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    Abstract     Coordinated interactions between plants and microbes have supreme impor-
tance for improving plant growth as well as maintaining proper soil conditions. 
Rhizosphere interactions that are based on complex exchange are more complicated 
than those occurring above soil surface or non-rhizosphere soil. Among diverse micro-
bial population, plant growth promoting rhizobacteria (PGPR) gain special attention 
owing to their multifarious functional characters like effective root colonization, hor-
mone production, solubilization of nutrients, and production of certain enzymes that 
are benefi cial for sustainable agriculture. An understanding about their ecology, 
growth-promoting traits, mechanisms of action, and their application for plant growth 
stimulation has key importance for maximum utilization of this naturally occurring 
population. The present review highlights the importance of PGPR for enhancing crop 
production. The mechanisms of plant growth promotions as well as effectiveness of 
PGPR under different environments have been discussed. The effectiveness of multi-
strain inocula over single strain has been explained with examples. Also, the limitations 
related to the use of bacterial inoculants under natural fi eld conditions and some impor-
tant basics related to their formulation and commercialization have been discussed.  

        Plant Growth Promoting Rhizobacteria: A Novel 
Source in Plant Growth Promotion 

 The zone surrounding the plant roots called as rhizosphere is a region of maximum 
microbial activity compared to surrounding soil (Hiltner  1904 ). This environment is 
a favorable habitat for microbial growth that exerts a potential impact on plant 
health as well as soil fertility (Podile and Kishore  2006 ). A number of benefi cial 
microorganisms are associated with the root system of higher plants which depend 
on the exudates of these roots for their survival (Whipps  1990 ). In soil environment, 
particularly in rhizosphere, plants are mostly colonized by microbes (Berg et al. 
 2005 ). A variety of compounds present in root exudates including polysaccharides 
and proteins enable the bacteria to colonize plant roots (Somers et al.  2004 ; 
Rodriguez-Navarro et al.  2007 ). Due to competition for nutrients, those microbial 
populations having better ability to degrade complex compounds like chitin, cellu-
lose, and seed exudates can survive better in such environment (Baker  1991 ). 
Among the diverse microbial population, bacteria are the most abundant microor-
ganisms that competitively and progressively colonize the plant roots. Among this 
large bacterial population, a number of bacterial strains are considered as very 
important owing to their metabolically and functionally diverse characteristics. 
These are free-living plant growth promoting rhizobacteria (PGPR) that promote 
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plant growth by root colonization (Kloepper et al.  1989 ) and have been studied 
extensively due to their optimistic effect on plant growth and development. These 
PGPR belonging to some important genera include  Serratia ,  Bacillus ,  Pseudomonas , 
 Burkholderia ,  Enterobacter ,  Erwinia ,  Klebsiella ,  Beijerinckia ,  Flavobacterium , 
and  Gluconacetobacter  (Podile and Kishore  2006 ; Dardanelli et al.  2009 ; Nadeem 
et al.  2010b ). These PGPR enhance plant growth through various mechanisms like 
synthesizing a compound essential for plant and facilitating the host in nutrient 
uptake and also through disease prevention (Glick  1995 ). The major mechanisms 
used by PGPR can be divided into two categories, i.e., direct and indirect mecha-
nisms. Phosphate solubilization and phytohormone and siderophore production are 
some examples of direct growth promotion (Kloepper et al.  1989 ; Glick et al.  1995 ; 
Ayyadurai et al.  2007 ), while indirect growth promotion occurs by inhibiting the 
growth of plant pathogens (Glick and Bashan  1997 ; Persello-Cartieaux et al.  2003 ; 
Ravindra Naik et al.  2008 ). In addition to these general growth promotion mecha-
nisms, PGPR also protect the plant from the deleterious effects of environmental 
stresses by some particular mechanisms. These include lowering of stress-induced 
ethylene, production of exopolysaccharides, regulating nutrient uptake, and enhanc-
ing the activity of antioxidant enzymes (Sandhya et al.  2009 ; Glick et al.  2007 ). 
There are a number of reports that show outstanding role of this natural microbial 
population for improving plant growth and development in normal as well as stress 
environment (Zahir et al.  2004 ; Glick et al.  2007 ; Jha et al.  2009 ; Tank and Saraf 
 2010 ; Nadeem et al.  2010b ). 

 Better plant growth promotion depends upon positive plant–microbe interac-
tions. Belowground plant–microbe interactions are more complex than those 
occurring above the soil surface (Bais et al.  2004 ), and understanding of these 
interactions is crucial for maintaining plant growth and health (Barea et al.  2005 ). 
The plant–microbe interactions as well as interactions between other rhizosphere 
microorganisms are still not much clear, and literature shows that most of these 
interactions are complex in nature. An understanding about microbial ecology, 
their growth-promoting traits, mechanisms of action, and their application for 
plant growth stimulation is of pivotal importance for maximum utilization of this 
naturally occurring population. The diverse study of PGPR is important not only 
for understanding their ecological role and interactions with plants but also for 
biotechnological applications (Berg et al.  2002 ).  

    Plant Growth Promotion Mechanisms 

 Plant growth promotion by PGPR is a well-known phenomenon, and this growth 
enhancement is due to certain traits of rhizobacteria. Some of these traits are 
very common among certain bacterial species; however, other traits might be 
specifi c with some particular species. There are a number of mechanisms used 
by PGPR for enhancing plant growth and development in diverse environmental 
conditions (Fig.  2.1 ). In general, PGPR work as phytostimulators, biofertilizers, 
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biocontrol agent, root colonizers, and environmental protectors (Vessey  2003 ; 
Zahir et al.  2004 ). Some of the important and valuable mechanisms are dis-
cussed in the following sections.

      Phytostimulation 

 One of the direct growth promotion mechanism used by PGPR is the production of 
phytohormones including indole acetic acid, abscisic acid, cytokinins, gibberellins, 
and ethylene. There are a number of reports which advocate the effectiveness of 
these growth regulators for enhancing plant growth and development (Zahir et al. 
 2004 ; Glick et al.  2007 ). These phytohormones enhance the plant growth by virtue 
of their positive effect on cell division, cell enlargement, seed germination, root 
formation, and stem elongation (Taiz and Zeiger  2000 ; Khalid et al.  2006 ). 
Phytohormones infl uence the physiological processes of plants and facilitate plant 
growth by altering the hormonal balance (Asghar et al.  2004 ; Kang et al.  2006 ). 
These phytohormones are equally effective in normal and stress conditions. For 
example, ABA abscisic acid (ABA) helps plant in stress conditions (Zhang et al. 
 2006 ) and plays an important role in the photoperiodic induction of fl owering 

