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Abstract

Hepatocellular carcinoma (HCC) is the most common type of liver cancer
and the third leading cause of cancer death worldwide, with 75 % of cases
occurring in Southeast Asian countries like China, Hong Kong, Taiwan,
Singapore, Korea, and Japan. The etiology of HCC is likely to involve
interactions between multiple risk factors. The most commonly reported
risk factors are nonspecific cirrhosis (21 %), followed by alcohol-induced
liver disease (16 %), HCV infection (10 %), and HBV infection (5 %). In
addition, obesity and type II diabetes are also suspected to increase the risk
of acquiring liver cancer. Persistent activation of signal transducers and
activators of transcription-3 (STAT3) is frequently observed several human
cancers and transformed cell lines including HCC. The significance of
constitutively STAT3 in HCC is due to its induction of several tumorigenic
genes that substantially contribute to the initiation and progression of
the malignancy. These include antiapoptotic proteins like Bcl-2, Bcl-xL,
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Mcl-1, XIAP, and survivin. Examples of other STAT3-regulated oncogenic
genes include c-Myc and cyclin D1, which regulates cell proliferation;
matrix metalloproteinase-9 which mediates cellular invasion; and vascular
endothelial growth factor, which controls angiogenesis. Thus, novel agents
that can suppress constitutive and/or inducible activation of STAT3 have
the potential for HCC therapy. In this chapter, we discuss in detail the
potential role of STAT3 signaling cascade both in HCC initiation and
progression and also various therapeutic strategies employed to block
aberrant activation of this proinflammatory transcription factor in HCC.
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Abbreviations

Bad Bcl2 associated death promoter protein
Bax Bcl-2-associated X protein
Bcl2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma extra large
Bid BH3 interacting-domain death

agonist
c-myc Myelocytomatosis cellular oncogene
CSF-1R Colony-stimulating factor-1R
EGF Epidermal growth factor
G-CSF Granulocyte colony-stimulating

factor
HBV Hepatitis B virus
HCV Hepatitis C virus
HGF Hepatocyte growth factor
IGF Insulin-like growth factor
IL Interleukin
IFN-” Interferon-gamma
JAK Janus kinase
MMPs Matrix metalloproteases
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
NF-›B Nuclear factor kappa B
PDGF Platelet-derived growth factor
PTPase Protein tyrosine phosphatase
ROS Reactive oxygen species
SOCS Suppressor of cytokine signaling
STAT3 Signal transducer and activator of

transcription 3
TGF Transforming growth factor
VEGF Vascular endothelial growth factor

6.1 Introduction: Risk Factors
Associated with Initiation
and Development of HCC

Hepatocellular carcinoma (HCC) is the fifth most
prevalent cancer worldwide (Ferlay et al. 2010)
and possibly the most common malignant tumor
found among men (Dominguez-Malagon and
Gaytan-Graham 2001; Subramaniam et al. 2013).
Due to its late presentation, aggressiveness, and
limited response to therapy, HCC has become
the third most deadly cancer and causes approxi-
mately one million deaths annually (Ferlay et al.
2010; Carr et al. 2010). While considered a rare
form of cancer in many western countries, HCC
is endemic in East and Southeast Asia where
over three-quarters of liver cancer-caused deaths
occur (Ferlay et al. 2010). Infections with chronic
hepatitis B (HBV)/hepatitis C virus (HCV) and
associated liver cirrhosis/hepatitis have been at-
tributed to more than 80 % of the cases of HCC
(Lau and Lai 2008). For example, chronic hep-
atitis caused by HBV/HCV can cause significant
damage to hepatocytes and adversely affect their
normal functioning (Subramaniam et al. 2013;
Nakamoto and Kaneko 2003) (Fig. 6.1).

In addition, various environmental risk factors
also including aflatoxin B1 exposure, alcohol
over-abuse, and cigarette smoking have been re-
ported to contribute to the development of HCC
(Subramaniam et al. 2013; Abdel-Hamid 2009).
For example, an increased risk of mortality in
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Fig. 6.1 A multi step cascade for HCC initiation and development

HCC patients has been closely associated with
obesity. It has been found that obesity can in-
duce an inflammatory response, which in turn
may increase levels of proinflammatory cytokines
[interleukin-6 (IL-6) and tumor necrosis factor-
alpha (TNF-’) expression] in adipose tissue and
Kupffer cells (Subramaniam et al. 2013; Toffanin
et al. 2010).

