
239Sushil and E.A. Stohr (eds.), The Flexible Enterprise, Flexible Systems Management,
DOI 10.1007/978-81-322-1560-8_14, © Springer India 2014

1 Introduction

 Business process management (BPM) refers to activities performed by organizations
to design, implement, operate, manage, and improve their business processes by using
a combination of models, methods, techniques, and tools (van der Aalst and van Hee
 2002 ; Melão and Pidd 2000). Most approaches to BPM use information technologies
to support or automate business processes in whole or in part, by providing computer-
based systems support. These technology-based systems help coordinate and stream-
line business transactions, reduce operational costs, and promote real-time visibility
in business performance.

 Traditional approaches to building and implementing BPM systems use workfl ow
technologies to design and control the business process (van der Aalst and van Hee
 2002). Workfl ow-based systems follow highly structured and predefi ned workfl ow
models and are well suited to applications with standard inputs, processes, and out-
puts. However, contemporary business processes are complex and dynamic. They
evolve and change over time as a result of complex interactions, resource competi-
tion, breakdowns and abnormal events, and other sources of uncertainty. Current

 Chapter 14
 Developing Flexible Business Process
Management Systems Using Modular
Computing Technologies

 Minhong Wang and Kuldeep Kumar

 This research is supported by a UGC CERG research grant (No. RGC/HKU7169/07E) from the
Hong Kong SAR Government, and a Seed Funding for Basic Research (200611159216) from The
University of Hong Kong.

 M. Wang (*)
 Division of Information & Technology Studies , The University of Hong Kong ,
 Hong Kong , China
 e-mail: magwang@hku.hk

 K. Kumar
 College of Business Administration , Florida International University , Miami , FL , USA

 Rotterdam School of Management , Erasmus University , Rotterdam , Netherlands

 Department of Information Systems , City University of Hong Kong , Hong Kong , China
 e-mail: kumark@fi u.edu; kkumar@cityu.edu.hk

240

research is attempting to support this continuously changing nature of business
 processes by developing fl exible business process management systems using vari-
ous emerging modular computing technologies, such as Agent-Oriented Computing
(AOC), Service-Oriented Architectures (SOA) (Jennings et al. 2000 ; Leymann et al.
 2002 ; Wang and Wang 2005), Component-Based Development (CBD), and Object-
Oriented Programming (OOP) (Kammer et al. 2000 ; Weske 1998).

 There has been a proliferation of studies about the application of agent-, service-,
component-, and object-oriented computing solutions to fl exible BPM. However,
the fundamental questions about their use, such as why we need to introduce these
solutions for BPM, how we apply them, and how we integrate them with other solu-
tions, remain unexamined. Most research on technology support for fl exible BPM is
experience driven, ad hoc, and often lacks a systematic analysis of the rationale for
the technology support. Sometimes, the leading edge solutions such as SOA and
AOC are proposed without identifying the real rationale for their use in BPM
 scenarios. There is only minimal work that examines the roots of complexity of
business processes, the need of effective approaches for fl exible process manage-
ment, and how this need affects the requirements and technology solutions for fl ex-
ible process management (Kumar and Narasipuram 2006).

 Moreover, as these modular computing concepts and technologies become popu-
lar, researchers often attempt to employ and sometimes integrate these modular
approaches in creating business process management solutions. However, at present
there is considerable ambiguity in differentiating between these overlapping termi-
nologies and consequently their use for fl exible BPM systems development. For
example, we often hear people discussing their proposed solutions as agent-based
systems, whereas they may just be simply using object abstraction. Furthermore, the
commonsense understanding of these concepts does not easily map onto each other.
Unless we have clarity on these terminologies and the way how to use them, the
application and integration of these techniques is likely be problematic.

 In this chapter, we fi rst identify the underlying requirements of fl exible process
management that provide the business rationale for employing these modular tech-
nologies in developing BPM systems (Sect. 2). The requirements are examined by
investigating the key problems with their solutions in business process manage-
ment. Next, we examine the similarities and differences between these modular
computing technologies to system development: OO, CBD, SOA, and AOC
(Sect. 3). Finally, we match these technologies to the requirements of fl exible BPM
and develop a systemic approach for employing these technologies in developing
fl exible BPM systems (Sect. 4).

2 How to Deal with Complex Dynamic Business Processes?

 A business process is a collection of activities that create value by transforming
inputs into more valuable outputs (Hammer and Champy 1993). These activities
consist of a series of steps performed by actors (either machines or humans) to

M. Wang and K. Kumar

241

produce a product or service for the customer. These steps subdivide the business
process hierarchically into modular process components (called tasks or subtasks),
each component performing a part of the process. The aspiration of most modular
computing technologies is to attempt to model the process architecture by a modu-
lar software-architecture (objects, components, Web services, and agents), thereby
creating an analog of the business process in software.