  Fig. 2.1    Mechanisms used by PGPR for enhancing plant growth       
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(Wilmowicz et al.  2008 ). Patten and Glick ( 2002 ) observed 35–50 % longer roots in 
canola inoculated with wild-type GR12-2 compared to IAA-defi cient mutant and 
uninoculated control. Fassler et al. ( 2010 ) demonstrated the importance of IAA in 
stress alleviation of sunfl ower. Seed inoculation with wild-type GR12-2 induced the 
formation of tap roots that were 35–50 % longer than the roots from seeds treated 
with the IAA-defi cient mutant and the roots from uninoculated seeds. Similarly, 
many  Pseudomonas ,  Bacillus , and  Azospirillum  spp. produce cytokinin and gibber-
ellins (Gamalero and Glick  2011 ), and positive effects on plant biomass have been 
reported by these hormones (Gutierrez-Manero et al.  2001 ; Arkhipova et al.  2005 ; 
Spaepen et al.  2009 ). Steenhoudt and Vanderleyden ( 2000 ) demonstrated that the 
main mechanism used by  Azospirillum  for enhancing plant growth is the production 
of phytohormones. Although commercially available phytohormones are also used 
for promoting plant growth, however, microbially produced phytohormones are 
more effective due to the reason that the threshold between inhibitory and stimula-
tory levels of chemically produced hormones is low, while microbial hormones are 
more effective by virtue of their continuous slow release (Khalid et al.  2006 ).  

    Biofertilization 

 The potential of PGPR to enhance plant growth and their participation in carbon, 
nitrogen, sulfur, and phosphorous cycling increase the effectiveness of PGPR in 
sustainable agriculture. The application of PGPR for increasing nutrient availability 
for plants is an important and necessary practice (Freitas et al.  2007 ) and is very 
helpful for increasing the nutrient concentration of certain essential elements like N, 
P, K, Ca, Mg, Zn, Fe, and Mn (Dursun et al.  2010 ). Inoculation of cotton with PGPR 
showed enhanced uptake of N, P, K, and Ca (Yue et al.  2007 ), and similarly PGPR 
inoculation also enhanced the nutrient content of salinity-stressed maize (Nadeem 
et al.  2006 ). 

 The conversion of insoluble form of phosphorus to make them plant-available 
form is a common mechanism of various PGPR strains and plays important role to 
fulfi ll the phosphorus requirement of plant. Phosphate-solubilizing bacteria are 
common in the rhizosphere (Ravindra Naik et al.  2008 ; Jha et al.  2009 ) that solubi-
lize inorganic phosphate by various mechanisms like production of organic and 
inorganic acids, release of H ions, and production of chelating substances and 
through enzymes like phosphatase (Rodriguez et al.  2004 ; Gamalero and Glick 
 2011 ). Also, the exopolysaccharides produced by these bacteria have indirect effect 
on phosphate solubilization by binding free phosphorus (Yi et al.  2008 ). It was also 
observed that cold-tolerant species were able to solubilize P at low temperature 
(Selvakumar et al.  2008 ). The application of P-solubilizing bacteria can solve the 
problem of P precipitation in the soil and therefore increase its availability to plants 
(Lin et al.  2006 ). The role of PGPR to improve the uptake of other macronutrients 
has also been established. Inoculation of  Pseudomonas  sp. having the ability to 
stimulate calcium (Ca) uptake caused signifi cant improvement in tomato growth 
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and also reduced blossom-end rot of tomato fruits that generally occurs due to Ca 
defi ciency (Lee et al.  2010 ). Similarly, the solubilization of biotite by silicate 
mineral- solubilizing bacteria like  Bacillus  sp. can enhance the availability of K +  to 
plants (Sheng et al.  2008 ). 

    The production of low-molecular-weight ferric-chelating compound siderophores 
directly increases the iron availability for plant (Robin et al.  2008 ) and indirectly pro-
tects the plant from pathogenic organisms (Singh    et al.  2010b ). Siderophores play 
important role in iron nutrition of plants (Jin et al.  2006 ). Vansuyt et al. ( 2007 ) reported 
that Fe–pyoverdine complex synthesized by  Pseudomonas fl uorescens  C7 was effi -
ciently taken up by the  Arabidopsis thaliana  that resulted in enhanced iron content in 
plant tissue and better growth. Similarly, bacterial strains improved maize growth 
through biofertilization and phytostimulation mechanisms (Marques et al.  2010 ). 

 Certain bacteria can fi x atmospheric nitrogen and make it available for plant. The 
symbiotic relationship between legumes and nitrogen-fi xing bacteria and nitrogen 
fi xation by free-living bacteria without forming association is a source of nitrogen 
for plant (Carvalho et al.  2010 ). Co-inoculation of PGPR with rhizobia caused posi-
tive effect on nitrogen fi xation, plant biomass, and grain yield in various crops like 
alfalfa, soybean, and pea (Bolton et al.  1990 ; Dashti et al.  1998 ; Tilak et al.  2006 ). 
Similarly,  Azospirillum  sp. have the potential to increase nitrogen fi xation (Rai and 
Hunt  1993 ) which can contribute about 70 % of the total nitrogen requirement of the 
host plant (Malik et al.  1997 ). The presence of such bacteria also enhances ability 
of plant to use nitrogen effi ciently and minimizes its leaching and denitrifi cation 
losses. Some important genera of such bacteria include  Enterobacter ,  Klebsiella , 
 Pseudomonas , and  Rhizobium  (James  2000 ). 

 Zinc is also an essential nutrient and in defi cient soils the solubilization of Zn 
near the root zone can alleviate the defi ciency for plants. The Zn solubilization 
by sugarcane-associated  Gluconacetobacter diazotrophicus  has been demon-
strated by Saravanan et al. ( 2008 ). The inoculation with  Burkholderia cepacia  
enhanced Zn uptake, its translocation from root to shoot, and improved plant 
growth (Li et al.  2007 ). 

 Due to high price and certain environmental concerns about the chemical fertil-
izers, the use of PGPR in the form of biofertilizers is an effective supportive strategy 
to provide crop nutrition (Cakmakci et al.  2006 ). The use of PGPR inoculants as 
biofertilizer provides a promising support to chemical fertilizers. Moreover the use 
of PGPR with inorganic fertilizer can increase the availability of nutrients to the 
crops (Kumar et al.  2009 ) and therefore could be useful for increasing effi ciency of 
these fertilizers in one hand and also reducing their quantity on other.  

