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Abstract Coordinated interactions between plants and microbes have supreme impor-
tance for improving plant growth as well as maintaining proper soil conditions.
Rhizosphere interactions that are based on complex exchange are more complicated
than those occurring above soil surface or non-rhizosphere soil. Among diverse micro-
bial population, plant growth promoting rhizobacteria (PGPR) gain special attention
owing to their multifarious functional characters like effective root colonization, hor-
mone production, solubilization of nutrients, and production of certain enzymes that
are beneficial for sustainable agriculture. An understanding about their ecology,
growth-promoting traits, mechanisms of action, and their application for plant growth
stimulation has key importance for maximum utilization of this naturally occurring
population. The present review highlights the importance of PGPR for enhancing crop
production. The mechanisms of plant growth promotions as well as effectiveness of
PGPR under different environments have been discussed. The effectiveness of multi-
strain inocula over single strain has been explained with examples. Also, the limitations
related to the use of bacterial inoculants under natural field conditions and some impor-
tant basics related to their formulation and commercialization have been discussed.

Plant Growth Promoting Rhizobacteria: A Novel
Source in Plant Growth Promotion

The zone surrounding the plant roots called as rhizosphere is a region of maximum
microbial activity compared to surrounding soil (Hiltner 1904). This environment is
a favorable habitat for microbial growth that exerts a potential impact on plant
health as well as soil fertility (Podile and Kishore 2006). A number of beneficial
microorganisms are associated with the root system of higher plants which depend
on the exudates of these roots for their survival (Whipps 1990). In soil environment,
particularly in rhizosphere, plants are mostly colonized by microbes (Berg et al.
2005). A variety of compounds present in root exudates including polysaccharides
and proteins enable the bacteria to colonize plant roots (Somers et al. 2004;
Rodriguez-Navarro et al. 2007). Due to competition for nutrients, those microbial
populations having better ability to degrade complex compounds like chitin, cellu-
lose, and seed exudates can survive better in such environment (Baker 1991).
Among the diverse microbial population, bacteria are the most abundant microor-
ganisms that competitively and progressively colonize the plant roots. Among this
large bacterial population, a number of bacterial strains are considered as very
important owing to their metabolically and functionally diverse characteristics.
These are free-living plant growth promoting rhizobacteria (PGPR) that promote
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plant growth by root colonization (Kloepper et al. 1989) and have been studied
extensively due to their optimistic effect on plant growth and development. These
PGPR belonging to some important genera include Serratia, Bacillus, Pseudomonas,
Burkholderia, Enterobacter, Erwinia, Klebsiella, Beijerinckia, Flavobacterium,
and Gluconacetobacter (Podile and Kishore 2006; Dardanelli et al. 2009; Nadeem
et al. 2010b). These PGPR enhance plant growth through various mechanisms like
synthesizing a compound essential for plant and facilitating the host in nutrient
uptake and also through disease prevention (Glick 1995). The major mechanisms
used by PGPR can be divided into two categories, i.e., direct and indirect mecha-
nisms. Phosphate solubilization and phytohormone and siderophore production are
some examples of direct growth promotion (Kloepper et al. 1989; Glick et al. 1995;
Ayyadurai et al. 2007), while indirect growth promotion occurs by inhibiting the
growth of plant pathogens (Glick and Bashan 1997; Persello-Cartieaux et al. 2003;
Ravindra Naik et al. 2008). In addition to these general growth promotion mecha-
nisms, PGPR also protect the plant from the deleterious effects of environmental
stresses by some particular mechanisms. These include lowering of stress-induced
ethylene, production of exopolysaccharides, regulating nutrient uptake, and enhanc-
ing the activity of antioxidant enzymes (Sandhya et al. 2009; Glick et al. 2007).
There are a number of reports that show outstanding role of this natural microbial
population for improving plant growth and development in normal as well as stress
environment (Zahir et al. 2004; Glick et al. 2007; Jha et al. 2009; Tank and Saraf
2010; Nadeem et al. 2010b).