 Real-world processes are often much messier than the typical input-transformation-
output view suggests; they are best viewed as networks, in which a number of actors
collaborate and interact to achieve a business goal. A business process displays com-
plexity because of multiple interactions of its internal components and interaction of
the process with its environment (Melão and Pidd 2000). In this section, we investi-
gate the roots of complexity of business processes as a result of complex structure,
interacting components, dynamic environment, and resource coordination. Based on
this investigation, we identify the business requirements on technology solutions for
BPM in terms of key problems with their solutions in business process management.
The requirements include decomposition of complex processes; coordination of
interactive activities; an increased awareness of dynamic business environments; and
resource selection, integration, and coordination.

2.1 Decomposition of Complex Processes

 Business processes are complex systems that are made up of a number of inter-
acting objects with dynamic behavior. To design a complex structure, one pow-
erful technique is to hierarchically decompose it into semi-independent but
interrelated set of components (Simon 1981). Thus, a process is decomposed
into tasks, task into subtasks, and so on, through many layers in a hierarchy. To
reduce complexity, interactions between subtasks within a task are often encap-
sulated within the task; interactions between tasks are encapsulated within their
higher-level process or task.

 This raises the issue on how we decompose complex processes. Traditional
workfl ow approaches have selected “task” as the basic module for building pro-
cess management systems. A business process can be decomposed into a number
of semi-dependent, interrelated tasks within an organization. These tasks are then
linked to each other in a preestablished, transactional, usually sequential interre-
lationship, or dependency. With the extension of business processes from intra-
organizational to inter-organizational scope, we need to deal with interactions
within an organization as well as interactions across different organizations.
Moreover, the complexity of business processes is increased by the interweaving
of inter- and intra-organizational interactions.

 To manage the complexity, we need to distinguish between inter- and intra-
organizational interactions and deal with them by isolating one type of interaction
from another. We propose “service” as a high-level view of the building block of a
process, where a process is composed of a set of services; each service is provided

14 Developing Flexible Business Process Management Systems…

242

by a corresponding actor (organization, individual, or computer program) and can
be further decomposed into subtasks. For example, a complex supply chain man-
agement process is decomposed into customer and order service, procurement ser-
vice, manufacturing service, and transportation service; each individual service is
provided by a corresponding organizational actor and can be further decomposed
(see Fig. 14.1).

2.2 Flexible Coordination of Interactive Activities

 To manage complex interactions in complex processes multiple actors, activities,
resources, and goals need to be coordinated. Mintzberg (1979) suggests that every
organized human activity gives rise to two fundamental requirements: differentiation,
or the division of work into tasks to be performed by various actors, and integration,
that is, the coordination of these tasks to accomplish the goals of the activity. After
decomposing a complex process into a number of task components, we need to coor-
dinate various interactions between the components at different levels in a network
hierarchy. In the context of a hierarchy, a component can be involved in vertical inter-
actions with its subordinates and superordinates and in horizontal interactions with its
peers. A component in a complex system, no matter how large or small, may interact
with a limited set of superiors, inferiors, and coordinate peers (Simon 1981).

 Mintzberg further suggests that environmental uncertainty is an important determi-
nant of the mode for interactions and coordination. The more stable and predictable the
situation, the greater the reliance on coordination based on structured and specifi able
schedules, such as coordination by plan and coordination by standardization. The more

Supply Chain
Management

Procurement

Purchase
Management

Inventory
Management

Market
Analysis

Inventory
Control

Customer & Order

Customer
Management

Order
Management

Order
Process

Transportation

Manufacturing

……

Component
Preprocessing Component

Assembly

Order
Submission

Order
Modification

Order
Confirmation

Order
Payment

 Fig. 14.1 Decomposition of a supply chain process

M. Wang and K. Kumar

243

variable and unpredictable the situation, the greater will be the reliance on informal
and fl exible communication, such as coordination by feedback and coordination by
mutual adjustment (Kumar and van Dissel 1996 ; Kumar et al. 2007). Thus, when faced
with increased uncertainties in dynamic environments, organizations need to use more
fl exible coordination mechanisms to coordinate their business processes. Flexible
coordination is portrayed by more bottom-up initiatives and less centralization of deci-
sion-making at the top. This requires fl atter hierarchies, decentralized autonomy-based
units, and decision-based coordination, which in turn reduces direct hierarchical con-
trol and encourages greater mutual adjustment and coordination between the work
units (Mintzberg 1979 ; Volberda 1999).

2.3 Awareness of Dynamism in Business Environments

 As a result of complex interactions, resource competition, abnormal events, and
other sources of uncertainty, business processes continuously evolve and change
over time. Furthermore, a complex process is usually semi-structured or unstructured;
there is an absence of routine procedures for dealing with it. In such situations, we
cannot depend on providing the computer system with exact details about how to
accomplish a process, but provide the system with guidelines to help it determine
how to deal with the process. In other words, problem solving is regarded as an
interaction between the behaving organism and the environment under the guidance
of a control system. Information and data are input to this system, represented in its
memory as declarative knowledge, and then used in problem solving following
algorithmic or heuristic steps (Wang and Wang 2006).