    Root Colonization and Rhizosphere Competence 

 Rhizosphere is a complex habitat with temporal and spatial changes where plant 
and microbial populations interact with each other and are affected by a number 
of biotic and abiotic factors. The success of bacteria to enhance plant growth 
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depends on its potential to colonize the plant root. The signifi cant effects of 
microbial inoculation cannot be obtained unless the environment supports growth 
and survival of these introduced microorganisms (Devliegher et al.  1995 ). The 
ineffectiveness of PGPR, particularly in fi eld conditions, is due to their inability 
to colonize plant root properly (Bloemberg and Lugtenberg  2001 ). One of the 
aspects of better root colonization is the ability of the bacteria to compete with the 
indigenous microbial populations. Being the most abundant microorganisms, it is 
very likely that bacteria can cause great effect on plant physiology owing to their 
better competitiveness for root colonization (Barriuso et al.  2008 ). Literature 
shows that certain PGPR strains have ability to tolerate unfavorable environment 
(Paul and Nair  2008 ; Malhotra and Srivastava  2009 ) and therefore can be consid-
ered as the best population for promoting crop production. 

 The microbes use different strategies for their survival in the environment. 
The success of these strategies depends upon their ability to adapt to the nutrient-
limited conditions, effi cient utilization of root exudations, as well as their inter-
action with plants (Devliegher et al.  1995 ; Van Overbeek and Van Elsas  1997 ). In 
soil environment, the survival of the inoculated bacteria depends on the avail-
ability of an empty niche, so that they can compete effectively with better adopted 
native microbial population (Rekha et al.  2007 ). It has been observed that PGPR 
which possess some particular traits like ACC-deaminase activity and the pro-
duction of antioxidant enzymes, exopolysaccharides, and organic solutes have 
some selective advantages over other bacteria under stress environment (Mayak 
et al.  2004a ,  b ; Saravanakumar and Samiyappan  2007 ; Sandhya et al.  2009 ). A 
variety of compounds, like surface proteins and polysaccharides, have a good 
role in adherence of bacteria to plant root (Dardanelli et al.  2003 ; Rodriguez-
Navarro et al.  2007 ), and such bacteria have competitive advantages to colonize 
plant roots because these exopolysaccharides help them to attach and colonize 
the roots due to fi brillar material that permanently connects the bacteria to root 
surface (Sandhya et al.  2009 ).  

    Enzymatic Activity 

 Growth enhancement through enzymatic activity is another mechanism used by 
PGPR. Bacterial strains can produce certain enzymes such as cellulase, ACC- 
deaminase, and chitinase. Through the activity of these enzymes, bacteria play a 
very signifi cant role in plant growth promotion particularly to protect them from 
biotic and abiotic stresses. For example, the reduction of elevated level of ethylene 
under stress by ACC-deaminase activity and disease suppression by chitinase activ-
ity are common mechanisms used by PGPR (Glick et al.  2007 ; Nadeem et al. 
 2010b ). Similarly, the enhancement of nodule formation by rhizobia might be 
due to the production of hydrolytic enzymes such as cellulase which could make 
penetration of rhizobia into root hairs leading to increased numbers of nodules 
(Sindhu and Dadarwal  2001 ).  
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    Growth Enhancement Through Vitamins 

 Vitamins are organic nutritional factors that infl uence the growth of living organisms. 
In addition to the vitamins present in root exudates as a source for bacterial growth 
(Mozafar and Oertli  1993 ), certain bacterial species also produce vitamins (Dahm 
et al.  1993 ). Like other growth promoting traits of PGPR, the production of vitamins 
also causes positive effect on plant growth and development (Derylo and Skorupska 
 1993 ; Azaizeh et al.  1996 ; Dakora  2003 ). More root colonization ability of vitamin-
producing  Pseudomonas fl uorescence  has been observed (Marek- Kozaczuk and 
Skorupska  2001 ). Similarly, co-inoculation of vitamin-producing  P. fl uorescence  
and  Rhizobium  stimulated the growth and symbiotic nitrogen fi xation in clover 
plants (Marek-Kozaczuk et al.  1996 ).  

    Biocontrol Activity 

 Biocontrol mechanisms for diseases suppression are an important strategy against a 
number of plant pathogens that cause reduction in crop yield. PGPR also act as 
effective biocontrol agents by suppressing the effect of diseases (Kotan et al.  2009 ) 
and provide protection to the plants against harmful pathogens. The PGPR use cer-
tain mechanisms including competition, antibiotic production, degradation of fun-
gal cell wall, and sequestering iron by the production of siderophores (Velazhahan 
et al.  1999 ; Siddiqui  2006 ; Ramyasmruthi et al.  2012 ). 

 Cell wall degrading enzymes are very important for controlling the phytopatho-
genic fungi (Picard et al.  2000 ). Chitinase, cellulase, and lyases are well-known 
fungal cell wall degrading enzymes (Inbar and Chet  1991 ; Lorito et al.  1996 ; 
Ayyadurai et al.  2007 ). These enzymes play very important role by suppressing the 
onset of diseases. The presence of chitinase enzyme in  Pseudomonas  sp. inhibits 
the growth of  Rhizoctonia solani  by degrading the cell wall (Nielsen et al.  2000 ). 
A volatile antibiotic hydrogen cyanide produced by certain bacterial strains also 
plays role in disease suppression. Suppression of black rot of tobacco by HCN 
producer  Pseudomonas  strain was observed by Voisard et al. ( 1981 ). The produc-
tion of siderophores by the bacteria reduces the availability of iron to fungi (   Sayyed 
et al.  2008 ), therefore causing negative impact on its growth (Arora et al.  2001 ). 
Matthijs et al. ( 2007 ) reported the suppression of disease caused by  Pythium  sp. 
owing to siderophores that decreased the availability of iron for fungal growth. It 
is also an evident fact that fungi are unable to absorb the iron–siderophore complex 
that causes unavailability of iron to pathogenic fungus (Solano et al.  2009 ). 
Bacterial siderophores are also suggested to be involved in inducing systemic 
resistance (ISR) that enhances plant’s defensive capacity against pathogens. 
Enhanced ISR in tomato has been reported by siderophores, pyochelin, and pyo-
cyanin (Audenaert et al.  2002 ). Similarly, a number of reports have shown the 
effectiveness of PGPR for enhancing ISR against various fungal and viral diseases 
(Radjacommare et al.  2002 ; Saravanakumar et al.  2007 ). Systemic resistance can 
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also be induced by a mechanism where inducing bacteria and pathogen remain 
separated without showing any direct interaction (Ryu et al.  2004 ). 

 The disease suppression by PGPR also occurs by the production of antibiotics. 
The antibiotics in addition to suppressing the pathogen also induce systemic resis-
tance in the plant. The synergistic interaction between antibiotics and ISR further 
increases resistance against pathogens (Jha et al.  2011 ). The  Bacillus thuringiensis , 
having the ability to produce insecticidal protein (Singh et al.  2010a ), can be used 
as biocontrol agent. 

