium perenne . In tall fescue, we have identifi ed 
two endophytic diazotrophic bacteria that may be 
part of a nutritional endosymbiotic system, 
including  Pantoea agglomerans  and an unidenti-
fi ed species of  Pseudomonas , both of which are 
seed- transmitted and colonize-germinating seed-
lings. Bacteria may be transmitted on the caryop-
sis surface on glumes and paleas that closely 
adhere to caryopses. All seed collections of these 
grass species obtained from natural populations 
or from commercially available samples bear 
similar diazotrophic bacteria. Our experiments 
suggest that the bacteria proliferate in meristems 
of seedlings, but are degraded predominantly on 
seedling roots to provide organic forms of nitro-
gen and perhaps other nutrients that are needed 
for the rapid seedling growth. Roots secrete H 2 O 2  
onto bacterial populations on and within roots. 

Microscopic examination of bacteria on root 
hairs and other root epidermal cells has shown 
that the rod- shaped bacterial cells fi rst swell to 
become spherical, lose their nucleic acid and 
protein contents, and eventually disappear from 
plant surfaces. In experiments using grass seed-
lings, we have found that proper seedling root 
development depends on the presence of the bac-
teria on roots of seedlings (unpublished). Using 
seeds that were rigorously surface disinfected to 
remove all bacteria, those that were germinated 
on water agarose medium produced seedlings 
whose roots did not develop properly when com-
pared to roots germinated from non-surface ster-
ilized seeds. With bacteria present, seedling roots 
showed proper gravitropic response with roots 
growing downward into the agarose medium and 
developed root hairs that extended into the aga-
rose medium. Without bacteria, seedling roots 
frequently did not grow downward and the few 
roots that found their way into the medium did 
not produce root hairs. 

 In other experiments using similarly sterilized 
seedlings, we were able to restore proper root 
development by incorporating 0.1 % proteins 
(egg albumin, lipase, or cellulase) into the aga-
rose medium. These simple experiments suggest 
that the grasses, at least in the seedling stage, 
require bacteria largely as a nutrient source to 
fuel early seedling development. The fact that 
proteins are suffi cient enough to restore root 
development indicates that the effect is nutritional 
one rather than the result of a microbial- produced 
hormone that affects development. 

 There is evidence that ONS, or a more devel-
oped phagocytic digestive system to extract nutri-
ents from bacteria, may be widespread in plants. 
Paungfoo-Lonhienne et al. ( 2010 ) demonstrated 
that tomato plants internalized exogenously 
applied bacteria into root cortical cells that were 
then degraded and their nutrients transported into 
shoot tissues. We conducted a preliminary survey 
of seedlings of 23 species of plants in 16 families 
of vascular plants for evidence of ONS. All seeds 
used in that study were rigorously disinfected 
to remove all exogenous bacteria and were sub-
sequently germinated on sterile water agarose 
medium to reduce any contamination or exogenous 
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nutrients. Under these low nutrient conditions, 
we frequently observed bacteria within vesicles 
in the cytoplasm of root hairs and root epidermal 
and cortical cells. Using ROS and protein probes 
(White et al.  2012a ), we confi rmed oxidative 
degradation of the intracellular bacteria, where 
degrading bacterial cells swelled and lost capac-
ity to stain for protein contents (see Fig   .  21.1 ). 
Although our survey is preliminary, we were able 
to determine that oxidative degradation of intra-
cellular bacteria is a phenomenon that occurs in 
many plant species in diverse habitats. Desert 
plants that show this phenomenon include Agava-
ceae and Cactaceae. Vines in many temperate and 
tropical plant families (e.g., Anacardiaceae, 
Araceae, Araliaceae, Caprifoliaceae, Orchidaceae, 
Polypodiaceae, Ranunculaceae, and Vitaceae) 
also may rely on nutrient scavenging from bac-
teria to provide suffi cient nutrients to fuel plant 
development. In vines, bacteria can be visualized in 
meristematic cells and are distributed intracellu-

larly throughout tissues of plants (unpublished 
data). Oxidative degradation occurs generally in 
tendrils and stem epidermal tissues or aerial roots.  

 Nutritional Endosymbiotic Systems may 
occur where the nutrients obtained from microbes 
are not strictly nitrogen based, but, instead, pro-
vide other forms of nutrients that plants require. 
Specifi c examples here could include biotin, folic 
acid, niacin, and thiamine. When plants are 
grown axenically in tissue culture, these nutrients 
must frequently be provided exogenously. This 
proposed function has a parallel in animal sys-
tems where bacteria in the gut supply the host 
with vitamin K, vitamin B 12 , biotin, folic acid, 
and pantothenate (Hooper et al.  2002 ). In a study 
of whitefl ies ( Bemisia  spp.) and their bacterial 
endosymbionts ( Portiera  spp.), the whitefl y host 
was hypothesized to obtain carotenoids from its 
endosymbionts (Sloan and Moran  2012 ). The 
transfer mechanisms of nutrients from microbes 
in animals to host tissues are still unknown, but 

  Fig. 21.1    Seedling root cells showing evidence of 
microbivory of bacteria (stained with diaminobenzidine 
tetrachloride/horseradish peroxidase to visualize H2O2 
(red-brown color); counterstained with aniline blue/
lactophenol to visualize proteins (blue)). (1) Root cap cell 
of Yucca schottii with dividing bacteria (arrow) in vesicles. 

(2) Root hairs of sedge Fimbristylis cymosa with clusters 
of degraded bacteria internally (arrows). (3) Root hair of 
seedling of Portia tree (Thespesia populnea) with oxidiz-
ing bacteria (arrow) on surface. (4) Root cap cells of 
Moringa oleifera with oxidizing bacteria internally 
(arrows)       
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they could be comparable to mechanisms in plant 
systems where endosymbionts are degraded to 
extract nutrients. Similarities between plant and 
animal endosymbiotic systems could provide the 
basis for using plant Nutritional Endosymbiotic 
Systems as models to understand nutrient acquisition 
from microbes in animal systems. It is entirely 
possible that some of the nutrients that we believe 
are produced by plants may in fact be acquired 
from endosymbiotic microbes within plants. We 
hypothesize that most plants obtain at least some 
of their nitrogenous nutrients from Nutritional 
Endosymbiotic Systems (White et al.  2012b ). 
However, our preliminary evidence suggests that 
plants differ with respect to the extent that they 
rely on endosymbiotic microbes and the ONS 
process to provide nitrogen. Epiphytes, vines, 
and some desert species appear to heavily utilize 
Nutritional Endosymbiotic Systems to obtain 
nitrogen (unpublished data). 

