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Abstract A novel fully, automatic, adaptive, robust procedure for brain tissue
classification from three-dimensional (3D) magnetic resonance head images (MRI)
is described in this paper. We propose an automated scheme for magnetic reso-
nance imaging (MRI) brain segmentation. An adaptive mean-shift methodology is
utilized in order to categorize brain voxels into one of three main tissue types: gray
matter, white matter, and cerebro spinal fluid. The MRI image space is charac-
terized by a high dimensional feature space that includes multimodal intensity
features in addition to spatial features. An adaptive mean-shift algorithm clusters
the joint spatial-intensity feature space, thus extracting a representative set of high-
density points within the feature space, otherwise known as modes. Tissue seg-
mentation is obtained by a follow-up phase of intensity-based mode clustering into
the three tissue categories. By its nonparametric nature, adaptive mean-shift can
deal successfully with nonconvex clusters and produce convergence modes that
are better applicant for intensity based categorization than the initial voxels. The
performance of this brain tissue classification procedure is demonstrated through
quantitative and qualitative validation experiments on both simulated MRI data
(10 subjects) and real MRI data (43 subjects). The proposed method is validated on
3-D single and multimodal datasets, for both simulated and real MRI data. It is
shown to perform well in comparison to other state-of-the-art methods without the
use of a preregistered statistical brain atlas.
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Introduction

A magnetic resonance imaging instrument (MRI scanner) uses powerful magnets
to polarize and excite hydrogen nuclei (single proton)) in water molecules in
human tissue, producing a detectable signal which is spatially encoded resulting in
images of the body. In brief, MRI involves the use of three kinds of electro-
magnetic field: a very strong (of the order of units of Tesla) static magnetic field to
polarize the hydrogen nuclei, called the static field; a weaker time-varying (of the
order of 1 kHz) for spatial encoding, called the gradient field(s); and a weak radio
frequency (RF) field for manipulation of the hydrogen nuclei to produce mea-
surable signals, collected through an RF antenna [1–3]. Like CT, MRI traditionally
creates a two-dimensional image of a thin ‘‘slice’’ of the body and is therefore
considered a tomographic imaging technique. Modern MRI instruments are
capable of producing images in the form of three-dimensional (3D) blocks, which
may be considered a generalization of the single-slice tomographic concept.
Unlike CT, MRI does not involve the use of ionizing radiation and is therefore not
associated with the same health hazards.

Fully automatic brain tissue classification from magnetic resonance images
(MRI) is of great importance for research and clinical studies of the normal and
diseased human brain. Operator assisted classification methods are non repro-
ducible, and also are impractical for the large amounts of data Automated MRI
segmentation systems classify brain voxels into one of three main tissue types:
gray matter (Gm), white matter (Wm), and Cerebro-spinal fluid (Csf). Volumetric
analysis of different parts of the brain is useful in assessing the progress or
remission of various diseases, such as Alzheimer’s disease, epilepsy, multiple
sclerosis, and schizophrenia. Both supervised and unsupervised approaches have
been used for this task. In the supervised approach, intensity values of labeled
voxel samples from each tissue (prototypes) must be provided during the learning
phase. In a subsequent classification phase, unlabeled voxels are classified using a
selected classifier. This method requires human interaction to select the prototypes
and is therefore semi-automatic. To avoid re-training the classifier for each new
scan, methods are required to normalize the intensity between MRI scans This
allows selecting the prototypes and training the supervised classifier on a reference
scan, following which voxels of any other scan, previously normalized with regard
to the reference scan, can be classified using the same classifier without further
human intervention. Unsupervised approaches often rely on a Gaussian approxi-
mation of the voxel intensity distribution for each tissue type. This is justified due
to the Rician behavior of the noise present in the MRI intensity signal [4].
A Gaussian mixture model (GMM) is fitted to the voxels intensity using the
expectation–maximization (EM) algorithm following which every voxel is
assigned to the tissue class for which it gives the highest probability. The GMM–
EM intensity-based framework has been refined to account for partial volume
effects and blood vessel signals that may alter Csf segmentation. However, using
intensity information alone has proven to be insufficient for a reliable automated