 In addition to above-discussed mechanisms, certain environmental factors like 
water, soil pH, temperature, nutrient contents, and competition for root exudates as 
well as indigenous microbial population affect the ability of an organism to colonize 
the plant root. The exclusion of pathogenic organisms from the rhizosphere is one 
of the signifi cant mechanisms to protect the plant from deleterious effect of such 
disease-causing organisms. Above discussion shows that owing to their number of 
mechanisms, PGPR have great competitive advantages over pathogens and could be 
very effective for protecting the plant from their attack by suppressing their growth.  

    Removal/Detoxifi cation of Organic and Inorganic Pollutants 

 Plant growth promotion by PGPR inoculation is also due to reduction and 
improving plant tolerance against heavy metals (Belimov et al.  2005 ; Sheng 
et al.  2008 ). Bacteria use different intra and extra mechanisms to detoxify the 
adverse effects of heavy metals in their tissues. These mechanisms include pro-
duction of proteins which absorb heavy metals and detoxifi cation by taking them 
in vacuoles (Gerhardt et al.  2009 ; Giller et al.  2009 ). The mechanisms used by 
PGPR for tolerating and detoxifying of heavy metals may also vary among bacte-
rial species and also for different metals. For example, microbes can detoxify 
zinc (Zn) by binding it in the outer membrane, by producing Zn-binding protein, 
and/or by complexation of organic acids (Appanna and Whitmore  1995 ; 
Choudhury and Srivastava  2001 ). Bacterial inoculation resulted in degradation of 
chlorobenzoates and pesticides (Crowley et al.  1996 ; Siciliano and Germida 
 1997 ) and the enhancement of plant growth by PGPR inoculation in highly con-
taminated soils (Gurska et al.  2009 ). 

 The production of siderophores by metal-resistant bacteria plays an important 
role in the successful survival and growth of plants in contaminated soils by alleviat-
ing the heavy metal stress-imposed impact on plants (Belimov et al.  2005 ; Braud 
et al.  2006 ; Rajkumar et al.  2010 ). Also, the production of enzymes and certain 
hormones which mobilize heavy metals and plant–microbe interactions affects the 
process of bioremediation (Abbas-Zadeh et al.  2010 ). For example, the inoculation 
of  Lupinus luteus  with genetically engineered nickel-resistant  B. cepacia  showed 
high nickel concentration that was approximately 30 % more than uninoculated 
control (Lodewyckx et al.  2001 ). The application of such bacteria could be helpful 
for the removal of heavy metals from the environment.  
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    Enhancement of Photosynthetic Activity 

 Photosynthesis is considered as one of the very important reactions in plant growth 
and development. Under stress environment, reduction in photosynthesis occurs that 
might be due to decrease in leaf expansion, premature leaf senescence, impaired pho-
tosynthetic machinery, and associated reduction in food production (Wahid and Rasul 
 2005 ). PGPR enable the plants to maintain their growth by causing positive effect on 
photosynthesis. Drew et al. ( 1990 ) reported that reduction in photosynthetic activity 
might be due to osmotic stress and closing of stomata; however, the application of 
PGPR minimized this negative impact and caused signifi cant increase in photosynthe-
sis (Golpayegani and Tilebeni  2011 ). Heidari and Golpayegani ( 2011 ) observed 
enhancement in chlorophyll contents in drought stress basil ( Ocimum basilicum  L.) 
by PGPR application. More improvement in chlorophyll content was observed where 
PGPR were applied in combination than alone. The increase in shoot length, chloro-
phyll content, and dry weight was observed when banana plants were inoculated with 
PGPR (Mia et al.  2010a ). According to them, this growth enhancement in addition to 
other factors was likely to be due to the higher accumulation of nitrogen that contrib-
uted to chlorophyll formation which consequently increased the photosynthetic activ-
ity. While Xie et al. ( 2009 ) demonstrated that enhanced photosynthetic activity in 
 Arabidopsis  by volatile emission from  Bacillus subtilis  might be due to accumulation 
of iron, because iron is often a limiting ion in photosynthesis. They also observed 
that when bacterial volatile signal was withdrawn, the photosynthetic capacity and 
iron content returned to untreated levels. The importance of iron has already been 
documented by Spiller and Terry ( 1980 ) who demonstrated that biogenesis of the 
photosynthetic apparatus makes heavy demands of iron availability.  

    Stress Tolerance 

 Due to sophisticated signaling system, microbes develop high degree of adaptability 
to environmental stresses. Bacteria are well known for their ability to tolerate the 
stress conditions due to their exceptional genetic makeup. The PGPR strains have 
showed tolerance against stress conditions like salinity and drought (Sandhya et al. 
 2009 ; Tank and Saraf  2010 ). Andre’s et al. ( 1998 ) demonstrated great resistance 
ability of  Bradyrhizobium   japonicum  against high doses of thiram. Although the 
microbial adaptations to such situations are diffi cult to understand (Spaepen et al. 
 2009 ), however, it might be due to some of their particular traits which enable them 
to survive under unfavorable conditions. For example, production of exopolysac-
charides (EPS) by the bacteria protects them against unfavorable conditions and 
enhances their survival (Sandhya et al.  2009 ; Upadhyay et al.  2011b ). In an earlier 
study, Hartel and Alexander ( 1986 ) also showed a signifi cant correlation between 
the amount of EPS produced by the bacteria and their desiccation tolerance. The 
accumulation of poly-β- hydroxybutyrate during saline conditions and other osmo-
protectants like proline and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine 
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carboxylic acid) are protective measures taken by bacteria to survive under stress 
conditions (Bernard et al.  1993 ; Arora et al.  2006 ). The occurrence of such stress-
tolerant strains could be very effective for improving soil fertility and enhancing 
plant growth (Mayak et al.  2004a ; Egamberdieva and Kucharova  2009 ), and appli-
cation of such stress-resistant strains could also be very useful for enhancing plant 
growth under stress environment (Glick et al.  2007 ; Nabti et al.  2010 ). The above-
discussed mechanisms not only show the abilities of bacterial strains to withstand 
in variable soil environmental conditions but also enable them to compete effec-
tively with the other microbial population. These mechanisms could be very useful 
for maintaining proper soil conditions and promoting sustainable agriculture.   

    Application of Rhizobacteria for Plant Growth Promotion 

 Owing to their well-established growth promoting abilities, PGPR are being used 
effectively for enhancing crop production. The growth promoting abilities of PGPR 
have been observed in laboratory under control conditions as well as in natural 
greenhouse and fi led conditions. The crop improvement by PGPR inoculation under 
normal and stress environment has been reviewed by various workers (Zahir et al. 
 2004 ; Glick et al.  2007 ; Nadeem et al.  2010b ; Ahemad and Khan  2011 ). 