6.2 Role of STAT3 Signaling
Pathway in the Initiation
of HCC

Signal transducer and activator of transcription
(STATs) were initially discovered in 1993 by
James Darnell and can be activated by diverse
stimuli to activate gene transcription (Shuai et al.
1993). STAT proteins have been in particular
shown to play a critical role in cytokine signaling

cascades that regulate various cell growth and
differentiation signal transduction (Subramaniam
et al. 2013). The STAT family consists of seven
members; these are STAT1, STAT2, STAT3,
STAT4, STAT5a, STAT5b, and STAT6 that can
be further classified into two groups, according
to their biological functions. The first group com-
prising of STAT2, STAT4, and STAT6 is reported
to actively participate interferon-gamma (IFN-”)
signaling and T cell maturation. On the other
hand, the second group consisting of STAT1,
STAT3, and STAT5 is involved in development
of mammary glands, embryogenesis, as well as
oncogenesis (Subramaniam et al. 2013; He and
Karin 2011).

Among various STAT family proteins, STAT3
has gained significant attention as it has been
found to be an important regulator of distinct sig-
nal transduction pathways involved in liver dam-
age and repair mechanisms (Subramaniam et al.
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Fig. 6.2 STAT3 activation cascade involved in HCC progression

2013; Strain 1998; Taub 2003). STAT3 was ini-
tially demonstrated to be an acute-phase response
factor that can bind to the IL-6 responsive ele-
ment (Wegenka et al. 1993) and subsequently as
a DNA-binding protein in response to epidermal
growth factor stimulation (Zhong et al. 1994).
STAT3 can be induced by various cytokines such
as IL-6, leukemia inhibitory factor (LIF), onco-
statin M, and ciliary neurotrophic factor (CNTF)
that transmit their signals through the gp130 pro-
tein (Akira et al. 1994; Hibi et al. 1990; Hirano
et al. 1997). Interestingly, the expression of IL-
6 is elevated in various liver ailments and HCC
(Subramaniam et al. 2013; Trikha et al. 2003;
Naugler et al. 2007), and even IL-22-induced
STAT3 phosphorylation on Ser727 residue can
induce acute-phase genes in the liver (Dumoutier
et al. 2000). In addition, STAT proteins can
also be substantially stimulated by receptor ty-
rosine kinases such as epidermal growth factor
receptor (EGFR), platelet-derived growth factor
(PDGF-R), transforming growth factor (TGF),

and colony stimulating factor-1R (CSF-1R) and
seven-transmembrane G-protein-coupled recep-
tors such as angiotensin II receptors (Karras et al.
1997). In fact, EGF, TGF-“, and PDGF receptors
can even directly activate STAT3 proteins lead-
ing to enhanced proliferation and transformation
(Subramaniam et al. 2013; Levy and Darnell
2002) (Fig. 6.2). The possible role of STAT3 in
different aspects of liver tumorigenesis includ-
ing transformation, inflammation, antiapoptosis,
angiogenesis, cell cycle progression, and cellular
invasion is discussed in detail below.