 The study of Nutritional Endosymbiotic Systems 
has the potential to impact fi elds of agriculture, 
ecology, evolutionary biology, and human health. 
Nutritional Endosymbiotic Systems could form 
the foundation of the nitrogen cycle in ecosys-
tems, such as deserts, where limited available 
nitrogen is present in soils (Whitford  2002 ). 
A thorough understanding of these systems could 
lead to applications in agriculture. For example, 
new strategies may emerge for cultivation of 
more effi cient food, fuel, and fi ber crops with 
reduced inorganic nitrogen applications. From 
the perspective of evolutionary biology, there are 
several potential impacts. The earliest land plants 
(e.g.,  Cooksonia ,  Sawdonia ,  Rhynia ,  Horneophyton ) 
in the Ordovician, Silurian, and Devonian lacked 
root systems to absorb nutrients from soils effi -
ciently (Taylor and Taylor  1993 ). It is possible 
that they employed Nutritional Endosymbiotic 
Systems involving internal oxidation and diges-
tion of diazotrophic bacteria as a source of nitro-
gen and other nutrients. This possibility could 
explain why we see oxidation of intracellular 
bacteria in diverse plant families ranging from 
ferns to dicots. These early plants are also known 
to have associated with glomalean fungi that may 
have functioned like mycorrhizae in assisting 
with absorption of some nutrients (Taylor et al. 

 1995 ). However, at present, we know almost 
nothing about how Nutritional Endosymbiotic 
Systems work, and further studies must be under-
taken to develop our understanding of impacts 
they have on plant nutrition, development, and 
ecology.  

5     Interactions Between 
Endosymbiotic Systems 
of Plants 

 Plants generally have multiple endophytes, and 
these may constitute multiple endosymbiotic 
systems. For example, pooid grasses may have 
clavicipitaceous fungal endophytes in the shoot 
meristems, leaves, and culms that function in 
defense and perhaps provide stress tolerance. 
Plants may also contain diazotrophic bacterial 
endophytes that are oxidized on the surface and 
interiors of roots to provide nutrients, such as 
nitrogen, for growth. Thus, a particular grass 
plant individual may possess at least two different 
endosymbiotic systems, one that is defensive and 
the other that is nutritional. One of the interesting 
phenomena with regard to clavicipitaceous endo-
phytes in grasses is that infection will frequently 
result in enhanced growth of plants compared to 
plants that are not infected. This effect has been 
attributed to increased photosynthetic effi ciency 
or to growth regulator production by the fungal 
endophyte (Spiering et al.  2006 ). Because some 
clavicipitaceous endophytes have been documented 
to produce auxins, increased growth of some 
hosts has also been attributed to auxin-induced 
growth stimulation (Yue et al.  2000 ; Vadassery 
et al.  2008 ). 

 Investigators have only recently begun to 
examine interactions between symbiotic systems 
in plants. Novas et al. ( 2011 ) examined the effects 
of a clavicipitaceous endophyte,  Neotyphodium , 
on growth of VA mycorrhizae, a nutritional sym-
biotic system, on roots of the host  Bromus . These 
investigators reported an increase in the coloniza-
tion of mycorrhizae as a result of clavicipitaceous 
endophyte infection. Many pooid grasses also 
oxidize diazotrophic bacteria in order to utilize 
them as a nutrient source (White et al.  2012a ). 
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Any enhancement of oxidation of bacteria in 
roots by the clavicipitaceous endophytes would 
be expected to increase nitrogenous nutrients 
available to plants and increase growth. There is 
some indirect evidence that  Neotyphodium coe-
nophialum  endophyte infection in tall fescue grass 
may alter oxidative reactions on roots of the host. 
Malinowski and Belesky ( 2006 ) demonstrated 
that tall fescue plants bearing the endophyte 
secreted higher levels of antioxidant phenolics 
from roots. The phenolics may be secreted to 
protect plant roots from reactive oxygen secreted 
by roots onto bacteria. Additionally, Lyons et al. 
( 1990 ) found that organic and inorganic forms of 
nitrogen increased in tall fescue grasses as a 
result of endophyte infection. Stimulation of 
Nutritional Endosymbiotic Systems in grasses 
directly or indirectly by endophytic fungi could 
account for enhanced nitrogen content and increases 
in the effi ciency of  photosynthesis as a result.    This 
is an interesting possibility that will require further 
experimentation in order to evaluate.  

6     Microbial Consortia and 
Other Factors Affecting 
Endosymbiotic Systems 

 Nutritional Endosymbiotic Systems are often 
composed of microbial consortia. These microbes 
provide their plant hosts with key nutrients [such 
a nitrogenous compounds] that may cause an 
increase in plant biomass, fecundity, and crop 
yield. Consortia of nitrogen-fi xing bacteria have 
been documented in a number of plant hosts such 
as wild rice, sugarcane, and grasses (Minamisawa 
et al.  2004 ; Miyamoto et al.  2004 ; Zhang et al. 
 2008 ; Taulé et al.  2012 ). Nitrogen-fi xing 
 endophytic bacteria typically include common 
 diazotrophic soil species such as  Azotobacter 
diazotrophicus ,  Azoarcus  spp.,  Pantoea agglom-
erans , and  Klebsiella oxytoca . However, recent 
evidence has uncovered the presence of novel 
endophytic anaerobic clostridia along with the 
presence of common diazotrophs (Miyamoto 
et al.  2004 ; Minamisawa et al.  2004 ). This fi nd-
ing stresses the importance of utilizing nontradi-
tional microbiological isolation techniques in 

endophyte research. Future research challenges 
include the development of isolation and cultiva-
tion techniques for these novel bacteria and 
assessing the diversity of endophytes utilizing 
culture-independent methods that may detect the 
presence of unculturable or novel microorganisms 
that have been overlooked previously. Consortia 
of nitrogen-fi xing bacteria have the potential of 
improving plant growth in marginal soils and 
serve as biofertilizers for agricultural crops, thus 
reducing the environmental impact of fertilizing 
practices. 