    Growth Promotion Under Normal Conditions 

 The use of PGPR is an effective biological approach to increase crop yield and is 
applied to a wide range of agricultural species. Inoculation with PGPR promotes 
plant growth through phytohormone production, phosphate solubilization, sidero-
phore production, regulation of hormonal level, and certain other mechanisms 
which have been discussed in the previous section. The root length of canola, let-
tuce, tomato, barley, wheat, and oats increased when seeds of these crops were 
treated with PGPR (Hall et al.  1996 ). Qiaosi et al. ( 2005 ) also reported that the 
roots of inoculated plants were more in number and longer than untreated control. 
   This growth enhancement is due to common and some particular trait of bacteria, 
as is evident from the work of Cattelan et al. ( 1999 ) who tested eight strains of 
PGPR for their growth-promoting activity in soybean. They examined that six 
strains promoted growth more as compared to other, and they observed that these 
strains contained ACC-deaminase activity in addition to other characteristics. The 
growth enhancement by the PGPR has also been reported under natural fi eld con-
ditions. Inoculation with PGPR increased the dry weight of leaf, stem, and grain 
of maize (Gholami et al.  2012 ). They observed that inoculation caused signifi cant 
effects on leaf area index and crop growth index. A number of other studies have 
also shown the importance of PGPR for improving plant growth and development, 
and some selected examples have been mentioned in Table  2.1 .
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   Considerable work conducted by different researchers shows that PGPR can 
be used as biofertilizers, and, thus, the use of chemical fertilizer can be reduced 
(De Freitas et al.  1997 ; Rabouille et al.  2006 ). Work of Godinho et al. ( 2010 ) 
showed that application of four PGPR strains having various growth-promoting 
traits enhanced biomass of eggplant due to balanced nutrient availability and 
uptake. This growth promotion was also associated with other growth-promot-
ing traits especially indole acetic acid and siderophores. Similarly in a green-
house study, the application of six bacterial strains on maize plant promoted 
root and shoot growth and the nutrient status of plant particularly nitrogen and 
phosphorus (Marques et al.  2010 ). Such fi ndings have confi rmed the perspec-
tives of PGPR as phytostimulators and biofertilizer for agricultural crops. These 
microbes are also equally effective for promoting growth of fruit trees like 
apple, apricot, strawberry, plum, and mulberry (Sudhakar et al.  2000 ; Esitken 
et al.  2006 ,  2010 ; Karakurt and Aslantas  2010 ; Erturk et al.  2012 ). Early studies 
conducted by most of the workers show growth- promoting activity of the PGPR 
by some common direct and indirect mechanism; however, the production of 
volatile compound by the bacteria is another growth-promoting mechanism. 
Zou et al. ( 2010 ) found that volatile compounds produced by  Bacillus megate-
rium  had great growth promotion activity in  A. thaliana . The fresh weight of 
inoculated plants was twofold more than uninoculated. They suggested that 
2-pentylfuran is a compound that plays an important role in the plant growth 
promotion activity of this bacterial strain. Prior to this work, Ryu et al. ( 2003 ) 
showed the growth promotion of  A. thaliana  by the volatile compounds 
2,3-butanediol and acetoin.  

    Effectiveness in Stress Agriculture 

 Environmental stresses are the most limiting factors for crop productivity.    Both 
biotic and abiotic stresses including salinity, drought, extreme temperature, chill-
ing, heavy metals, and insect and pathogen attack are the most detrimental and 
common stresses plants face in the natural environments. These stresses affect the 
normal plant processes in one or other way and therefore cause signifi cant reduc-
tion in crop yield. PGPR inoculation also proved effective for alleviating the nega-
tive impact of these stresses. In addition to improved plant growth under normal 
conditions, PGPR have great potential for enhancing plant growth under adverse 
conditions. PGPR use various mechanisms to combat these stresses and enable 
the plant to maintain their growth under stress environment (Fig.  2.2 ). There are a 
number of reports elaborating the effectiveness of PGPR for improving plant 
growth under stress environment (Glick et al.  2007 ; Nadeem et al.  2010b ; Nabti 
et al.  2010 ). The PGPR strains were found equally effective for this growth pro-
motion in variable stress environment like salinity, drought, heavy metal, nutrient 
stress, and pathogen. Some of the selected examples have been discussed in this 
section and also listed in Table  2.2 .
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  Fig. 2.2    Impact of environmental stresses on plant growth and effectiveness of PGPR for mitigat-
ing this negative impact       