 A basic idea underlying this viewpoint is the control of complex dynamic sys-
tems or situations based on situation awareness. Awareness, according to biological
psychology, is a human’s or an animal’s perception and cognitive reaction to a con-
dition or event. Situation awareness is the perception and understanding of objects,
events, people, system states, interactions, environmental conditions, and other
situation- specifi c factors in complex and dynamic environments (Endsley 1995).
Situation awareness underpins real-time reactions to environmental changes. In
terms of cognitive psychology, situation awareness refers to the active content of a
decision-maker’s mental model, its purpose being to enable rapid and appropriate
decisions and effective actions.

 In a dynamic business process environment, an exact execution order of activities
is impractical; the interaction or relationship between the environment and activities
is more appropriate in determining how to manage and coordinate tasks (Wang and
Wang 2006). The dynamicism therefore requires spontaneous decisions and coordina-
tion of processes based on situation awareness. We need to be able to coordinate the
processes by sensing and comprehending the situation, determining responses to it
while, at the same time, taking actions to work towards business goals. In other words,
the question of which task to execute and when to execute it is dependent on the
current environment and underlying business rules rather than a static process schema.

14 Developing Flexible Business Process Management Systems…

244

2.4 Flexible Resource Selection, Integration,
and Coordination

 Business processes require actors and resources to perform the tasks. These actors
and their associated resources may reside either within the organization or, in the
case of inter-organizational processes, across a network of multiple organizations.
Business networks of resources and actors can be temporarily assembled, inte-
grated, and driven by demands that emerge and operate for the lifespan of the
market opportunity (Kumar 2001). In this conception, a fi rm is not considered as
a black box guided by the strategist, but as a bundle of fi rm-specifi c resources of
use for specifi c tasks. Along with this conception, new business models have
accordingly come into view, such as demand chain, virtual enterprise, and elec-
tronic marketplace. They allow companies to operate in dynamically changing
environments by quickly and accurately evaluating new market opportunities or
new products. The companies may coordinate with potential partners in demand-
driven and resource- based soft connections that are made for the duration of the
market opportunity.

 As a result, a business process can be dynamically established at run-time by
connecting or composing several services together from different organizations
through alliances, partnerships, or joint ventures. In this situation, attentions
on business processes should be extended to other elements in addition to task
and procedure, which include resources discovery, selection, integration, and
coordination.

 What is new in this business process model is reliance on the idea of separating
resource requirements from concrete satisfi ers (Mowshowitz 1997). This separa-
tion allows for crafting process structures that enable management to switch
between different resources options for implementing a process (see Fig. 14.2). It
creates an environment in which the means for reaching a goal are evaluated and
selected for optimized performance. The success of the model is highly dependent
on the match between the requirements and satisfi ers that deliver the services. One

Service
Provider

Service
Provider

Services involved in a Business Process

Service
Service

Service …...

Service
Provider

Service
Provider

Service
Provider

Service
Provider

…...

…...
Service Resources

Service Selection and Coordination

 Fig. 14.2 Resource selection
and coordination in business
processes

M. Wang and K. Kumar

245

way to ensure this balance is to model the integration or composition of business
processes as a management problem which involves (1) the separation of require-
ments from the means for realization and (2) the dynamic selection and allocation
of available resources to requirements (Mowshowitz 1997). In doing it, we model
the complex structure of inter-organizational processes by using “service” as the
building block, which supports fl exible integration and coordination among the
services or satisfi ers.

3 Clarifying the Terminologies of Technical Solutions

 As mentioned above, various modular computing architectures such as objects,
components, Web services, and agents have been proposed to develop systems for
fl exible process management. In order to use these concepts in business process
management, we must fi rst have a clear understanding of their similarities, differ-
ences, and relationships. Research employing these concepts has often borrowed
from natural language; terms such as agents, autonomous agents, brokers, actors,
services, and components are used without precisely differentiating between them.
Thus, before we can use these concepts appropriately, we need to understand the
similarities and differences between them. Moreover, we also need to understand
how these concepts can be used for developing fl exible process management solu-
tions. In this section we outline four such concepts: Agents and Agent-Oriented
Computing, Services and Service-Oriented Architecture, Objects and Object-
Oriented Programming, and Components and Component-Based Development. It
needs to be emphasized that the purpose of this section is to clarify the similarities
and differences between these approaches and to make explicit some of the underly-
ing assumptions inherent in the use of the terminology, not to redefi ne them.

3.1 Agent and Agent-Oriented Computing (AOC)

 Recently the Agent-Oriented Computing paradigm has gained popularity among
researchers attempting to develop complex systems for business process manage-
ment. Terms such as “autonomous agent” and “agency” are beginning to be com-
monly used in computer science literature. On the other hand, a rich body of
literature on the concept of Agency and the role of agents already exists in the
institutional economics and business fi eld. This section is an attempt to reconcile
the various terms from the two research traditions.