6.2.1 Oncogenic Transformation

Persistent activation of STAT3 is involved in
several critical biological processes including
growth, survival, invasion, and angiogenesis, all
of which promote HCC initiation and progression
(Turkson et al. 1998; Subramaniam et al. 2013).
The first evidence related to the involvement
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of STAT3 in transformation came to light ini-
tially after studies showed that STAT3 is con-
stitutively activated during transformation in-
duced by oncogene v-Src. Several subsequent
studies also reemphasized the important find-
ing that STAT3 signaling is indeed required for
oncogenic transformation by v-Src (Cao et al.
1996; Chaturvedi et al. 1997; Bromberg et al.
1998). Deregulated STAT3 activation has been
consistently observed in HCC clinical samples
and cell lines but not in non-transformed liver
cells (Subramaniam et al. 2013; Yoshikawa et al.
2001; Niwa et al. 2005; Li et al. 2006). On
the contrary, in a recent study, Schneller and
colleagues elucidated the role of STAT3 in Ras-
dependent HCC progression in the presence
and absence of p19 (ARF)/p14 (ARF). They
found that constitutive active STAT3 is tumor
suppressive in Ras-transformed p19 (ARF�/�)
hepatocytes, whereas the expression of STAT3
lacking Tyr (705) phosphorylation (U-Stat3) can
enhance tumor formation. Accordingly, Ras-
transformed STAT3 (�hc)/p19 (ARF�/�) hep-
atocytes showed increased tumor growth, com-
pared to those expressing STAT3, demonstrat-
ing a tumor-suppressor activity of STAT3 in
cells lacking p19 (ARF) (Schneller et al. 2011).
Moreover, Wu et al. found in another study
that phosphorylated STAT3 expression in mono-
cyte was significantly correlated to advanced
clinical stage of HCC and a poor prognosis.
They also noticed that pharmacological STAT3
inhibitor, NSC 74859, significantly suppressed
tumor growth in mice with diethylnitrosamine
(DEN)-induced HCC. Interestingly, NSC 74859
treatment also attenuated cancer-associated in-
flammation in DEN-induced HCC model (Wu
et al. 2011). Moreover, Chen and coworkers
evaluated the efficacy of combination therapy
using cetuximab and NSC 74859 (a novel STAT3
inhibitor) in EGFR and STAT3 overexpressing
hepatoma cells and found that NSC 74859 po-
tentiated the antiproliferative effect of cetuximab
in all three cell lines. siRNA knockdown of
STAT3 increased the sensitivity of these cell lines
to cetuximab, whereas STAT3 overexpression
antagonized these effects (Chen et al. 2012a).

Also, it has been reported that even multitargeted
tyrosine kinase inhibitor sorafenib can inhibit
growth and metastasis of HCC in part by block-
ing the MEK/ERK/STAT3 and PI3K/Akt/STAT3
signaling pathways, but independent of JAK2
and phosphatase shatterproof 2 (SHP2) activa-
tion (Pfitzner et al. 2004). All these above-cited
reports and also the findings of our recently
published review article (Subramaniam et al.
2013) clearly establish that the aberrant activation
of STAT3 indeed plays a pivotal role in both
HCC initiation and development. This is further
supported by the fact that various novel STAT3
inhibitors have been identified in recent years that
can suppress proliferation and induce apoptosis
in various HCC cell lines and mouse models
(Table 6.1).

6.2.2 Inflammation

Several reports indicate the potential role of
HCC as a proinflammatory transcription factor
in HCC and other liver diseases (Subramaniam
et al. 2013; Pfitzner et al. 2004). STAT3 was
initially discovered as an acute-phase response
protein, thus suggesting its possible connection
to inflammation (Wegenka et al. 1993). IL-6
is one of the key regulators of inflammation
and predominantly exerts its biological effects
through the activation of the STAT3 pathway
(Zhong et al. 1994). Liang et al. recently tested
the effect of IL-6 family cytokines Golgi phos-
phoprotein (GP73) mRNA and/or protein levels
in human hepatoblastoma HepG2 cells. They
found that levels of GP73 mRNA and protein
were upregulated in HepG2 cells following treat-
ment with either proinflammatory cytokine IL-
6 or the related cytokine oncostatin M (OSM).
Induction required the shared receptor subunit
gp130 and correlated with increased tyrosine
phosphorylation of STAT3. ELISA measurement
of GP73 and IL-6 levels in the sera of pa-
tients with premalignant liver disease revealed
a significant correlation between circulating lev-
els of the two proteins. OSM levels were also
elevated six- to sevenfold in sera from patients
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Table 6.1 Reported STAT3 blockers in HCC cell lines and mouse models

Natural/synthetic
inhibitors Mechanism of inhibition Cell lines/mouse models References
Celecoxib Inhibited JAK2

phosphorylation
Hep3B, HepG2, Huh-7,
SNU-387, and SNU-449

Liu et al. (2011a)

Parthenolide along with
TRAIL

Suppressed activation of
JAK proteins

HepG2, Hep3B, and
SK-Hep1

Carlisi et al. (2011)

Galiellalactone – a fungal
metabolite from the
ascomycete Galiella rufa

Exerted STAT3 inhibitory
effect by covalently
modifying a cysteine
residue in the STAT3
DNA-binding domain

HepG2 Lavecchia et al. (2011)

XZH-5 small molecule Reduced constitutive
STAT3 phosphorylation at
Tyr705 and the expression
of STAT3- regulated genes

Hep3B, HepG2, Huh-7,
SNU-387, and SNU-449

Liu et al. (2011b)