112 J. Bethanney Janney et al.



segmentation of the brain tissues. Local signal perturbations caused by additive
noise and multiplicative bias-fields are responsible for cluster overlaps in the
intensity feature space, resulting in poor tissue-class separability. Due to the
artifacts present, voxel-wise intensity-based classification methods, such as K-
means modeling and GMMs may give unrealistic results, with tissue class regions
appearing granular, fragmented, or violating anatomical constraints. Incorporating
spatial information via a statistical atlas provides a means for improving the
segmentation results. The statistical atlas provides the prior probability for each
pixel to originate from a particular tissue class [5–7]. Each tissue’s intensity is
modeled by a Parzen density fitted to voxels selected from an affine-registered
atlas. Co-registration of the input image and the atlas is critical in this scenario. It
is important to stress that an appropriate atlas does not always exist for the data at
hand. Two such cases are brain data with pathologies or brain data obtained from
young infants. An additional conventional method to improve segmentation
smoothness is to model neighboring voxels interactions using a Markov random
field (MRF) statistical spatial model. MRF-based algorithms are computationally
intensive, requiring critical parameter settings. It is possible to use MRF with
predefined settings, which is faster but possibly less accurate. Statistical modeling
frameworks can include the spatial information by augmenting the input feature
space. By appending the spatial position coordinates [x, y, z] to the intensity
features, a higher dimensional feature space is obtained where clusters represent
both voxels’ intensity and spatial position distribution. Clusters in the augmented
feature space are more closely related to the brain anatomy. This observation may
prove problematic for parametric models such as GMMs that implicitly assume
cluster convexity, as the brain anatomy cannot be decomposed into a small number
of convex regions in the joint spatial-intensity feature space. A recently published
solution includes using a large number of Gaussians per brain tissue, in order to
capture the complicated spatial layout of the individual tissues. Supervised clas-
sification by the K-nearest-neighbors algorithm in an augmented position-intensity
feature space has also been proposed In this case a manually segmented prototype
atlas or an anatomical template is aligned with the considered brain in order to
obtain the segmentation. An alternative to statistical parametric approaches is the
use of unsupervised nonparametric schemes. One such approach is the mean-shift
algorithm. Here, adaptive gradient ascent is used to detect local maxima of data
density in feature space. Data points are associated with local maxima, or modes,
thereby defining the clusters. Key characteristics of the mean-shift algorithm
include the fact that no initial cluster positions are required, as well as the fact that
the final number of extracted clusters is a result of the algorithm. A description of
the mean shift algorithm is provided. In recent years, mean-shift has been used for
image segmentation, object tracking, and medical image analysis applications in
the current work; the objective is to utilize the mean-shift formalism to provide a
robust segmentation framework for brain tissues in MRI that integrates spatial
information in a simple way without requiring the use of a statistical brain atlas or
HMRF modeling [8]. The developed framework, initially proposed is based on a
variation of the mean-shift algorithm, termed the adaptive mean-shift algorithm by
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assigning a distinct bandwidth to every data point, the adaptive mean-shift allows
for increased sensitivity to local data structure even in a higher dimensional feature
space corresponding to multimodal MRI.

The issues in the existing work are (1) A GMM is fitted to the voxels intensity
using the EM algorithm following which every voxel is assigned to the tissue class
for which it gives the highest probability. The GMM-EM intensity based frame-
work has been refined to account for partial volume effects and blood vessel
signals that may alter Csf segmentation. (2) A Markov random field (MRF) based
algorithms are computationally intensive, requiring critical parameter settings. It is
possible to use MRF with predefined settings, which is faster but possibly less
accurate. Statistical modeling frameworks can include the spatial information by
augmenting the input feature space [9, 10].

Our proposed work is that the developed framework, initially proposed is based
on a variation of the mean-shift algorithm, termed the adaptive mean-shift algo-
rithm By assigning a distinct bandwidth to every data point, the adaptive mean-
shift allows for increased sensitivity to local data structure even in a higher
dimensional feature space corresponding to multimodal MRI. We present an
automated segmentation framework for brain MRI volumes based on adaptive
mean-shift clustering in the joint spatial and intensity feature space. The method
was validated both on simulated and real brain datasets, and the results were
compared with state-of-the-art algorithms. The advantage over intensity-based
GMM EM schemes as well as additional state-of-the-art methods was demon-
strated. We will show that using the AMS framework, segmentation of the normal
tissues is not degraded by the presence of abnormal tissues.

Methodology

Proposed Algorithm

The fast adaptive mean-shift algorithm (FAMS) is utilized to analyze 3-D multi-
modal MRI data and provide segmentation maps of the three main tissue types
(Gm, Wm, Csf). One to four MRI modalities are available per segmentation task.
Standard preprocessing steps include: (1) brain parenchyma extraction using the
brain extraction tool (BET). The obtained brain masks were visually inspected and
corrected for outliers when needed. When a binary mask was available from the
dataset, it was used instead of applying BET. (2) Intensity in-homogeneities (bias)
correction by homomorphic low pass filtering and (3) Intensity values normali-
zation across input channels (input modalities) via linear histogram stretching
based on the darkest and brightest percentage points. The normalization sets the
darkest percent of voxels to zero and rescales the brightest percent to 4095. The
purpose is to obtain similar dynamic ranges for all the considered modalities.
Following the initial data processing, feature-vectors are extracted per input voxel.
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The set of feature-vectors is input to the adaptive mean-shift clustering stage of the
framework. The output of the clustering step is a set of modes which provides a
compact representation of the data. A follow-up merging stage is proposed to
further prune the initial set of modes. Finally the categorization of the resultant
modes into three categories, as defined in the brain segmentation task, is achieved
via an intensity-based clustering stage. Figure 1 shows a summarizing block
diagram for the proposed algorithm.

A. Pre processing module.
The initial data processing, feature-vectors are extracted per input voxel.
Intensity as well as spatial features (x, y, z voxel coordinates) is used for an
overall dimensionality of 3 ? n, where n is the number of input intensity
channels (modalities). The set of feature vectors is input to the adaptive mean-
shift clustering stage of the framework.