 Actor vs. Agent. Actor is someone who performs an act, that is, does something. An
actor may be a person, an organizational unit, or a computer program. An actor
may be completely autonomous, that is, it acts of its own volition. If the actor is
authorized to do something on behalf of someone else, the actor is an “agent” of
the other party.

14 Developing Flexible Business Process Management Systems…

246

 Agent. Agent is an actor (performer) who acts on the behalf of a principal by
performing a service. The agent provides the service when it receives a request for
service from the principal. The principal-agent relationship is found in most
employer/employee relationships. A classic example of agency relationship occurs
when stockholders hire top executives to run the corporation on their behalf. To
manage the relationship between a principle and an agent of the principle, agency
theory is concerned with various mechanisms used for aligning the interests of the
agent with those of the principal such as piece rates/commissions and profi t sharing
(Eisenhardt 1989).

 Agent vs. Broker. A Broker is a special type of agent that acts on behalf of two sym-
metrical parties or principals – the buyer and seller. A broker mediates between the
buyer (service requesting party) and the seller (service providing party). Acting as
an intermediary between two or more parties in negotiating agreements, brokers use
appropriate mediating techniques or processes to improve the dialogue between
the parties, aiming to help them reach an agreement. Normally, all parties must view
the mediator as neutral or impartial.

 Autonomy. Autonomy is the power or right of self-government. It refers to the
capacity of a rational individual to make an informed, uncoerced decision. An
autonomous agent therefore is a system situated in, and part of, an environment,
which senses that environment, and acts on it, over time, in pursuit of its agenda
as derived from its principal. “Autonomous” means that the actor is indepen-
dent, that is, the actor can decide what to do and how to do it. As an agent acts
on behalf of the principal, the agent cannot be fully autonomous. The principal
may give the agent different levels of choice in performing the task. For example,
the principal can tell the agent what to do, but leave it to the agent to decide as
to how to do it.

 Software Agent. In computer science, the term “ agent” is used to describe a piece
of software or code that acts on behalf of a human user or another program in a
relationship of agency. It may denote a software-based entity that could enjoy the
some properties of autonomy (agents operate without the direct intervention of
its principal humans), social ability (agents communicate with other agents),
reactivity (agents perceive their environment and respond to changes in a timely
fashion), and proactivity (agents do not simply act in response to their environ-
ment, but are able to exhibit goal-directed behavior by taking some initiative)
(Jenn ings et al. 2000). The agent-based computing paradigm is devised to help
computers know what to do, solve problems on behalf of human beings, and support
cooperative working. The behavior of software agents is empowered by human and
implemented by software.

 Agent-Oriented Computing (AOC). The key idea of Agent-Oriented Computing is
the delegation of tasks and responsibility of a complex problem to software agents.
It emphasizes autonomy and mutual cooperation of agents in performing tasks in
open and complex environments. A complex system can be viewed as network
of agents acting concurrently, each fi nding itself in an environment produced by

M. Wang and K. Kumar

247

its interactions with the other agents in the system. AOC is used to model and
implement intelligent solutions to semi- or ill-structured problems, which are too
complex to be completely characterized and precisely described. AOC offers a
natural way to view and describe systems as individual problem-solving agents
pursuing high-level goals defi ned by their principals. It represents an emerging
computing paradigm that helps understand and model complex real-world prob-
lems and systems, by concentrating on high-level abstractions of autonomous enti-
ties (Wooldridge and Jennings 1999).

3.2 Service and Service-Oriented Architecture (SOA)

 Service. A service is the work done by somebody (the agent) for someone else
(the principal).

 Web Service . As defi ned by W3C (World Wide Web Consortium), a Web service is
a software application identifi ed by a URI (Uniform Resource Identifi er), whose
interfaces and bindings are capable of being defi ned, described, and discovered by
XML and which supports direct interactions with other software applications using
XML-based messages via Internet-based protocols. Web services are self-contained
and modular business applications based on open standards (Papazoglou 2007).
They can share information using standardized communication protocols to ask
each other to do something, that is, ask for service.

 Service-Oriented Architecture (SOA). Service-Oriented Architecture utilizes Web
services as fundamental elements for developing applications. It is an emerging
paradigm for architecting and implementing business collaborations within and
across organizational boundaries. SOA enables seamless and fl exible integration of
Web services or applications over the Internet. It supports universal interoperability
and location transparency. SOA reduces the complexity of business applications in
large-scale and open environments by providing fl exibility through service-based
abstraction of organizing applications.