       Abiotic Stress Tolerance 

 Among various stresses, salinity and drought are the most common that cause 
adverse effects on crop production in most of the arid and semiarid regions of the 
world. Salinity limits the production of nearly over 6 % of the world’s land and 
20 % of the irrigated land (Rhoades et al.  1992 ; Munns  2005 ). The changes in envi-
ronmental scenario result in increasing aridity due to decrease in annual rainfall and 
because of agriculture under sustained pressure to feed an ever-increasing popula-
tion. Water limitation in the growing medium reduces diffusion, nutrient uptake by 
roots, and transport of nutrients from roots to shoots due to restricted transpiration 
rate, impaired active transport, and altered membrane permeability (Sardans et al. 
 2008a ,  b ). Similarly, under salinity stress, increasing Na +  contents cause an increase 
in Na +  uptake and, in general, decrease in K +  and Ca 2+  contents of plant. Moreover, 
under stress conditions, plants produce signifi cant quantity of ethylene which can 
damage them due to negative impact on roots, and it can also cause epinasty, prema-
ture senescence, and abscission (Nadeem et al.  2010b ). Many efforts have been 
made to understand the adaptive mechanisms of stress tolerance. These include the 
reduction of stress ethylene, reduction of toxic ion uptake such as Na + , and forma-
tion of stress-specifi c protein in plants. Microbial inoculation to alleviate stresses in 
plants could be a more cost-effective and environment-friendly option which could 
be available in a shorter time frame. 
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 Stress environment can also make physicochemical and biological properties of 
soil unsuitable for microbial and plant growth. However, particular characteristics 
of certain bacteria enable them to survive under such harsh environments. 
For example, certain bacterial strains have the ability to tolerate high salinity, and, 
similarly, the production of exopolysaccharides by the bacteria protects them from 
water stress. Besides developing mechanisms for stress tolerance, microorganisms 
can also impart some degree of tolerance to plants toward abiotic stresses like 
drought, salinity, metal toxicity, and high temperature (Grover et al.  2011 ). The 
exopolysaccharides released into soil can be adsorbed by clay particles and form 
a protective layer around soil aggregates (Tisdall and Oades  1982 ) and, therefore, 
protect the plant from desiccation. Moreover, exopolysaccharide production 
increases root colonization of microbes (Santaella et al.  2008 ), improves soil 
aggregation (Sandhya et al.  2009 ), channelizes water and nutrients to plant roots 
(Tisdall and Oades  1982 ; Roberson and Firestone  1992 ), and forms biofi lm 
(Seneviratne et al.  2011 ) which is benefi cial to plant growth and development. 
Alami et al. ( 2000 ) observed a signifi cant increase in root-adhering soil per root 
tissue (RAS/RT) ratio in sunfl ower rhizosphere inoculated with the EPS-producing 
rhizobial strain YAS34 under drought conditions. The inoculation with ACC 
(1-aminocyclopropane-1-1carboxylic acid)-deaminase-containing bacteria can reduce 
negative impact of stress-induced ethylene (Mayak et al.  2004a,   b ). The elevated 
level of ethylene caused negative impact on plant growth by inhibiting the root 
growth particularly. These microorganisms secrete enzyme ACC-deaminase that 
hydrolyses ACC into ammonia and a-ketobutyrate. The rhizobacteria bound to plant 
roots act as sink for ACC (immediate precursor of ethylene) and thereby lower 
the level of ethylene in a developing seedling or stressed plant. Therefore, the 
inoculation of seeds with such strains containing ACC-deaminase would be very 
useful for enhancing plant growth under stress conditions by diluting the negative 
impact of stress-induced ethylene on root growth (Glick et al.  2007 ). As is evident 
from one of our greenhouse study conducted under salinity-stressed conditions, that 
application of PGPR strains having ACC-deaminase activity signifi cantly enhanced 
the root length of maize compared to uninoculated control (Fig.  2.3 ). The work of 
Mayak et al. ( 2004a ) shows that bacterial strain ( Achromobacter piechaudii ) 
containing ACC-deaminase conferred tolerance to water defi cit in tomato and 
pepper. Ethylene production was reduced in inoculated plants, resulting in signifi cant 
increase in fresh and dry weights compared to uninoculated controls.  Pseudomonas  
spp. also improved the growth of pea ( Pisum sativum ) under drought stress in axenic 
conditions as well as in potted soil (Zahir et al.  2008 ). They concluded that inocula-
tion might have reduced the ethylene synthesis, which resulted in better plant growth 
under drought stress. Similar results were also obtained by Arshad et al. ( 2008 ) 
while studying the effectiveness of  Pseudomonas  spp. for eliminating the drought 
effect on growth, yield, and ripening of pea. It has been observed that the presence 
of elevated levels of ethylene in the vicinity inhibits the nitrogen fi xation by rhizo-
bia. However, the co-inoculation of  Rhizobium  with PGPR having ACC-deaminase 
activity can minimize this negative impact of ethylene and enhance nodulation 
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(Ahmad et al.  2011 ). Stimulation of root elongation and biomass production of 
different plant species by inoculation with PGPR having ACC-deaminase activity 
has been repeatedly documented, particularly when the plants were subjected 
to stressful growth conditions (Nadeem et al.  2007,   2010a ; Saravanakumar and 
Samiyappan  2007 ; Tank and Saraf  2010 ; Siddikee et al.  2012 ). Similarly, the 
presence of other growth-promoting characteristics like indole acetic acid (IAA), 
siderophore production, phosphate solubilization, and phytohormone production 
may provide extra benefi ts for stress tolerance in plants and improve their growth. 
The production of antioxidant enzymes protects the plant from the harmful impact 
of reactive oxygen species. The reactive oxygen species (ROS) as singlet oxygen 
(O − ), hydrogen peroxide (H 2 O 2 ), and hydroxide ions (OH − ) are developed in the 
photosystem of plants. These ROS denature cell membranes, proteins, and DNA 
through oxidation reaction. To combat/reduce the impact of these ROS, plant’s 
immune system generates antioxidant enzymes such as superoxide dismutase, 
peroxide dismutase, catalase, and glutathione reductase (Arora et al.  2002 ). The 
PGPR inoculation also enhances the activity of these enzymes and helps them to 
reduce the negative impact of stress (Fu et al.  2010 ). Similarly, enhanced production 
of osmoprotectants by bacterial inoculation under stress enables the plant to maintain 
their internal water potential for better uptake of water and nutrients.  

  Fig. 2.3    Effect of PGPR containing ACC-deaminase on root growth of maize in a pot trial at 12 
dS m −1  salinity level       

 

2 Plant–Microbe Interactions for Sustainable Agriculture…



84

     Rhizobacteria as Biocontrol Agent 

 In soil environment, there are a number of plant pathogens that reduce crop yield. 
Although these plant pathogens can be controlled by the application of chemicals 
and growing disease-resistant varieties, however, there are certain environmental 
concerns about the use of such chemicals like their persistent nature in the soil as 
well as accumulation of toxic residues of these chemicals in the food parts. Some 
of these toxic chemicals have been banned due to their persistent nature. Similarly 
in certain cases, the resistance of genetically resistant crops is often broken by the 
pathogen that results in reduction in crop yield (Fry  2008 ). An alternative strategy 
to overcome this problem is the use of PGPR that act as biocontrol agent by virtue 
of their certain biocontrol mechanisms like production of antibiotics, production of 
antifungal metabolites, decreasing availability of iron for pathogenic organisms, 
production of fungal cell wall-degrading enzymes, and through induced systemic 
resistance. Number of reports have shown the effectiveness of PGPR for enhancing 
plant growth by protecting them from pathogens (Siddiqui et al.  2005 ; Ayyadurai 
et al.  2007 ; Ravindra Naik et al.  2008 ; Srinivasan and Mathivanan  2009 ). PGPR 
have competitive advantage over fungi for iron uptake due to production of sidero-
phores. These siderophores have very high affi nity for iron, and bacteria can take 
up iron–siderophore complex. By using this mechanism, PGPR retard the patho-
gen growth by reducing the availability of iron and therefore providing protection 
to the plant against diseases (Penyalver et al.  2001 ). 

 The above-discussed review and number of examples mentioned in Tables  2.1  
and  2.2  show the effectiveness of PGPR for enhancing plant growth and develop-
ment under normal as well as stress environment. Such growth promotion was due 
to certain direct and indirect mechanisms used by PGPR. It was also evident from 
discussion that inoculation of plant seed or seedlings with most promising strains 
having best growth-promoting traits not only enables the plant to maintain their 
proper growth but also causes positive impact on soil health.    