Sorafenib SC-1-synthetic
molecule

Caused SHP-1-dependent
STAT3 inactivation

HCC cell lines (PLC5,
Huh-7, Hep3B, and
Sk-Hep1)/nude mice with
Huh xenografts

Tai et al. (2011)

Sorafenib with TRAIL Upregulated SHP-1 activity PLC5, Huh-7, Hep3B, and
Sk-Hep1/nude mice with
PLC5 xenografts

Chen et al. (2010)

3-[3,4-Dihydroxy-
phenyl]-acrylic acid
2-[3,4-dihydroxy-phenyl]-
ethyl ester
(CADPE)

Inhibited both
IL-6-mediated STAT3
activation and recruitment
of STAT3 to the cyclin D1
promoter

Huh-7 Won et al. (2010)

FLLL32 JAK/STAT inhibitor
suppressed STAT3
phosphorylation, STAT3
DNA-binding activity, and
STAT3-regulated gene
products

SNU-449, SNU-398,
HEP3B, and SNU387

Lin et al. (2010) and Liu
et al. (2010b)

LLL12 Inhibited IL-6-induced
STAT3 phosphorylation

Hep3B, SNU-387,
SNU-398, SNU-449

Liu et al. (2010a)

NSC-74859 Abrogated STAT3
activation

HepG2, PLC/PRF/5,
Huh-7, SNU-398,
SNU-449, SNU-182 and
SNU-475, Huh-7 in nude
mice

Lin et al. (2009)

ENMD-1198 Inhibited STAT3
phosphorylation

Huh-7 and HepG2 Moser et al. (2008)

Decoy ODN Caused abrogation of
STAT3-mediated cell cycle
and antiapoptotic genes

HepG2, H7402, and
PLC/PRF/5

Sun et al. (2008)

AG490 Janus kinase
2-specificinhibitor

Huh-1, Huh-7, HepG2 and
Hep3B cells, Huh-7 tumors
in athymic mice

Kusaba et al. (2007)

(continued)
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Table 6.1 (continued)

Natural/synthetic
inhibitors Mechanism of inhibition Cell lines/mouse models References
IL-6 receptor fusion
protein (IL-6-RFP)

A high-affinity
cytokine-binding protein

HepG2 Metz et al. (2007)

YC-1 Inhibited STAT3 activity by
enhancing the
polyubiquitination of
p-STAT3 (705) induced by
cisplatin

HepG2, Hep3, and PLC Lau et al. (2007)

Atiprimod Suppressed STAT3
mediated through the
inhibition of activation of
upstream kinases c-Src,
JAK1, and JAK2

Huh-7, HepG2,
HepG2.2.15, and HepG2

Choudhari et al. (2007)

20-O-methoxyethylribose-
modified
phosphorothioate
antisense oligonucleotide
(ASO)

Caused suppression of
phosphorylated STAT3 and
reduced its DNA-binding
activity

HCCLM3, SNU423, Huh7,
HCCLM3 nude mouse
model

Li et al. (2006)

Stattic (non-peptide small
molecule)

Inhibited SH2 domain,
STAT3 dimerization, and
DNA binding

HepG2 Schust et al. (2006)

Statins Reduced IL-6-induced
serine phosphorylation of
transcription factorSTAT3

Hep3B Arnaud et al. (2005)

SOCS-1 (peptide
inhibitor)

(SOCS-1; also known as
JAB and SSI-1) switched
cytokine signaling “off” by
means of its direct
interaction with JAK

Human HCC lines
SNU-182, SNU-423,
SNU-387, SNU-398,
SNU-449, SNU-475, and
PLC/PRF/5

Yoshikawa et al. (2001)

Cyclopentenones,
2-(1-chloropropenyl)-4,5-
dihydroxycyclopent-2-
enone
(CPDHC)

Suppressed IL-6and
IL-6-dependent pathway by
inhibiting the tyrosine
phosphorylation of the
STAT3 and STAT1 as well
as the serine
phosphorylation of the
STAT3 by direct inhibition
of JAK

HepG2 Weidler et al. (2000)

Celastrol Abrogated JAK/STAT
pathway and induced
apoptosis of HCC cells in
vitro and in vivo

C3A, HepG2, Hep3B,
PLC/PRF5, and Huh-7

Rajendran et al. (2012)