 AOC vs. SOA . Software agent is a software-based entity that enjoys the properties of
autonomy, social ability, reactivity, and proactivity. Web service is a software appli-
cation in the Web based on open standards. Though both of them are computer
applications that perform tasks on behalf of principals (human beings or other pro-
grams), the focus of software agents is on their autonomous properties for solving
complex problems, while Web services are characterized by their open access stan-
dards and protocols over the Internet. While a Web service may only know about
itself, agents often have awareness of other agents and their capabilities as interac-
tions among the agents occur. Agents are inherently communicative, whereas Web
services are passive until invoked. Agents cooperate autonomously and fl exibly and,
by forming teams and coalitions, can assemble higher-level and more comprehen-
sive services. However, current standards or languages for Web services do not

14 Developing Flexible Business Process Management Systems…

248

provide for fl exible composing functionalities, such as brokering and negotiation in
e-marketplaces (Huhns 2002). Thus, Web services are inherently less autonomous
and independent than software agents.

 Against this background, there is a movement towards combining the concept of
Web services with software agents. W3C introduced a concept, where software
agents are to be treated as the foundation for Web services architecture – “A Web
service is an abstract notion that must be implemented by a concrete agent.” AOC
may take SOA into new dimensions to model autonomous and heterogeneous com-
ponents in uncertain and dynamic environments. The integration of Web services
with software agents can function as computational mechanism in their own right,
thus signifi cantly enhancing the ability to model and construct complex software
systems. It will be a promising computing paradigm for effi cient enterprise service
selection and integration.

3.3 Object and Object-Oriented Programming (OOP)

 Object-Oriented Programming (OOP). Rumbaugh defi nes OOP as programming in
terms of a collection of discrete objects that incorporate both data and behaviors
(Rumbaugh 1991). OOP is a software engineering paradigm that uses “objects” and
their interactions to design applications and computer programs. It is seen as a col-
lection of cooperating objects, as opposed to a traditional view in which a program
is seen as a list of instructions to the computer. OOP was deployed as an attempt to
promote greater fl exibility and maintainability in programming by strongly empha-
sizing modularity and reusability in software.

 AOC vs. OOP. From a software engineering point of view, Object-Oriented (OO)
methodologies provide a solid foundation for Agent-Oriented modeling. AOC can
be viewed as a specialization of OOP. OOP proposes viewing a computational sys-
tem as made up of modules that are able to communicate with one another. AOC
specializes the framework by representing the mental states and rich interactions of
the modules (agents). While objects emphasize passive behavior (i.e., they are
invoked in response to a message), agents support more autonomous behavior,
which can be achieved by specifying a number of rules for interpreting the states
and governing multiple degrees of freedom of activities.

3.4 Component and Component-Based Development (CBD)

 Component-Based Development (CBD) is another branch of the software engineering
discipline, with an emphasis on decomposition of the engineered systems into func-
tional or logical components with well-defi ned interfaces used for communication
across the components. CBD includes a component model and an interface model.
The component model specifi es for each component how the component behaves in

M. Wang and K. Kumar

249

an arbitrary environment; an interface model specifi es for each component how the
component interacts with its environment (Szyperski 2002).

 OOP vs. CBD. A component is a small group of objects working together to provide
a system function. It can be viewed as a black box at the level of a large system
function. At a fi ne level of granularity, we use objects to hide behavior and data. At
a coarser level of granularity, we use components to do the same.

 Components inherit much of the characteristics of objects in the OO paradigm.
But the component notion goes further by separating the interface from the compo-
nent model. OO reuse usually means reuse of class libraries in a particular OO
programming language or environment. For example, you have to be conversant
with SmallTalk or Java to be able to reuse a SmallTalk or Java class. A component,
by using public interface, can be reused without even knowing which programming
language or platform it uses internally.

 SOA vs. OOP and CBD. At a conceptual level, SOA is an extension of earlier OOP
and CBD concepts. OOP focuses on the encapsulation of both data and behavior of
an object, while SOA also focus on the user’s view of a computing object or applica-
tion, that is, the interface. An interface specifi es the services that are provided and
contains metadata defi ning how they behave.

 Though CBD goes further than OOP by supporting public interfaces used for
communication across the components, the interfaces of a component are easier to
change because they are only used by the known clients. In SOA, a service has a
published network-addressable interface. A published interface is one that is exposed
to the network and may not be changed so easily, because the clients of the published
interface are not known. The difference is analogous to an intranet-based site only
accessible by employees of the company and an Internet site accessible by anyone.

3.5 Reconciling OOP, CBD, SOA, and AOC

 From OOP and CBD to SOA and AOC, the practice of software programming
has evolved through different development paradigms. At the conceptual level,
these concepts and approaches build upon each other are complementary, and all
have a role to play in designing and managing software systems. Each method
shift came about in part to deal with greater levels of software complexity. In all
cases, the way we manage complexity is by decomposing a complex system or
process into smaller modules that can be designed independently, that is, modu-
larity. Modularity ensures easy maintenance and updates of complex systems by
separating the high-frequency intra-module linkages from the low-frequency
inter-module linkages and limiting the scope of interactions between the mod-
ules by hiding the intra-module relations inside a module box (Baldwin and
Clark 1997). Based on the idea of modularity, constructs such as objects, compo-
nents, software agents, and Web services have been continuously invented and
evolved for developing software applications.