 How microbial consortia function is unknown; 
however, it is conceivable that a consortium of 
endophytic microbes may interact with hosts in 
order to complete an endosymbiotic system. Any 
given endophytic microbial consortium may 
potentially confer more than one benefi t to its 
plant host. Therefore, these systems could be 
categorized within more than one type of endo-
symbiotic system. Endosymbiotic consortia may 
be composed of fungi, bacteria, and even viruses. 
It seems feasible that favorable combinations of 
microbial endophytes may have a synergistic 
effect that could be more effi cient at enhancing 
plant growth than the individual symbionts. 

 Microbial consortia may interact with phyto-
pathogenic fungi or bacteria to complete a defen-
sive endosymbiotic system. This could alter the 
physiology of the pathogen and induce a non-
pathogenic endophytic state, thereby avoiding 
disease in the plant host.  Fusarium oxysporum  is 
commonly documented as a wilt-causing phyto-
pathogen in some plants or a nonpathogenic plant 
growth-promoting endophyte of other plants. 
Minerdi et al. ( 2008 ) determined that the virulence 
of a pathogenic strain of  F. oxysporum  can be 
reduced by a bacterial consortium.  Fusarium 
oxysporum  MSA 35 was isolated from wilt- 
suppressive soils and was observed microscopi-
cally to contain numerous bacterial cells attached 
to the hyphae. The species of bacteria in this 
consortium were  Serratia marcescens ,  Stenotro-
phomonas maltophilia ,  Achromobacter xylosoxi-
dans , and  Bacillus halodurans.  This consortium 
had numerous effects on the growth and pathoge-
nicity of  F. oxysporum.  Among the effects observed 
were changes in pigmentation, sporulation, aerial 

21 A Functional View of Plant Microbiomes…



434

hyphae production, and hyphal thickness. Further 
studies showed that members of this microbial 
consortium communicate with each other and 
their plant hosts through emissions of volatile 
organic compounds. Volatiles emitted by co-cul-
tures of the fungus with the microbial consortium 
appeared to promote growth in lettuce, more so 
than volatiles emitted by  F. oxysporum  lacking 
the consortium of bacterial symbionts (Minerdi 
et al.  2011 ). 

 The idea that microbial consortia are able to 
alter the virulence of pathogens that devastate or 
destroy economically important crops is one that 
must be further explored. Understanding the 
mechanisms by which microbial consortia are 
able to decrease the virulence of specifi c phyto-
pathogens may be crucial when seeking solutions 
for disease control. Because of potentially complex 
population interactions, applying this knowledge 
in order to implement successful biocontrol 
strategies for agricultural crops vulnerable to dis-
ease will be a challenge. 

 Recent research has suggested viruses as possible 
modulators of Stress Tolerance Endosymbiotic 
Systems. A unique endophytic system was docu-
mented by Márquez, et al. ( 2007 ) where a myco-
virus infecting the fungus  Curvularia protuberata  
resulted in enhanced thermal tolerance in the host 
plant, panic grass ( Dichanthelium lanuginosum ). 
The  Curvularia  thermal tolerance virus (CThTV) 
appeared to alter the physiology of the fungal 
endophyte. A further study of this three-way 
symbiotic system indicated that the virus induced 
the expression of fungal genes that are thought to 
be involved in thermotolerance. CThTV altered 
the expression of fungal genes involved in the 
biosynthetic pathways of various osmoprotec-
tants such as trehalose, glycine betaine, taurine, 
and melanin (Morsy et al.  2010 ). The production 
of these osmoprotectants may be a strategy used 
by this and many other endophytes to protect 
themselves from environmental stress, such as 
increased temperature. Mycoviruses and bacte-
riophages are often overlooked and may be 
indispensable parts of successful endosymbiotic 
systems in plants. Viruses that alter the gene 
expression of microbial endophytes are likely to 
differ in a case-by-case basis, and thus, the genes 

they express may differ. It is possible that many 
endophytic fungi may be infected and altered by 
the presence of viruses. Understanding specifi -
cally how these viruses are able to alter fungal 
endophyte physiology could lead to the design of 
microbial consortia that allow their plant hosts to 
inhabit otherwise inhospitable environments. 

 Studies have uncovered a number of bacteria 
that are symbiotic with mycorrhiza and are com-
monly referred to as “mycorrhiza helper bacte-
ria” (Bonfante and Iulia-Andra  2009 ). Arbuscular 
mycorrhizal fungi, such as  Gigaspora margarita , 
have been described as a niche for many rhizo-
bacteria, some of them being vertically transmit-
ted endohyphal symbionts (Bianciotto and 
Bonfante  2002 ; Bianciotto et al.  2004 ). Some 
species of bacteria described as mycorrhizal 
symbionts are common soil bacteria such as 
 Pseudomonas aeruginosa  and  Burkholderia 
cepacia  (Sundram et al.  2011 ). Other symbionts 
may be novel species such as the endohyphal 
symbiont “ Candidatus Glomeribacter gigaspo-
rum ” (Bianciotto et al.  2003 ). Mycorrhizas are 
common endophytes of plant roots that may also 
be part of a nutritional endosymbiotic system by 
partnering with certain bacteria.  

7     Conclusions 

 The plant microbiome consists of bacterial and 
fungal endophytes, many of which have not been 
identifi ed. In this chapter, we advocate a func-
tional view of the plant microbiome where the 
microbes function to enhance survival and growth 
of the host plants. We propose that plant endo-
phytic microbes are critical to plant growth and 
development, providing nutrients, enhancing 
stress tolerance, and defending plants from herbi-
vores. There is good support for this moderate 
functional view in the large body of research on 
endophytes and benefi cial microbes of plants. 
However, we also propose that endophytes were 
critical to the evolution of plants. Perhaps, with-
out endophytes land plants may never have 
evolved or would be very different than the plants 
we see today. Developing a full understanding of 
plant microbiomes and the endosymbiotic sys-
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tems of plants may permit us to produce hardier 
and more resistant food, fi ber, and fuel crops 
using reduced agrichemical inputs.     
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1         Introduction 