Fig. 1 Block diagram for the
proposed algorithm
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B. Fast adaptive mean-shift clustering.
The set of feature vectors is input to the adaptive mean-shift clustering stage of
the framework. The process starts by clustering the input feature vectors, which
represent the multimodal MRI brain data using the FAMS implementation of
the AMS algorithm.

In that AMS, we can include Locality-Sensitive Hashing. That can produce
optimal approximate neighborhood with radius. This stage, each feature vector
bears the label of its convergence mode, or cluster. Each mode obtained by the
clustering process expresses the local structure of the data in a given region of
the feature space. It should be emphasized that modes define clusters of
arbitrary shape, without any convexity constraints. The number of obtained
modes is an output of the fast adaptive mean-shift algorithm.

C. Iterative mode pruning module.
The number of modes is a large compression of the initial data but it is still
much larger than the targeted number of classes. A mode pruning step is
therefore required. In fact, we have used the nonparametric adaptive mean-shift
for clustering in the joint spatial-intensity feature space as the clusters are
inherently no convex. For the pruning of the modes, however, we switch to an
intensity-only feature space for which clusters can be conveniently approxi-
mated as convex, enabling the use of parametric models (i.e., multivariate
Gaussians). For this purpose, a pruning mechanism is added as follows. A
fixed-radius window is shifted across the intensity feature space (ignoring
spatial features), centered on each mode. Modes that co-exist within the win-
dow are merged. Mahalanobis distance is utilized for the distance computation.
For the computation of the Mahalanobis distance, a covariance matrix is
computed per mode from the intensity values of its corresponding voxels.
Therefore, the pruning of the initial modes list is performed until the largest
variance among all pruned modes exceeds a preset threshold. That can produce
Pruned mode list.

D. Voxel-weighted clustering module.
That results from the preceding clustering and pruning steps, is indicated by an
arrow in the color of the corresponding segmentation map. It can be observed
that the intensity value for each sample mode is closer to a peak of the whole
brain intensity distribution than for most of the voxels it represents. Therefore,
the modes intensity provides a higher probability classification into one of the
three tissue types than the intensities of the voxels they represent. The effect
observed at a single mode level is the sharpening of the intensity distribution
peaks (similar to the effect of a bias correction algorithm) which results in a
stronger intensity separation between the different tissue types. It can produce
the Final segmentation results.
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Results and Discussion

In this section, we present the performance of the proposed segmentation frame-
work on 3-D simulated and real datasets. Simulated data was downloaded from the
Brain web Simulated Brain Database (SBD) repository. Real data was downloaded
from the center for Morph metric Analysis. Mass-achusetts General Hospital
Repository, which is a standard repository for algorithm comparison (hereon
termed IBSR). Both qualitative and quantitative validation is conducted, with a
comparison to additional state of-the-art segmentation algorithms and the ground
truth data when available. The AMS framework performance on real data sets is
demonstrated. A set of 20 normal T1-weighted real brain data was downloaded
from the IBSR repository. Each volume consists of around 60 coronal T1 slices.
Segmentation overlap index values obtained with several segmentation algorithms
are available for comparison in the IBSR site. Three Sample slices are shown in
Fig. 2. The original data; the ground truth and the AMS segmentation are pre-
sented in Fig. 2 (a)–(c), respectively.

Fig. 2 Three sample slices from IBSR. a Input slices. b Ground truth. c AMS segmentation (Wm
in cyan, Gm in yellow, Csf in blue)

An Automatic MRI Brain Segmentation 117



Conclusion

We presented an automated segmentation framework for brain MRI volumes
based on adaptive mean-shift clustering in the joint spatial and intensity feature
space. The algorithm gave good results on noisy and biased data thanks to the
adaptive mean-shift ability to work with non-convex clusters in the joint spatial
intensity feature space as well as the mean-shift noise smoothing behavior. The
advantages of our work are although only a rudimental bias field correction step is
implemented and no spatial prior is extracted from an atlas, Moreover, by using
the adaptive mean-shift instead of the constant bandwidth algorithm, we ensure an
appropriate bandwidth value for each feature point without requiring per-dataset
manual tuning In the current implementation (Matlab and C), the typical algorithm
execution time is about 30 min for a four-modal 256 9 256 9 46 brain volume. As
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mean-shift runs a large loop on the whole feature vectors set, we believe that a full
C/Cþþ multithreaded implementation on a multicore PC can reduce by more than
half the running time. In future research, we will examine ways to improve the
current algorithm’s limitations. In particular, the current bandwidth selection
algorithm based on the k-nearest neighbor makes no use of application specific
information. Edge information, for instance, could help define the region of
influence of a kernel by a given point since edges generally delimit regions cor-
responding to different tissue types. Another important issue regards the final mode
merging step. Currently, it is based on the intensity clustering with k-means. This
provides a robust and straightforward way of getting the desired number of classes
tissue types but at the cost of losing some local spatial information contained in the
modes found with mean-shift. The proposed framework will be extended to
incorporate the detection of abnormal tissues such as sclerotic lesions and tumors.
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