14 Developing Flexible Business Process Management Systems…

250

 Object-Oriented (OO) methodologies provide a foundation for software
 engineering that uses objects and their interactions to design applications and com-
puter programs. CBD provides a coarser grained construct for larger systems and
separates interface from the behavior of the construct for supporting public com-
munication between the components which know about each other. SOA goes fur-
ther by using XML-based and network-addressable interface as well as XML-based
messages and standard protocols for open communication among all software appli-
cations in Internet. In SOA, a Web service can fi nd and talk with another Web ser-
vice which is unknown a priori. Compared with OOP, CBD, and SOA, AOC is used
to model and implement solutions to semi- or ill-structured problems, which are too
complex to be completely characterized and precisely described. In addition to pas-
sive behavior, agent is used to perform more autonomous activities in solving com-
plex problems. To achieve this, knowledge or rules for governing the behavior are
separated from the behavior of the agent.

 In computer science, the terms object, component, software agent, and Web ser-
vice describe a piece of software that performs some action on behalf of human
beings, like an agent or actor. In addition to actor, agent can also be a broker, which
mediates between the buyer (service requesting party) and the seller (service provid-
ing party). In terms of broker, software agent can be used to search appropriate appli-
cations, for example, Web service in the Internet, to perform requested services. This
special type of agent works as an intermediary between service requester and service
provider, coordinating on behalf of two parties regarding service requirements, quali-
ties, costs, constraints, etc.

4 Applying Technical Solutions to BPM Problems

 In Sect. 2 , we identifi ed four business requirements on fl exible process management
(decomposition of complex processes, task coordination, dynamism of the environ-
ment, and the resource acquisition and assembly) that provide the business rationale
for employing appropriate technologies in developing fl exible BPM systems. In
Sect. 3 , we clarify and explicitly defi ne the similarities and differences between four
modular technologies: OOP, CBD, SOA, and AOC. In this section we will show
how these technologies can be used to address the challenges outlined in Sect. 2 .
Table 14.1 below summarizes the relationship between the problem aspects identi-
fi ed in Sect. 2 and solution technologies defi ned in Sect. 3 . Sections 4.1 , 4.2 , 4.3 and
 4.4 expand on this table.

4.1 Decomposition of Complex Processes

 Business processes display complexity as a result of interactions of their internal
components and interaction of the process with its environment. A process can be

M. Wang and K. Kumar

251

decomposed into a set of tasks, task into subtasks, and so on, through several layers
in a hierarchy. Tasks or subtask components can be delegated to software objects,
components, agents, and services, as actors of the tasks, which interact and com-
municate in performing the process.

 To deal with interactions across different organizations, SOA proposes “ser-
vice” as a high-level view of the building block of a process. A process is composed
of a set of services, each of which is provided by an individual organization. By
using SOA, the interservice interactions are separated from intraservice interac-
tions; the complexity of both maintained at different layers. Moreover, we can
take advantage of reusability, interoperability and extensibility of Web services on
the basis of open standards to cater for business process integration and interop-
eration over the Web.

 The highly dynamic and unpredictable nature of business processes makes agent-
based approach appealing. AOC assigns business applications’ main activities to
autonomous agents. Such agents are fl exible problem solvers that have specifi c
goals to achieve and interact with one another to manage their autonomy and inter-
dependencies in business processes. AOC is well suited for complex process situa-
tions that are not all known a priori, cannot be assumed to be fully controllable in
their behaviors, and must interact on a sophisticated level of communication and
coordination (Wang and Wang 2005).

 Table 14.1 Technical solutions applied to fl exible BPM

 Technical solutions Flexible BPM

 OOP, OBD, SOA, and AOC for decomposing complex processes
at different level of granularity

 Decomposition of complex
processes

 SOA for decomposing and integrating inter-organizational processes
over the Web

 AOC for decomposing and delegating ill-structured tasks
to autonomous software entities

 OOP, OBD, and SOA for structured communications among tasks
or task components

 Flexible task coordination

 SOA for open communication among all software applications over
the Internet

 AOC for fl exible coordination by supporting fl atter hierarchies,
loosely coupled autonomy-based units and decision-based
coordination mechanisms

 Object, component, and service unable to behave in dynamic
environments

 Awareness of dynamic
environments

 Agents for reaction to changes in dynamic environments through
continuous perception of and interaction with the environment

 Agents for proactive behavior by making prediction of future state
of dynamic environments

 Object and component not used for resource coordination Flexible resource
coordination SOA for seamless and fl exible integration of resources across

different organizations over the Web
 Agents for coordination among resources

14 Developing Flexible Business Process Management Systems…

252

4.2 Flexible Task Coordination

 A business processes is made up of a number of task components that interact with
dynamic behavior. OOP uses objects to hide behavior and data, supporting com-
munications among small objects, for example, functions of tasks. CBD extends
OOP by supporting interaction among components, that is, coarser grained con-
structs, using public communication interface. SOC goes further by using XML-
based and network-addressable interface as well as XML-based messages and
standard protocols for open communication among all software applications over
the Internet.