Better plant growth promotion depends upon positive plant—-microbe interac-
tions. Belowground plant—microbe interactions are more complex than those
occurring above the soil surface (Bais et al. 2004), and understanding of these
interactions is crucial for maintaining plant growth and health (Barea et al. 2005).
The plant—-microbe interactions as well as interactions between other rhizosphere
microorganisms are still not much clear, and literature shows that most of these
interactions are complex in nature. An understanding about microbial ecology,
their growth-promoting traits, mechanisms of action, and their application for
plant growth stimulation is of pivotal importance for maximum utilization of this
naturally occurring population. The diverse study of PGPR is important not only
for understanding their ecological role and interactions with plants but also for
biotechnological applications (Berg et al. 2002).

Plant Growth Promotion Mechanisms

Plant growth promotion by PGPR is a well-known phenomenon, and this growth
enhancement is due to certain traits of rhizobacteria. Some of these traits are
very common among certain bacterial species; however, other traits might be
specific with some particular species. There are a number of mechanisms used
by PGPR for enhancing plant growth and development in diverse environmental
conditions (Fig. 2.1). In general, PGPR work as phytostimulators, biofertilizers,
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Fig. 2.1 Mechanisms used by PGPR for enhancing plant growth

biocontrol agent, root colonizers, and environmental protectors (Vessey 2003;
Zahir et al. 2004). Some of the important and valuable mechanisms are dis-
cussed in the following sections.

Phytostimulation

One of the direct growth promotion mechanism used by PGPR is the production of
phytohormones including indole acetic acid, abscisic acid, cytokinins, gibberellins,
and ethylene. There are a number of reports which advocate the effectiveness of
these growth regulators for enhancing plant growth and development (Zahir et al.
2004; Glick et al. 2007). These phytohormones enhance the plant growth by virtue
of their positive effect on cell division, cell enlargement, seed germination, root
formation, and stem elongation (Taiz and Zeiger 2000; Khalid et al. 2006).
Phytohormones influence the physiological processes of plants and facilitate plant
growth by altering the hormonal balance (Asghar et al. 2004; Kang et al. 2006).
These phytohormones are equally effective in normal and stress conditions. For
example, ABA abscisic acid (ABA) helps plant in stress conditions (Zhang et al.
2006) and plays an important role in the photoperiodic induction of flowering
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(Wilmowicz et al. 2008). Patten and Glick (2002) observed 35-50 % longer roots in
canola inoculated with wild-type GR12-2 compared to IAA-deficient mutant and
uninoculated control. Fassler et al. (2010) demonstrated the importance of IAA in
stress alleviation of sunflower. Seed inoculation with wild-type GR12-2 induced the
formation of tap roots that were 35-50 % longer than the roots from seeds treated
with the TAA-deficient mutant and the roots from uninoculated seeds. Similarly,
many Pseudomonas, Bacillus, and Azospirillum spp. produce cytokinin and gibber-
ellins (Gamalero and Glick 2011), and positive effects on plant biomass have been
reported by these hormones (Gutierrez-Manero et al. 2001; Arkhipova et al. 2005;
Spaepen et al. 2009). Steenhoudt and Vanderleyden (2000) demonstrated that the
main mechanism used by Azospirillum for enhancing plant growth is the production
of phytohormones. Although commercially available phytohormones are also used
for promoting plant growth, however, microbially produced phytohormones are
more effective due to the reason that the threshold between inhibitory and stimula-
tory levels of chemically produced hormones is low, while microbial hormones are
more effective by virtue of their continuous slow release (Khalid et al. 2006).

Biofertilization

The potential of PGPR to enhance plant growth and their participation in carbon,
nitrogen, sulfur, and phosphorous cycling increase the effectiveness of PGPR in
sustainable agriculture. The application of PGPR for increasing nutrient availability
for plants is an important and necessary practice (Freitas et al. 2007) and is very
helpful for increasing the nutrient concentration of certain essential elements like N,
P, K, Ca, Mg, Zn, Fe, and Mn (Dursun et al. 2010). Inoculation of cotton with PGPR
showed enhanced uptake of N, P, K, and Ca (Yue et al. 2007), and similarly PGPR
inoculation also enhanced the nutrient content of salinity-stressed maize (Nadeem
et al. 20006).