    Role of Bacterial Consortium in Advance Agriculture: 
Effectiveness and Challenges 

 Although above-discussed review highlights the effectiveness of rhizobacteria for 
enhancing plant growth under stress environment, however, under certain cases, the 
results obtained in the laboratory could not be reproduced in the fi eld (Zhender et al. 
 1999 ; Smyth et al.  2011 ). This might be due to the low quality of the inocula and/or 
the inability of the bacteria to compete with the indigenous population under adverse 
environmental conditions (Brockwell and Bottomley  1995 ; Catroux et al.  2001 ). 
Great variations in the plant response to PGPR in laboratory and fi eld assays demon-
strate that the full potential of rhizobacteria to promote plant growth should be more 
extensively investigated. It is necessary to develop effi cient inocula that can perform 
better under fi eld conditions (Ahmad et al.  2008 ). The application of multistrain 
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PGPR in combination could be more benefi cial than a single strain. It has been 
reported that co-inoculation and coculture of microbes have better ability to fulfi ll the 
task in an effi cient way than single-strain inoculation (Guetsky et al.  2002 ). Each 
strain in the multistrain consortium can compete effectively with the indigenous rhi-
zosphere population and also enhance plant growth with its partners (Shenoy and 
Kalagudi  2003 ). The two strains used in a consortium showed that each strain not 
only competed successfully for rhizospheric establishment but also promoted plant 
growth (Shenoy and Kalagudi  2003 ). The co-inoculation of  Rhizobium  with PGPR 
proved useful for promoting growth and increasing nodulation (Tilak et al.  2006 ). 
The use of multistrain inoculants could be a good strategy that enables organisms to 
successfully survive and maintain themselves in communities (Andrews et al.  1991 ). 
Van Veen and others ( 1997 ) critically reviewed the reasons for the poor performance 
of agricultural bioinocula in natural environments and in the rhizosphere of host 
plants and suggested that instead of using a single strain for a single trait, multiple 
microbial consortia could be used for multiple benefi ts. Microbial studies performed 
without plants indicated that some combinations allow the bacteria to interact with 
each other synergistically, provide nutrients, remove inhibitory products, and stimu-
late growth of each other through physical and biochemical activities that may have 
benefi cial impacts on their physiology (Bashan  1998 ). Rajasekar and Elango ( 2011 ) 
studied the effectiveness of  Azospirillum ,  Azotobacter ,  Pseudomonas , and  Bacillus  
sp. separately and in combination on  Withania somnifera  for two consecutive years. 
They observed that PGPR consortia signifi cantly increased plant height, root length, 
and alkaloid content in  W .  somnifera  when compared to the uninoculated control and 
single inoculation. Similarly, dual inoculation with  Azotobacter  and  Azospirillum  
signifi cantly increased total dry weight, leaf area index, and crop growth index 
(Gholami et al.  2012 ). Jha and Saraf ( 2012 ) observed that growth of Jatropha 
( Jatropha curcas ) plant improved maximally in greenhouse and fi eld experiments 
when three strains were applied together. Co-inoculation provided the largest and 
most consistent increases in shoot weight, root weight, total biomass, shoot and root 
length, total chlorophyll, shoot width, and grain yield. Similarly, the consortia of 
three strains gave the best performance in terms of growth parameters of  Lycopersicum 
esculentum  (Ibiene et al.  2012 ). They demonstrated that the use of combined biofer-
tilizers containing consortia of bacteria is an excellent inoculant for growth perfor-
mance of plants. 

 As far as growth under stress environment is concerned, Annapurna et al. ( 2011 ) 
studied the effectiveness of PGPR separately and in combination for reducing the 
impact of salinity on wheat growth. They found that single and dual inoculations of 
PGPR strains showed variations in their effect to enhance the crop tolerance to salts. 
The bacterial consortium was more effective for inducing salinity tolerance in wheat 
plants. They considered it as an acceptable and environment-friendly technology to 
improve plant performance and development under stress environment. In another 
study, Upadhyay et al. ( 2011a ) evaluated the growth-enhancing potential of single 
and dual inoculation of  B. subtilis  SU47 and  Arthrobacter  sp. SU18 on wheat under 
saline conditions. They observed that in addition to enhancing dry biomass, soluble 
sugars, and proline content, wheat sodium content was reduced under co- inoculated 
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conditions but not after single inoculation with either strain or in the control. The 
results indicate that co-inoculation with  B .  subtilis  and  Arthrobacter  sp. could alle-
viate the adverse effects of soil salinity on wheat growth. The bacterial consortium 
is also effective for protecting the plant from disease under fi eld condition. It is 
evident from the work of Srinivasan and Mathivanan ( 2009 ) that effective control of 
necrosis virus in sunfl ower can be obtained by the application of powder and liquid 
formulations of PGPR consortia. They applied two bacterial consortia consisting of 
 Pseudomonas ,  Bacillus , and  Streptomyces  spp. along with farmer’s practice, i.e., 
imidacloprid + mancozeb. They observed a signifi cant reduction in disease with an 
increase in seed germination, plant height, and crop yield. They demonstrated 
that PGPR consortia show high benefi t–cost    ratio compared to farmer’s practice 
and untreated control.  

    Inoculant Technology: Formulation and Commercialization 

 The application of PGPR for improving crop production is becoming an emerging 
technology owing to their environmental friendly traits. For that purpose various 
microbial inoculants have been formulated and are being marketed. A number of 
strains having ability to protect plant from pathogens belonging to genera  Bacillus , 
 Pseudomonas , and  Agrobacterium  are being used as biopesticides (Fravel  2005 ). 

    Formulation of Microbial Inoculants 

 A number of PGPR strains have great potential to be formulated as biofertilizer for 
improving plant growth and development under normal and stress environment. 
Successful inoculation of PGPR can result in better plant growth and therefore 
higher economic return to the farmers. For effective transfer of research fi ndings 
from laboratory to fi eld, an excellent formulation technology has great advantages. 
Various microbial inoculants have been formulated, marketed, and applied success-
fully (Reed and Glick  2004 ). Commercial bioinoculants prepared from  Bacillus  
spp. are used widely as biocontrol agents (Ongena and Jacques  2007 ).  B. thurin-
giensis , which is used to control insect pest, is estimated having sale of >70 % 
(Ongena and Jacques  2007 ; Sanchis and Bourguet  2008 ).  Pseudomonas putida , 
 Paenibacillus , and  Bacillus  sp. are formulated and have successfully enhanced the 
growth and yield of wheat (Cakmakci et al.  2007 ). Similarly, fi eld application of 
salt-tolerant bioformulation of certain bacteria enhanced plant growth under salinity 
stress (Paul et al.  2006 ). 

 The major bottleneck to the commercial use of PGPR as biofertilizers is their 
inconsistent performance in the fi eld. In certain cases, plant growth promotion due 
to microbial inoculation is not so effective in terms of investment applied and net 
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return when compared with chemical fertilizers (Lucy et al.  2004 ). The development 
of valuable formulation is a challenging task for improving the effi cacy of microbial 
inoculants. Actually, formulation is one of the crucial steps that determines the 
success or failure of a PGPR strain. However, this important step is generally 
neglected which results in less effi cient outcome. The reason of this failure is the 
preparation of microbial formulation under lack of quality control and proper 
guidelines (Paau  1988 ; Berg  2009 ). The active ingredient in a microbial formulation 
is its viable culture. Regardless of the organism used, the success of bioagent 
depends upon the preparation of such inoculum having high level of viability 
and vigor (Jones and Burges  1998 ). In microbial formulation, the maintenance of 
bacterium in metabolically and physiologically active state is an important aspect 
for gaining maximum advantage (Paau  1998 ). In certain environmental conditions, 
where single-strain inoculum is unable to perform better, the development of multi-
strain inoculum can be very effective (Domenech et al.  2006 ). Such multistrain 
inoculum would be more effective for enhancing plant growth and development 
due to the presence of more growth-promoting traits which might not be possible in 
single strain. 