 The emphasis in greater sustainability and an 
increase in public concern for hazards associated 
with synthetic chemical pesticides and transgenic 
plants have produced a resurgence of interest in the 
use of introduced microorganisms for biological 
control of plant pathogens. Most of these micro-
organisms are inconsistent in their performance in 
biological control resulting in reduced commercial 
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    Abstract  

  Endophytes are represented by a diverse group of prokaryotic (bacteria or 
cyanobacteria) or eukaryotic (fungi or parasitic vascular plants) organisms 
that form lifelong associations within tissues of plants. Ecologically, these 
associations are viewed as mutualistic and as sources of secondary metab-
olites capable of serving as novel medicinals and agrichemicals. It is this 
area that serve to stimulate the large research investigations from all parts 
of the planet. The challenges as we see them are multifaceted. These 
include an understanding of the genetics nature of microbial endophytes, 
how endophytes communicate and partition themselves within hosts, how 
do these biotrophic organisms obtain nutrients, and are specifi c nutrient 
acquisitions key to the fi nal effects observed? Further, are there basic 
difference between bacterial endophytes and fungal endophytes? What 
infl uence the host interactions to produce the desired effects, and how is the 
stability of the system affected. Thus, future challenges are dependent on 
identifying, delineating, dissecting, and defi ning the mechanisms whereby 
hosts and their symbionts accomplish this curious lifestyle. Defi ning these 
biological mechanisms will ensure the present and future successful tech-
nological applications of microbial endophytes.  

      Microbial Endophytes: Future 
Challenges 

           Charles     W.     Bacon      and     Dorothy     M.     Hinton   
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development and widespread use. The major 
reason for this lack of performance is inadequate 
colonization of the target site, variation in expres-
sion of control at that site, and need for numerous 
applications. Most of the biocontrol organisms 
are either soil or surface dwellers and have very 
little affi nity to plants as specifi c colonizers as 
evidenced by ineffective controls of disease 
following repeated applications (see Thomashow 
and Weller  1996 ; Hallmann et al .   1997 ; Hallmann 
 2001  for review). However, we are concerned 
with here a unique group of microbial organisms 
that form endophytic associations within plants, 
and several of these have been discussed in other 
chapters in this book. Microbial endophytes 
actively colonize below and aboveground host 
tissues and establish long-term associations, 
actually lifelong natural associations, without 
imposing any obvious harm to the host. Since the 
work demonstrating the production of ruminant 
deterrents by clavicipitalean endophytes of pas-
ture grasses (Bacon et al.  1977 ), much emphasis 
has been placed on these and many other micro-
bial endophytes. Still after several decades of 
active research involving an international cadre 
of research scientists, we have not learned the 
essentials necessary to predict nor maintain 
associations, but have developed some important 
hypotheses. Of consequence is the central dogma 
that these associations are of merit and play an 
important role in plant defense. Thus, the 
hypothesis of defensive mutualism serves to 
drive the thinking of so many endophytic systems. 
There are however objections to this hypothesis, 
although poorly supported and not replaced 
by another rational for existence. Based on 
limited information, there is no doubt that 
microbial endophytes will have an important role 
in the improvements of crops, as pharmaceutical 
agents, and contributing to the ecological suc-
cess of several non-crop plants. The utilization of 
these organisms is anticipated to be unlimited 
as most of these have not yet been exploited. 
Future exploitation of these organisms are highly 
dependent on our understanding of the apparent 
roles they play within the symbioses of such a 

diversity of hosts as well as their continued 
discovery from a diversity of habitats. However, 
the successful utilization of endophytes is 
dependent upon deciphering any generalized 
inter- and intra- interactions with hosts although 
we envision that there also may be highly specifi c 
or strain interactions. The future challenges are 
deciphering the many roles each play within 
the symbioses and acceptance and successful 
application of each to a particular environmental 
situation. 

 What are the future challenges? The answers 
to these questions are intended to stimulate 
research in directions of basic research on such 
an obviously applied problem. A major premise 
forming the basis for microbial endophytes is 
that they mechanistically operate similar within a 
host. This is probably not the case, and as such 
the challenges lie in dissecting out that which is 
fundamental from that which produces specifi c 
and highly desirable ecological attributes. Many 
attempts have been made at surrogate transfor-
mations of endophytic systems with the hope of 
obtaining specifi c material for specifi c areas. 
However, success using such transformations is 
not always achieved as some endophytes are 
mysterious and appear not to effect a change in 
the host or even worst become pathogenic. 
Neither, the manner in which specifi c endophytes 
of vast genetic diversity effect host fi tness traits is 
known nor can we predict the long-term stability 
of these effects within a population to affect an 
ecological successful planting. Are these traits 
environmentally triggered, or are they manifested 
regardless of the environment? Following is a list 
of questions that we feel are discussion points 
from which major challenges in endophyte 
research should be explored and answered before 
we can understand the nature of the relationship 
and reap the full benefi ts of microbial endo-
phytes. However, not all questions are presented 
here, but the major ones are posed for guidance in 
providing our current status for understanding 
the science of “endophytology” that can serve as 
a guide for meeting the challenges for the present 
and future applications of microbial endophytes.  

C.W. Bacon and D.M. Hinton
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2     Major Challenges 

2.1     Are the Diversities of Habitats 
Important for Uses of 
Endophytes? 

 Endophytic associations are ubiquitous and are 
represented by an even greater number of micro-
bionts that have developed this strategy including 
algae, fungi, bacteria, and viruses. The ubiquitous 
nature is illustrated by some surveys conducted 
for endophytic fungi (Germida et al.  1998 ; Schulz 
et al.  1998 ; Petrini and Petrini  1989 ; Petrini  1986 , 
 1990 ; Hoff et al.  2004 ) and bacteria as well as the 
curious associations among microbes with other 
organisms (Wrede et al.  2012 ) (and papers cited 
therein). Endophytes are further subdivided into 
functional roles as the helpful scheme presented 
by Rodriguez et al. (Rodriguez et al.  2009 ). It is 
important to be cognizant that endophytic asso-
ciations can involve a third microbial component, 
but the extent of this multiple mutualistic interactions 
is unknown. Endophytes are both obligate and 
facultative. In most instances the obligate endo-
phytism includes the very rare and novel taxa, 
none of which are found as free-living organisms. 
However, the facultative associations include 
microbes that consist of strains or species of 
otherwise pathogenic or saprophytic organisms 
some of which are capable of free living as 
saprotrophs even if it means at the expense of the 
senescing host tissue. Endophytic organisms are 
associated with the entire spectrum of plants that 
include monocots and dicots, either herbaceous 
or woody, and terrestrial or aquatic. They are 
found in environmental extremes including the 
great deserts, arctic tundra, oceans, and sulfur 
hot springs, as well as lush tropical forest 
(Suryanarayanan et al.  1998 ; Imada et al.  2007 ; 
Stierle and Stierle  2005 ; Suryanarayanan and 
Kumaresan  2000 ). In terms of evolution, these 
environmental variables are considered to be 
inducers of endophytic associations particularly 
as it relates to microbial symbionts (Klitgord and 
Segre  2010 ; Schardl and Phillips  1997 ; Schardl 