 While OOP, OBD, and SOA mainly support structured communications among
tasks or task components, AOC are able to support ill-structured interactions among
tasks. To coordinate the interactions in dynamic situations, fl atter hierarchies,
decentralized autonomy-based units, and decision-based coordination mechanisms
are required, where AOC is directly applicable. AOC supports decentralized control
and asynchronous operations by a group of autonomous software entities, which are
able to perform decision-based coordination of their activities.

 In AOC, after decomposing a complex process into a number of loosely coupled
tasks in a fl at hierarchy, we delegate the tasks to a number of autonomous agents,
each working both autonomously and collaboratively throughout the whole process.
In complex process management, it is impossible to predefi ne all activities and
interactions at design time. Instead, we defi ne the goal or role of each agent and
specify a set of rules for governing the behavior of the agent. Agents operate asyn-
chronously and in parallel. This also results in an increase in overall speed and
robustness in BPM. The failure of one agent does not necessarily make the overall
system useless, where other agents may adjust and coordinate their behavior reac-
tively and proactively to the change.

4.3 Awareness of Dynamic Environments

 The complexity of business processes comes not only from interactions of their
internal components but also from interaction of the process with its environment.
To manage business processes in a dynamic environment, we need to be able to
continuously perceive the environment and make real-time decisions on the process.
Objects, components, and services are normally unable to behave in dynamic envi-
ronments. Agent-based software entity is able to sense and recognize the situation
and determine appropriate actions upon the situations. Information about the envi-
ronment (e.g., events, state of activities, and resources) is sensed and interpreted by
the agent on the basis of predefi ned scheme and rules. In case that information is
unanticipated or comes as complete and total surprise, it will be sent to human man-
ager for manual processing.

 Unlike the ECA (event-condition-action) rules in workfl ow systems that make
reaction to certain events, AOC goes further by incorporating all environmental
information into a mental state that watches over the whole environment. Individual

M. Wang and K. Kumar

253

events are put together for a comprehensive understanding; ambiguous information
is understood after appropriate interpretation and reasoning (Wang and Wang 2006).

 Moreover, AOC supports prediction of future state of the environment for purpose
of proactive actions. Different from passive response to current events, proactive
behavior has an orientation to the future, anticipating problems and taking affi rma-
tive steps to deal with them rather than reacting after a situation has already occurred.
It refers to the exhibition of goal-oriented behaviors by taking initiatives.

4.4 Flexible Resource Coordination

 As discussed, the rise of Internet-mediated e-Business brings the era of demand-
driven and resource-based soft connections of business organizations. A business
process can be dynamically established by connecting or composing services pro-
vided by different organizations. Against this background, SOA provides a real plat-
form of resource selection and allocation in implementing seamless and fl exible
integration of business processes over the Web.

 However, it is a complex problem to search appropriated services from a large
number of resources as well as schedule and coordinate them under various con-
straints. The complexity arises from the unpredictability of solutions from service
providers (e.g., availability, capacity, and price), the constraints on the services
(e.g., time and cost constraint), and interdependencies among the services. A ser-
vice solution to an individual service involved in an integrated process does not
have a view of the whole service, very often resulting in incoherent and contradic-
tory hypotheses and actions (Wang et al. 2006).

 To deal with the problem, AOC can be used for distributed decision-making and
coordination. In process integration, decision-making and coordination among ser-
vices can be modeled as a distributed constraint satisfaction problem, in which solu-
tions and constraints are distributed into a set of services and to be solved by a group
of agents (brokers) on behalf of service requesters and providers. In this context, ser-
vice-based process integration is mapped as an agent-based distributed constraint sat-
isfaction or optimization problem. Individual services are mapped to variables, and
solutions of individual services are mapped to values. A distributed constraint optimi-
zation problem consists of a set of variables, each assigned to an agent, where the
values of the variables are taken from fi nite and discrete domains. Finding a global
solution to an integrated process requires that all agents fi nd the solutions that satisfy
not only their own constraints but also interagent constraints (Wang et al. 2008).

5 Conclusion

 In this chapter, we have investigated how relevant modular programming technolo-
gies can be applied and integrated in developing fl exible BPM solutions. On the one
hand, we examine the main problems to be solved in fl exible process management.

14 Developing Flexible Business Process Management Systems…

254

Based on a theoretical understanding on business processes and the roots of their
complexity, we identify and address the main problem with their solutions in fl exi-
ble BPM. On the other hand, we analyze the overlapping technical concepts and
solutions used for fl exible BPM systems development. We clarify the differences
and relationships between these terminologies and techniques in the context of
BPM. Based on the examination of the both sides (BPM requirements and support-
ing techniques), we have made a clear picture with a systemic approach on how
these concepts and technologies can be applied and integrated in developing fl exible
process management systems. This chapter will benefi t professionals, researchers,
and practitioners by advanced analysis and theoretical investigations of problems
and solutions in developing fl exible BPM solutions.