 Another important aspect regarding formulation is carrier material, which 
plays active role in shelf life of formulation. It aids in the stabilization and pro-
tection of the microbial cells during storage and transport (Xavier et al.  2004 ). It 
also protects the active ingredient, i.e., microbe from environmental conditions, 
and enhances its activity in fi eld (Deaker et al.  2004 ). Various organic and inor-
ganic carrier materials are used for formulation development (Bashan and 
Levanony  1990 ; Bashan  1998 ).    Organic carriers like peat have some advantages 
due to their higher nutrient content, and, however, complete sterilization by 
steam is diffi cult, and also during sterilization, toxic by-products are produced 
that may cause decrease in bacterial population (Weiss et al.  1987 ). Therefore, 
the use of inorganic carrier may be a good strategy for enhancing the effective-
ness of the microbial formulation. However, the effectiveness of these inorganic 
carrier materials may also be different, as it is evident from the work of Saharan 
et al. ( 2010 ) who used talc and aluminum silicate powders to develop inorganic 
carrier-based formulation. They observed that the shelf life of talc powder-based 
formulation was higher compared to aluminum silicate-based formulation. It was 
also observed that both sterile and nonsterile carrier formulations signifi cantly 
enhanced the growth of  Vigna mungo  and  Triticum aestivum . The application of 
microbial inoculants in the form of granular or liquid form is also attaining much 
attention nowadays. For optimizing nodulation, granular inoculants particularly 
rhizobia can be placed below or at the side of seeds with appropriate equipment 
according to seeding depth and moisture availability (Stephens and Rask  2000 ). 
On the other hand, due to easy application of liquid inoculants, liquid formula-
tion has also achieved much popularity (Xavier et al.  2004 ). However, both types 
of formulations have shown their effectiveness for enhancing the biomass yield 
of soybean (Atieno et al.  2012 ). They have also demonstrated that formulation of 
rhizobia and PGPR gave better response.  
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    Bacterial Characters for Formulation Development 

 Although a good number of microbial strains are used for formulation development 
and also their performance is observed, however, there are various constraints for 
commercialization of microbial inocula. One of the challenges for developing 
PGPR inoculants on commercial basis is the selection of such strains which could 
have competitive advantage over indigenous population and also have the ability to 
maintain their growth under unfavorable environment. The most important aspect in 
this regard is the selection of such strains which have host plant specifi city as well 
as adaptation to soil and climatic conditions (Bowen and Rovira  1999 ). An organ-
ism with properties like phosphate solubilization, phytohormone production, root 
colonization, siderophore, and indole acetic acid production is thought to be an 
ideal bioinoculant. 

 To develop a successful PGPR formulation, in addition to above-mentioned 
growth-promoting traits, bacteria should have the ability to tolerate harsh environ-
mental conditions like drought, heat, salinity, and toxic metals. It should have high 
rhizosphere competence and compatibility with other rhizobacteria. Such bacteria 
should also have capability of multiplication and broad spectrum of action. In addi-
tion to possessing a number of other characteristics, a PGPR should also have great 
viability and good shelf life (Lianski  1985 ). Cost-effectiveness, shelf life, and deliv-
ery systems are very important aspects that should be kept in mind while preparing 
the microbial formulation.   

    Concluding Remarks and Future Prospects 

 The above discussion showed the effectiveness of PGPR for enhancing the growth 
and development of plants. These benefi cial effects are obtained owing to a number 
of direct and indirect mechanisms including phosphate solubilization, production 
of plant growth regulators, iron sequestration by siderophores, production of 
antibiotics, synthesis of antifungal metabolites, production of fungal cell wall 
degrading enzymes, inducing systemic resistance, reducing deleterious effects of 
stress- induced ethylene by ACC-deaminase activity, and production of vitamins. 
These plant growth promoting abilities of microbes under normal as well as stress 
conditions have certifi ed their role in sustainable agriculture. For better perfor-
mance, the PGPR strain must be rhizosphere competent that should be able to 
survive and colonize (Cattelan et al.  1999 ). In addition to rhizosphere competency, 
the compatibility between the rhizodeposition of compounds by the plant host and 
the ability of the inoculated bacteria to utilize them are also very important (Strigul 
and Kravchenko  2006 ). However, there is still lack of evidence about the consistent 
performance of these microbes, particularly under fi eld conditions. In certain 
cases, the results obtained in laboratory are not reproduced in the fi eld (Zhender 
et al.  1999 ; Smyth et al.  2011 ). This may occur due to the low quality of the 
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inoculum and/or the inability of the bacteria to compete with the indigenous 
population (Brockwell and Bottomley  1995 ; Catroux et al.  2001 ). Therefore, the use 
of such technologies that enhance the agriculture production is indispensable to 
feed the burgeoning population. The application of multistrain bacterial consortium 
over single inoculation could be an effective approach for reducing the harmful 
impact of stress on plant growth. Strains that have the ability to protect the plant 
from diseases through biocontrol mechanisms may also be included in the formu-
lation. The effi cacy of such strains may be enhanced by ACC-deaminase gene (Hao 
et al.  2007 ). Therefore, the application of such strains which have multitraits for 
growth promotion should be preferred for inoculant formulation. It is also neces-
sary to understand the interactions between microbial consortium and plant sys-
tem. Understanding of such interactions could be very effective for improving 
plant growth (Raja et al.  2006 ). 

 It has been seen that certain growth-promoting traits may interact with each 
other and have infl uence on plant growth. For example, in one of our studies (sub-
mitted for publication), the strain having high ACC-deaminase activity and low 
IAA  and/or high ACC-deaminase and high IAA performed better compared to a 
strain having high IAA and low ACC-deaminase. Therefore, such aspects need 
further research so that most effective strains or combinations of strains can be 
selected. Other benefi cial aspects of bacterial inoculation also need special atten-
tion. For example, the addition of ice-nucleating bacteria to agriculture has poten-
tial benefi ts of protecting crops from frosts dropping below freezing, which might 
contribute to a solution of the worldwide problem of starvation and chronic hunger. 
Therefore, the application of these bacteria could be an effective technology for 
enhancing plant growth at low temperature. Similarly, cyanide-producing bacteria 
can be used effectively for disease suppression. Certain  Pseudomonas  strains 
produce allelochemicals that can be used as bioherbicides to minimize the use of 
chemicals and therefore eliminate environmental hazards.     
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