and Moon  2003 ; Scott and Schardl  1993 ; 
Saikkonen et al.  2001 ). Due to this vast array of 
ecosystems and endophytic associations, the 
successful utilization of endophytic plants is 
expected to be highly dependent on the interaction 
environmental variables from which they were 
derived. While speculative, a complex environment 
might predict the problems and or limit the nature 
of the uses of endophytes. The challenges facing 
such a diverse assemblage of endophytic systems 
are to fi nd a common physiological or genetic 
relationship so that each and every endophyte 
can be utilized, and its performance predicted. 
Further, will this common relationship reside in 
both bacterial and fungal endophytes?  

2.2     What Are the Diffi culties 
Encountered in the Uses 
of Endophytes? 

 Regardless of the many uses of endophytes, the 
two major categories can be divided into in vitro 
uses and in vivo uses. Most successful applica-
tions of microbial endophytes are those that seek 
pharmacological metabolites produced during in 
vitro fermentations. In vitro, the isolated endo-
phyte is used for the production of one of many 
pharmacological agents conducted under labora-
tory fermentations that include novel antibiotics, 
immunosuppressants, antimycotics, and anticancer 
drugs. The many    metabolites that are produced 
by endophytes are reviewed, and some of these 
have reference to specifi c novel compounds 
leading to important drug discovers (Findlay et al. 
 1995 ; Li et al.  2006 ; Mei and Flinn  2010 ; Priti 
et al.  2009 ; Southcott and Johnson  1997 ; Strobel 
 2002 ; Yu et al.  2010 ; Strobel and Daisy  2003 ; 
Strobel et al.  2004 ).    In vitro, while demonstrating 
a potential for specifi c metabolic production, the 
optimal production of most of these in culture 
have yet to be discovered. There is marked varia-
tion in amounts of specifi c metabolite produced 
by strains from each microbial endophyte. Media 
compositions and genetic of the organisms have 
been shown to favor strains of a species which 
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can have no effect on strains within that same 
species (Table  22.1 ) (Bacon et al.  2012 ; Bacon 
 1985 ,  1988 ). Those interested in endophytes for 
the production of pharmacological agents conduct 
wide screens for conditions required for increase 
production. In additions to cultural modifi cations, 
there are also varied genetic or molecular modifi -
cations of microbial endophytes that can serve 
the purpose on increasing the production of specifi c 
compounds. However, the challenge here is fi nding 
the specifi c genes and other constructs that can be 
effective in general to market such a modifi cation. 
Some progress has been made and includes 
the in vitro production of alkaloids, terpenoids, 
polyketones, peptides, isocumarines, complex 
sugars, quinols, and phenols. Of monumental 
importance is the isolation and demonstration of 

the ovarian and breast diterpenoid anticancer agent 
paclitaxel or Taxol produced by the endophytic 
fungus  Taxomyces andreanae  initially isolated 
from the bark of the western yew tree,  Taxus 
brevifolia , although subsequently established as 
being derived from the endophyte in this tree 
and several additional symbiotic yew species 
(Bashyal et al.  1999 ; Strobel et al.  1996 ,  1999 ; 
Lin et al.  2003 ; Liu et al.  2006 ) .  Success is far 
from being complete as most of the pharmaco-
logical agents consist of very novel and complex 
structural groups representing various but 
several metabolic pathways that complicate 
such studies. For example, Taxol is derived from 
both the mevalonate and non-mevalonate path-
ways (Soliman et al.  2011 ), and very little is 
known about the essential genes encoding the 
enzymes leading to the pathways. However, strain 
improvement and fermentation engineering 
have resulted in an increase in the yield of this 
important anticancer agent (Zhou et al.  2010 ).

   The in vivo or  in planta  uses of microbial 
endophytes present the greater challenges for 
success. This is due to a variety of complicated 
issues that address the mechanisms of actions 
responsible for the host specifi city, if any, leading to 
the elicitation and metabolite production that will 
protect the host from the environmental chal-
lenges. For each endophyte there are methods of 
inoculating the hosts, including some that are 
seed transmitted resulting in infected seedling 
upon germination. A desirable goal for further 
development of biocontrol strategies using endo-
phytes is the genetic modifi cations of strains for 
specifi c locations and cultivars of plants with 
specifi c agronomic traits that will be maintained 
hopefully throughout the growing season. Due to 
the ease of genetically modifying microbial 
endophytes, one use involves the molecular modi-
fi cations of endophytes and their reconstruction 
into natural or at least native hosts for altered 
expression. Such surrogately transformed plants have 
been accomplished with success (Schardl  1994 ; 
Tsai et al.  1992 ; Murray et al.  1992 ; Young et al. 
 2005 ). However, details of several other microbial 
endophytes have only just been initiated, and in this 
regard, the work dealing with the Gram-positive 
bacteria is behind those detailing transformation of 

   Table 22.1    Total surfactin production by strains of 
 Bacillus mojavensis  cultured in nutrient medium and 
Pharmamedia and tested for antagonism to  F. verticillioides  
measured after 14 days on nutrient agar (Bacon et al.  2012 )   

 Total surfactin (μg/ml) 