The conversion of insoluble form of phosphorus to make them plant-available
form is a common mechanism of various PGPR strains and plays important role to
fulfill the phosphorus requirement of plant. Phosphate-solubilizing bacteria are
common in the rhizosphere (Ravindra Naik et al. 2008; Jha et al. 2009) that solubi-
lize inorganic phosphate by various mechanisms like production of organic and
inorganic acids, release of H ions, and production of chelating substances and
through enzymes like phosphatase (Rodriguez et al. 2004; Gamalero and Glick
2011). Also, the exopolysaccharides produced by these bacteria have indirect effect
on phosphate solubilization by binding free phosphorus (Yi et al. 2008). It was also
observed that cold-tolerant species were able to solubilize P at low temperature
(Selvakumar et al. 2008). The application of P-solubilizing bacteria can solve the
problem of P precipitation in the soil and therefore increase its availability to plants
(Lin et al. 2006). The role of PGPR to improve the uptake of other macronutrients
has also been established. Inoculation of Pseudomonas sp. having the ability to
stimulate calcium (Ca) uptake caused significant improvement in tomato growth
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and also reduced blossom-end rot of tomato fruits that generally occurs due to Ca
deficiency (Lee et al. 2010). Similarly, the solubilization of biotite by silicate
mineral-solubilizing bacteria like Bacillus sp. can enhance the availability of K* to
plants (Sheng et al. 2008).

The production of low-molecular-weight ferric-chelating compound siderophores
directly increases the iron availability for plant (Robin et al. 2008) and indirectly pro-
tects the plant from pathogenic organisms (Singh et al. 2010b). Siderophores play
important role in iron nutrition of plants (Jin et al. 2006). Vansuyt et al. (2007) reported
that Fe—pyoverdine complex synthesized by Pseudomonas fluorescens C7 was effi-
ciently taken up by the Arabidopsis thaliana that resulted in enhanced iron content in
plant tissue and better growth. Similarly, bacterial strains improved maize growth
through biofertilization and phytostimulation mechanisms (Marques et al. 2010).

Certain bacteria can fix atmospheric nitrogen and make it available for plant. The
symbiotic relationship between legumes and nitrogen-fixing bacteria and nitrogen
fixation by free-living bacteria without forming association is a source of nitrogen
for plant (Carvalho et al. 2010). Co-inoculation of PGPR with rhizobia caused posi-
tive effect on nitrogen fixation, plant biomass, and grain yield in various crops like
alfalfa, soybean, and pea (Bolton et al. 1990; Dashti et al. 1998; Tilak et al. 2006).
Similarly, Azospirillum sp. have the potential to increase nitrogen fixation (Rai and
Hunt 1993) which can contribute about 70 % of the total nitrogen requirement of the
host plant (Malik et al. 1997). The presence of such bacteria also enhances ability
of plant to use nitrogen efficiently and minimizes its leaching and denitrification
losses. Some important genera of such bacteria include Enterobacter, Klebsiella,
Pseudomonas, and Rhizobium (James 2000).

Zinc is also an essential nutrient and in deficient soils the solubilization of Zn
near the root zone can alleviate the deficiency for plants. The Zn solubilization
by sugarcane-associated Gluconacetobacter diazotrophicus has been demon-
strated by Saravanan et al. (2008). The inoculation with Burkholderia cepacia
enhanced Zn uptake, its translocation from root to shoot, and improved plant
growth (Li et al. 2007).

Due to high price and certain environmental concerns about the chemical fertil-
izers, the use of PGPR in the form of biofertilizers is an effective supportive strategy
to provide crop nutrition (Cakmakci et al. 2006). The use of PGPR inoculants as
biofertilizer provides a promising support to chemical fertilizers. Moreover the use
of PGPR with inorganic fertilizer can increase the availability of nutrients to the
crops (Kumar et al. 2009) and therefore could be useful for increasing efficiency of
these fertilizers in one hand and also reducing their quantity on other.

Root Colonization and Rhizosphere Competence

Rhizosphere is a complex habitat with temporal and spatial changes where plant
and microbial populations interact with each other and are affected by a number
of biotic and abiotic factors. The success of bacteria to enhance plant growth
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depends on its potential to colonize the plant root. The significant effects of
microbial inoculation cannot be obtained unless the environment supports growth
and survival of these introduced microorganisms (Devliegher et al. 1995). The
ineffectiveness of PGPR, particularly in field conditions, is due to their inability
to colonize plant root properly (Bloemberg and Lugtenberg 2001). One of the
aspects of better root colonization is the ability of the bacteria to compete with the
indigenous microbial populations. Being the most abundant microorganisms, it is
very likely that bacteria can cause great effect on plant physiology owing to their
better competitiveness for root colonization (Barriuso et al. 2008). Literature
shows that certain PGPR strains have ability to tolerate unfavorable environment
(Paul and Nair 2008; Malhotra and Srivastava 2009) and therefore can be consid-
ered as the best population for promoting crop production.