“-Escin Inhibited activation of
upstream kinases c-Src,
JAK1, and JAK2

HepG2, Huh-7, PLC/PRF5,
wild, and STAT3 KO mice
fibroblasts

Tan et al. (2010)

”-Tocotrienol Increased the expression of
SHP-1 in HCC cells

HepG2, Huh-7 xenografts
in nude mice

Rajendran et al. (2011a)

Butein Inhibited activation of
upstream kinases c-Src and
JAK2 induced the
expression of SHP-1

HepG2, SNU-387,
HCCLM3, and
PLC/PRF5/HCCLM3 nude
mouse models

Rajendran et al. (2011b)

(continued)
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Table 6.1 (continued)

Natural/synthetic
inhibitors Mechanism of inhibition Cell lines/mouse models References
Diosgenin Induced the expression of

Src homology 2
phosphatase 2 (SH-PTP2)
that correlated with
downregulation of
constitutive STAT3
activation

HepG2, C3A Li et al. (2010)

Luteolin Accelerated
ubiquitin-dependent
degradation in the
Tyr705-phosphorylated
STAT3

HepG2, HLF, and HAK-1B Selvendiran et al. (2006)

Cucurbitacin B Inhibited STAT3
phosphorylation

HepG2 cells and mouse
model

Zhang et al. (2009)

17-Hydroxy-jolkinolide B
(HJB)

Reacted with cysteine
residues of JAKs to form
covalent bonds that
inactivate JAKs

HepG2 Wang et al. (2009)

with either cirrhosis or HCC relative to controls
without liver disease. Although there was an
association between levels of GP73 and OSM
in serum from people with liver cirrhosis, there
was not a statistically significant correlation in
HCC, thereby suggesting that the role of the
proinflammatory cytokines in determining circu-
lating levels may be complex (Liang et al. 2012).
Furthermore, in various tumors, STAT3 can di-
rectly interact with nuclear factor NF-›B family
member RELA (p65), keeping it localized in the
nucleus and thereby contributing to constitutive
NF-›B activation in cancer (Lee et al. 2009).
Also, in a recent study, Mano and coworkers
examined STAT3 activation, cytokine expression,
and infiltration of tumor-associated macrophages
in resected HCCs as well as the alteration of
cell growth and migration by cytokine stimu-
lation in HCC cell lines. They observed that
in HCC specimens, the pSTAT3-positive group
showed high levels of ’-fetoprotein, large tu-
mor size, frequent intrahepatic metastasis, high
Ki-67 and Bcl-xL, poor prognosis, and high
recurrence rate (Mano et al. 2013). Overall,
their findings clearly indicate that STAT3 activa-
tion was correlated with aggressive behavior of
HCC and may be mediated via tumor-associated
macrophage.