 Strains  Location 
 Nutrient 
broth  Pharmamedia 

 RRC 101  RRC  2.55  17.12 
 RRC 101fa  RRC  2.89  19.65 
 RRC 112  RRC  0.00  0.73 
 RRC 112fa  RRC  0.00  0.63 
 RRC 111  RRC  0.00  2.31 
 RRC 113  RRC  0.00  2.63 
 RRC 114  RRC  0.00  2.18 
 ATCC 51516  Mojave  3.39  22.55 
 NRRL B-14698  T   Mojave  58.42  42.14 
 NRRL B-14699  Mojave  0.00  0.21 
 NRRL B-14700  Mojave  2.41  15.22 
 NRRL B-14701  Mojave  0.00  1.18 
 NRRL B-14702  Mojave  5.03  22.94 
 NRRL B-14703  Gobi  0.00  2.42 
 NRRL B-14704  Gobi  0.00  2.06 
 NRRL B-14705  Gobi  0.00  37.21 
 NRRL B-14706  Gobi  0.00  10.11 
 NRRL B-14707  Gobi  0.72  0.29 
 NRRL B-14708  Gobi  6.28  89.30 
 NRRL B-14709  Gobi  9.85  30.27 
 NRRL B-14710  Gobi  0.00  0.10 
 NRRL B-14711  Gobi  1.71  27.16 
 NRRL B-14712  Gobi  10.05  17.55 
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Gram-negative bacteria. Surrogate transformations 
have worked in instances where the modifi cations 
abolished the  in planta  changes, which in this case 
was the removal of ergot alkaloids from desirable 
strains of  Neotyphodium  species of grass endo-
phytes. In yet another instance, gene deletion of 
one class of toxins leads to the production and 
accumulation of an entirely different class of 
toxins. In theory the ecological stamina of the 
surrogately transformed hosts may not be appli-
cable to all environments. Further, mutation in at 
least fungal endophytes can alter the phenotypes 
of grass hosts. Additional approaches utilize 
nonnative fungal endophytes such as strains that 
do not produce cattle toxins resulting in improved 
versions of native grasses (Parish et al.  2003a ,  b ). 
The resulting limited ecotypes are however 
tailor made for resistance to biotic pests (Parish 
et al.  2003b ). 

 With the exception of toxic metabolites from 
fungal endophytic associations, very few metab-
olites demonstrated from in vitro studies have 
been shown to be produced under  in planta  or in 
vivo uses. However, strains indicated as being 
negative under cultural condition may not only 
be positive in the  in planta  situation but also very 
effi cient in metabolite production. Very limited 
information is available concerning effects of soil 
culture requirements on  in planta  production. 
Microbial endophytes are biotrophic but in the 
broader sense heterotrophic and depend on carbon, 
nitrogen, and energy provided from its hosts. 
There are therefore series of interactions respon-
sible for the fi nal synthesis of complex secondary 
compounds that provide for the long-term sur-
vival strategies of microbial endophytes such as 
host defense. Certainly abiotic factors imposed 
on the symbioses are also contributors since they 
relate to the host survival. Studies dealing with 
maintenance and establishment of the symbioses 
are relatively recent and the information presented 
thus far is rather scarce (Tanaka et al.  2005 ,  2006 , 
 2007 ; Bostock  2005 ; Mundy et al.  2006 ; Taylor and 
McAinsh  2004 ). Control mechanisms between the 
two symbionts are unclear, and the interaction 
with environmental variable may infl uence both 
or only one of the symbionts. Cross talk and other 
communications are considered salient features 

between the two although studies indicating the 
evidence and mechanism of action are varied for 
both fungal and bacterial endophytes (Tanaka 
et al.  2005 ,  2006 ,  2007 ; Bostock  2005 ; Mundy 
et al.  2006 ; Rasmussen et al.  2007 ; Taylor and 
McAinsh  2004 ). There are some indications that 
carbon dioxide and nitrogen concentrations affect 
the content of endophytic hyphae and produce 
a considerable infl uence on the production of 
nitrogen-based secondary compounds such as 
ergot alkaloids and other mycotoxins (Lyons 
et al.  1990 ; Arechavaleta et al.  1992 ; Hunt et al. 
 2005 ; Draper et al.  2011 ; Rasmussen et al.  2012 ). 
Bacterial infl uence on hosts may be recognized 
by production of a defensive metabolite pheno-
typically, however, there is very little information 
concerning their ecological dependence and 
affects on host.  

2.3     What Are the Problems 
Associated with Increased 
Production of Metabolites? 

 Fermentation parameters are inadequate both for 
the growth of the microbial endophyte and the 
duration of product accumulation. Most novel 
endophytes are notorious for slow growth and 
rapid decline under culture conditions. Genetic 
stability of some species occurs more frequently 
than others. Other endophytes are solid producers 
of desirable metabolites but rapidly decline 
although strict cultural protocols are followed. 
Increased metabolite production can be obtained 
by one of several mutational approaches. One 
approach is heterologous production which is 
used primarily in the increased production of 
pharmacological therapeutics. The transfer of 
multiple copies of genes or gene clusters from an 
endophyte into a nonhost that is amendable to 
culture can result in the production of compounds 
in higher amounts due to the stability of the 
foreign host and its ease of culture (Wenzel and 
Muller  2005 ; Zhang et al.  2011 ). Several hosts 
that are available for heterologous expression 
include  E. coli ,  Streptomyces  sp., and species of 
yeast. However, not all hosts are suitable for 
heterologous expression, and occasionally due to 
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host metabolism only some intermediates of the 
desired product are produced. Trial and error 
might fulfi ll acceptable expressions utilizing new 
and modifi ed techniques (Wenzel and Muller  2005 ; 
Zhang et al.  2011 ). Heterologous expression as a 
tool for increasing the biological activity of endo-
phytes used for  in planta  biological control has 
not been explored to any extent, although such 
genetic modifi cations might fall under the concerns 
of regulatory agencies, e.g., GMO uses.  