The microbes use different strategies for their survival in the environment.
The success of these strategies depends upon their ability to adapt to the nutrient-
limited conditions, efficient utilization of root exudations, as well as their inter-
action with plants (Devliegher et al. 1995; Van Overbeek and Van Elsas 1997). In
soil environment, the survival of the inoculated bacteria depends on the avail-
ability of an empty niche, so that they can compete effectively with better adopted
native microbial population (Rekha et al. 2007). It has been observed that PGPR
which possess some particular traits like ACC-deaminase activity and the pro-
duction of antioxidant enzymes, exopolysaccharides, and organic solutes have
some selective advantages over other bacteria under stress environment (Mayak
et al. 2004a, b; Saravanakumar and Samiyappan 2007; Sandhya et al. 2009). A
variety of compounds, like surface proteins and polysaccharides, have a good
role in adherence of bacteria to plant root (Dardanelli et al. 2003; Rodriguez-
Navarro et al. 2007), and such bacteria have competitive advantages to colonize
plant roots because these exopolysaccharides help them to attach and colonize
the roots due to fibrillar material that permanently connects the bacteria to root
surface (Sandhya et al. 2009).

Enzymatic Activity

Growth enhancement through enzymatic activity is another mechanism used by
PGPR. Bacterial strains can produce certain enzymes such as cellulase, ACC-
deaminase, and chitinase. Through the activity of these enzymes, bacteria play a
very significant role in plant growth promotion particularly to protect them from
biotic and abiotic stresses. For example, the reduction of elevated level of ethylene
under stress by ACC-deaminase activity and disease suppression by chitinase activ-
ity are common mechanisms used by PGPR (Glick et al. 2007; Nadeem et al.
2010b). Similarly, the enhancement of nodule formation by rhizobia might be
due to the production of hydrolytic enzymes such as cellulase which could make
penetration of rhizobia into root hairs leading to increased numbers of nodules
(Sindhu and Dadarwal 2001).
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Growth Enhancement Through Vitamins

Vitamins are organic nutritional factors that influence the growth of living organisms.
In addition to the vitamins present in root exudates as a source for bacterial growth
(Mozafar and Oertli 1993), certain bacterial species also produce vitamins (Dahm
etal. 1993). Like other growth promoting traits of PGPR, the production of vitamins
also causes positive effect on plant growth and development (Derylo and Skorupska
1993; Azaizeh et al. 1996; Dakora 2003). More root colonization ability of vitamin-
producing Pseudomonas fluorescence has been observed (Marek-Kozaczuk and
Skorupska 2001). Similarly, co-inoculation of vitamin-producing P. fluorescence
and Rhizobium stimulated the growth and symbiotic nitrogen fixation in clover
plants (Marek-Kozaczuk et al. 1996).

Biocontrol Activity

Biocontrol mechanisms for diseases suppression are an important strategy against a
number of plant pathogens that cause reduction in crop yield. PGPR also act as
effective biocontrol agents by suppressing the effect of diseases (Kotan et al. 2009)
and provide protection to the plants against harmful pathogens. The PGPR use cer-
tain mechanisms including competition, antibiotic production, degradation of fun-
gal cell wall, and sequestering iron by the production of siderophores (Velazhahan
et al. 1999; Siddiqui 2006; Ramyasmruthi et al. 2012).