6.2.3 Regulation of Apoptosis

STAT3 hyperactivation can also lead to increased
transcription of various STAT3-regulated cell
survival genes, e.g., Bcl-2, Bcl-xL, and sur-
vivin, Mcl-1, and XIAP, and thereby inhibiting
pro-apoptotic proteins such as Bax, Bad, and
Bid (Subramaniam et al. 2013; Al Zaid Sid-
diquee and Turkson 2008; Germain and Frank
2007). For example, Chen and coworkers re-
ported that sorafenib can augment the antitu-
mor effect of recombinant tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) in re-
sistant HCC. They found that STAT3 played a
significant role in mediating TRAIL sensitiza-
tion and showed that sorafenib downregulated
phospho-STAT3 (pSTAT3) and subsequently re-
duced the expression levels of STAT3-related
proteins (Mcl-1, survivin, and cyclin D1) in a
dose- and time-dependent manner in TRAIL-
treated HCC cells. Knockdown of STAT3 by
RNA interference overcame apoptotic resistance
to TRAIL in HCC cells, and ectopic expression
of STAT3 in HCC cells abolished the TRAIL-
sensitizing effect of sorafenib (Chen et al. 2010).
Moreover, Liu et al. reported that IL-6 promoted
survival of human liver cancer cells through
activating STAT3 in response to doxorubicin
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treatment. Neutralizing IL-6 with anti-IL-6 an-
tibody decreased survival of SNU-449 cells in
response to doxorubicin. Also, targeting STAT3
with STAT3 siRNA reduced the protection of IL-
6 against doxorubicin-induced apoptosis, indicat-
ing that STAT3 signaling contributed to the anti-
apoptotic effect of IL-6. They also observed that
LLL12, a STAT3 small molecule inhibitor, can
block IL-6-induced STAT3 phosphorylation, re-
sulting in the attenuation of the antiapoptotic ac-
tivity of IL-6. Overall, these results demonstrated
that targeting STAT3 signaling could interrupt
the antiapoptotic function of IL-6 in HCC cells
(Liu et al. 2010a). Furthermore, Peroukides and
colleagues studied by immunohistochemistry the
protein expression of survivin in relation to cyclin
D1, p-STAT3, beta-catenin, E-cadherin, and p-
Akt in 69 cases of HCC and adjacent liver cir-
rhosis. Survivin was expressed in 63/69 (91.3 %)
cases of HCC and in 40/47 (85.1 %) cases of liver
cirrhosis. Survivin localization in HCC was ex-
clusively nuclear, while intense cytoplasmic and
low nuclear expression of survivin was observed
in cases of cirrhosis. Survivin expression in HCC
correlated significantly with low-grade tumors
and expression of cyclin D1 and p-STAT3. Ex-
pression of survivin in liver cirrhosis correlated
with downregulation of E-cadherin expression.
Overall, they noticed a clear association of nu-
clear survivin with well-differentiated HCC, as
well as with the expression of the cell cycle regu-
lator cyclin D1 (Peroukides et al. 2010). Interest-
ingly, Chen and coworkers recently reported that
a novel obatoclax derivative, SC-2001, can in-
duce apoptosis through SHP-1-dependent STAT3
inactivation in HCC cells (Chen et al. 2012b).

6.2.4 Cell Cycle Progression

It has been documented that the expression of
cyclin D1, which can associate with cdk4 or cdk6
and controls progression from G1 to S phase, is
elevated in STAT3-C expressing cells (Bromberg
et al. 1999). Also, several studies have shown
that dysregulated expression of cell cycle-related
proteins, such as cyclin D1, cyclin-dependent
kinase 4 (Cdk4), cyclin E, cyclin A, p16, and p27,

may significantly contribute to both HCC initia-
tion and progression (Subramaniam et al. 2013;
Matsuda and Ichida 2006). Guo and coworkers
recently showed that p27�/� mice display in-
creased proliferation and decreased apoptosis of
tumor cells, accompanied by an increase in the
serum inflammatory cytokines IL-6 and TNF-’.
Furthermore, they observed that the increased
number and STAT3 phosphorylation status of
infiltrated inflammatory cells was accompanied
by increased IL-6 and TNF-’ mRNA levels in
tumor and normal liver tissue in the p27�/� mice.
Overall, their data demonstrated that the loss of
p27 promotes carcinogen-induced HCC genesis
and progression via the elevation of inflammatory
cytokines and the augmented activation of STAT3
signaling in tumor cells and infiltrated inflamma-
tory cells (Guo et al. 2013). On the contrary, Hu
et al. found that low doses of NSC 78459 (a novel
STAT3 inhibitor) had little effect on HCC cell
proliferation but efficiently inhibited STAT3 ac-
tivation. Huh-7, Hep3B, and HepG2 cells, with
epithelial phenotypes, displayed significantly en-
hanced doxorubicin cytotoxicity following co-
treatment with NSC 74859, whereas mesenchy-
mal SNU-449 cells did not show significant en-
hancement. NSC 74859 inhibited STAT3 activity
and suppressed doxorubicin-induced epithelial-
mesenchymal transition (EMT) in epithelial HCC
cells. siRNA-mediated STAT3 knockdown re-
sulted in EMT inhibition, which led to attenu-
ation of NSC 74859-mediated chemosensitivity.
Collectively, their data indicated that STAT3 de-
activation and associated EMT attenuation con-
tribute to the synergistic antitumor effects of
combined NSC 74859/doxorubicin therapy (Hu
et al. 2012).