2.4     What Are the Legal Concerns 
and Impediments to Uses of 
Endophyte-Enhanced Plants? 

 The intended uses of endophytically infected 
plants for conservation grasses forage grass 
improvement, and disease protection might also 
involve some concern from human health that 
can also relate to various regulatory agencies. 
The use of microbial endophytes have not 
received regulatory attention from none of the three 
US regulatory agencies that are responsible for 
genetically modifi ed crops, and these include the 
Environmental Protection Agency (EPA), the Food 
and Drug Administration, and the US Department 
of Agriculture. Since each of these agencies regu-
lates various aspects of transgenic crops from 
several perspectives, the uses of endophytically 
enhanced plants are without regulation although 
there are perhaps self constraints dealing with their 
use. The uses of endophytes do not take on the 
environmental concerns as genetic engineering or 
recombinant DNA as the host genetic materials is 
not modifi ed. Further, in most instances the host 
plant is naturally infected by microbes although 
not necessarily by the native endophyte. The concept 
as used in this review is one of endophyte tech-
nology as opposed to biotechnology which implies 
to most, including regulatory agencies as tech-
nology resulting from DNA manipulations. 
Thus the uses of endophytes do not have the 
same public concerns as GMO and biopharming 
of agronomically important plants such as corn, 
rice, and soybeans. The uses of native and nonna-
tive endophytes in other countries are apparently 
equally accepted as in the USA. 

 Currently, there is concern from several US 
state agencies for the certifi cation process of seed 
sold for various endophyte enhancements. This 
relates to validation that the seed contain known 
levels of viable endophytes. The cost of such seed 
depends on validation of its percentage viable 
endophyte certifi cation for that seed lot, but endo-
phyte viability is diffi cult to establish temporally. 
This is one of the biggest impediments to the use 
of endophyte-infected seed, especially those 
intended for turf uses. This is due to the lack of an 
immediate viability test for seed at the time certifi -
cation labels are placed on seed. Demonstration 
of endophyte presence in seed is procedure and 
is outlined in several regulatory procedures. 
Determination of endophyte viability in seed is 
done usually by certain seedling grow- out test that 
document viability, but this takes from 4–6 week 
post germination, which means that the seed 
originally tested is now 4–6 weeks older, invali-
dating the percentage life infection status, which 
depending on test seed lot storage condition may 
be considerably less. Perhaps the various molec-
ular techniques may solve this problem. The lack 
of an endophyte viability test includes a large 
portion of the forage industry. Until such tests 
are developed, it is known that endophytically 
infected grass seed remains relatively constant 
under refrigeration at 4 °C or slightly higher. 
Bacterial endophytes that are added to the seed 
coat do not have this as a problem, especially since 
most of the species are spore forming  Bacillus  
species that are added as spores either in water or 
coating. The  Bacillus  spore maintains high viability 
on seed for several months at room temperature 
and is compatible with most seed coatings.  

2.5     Additional Questions 

 The endophytic organisms used in patents include 
bacteria, fungi, and viruses, although the major-
ity includes bacteria. What are the patented uses 
of endophytes? From 1976 to the present, the 
reduced number of patents listed at Patent Storm, 
a patent listing site (  http://www.patentstorm.us/    ) 
( 2013 ), indicates that currently there were well 
over 600 patents for numerous uses (Table  22.2 ). 
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   Table 22.2    Selected US Patents for bacterial and fungal endophytes from a patent search site (Patent Storm, 1/29/2013: 
  http://www.patentstorm.us/    )   

 Patent number  Title  Issue date 

 7037879  Pest control method for grass family plants using endophytic bacteria  05/02/2006 
 6815591  Enhancing endophyte in grass  11/09/2004 
 7465855  Nontoxic endophytes, plants injected therewith, and methods for injecting plants  12/16/2008 
 7084331  Rice containing endophytic bacteria and method of producing it  08/01/2006 
 7642424  Tall fescue endophyte E34  01/05/2010 
 7892813  Fungal endophytes  02/22/2011 
 7976857  Grass endophytes  07/12/2011 
 5914107  Method of introducing an endophytic fungus into rough bluegrass, 

 Poa trivialis , and  Poa compressa  
 06/22/1999 

 6072107  Ryegrass endophytes  06/06/2000 
 7259004  Endophytic streptomycetes from higher plants with biological activity  08/21/2007 
 8101551  Production and use of endophytes as novel inoculants for promoting enhanced 

plant vigor, health, growth, and yield-reducing environmental stress 
 01/24/2012 

 6548745  Italian rye grass and a method of introducing endophytic fungi 
into an Italian rye grass 

 04/15/2003 

 20080229441  Fungal endophytes of  Elymus canadensis   09/18/2008 
 20090105076  Production and use of endophytes as novel inoculants for enhanced plant vigor, 

health, growth, and yield 
 04/23/2009 

 20090181447  Grass endophytes  07/16/2009 
 5994117  Use of  Bacillus subtilis  as an endophyte for the control of diseases caused by fungi  11/30/1999 
 6335188  Endophyte ergot alkaloid synthetic compounds, compounds which encode 

therefore, and related methods 
 01/01/2002 

 20110173727  Endophyte-enhanced seedlings with increased pest tolerance  07/14/2011 
 20120198590  Antifungal metabolites from fungal endophytes of  Pinus strobus   08/02/2012 
 20110262401  Grass endophytes  10/27/2011 
 20080022420  Be9301a tall fescue with endophytes  01/24/2008 
 20110162116  Method for growing plants and ROS content  06/30/2011 
 20110289627  Modifi ed cry3a toxins and nucleic acid sequences coding therefore  11/24/2011 
 20120149571  Inoculants including  Bacillus  bacteria for inducing production 

of volatile organic compounds in plants 
 06/14/2012 

 20120165513  Processes for isolation and purifi cation of enfumafungin, a novel antifungal 
compound produced by an endophytic  Hormonema  species 

 06/28/2012 

 20120210464  Insecticidal proteins  08/16/2012 
 20120260372  Transgenic plants expressing modifi ed cry3abacteria, 

in particular  Bacillus thuringiensis  or E. coli 
 10/11/2012 

 20120270776  Novel pesticide toxins  10/25/2012 
 20050090395  Biological control deciduous trees with new strains 

of  Chondrostereum purpureum  isolates 
 04/28/2005 

 20050095283  Compositions and methods for topically treating diseases from  Taxus brevifolia  
(Pacifi c yew),  Taxomyces andreanae , and endophytic fungus of the Pacifi c yew 

 05/05/2005 

 20050215764  Biological polymer from  Taxus brevifolia  (Pacifi c yew) and  Taxomyces andreanae  
and endophytic fungus of the Pacifi c yew 

 09/29/2005 

 20050249667  Process for treating a biological organism from dried bark of  Taxus brevifolia  
(Pacifi c yew) and  Taxomyces andreanae  and endophytic fungus of the Pacifi c yew 