 References

 Baldwin CY, Clark KB (1997) Managing in an age of modularity. Harv Bus Rev 75(5):84–93
 Eisenhardt KM (1989) Agency theory: an assessment and review. Acad Manage Rev 14(1):57–74
 Endsley MR (1995) Toward a theory of situation awareness in dynamic systems. Hum Factors

37(1):32–64
 Hammer M, Champy J (1993) Reengineering the corporation: a manifesto for business revolution.

Brealey, London
 Huhns MN (2002) Agents as web services. IEEE Internet Comput 6(4):93–95
 Jennings NR, Faratin P, Norman TJ, O’Brien P, Odgers B (2000) Autonomous agents for business

process management. Int J Appl Artif Intell 14(2):145–189
 Kammer PJ, Bolcer GA, Taylor RN, Hitomi AS, Bergman M (2000) Techniques for supporting

dynamic and adaptive workfl ow. Comput Support Coop Work 9(3–4):269–292
 Kumar K (2001) Technology for supporting supply chain management: introduction. Commun

ACM 44(6):58–61
 Kumar K, Narasipuram MM (2006) Defining requirements for business process flexibility.

In: Seventh workshop on business process modeling, development, and support, CAiSE,
Luxembourg

 Kumar K, van Dissel H (1996) Sustainable collaboration: managing confl ict and cooperation in
interorganizational systems. MIS Q 20(3):279–300

 Kumar K, van Fenema PC, von Glinow MA (2007) Offshoring and the global distribution of work:
implications for task interdependence theory and practice. In: First annual research conference
and workshop on offshoring, North Carolina

 Leymann F, Roller D, Schmidt MT (2002) Web services and business process management. IBM
Syst J 41(2):198–211

 Melão N, Pidd M (2000) A conceptual framework for understanding business processes and
 business process modeling. Inform Syst J 10:105–129

 Mintzberg H (1979) The structuring of organizations. Prentice Hall, Englewood Cliffs
 Mowshowitz A (1997) Virtual organization. Commun ACM 40(9):30–37
 Papazoglou MP (2007) Web services: principles and technology. Pearson Education Ltd., Harlow
 Rumbaugh J (1991) Object-oriented modeling and design. Prentice Hall, Englewood Cliffs
 Simon HA (1981) The sciences of the artifi cial. MIT Press, Cambridge, MA/London
 Szyperski C (2002) Component software: beyond object-oriented programming. Addison-Wesley

Professional, Boston
 van der Aalst WMP, van Hee KM (2002) Workfl ow management: models, methods, and systems.

MIT Press, Cambridge

M. Wang and K. Kumar

255

 Volberda HW (1999) Building the fl exible fi rm: how to remain competitive. Oxford University
Press, Oxford

 Wang M, Wang H (2005) Intelligent agent supported business process management. In: Proceedings
of 38th Hawaii International Conference on System Sciences (HICSS-38) , IEEE Computer
Society Press, Hawaii

 Wang M, Wang H (2006) From process logic to business logic – a cognitive approach to business
process management. Inform Manage 43(2):179–193

 Wang M, Cheung WK, Liu J, Xie X, Lou Z (2006) E-service/process composition through multi-
agent constraint management. In: Fourth international conference on Business Process
Management (BPM), LNCS 4102, Vienna, pp 274–289

 Wang M, Liu J, Wang H, Cheung W, Xie X (2008) On-demand e-supply chain integration: a multi-
agent constraint-based approach. Expert Syst Appl 34(4):2683–2692

 Weske M (1998) Object-oriented design of a fl exible workfl ow management system. In: 2nd East-
European symposium on advances in databases and information systems. Lecture notes in
computer science, Poznan, Poland, vol 1475. pp. 119–130

 Wooldridge M, Jennings NR (1999) Software engineering with agents: pitfalls and pratfalls. IEEE
Internet Comput 3(3):20–27

14 Developing Flexible Business Process Management Systems…

	Chapter 14: Developing Flexible Business Process Management Systems Using Modular Computing Technologies
	1 Introduction
	2 How to Deal with Complex Dynamic Business Processes?
	2.1 Decomposition of Complex Processes
	2.2 Flexible Coordination of Interactive Activities
	2.3 Awareness of Dynamism in Business Environments
	2.4 Flexible Resource Selection, Integration, and Coordination

	3 Clarifying the Terminologies of Technical Solutions
	3.1 Agent and Agent-Oriented Computing (AOC)
	3.2 Service and Service-Oriented Architecture (SOA)
	3.3 Object and Object-Oriented Programming (OOP)
	3.4 Component and Component-Based Development (CBD)
	3.5 Reconciling OOP, CBD, SOA, and AOC

	4 Applying Technical Solutions to BPM Problems
	4.1 Decomposition of Complex Processes
	4.2 Flexible Task Coordination
	4.3 Awareness of Dynamic Environments
	4.4 Flexible Resource Coordination

	5 Conclusion
	References