6.2.5 Angiogenesis

A large number of studies have implicated the
critical role of STAT3 in the process of angio-
genesis that facilitates formation of new blood
vessels from existing ones to supply nutrients to
tumor cells (Subramaniam et al. 2013; Folkman
1990). Ji and colleagues found that angiotensin
II (Ang II) can upregulate angiogenic factors
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production such as vascular endothelial growth
factor (VEGF), angiopoietin-2 (Ang-2), and Tie-
2 in HCC (MHCC97H) cells in a time- and
concentration-dependent manner. Moreover, Ang
II-induced JAK2 and STAT3 phosphorylation
was significantly suppressed by losartan but not
PD123319. Further, STAT3 phosphorylation and
SOCS3 expression induced by Ang II were ev-
idently impaired by AG490. More importantly,
SOCS3 siRNA remarkably reinforced Ang II-
induced VEGF, Ang-2, and Tie-2 generation in
MHCC97H cells (Ji et al. 2012). Additionally, it
has been also noticed that the cross-talk pathway
between AngII and the EGFR mediated by EGF-
like ligands cleaved by a disintegrin and metallo-
protease is involved in the proliferation and inva-
sion activities of several HCC cell lines (Itabashi
et al. 2008). Moreover, aberrant VEGF expres-
sion is considered to be an important clinical
feature in HCC and may correlate with HCC tu-
mor invasion and metastasis (Subramaniam et al.
2013; El-Assal et al. 1998). In another recent
study, Jia et al. tested the effect of a combina-
tion therapy consisting of endostatin (a powerful
angiogenesis inhibitor) and STAT3-specific small
interfering RNA, using a DNA vector delivered
by attenuated S. typhimurium, on an orthotopic
HCC model in C57BL/6 mice. Although antitu-
mor effects were observed with either single ther-
apeutic treatment, the combination therapy pro-
vided superior antitumor effects. Correlated with
this finding, the combination treatment resulted
in significant alteration of STAT3 and endostatin
levels and that of the downstream gene VEGF,
decreased cell proliferation, induced cell apopto-
sis, and inhibited angiogenesis (Jia et al. 2012).
Also, silencing of STAT3 expression by RNA
interference has been reported to significantly
inhibit expression of STAT3 mRNA and protein
and suppress the growth of human HCC in tumor-
bearing nude mice through the downregulation of
survivin, VEGF, and c-myc and upregulation of
p53 and caspase-3 expression (Li et al. 2009).
Interestingly, Lang and coworkers also found that
the dual inhibition of Raf and VEGFR2 reduces
growth and vascularization of HCC in a subcuta-
neous tumor model (Lang et al. 2008).

6.2.6 Cellular Invasion

Several studies have shown that STAT3 is inti-
mately linked to the process of tumor invasion
in HCC (Subramaniam et al. 2013). STAT3 ac-
tivation can modulate the expression of matrix
metalloproteinases MMP-1, MMP-2, and MMP-
9 which in turn can mediate tumor migration
and invasion (Subramaniam et al. 2013; Xie
et al. 2006). Yan and colleagues recently iden-
tified the presence of mesenchymal stem cells
(MSCs) in HCC tissues. They demonstrated that
liver cancer-associated MSCs (LC-MSCs) sig-
nificantly enhanced tumor growth in vivo and
promoted tumor sphere formation in vitro. LC-
MSCs also promoted HCC metastasis in an or-
thotopic liver transplantation model. cDNA mi-
croarray analysis showed that S100A4 expression
was significantly higher in LC-MSCs compared
with liver normal MSCs (LN-MSCs) from ad-
jacent cancer-free tissues and that S100A4 se-
creted from LC-MSCs can promote HCC cell
proliferation and invasion. They also noticed that
S100A4 promoted the expression of miR-155,
which mediates the downregulation of suppres-
sor of cytokine signaling 1 (SOCS1), leading to
the subsequent activation of STAT3 signaling.
This promoted the expression of MMP9, which
resulted in increased tumor invasiveness (Yan
et al. 2013). Lin et al. noticed significantly greater
STAT3 and tyrosine-phosphorylated STAT3 in
human HCC tissues than in human normal liver.
Further, in HCC cells with loss of response
to TGF-beta, NSC 74859, a STAT3-specific in-
hibitor, markedly suppresses growth. In contrast,
CD133 (C) status did not affect the response
to STAT3 inhibition: both CD133 (C) Huh-7
cells and CD133 (�) Huh-7 cells are equally
sensitive to NSC 74859 treatment and STAT3
inhibition. Thus, the TGF-beta/beta2 spectrin
(beta2SP) pathway may reflect a more functional
“stem/progenitor” state than CD133. Overall,
their findings indicate that inhibiting interleukin
6 (IL6)/STAT3 in HCCs with inactivation of
the TGF-beta/beta2SP pathway may be an ef-
fective approach in management of HCCs (Lin
et al. 2009).
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6.3 Link Between Oxidative
Stress and STAT3 Activation