 11/10/2005 

 20060085870  Modifi ed Cry3A toxins as bacteria  04/20/2006 
 20060147371  Water-soluble compound paclitaxel obtained from  Taxus brevifolia  (Pacifi c yew) 

and  Taxomyces andreanae  and endophytic fungus of the Pacifi c yew 
 07/06/2006 

 20060275887  Mycobacteria compositions and methods of use in bioremediation  12/07/2006 
(continued)
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 Patent number  Title  Issue date 

 20070026506  Method for the production of Taxol and/or taxanes from cultures of hazel cells  02/01/2007 
 20070240237  Expression in use of novel pesticidal toxins  10/11/2007 
 6515016  Composition and methods of paclitaxel which was obtained from  Taxomyces 

andreanae  and an endophytic fungus of the Pacifi c yew 
 02/04/2003 

 20050142162  Taxus brevifolia (Pacifi c yew) and  Taxomyces andreanae  and endophytic fungus 
of the Pacifi c yew 

 06/30/2005 

 20070207183  Zein-coated medical device obtained from endophytic fungus of the Pacifi c yew  09/06/2007 
 7393678  Inoculants for enhancing plant growth from Klebsiella pneumoniae  inoculants  07/01/2008 
 6599930  Coniosetin and derivatives Cryptocin, from the endophytic fungus 

 Cryptosporiopsis  cf.  quercina  
 07/29/2003 

 6069299  Fungus and insect control with chitinolytic enzymes  05/30/2000 
 5558997  Monoclonal antibodies to  Mycosphaerella  species  09/24/1996 
 5731173  Fructosyltransferase enzyme, method for its production, 

and DNA encoding the enzyme 
 03/24/1998 

 6759397  Ginsenoside chemotherapy, Taxol, and taxane production by  Taxomyces andreanae   07/06/2004 

Table 22.2 (continued)

Added to these uses are also those intended to 
increase plant biomass for biofuels or bioenergy. 
This suggests that the challenges for endophytes 
are being met although not as conveniently as 
anticipated. Due to the economic benefi ts from 
bioprospecting, the in vitro uses of endophytes 
far outnumber the  in planta  uses. The preponder-
ances of patents have been issued for in vitro uses 
of endophytic microbes indicating the large 
economic benefi ts derived from bioprospecting 
for new and novel antibiotics and other rare 
medicinals. However, there is a considerable 
fi nancial outlay for developing and using novel 
medicinals, whereas the expense and time for 
developing an in vivo system involve consider-
ably less time and money. The numbers of pat-
ents suggest in both cases that the introduction 
and acceptance of novel endophytes for either in 
vitro or in vivo uses are well worth the effort. 
There are additional minor challenges, and these 
have particular relevance to the  in planta  uses of 
endophytes. Do endophytes offer multiple 
protections to hosts and is the distribution a fac-
tor in any observed benefi cial effects? What are 
the natural distributions of endophytes in plants? 
The quest for specifi c endophytic systems rest on 
the primary use, and this in terms dictates the 
distribution in plants. What are bases for host 
recognition and for genotypic specifi cities for 

endophyte and hosts, and is this necessary for 
mutualistic expression?

   Successful uses of microbial endophytes 
depend on demonstrating either positive  in 
planta  responses or production of pharmaco-
logical compounds in vitro. However, both 
depend on the successful isolation of the endo-
phyte and its identity. Both of these can be dif-
fi cult since some endophytic organisms fail to 
grow in culture and cannot be isolated which 
makes identity diffi cult. Several new molecular 
approaches have been developed that now allow 
for the determination of those taxa that are dif-
fi cult to isolate, culture, and identify. Use of 
molecular procedures have allowed for success-
ful studies including isolation and or identifi ca-
tion of multiple individuals within a large 
population of endophytes as well as their bio-
chemical assessments. Such methods are also 
useful for ecological and evolutionary charac-
terizations of endophytes (Draper et al.  2011 ; 
Rasmussen et al.  2009 ; Matsumura et al.  2003 ; 
Felitti et al.  2006 ; Bailly et al.  2007 ; Duang 
et al.  2006 ; Guo et al.  2000 ; Handelman  2004 ; 
Pirttila et al.  2000 ). Thus, it is anticipated that 
many more endophytic systems will be identi-
fi ed, analyzed, and utilized. Further, these tech-
niques should also prove useful in determining 
 in planta  that compounds produced within the 
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association are those produced by the fungus 
without modifi cation by the plant obviating a 
concern for the genetic role of the host in the 
observed effect.   

3     Conclusion 

 The increased emphasis in sustainability by the 
public and the concern for pollution, as well as 
hazards associated with highly toxic synthetic 
chemical pesticides and transgenic plants, have 
generated a large international political interest 
in the environment. Alternative strategies such as 
the use of introduced microorganisms for bio-
logical control have gained a worldwide interest, 
and endophytic organisms are at the forefront. 
Most of these microorganisms are bacteria, fol-
lowed by fungi, and the use of either as biocon-
trol agents can result in a highly desired product 
suitable for widespread uses. Most of the biocon-
trol endophytes are seed borne, therefore the sys-
tems are viewed as self-propagating and host 
contained agents with lasting effect during the 
seasons or seasons following their applications. 
The major reasons for any performance problem 
are inadequate colonization of the target site, 
variation in expression of control at that site, and 
the need for numerous applications, but contin-
ued research should alleviate such problems. 
Endophytic organisms maybe seed borne and 
require only one seed application from which a 
biological association with its host is established. 
For example, bacterial endophytes are rapidly 
becoming a distinct and important class of bio-
control organisms as indicated by the recent 
increase in publications and patents, which refl ect 
the interest, and ease of application for their ben-
efi ts to agriculture and technology. Yet to be 
explored are the multiple interactions involving 
three or more symbionts and the varied roles the 
members of archaea contribute to any mutualistic 
associations with bacteria, vertebrates, and inver-
tebrates. Thus, we are at the beginning of this 
exciting area of science, and future investigations 
should provide the fundamental basis for endo-
phytic mutualists, as well as initiating additional 

searches for other natural mutualistic  endophytes 
that will place the technology of microbial endo-
phytes on a fi rm scientifi c basis.     
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