Several reports in literature also indicate a critical
link between oxidative stress and STAT3 activa-
tion in various human malignancies, including
HCC (Wang et al. 2011; Toyokuni et al. 1995).
For example, a study by Kamata and coworkers
showed that inactivation of IKK-“ in HCC cells
or hepatocytes favors the accumulation of ROS
which oxidize the catalytic cysteine of various
protein tyrosine phosphatases (PTPs) (Kamata
et al. 2005), including SHP1 and SHP2 [the
phosphatases that dephosphorylate STAT3 and
JAK2] (Valentino and Pierre 2006). Oxidation of
SHP1 and SHP2 results in loss of their catalytic
activity and accumulation of phosphorylated and
activated JAK2 and STAT3, which stimulate the
proliferation and tumorigenic growth of NF-›B-
deficient HCC (He et al. 2010). Sustained oxida-
tive stress is continuously maintained in tumor
cells (Toyokuni et al. 1995). Interestingly, many
HCC risk factors, including HCV infection and
hepatosteatosis, cause oxidative stress (El-Serag
and Rudolph 2007; Parekh and Anania 2007;
Wang and Weinman 2006), and just like JNK,
STAT3 can also be activated in response to ROS
accumulation (He et al. 2010). STAT3 was re-
quired for the activation of several immediate-
early genes at the gene expression level, includ-
ing c-fos and junB. These two genes are the
most strongly affected immediate-early genes in
IL-6/livers, and their expression is likely to be
directly regulated by STAT3 because their full
transactivation requires the STAT-binding ele-
ments in their promoters (Wagner et al. 1990;
Coffer et al. 1995). In addition, a positive corre-
lation between c-jun and STAT3 was observed in
the HCC progression (Zhang et al. 1999), c-jun
being the first discovered nuclear proto-oncogene
(Maki et al. 1987). The c-Jun interaction does
not occur with STAT1. Furthermore, there are
a number of enhancer elements that contain c-
Jun and STAT3 sites. The transcription factor c-
Jun was found to interact with activated STAT3,
and STAT3 supplemented the transcriptional ac-
tivation capacity of c-Jun in a transfection assay
(Schaefer et al. 1995). These results suggest that

STAT3/JAKs signaling cascade may also con-
tribute to malignant transformation of hepato-
cytes besides Ras/Raf/ MAPK signaling pathway
in HCC (Feng et al. 2001). Also, Machida et al.
reported that HCV infection can cause production
of ROS and lead to the reduction of mitochon-
drial transmembrane potential (Delta Psi(m)) in
HCV-infected cell cultures. Furthermore, an in-
hibitor of ROS production, antioxidant N-acetyl-
L-cysteine (NAC), or an inhibitor of nitric oxide
(NO) prevented the alterations Delta Psi(m). The
HCV-induced DSB was also abolished by a com-
bination of NO and ROS inhibitors. These find-
ings indicated that the mitochondrial damage and
DSBs in HCV-infected cells were mediated by
both NO and ROS (Machida et al. 2006).

6.4 Conclusion and Perspectives

This chapter clearly indicates that STAT3 activa-
tion plays a major role in both HCC initiation
and development, and thereby the abrogation of
STAT3 activation using novel pharmacological
inhibitors can form the basis of future HCC ther-
apy. Interestingly, a number of strategies, includ-
ing the use of antisense oligonucleotide targeting
STAT3, synthetic drugs (including AG490, YC-
1, ENMD-1198, LLL12, NSC-74859, XZH-5,
sorafenib, and celecoxib), small molecules de-
rived from natural sources (diosgenin, “-escin,
butein, celastrol, ”-tocotrienol, garcinol, hon-
okiol, emodin, ursolic acid, capsaicin, resver-
atrol, curcumin), and gene therapy techniques
have been reported to suppress STAT3 signaling
cascade in different HCC cell lines and mouse
models. An important issue related to the safety
of these blockers still remains to be addressed as
inhibition of STAT3 in normal tissues may have
detrimental effects. Hence, to further develop
STAT3 pharmacological blockers for potential
clinical application, complete toxicological and
pharmacokinetics analysis in HCC mouse models
should be carried out in future studies.
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