Cell wall degrading enzymes are very important for controlling the phytopatho-
genic fungi (Picard et al. 2000). Chitinase, cellulase, and lyases are well-known
fungal cell wall degrading enzymes (Inbar and Chet 1991; Lorito et al. 1996;
Ayyadurai et al. 2007). These enzymes play very important role by suppressing the
onset of diseases. The presence of chitinase enzyme in Pseudomonas sp. inhibits
the growth of Rhizoctonia solani by degrading the cell wall (Nielsen et al. 2000).
A volatile antibiotic hydrogen cyanide produced by certain bacterial strains also
plays role in disease suppression. Suppression of black rot of tobacco by HCN
producer Pseudomonas strain was observed by Voisard et al. (1981). The produc-
tion of siderophores by the bacteria reduces the availability of iron to fungi (Sayyed
et al. 2008), therefore causing negative impact on its growth (Arora et al. 2001).
Matthijs et al. (2007) reported the suppression of disease caused by Pythium sp.
owing to siderophores that decreased the availability of iron for fungal growth. It
is also an evident fact that fungi are unable to absorb the iron—siderophore complex
that causes unavailability of iron to pathogenic fungus (Solano et al. 2009).
Bacterial siderophores are also suggested to be involved in inducing systemic
resistance (ISR) that enhances plant’s defensive capacity against pathogens.
Enhanced ISR in tomato has been reported by siderophores, pyochelin, and pyo-
cyanin (Audenaert et al. 2002). Similarly, a number of reports have shown the
effectiveness of PGPR for enhancing ISR against various fungal and viral diseases
(Radjacommare et al. 2002; Saravanakumar et al. 2007). Systemic resistance can
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also be induced by a mechanism where inducing bacteria and pathogen remain
separated without showing any direct interaction (Ryu et al. 2004).

The disease suppression by PGPR also occurs by the production of antibiotics.
The antibiotics in addition to suppressing the pathogen also induce systemic resis-
tance in the plant. The synergistic interaction between antibiotics and ISR further
increases resistance against pathogens (Jha et al. 2011). The Bacillus thuringiensis,
having the ability to produce insecticidal protein (Singh et al. 2010a), can be used
as biocontrol agent.

In addition to above-discussed mechanisms, certain environmental factors like
water, soil pH, temperature, nutrient contents, and competition for root exudates as
well as indigenous microbial population affect the ability of an organism to colonize
the plant root. The exclusion of pathogenic organisms from the rhizosphere is one
of the significant mechanisms to protect the plant from deleterious effect of such
disease-causing organisms. Above discussion shows that owing to their number of
mechanisms, PGPR have great competitive advantages over pathogens and could be
very effective for protecting the plant from their attack by suppressing their growth.

Removal/Detoxification of Organic and Inorganic Pollutants

Plant growth promotion by PGPR inoculation is also due to reduction and
improving plant tolerance against heavy metals (Belimov et al. 2005; Sheng
et al. 2008). Bacteria use different intra and extra mechanisms to detoxify the
adverse effects of heavy metals in their tissues. These mechanisms include pro-
duction of proteins which absorb heavy metals and detoxification by taking them
in vacuoles (Gerhardt et al. 2009; Giller et al. 2009). The mechanisms used by
PGPR for tolerating and detoxifying of heavy metals may also vary among bacte-
rial species and also for different metals. For example, microbes can detoxify
zinc (Zn) by binding it in the outer membrane, by producing Zn-binding protein,
and/or by complexation of organic acids (Appanna and Whitmore 1995;
Choudhury and Srivastava 2001). Bacterial inoculation resulted in degradation of
chlorobenzoates and pesticides (Crowley et al. 1996; Siciliano and Germida
1997) and the enhancement of plant growth by PGPR inoculation in highly con-
taminated soils (Gurska et al. 2009).

The production of siderophores by metal-resistant bacteria plays an important
role in the successful survival and growth of plants in contaminated soils by alleviat-
ing the heavy metal stress-imposed impact on plants (Belimov et al. 2005; Braud
et al. 2006; Rajkumar et al. 2010). Also, the production of enzymes and certain
hormones which mobilize heavy metals and plant—microbe interactions affects the
process of bioremediation (Abbas-Zadeh et al. 2010). For example, the inoculation
of Lupinus luteus with genetically engineered nickel-resistant B. cepacia showed
high nickel concentration that was approximately 30 % more than uninoculated
control (Lodewyckx et al. 2001). The application of such bacteria could be helpful
for the removal of heavy metals from the environment.
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Enhancement of Photosynthetic Activity

Photosynthesis is considered as one of the very important reactions in plant growth
and development. Under stress environment, reduction in photosynthesis occurs that
might be due to decrease in leaf expansion, premature leaf senescence, impaired pho-
tosynthetic machinery, and associated reduction in food production (Wahid and Rasul
2005). PGPR enable the plants to maintain their growth by causing positive effect on
photosynthesis. Drew et al. (1990) reported that reduction in photosynthetic activity
might be due to osmotic stress and closing of stomata; however, the application of
PGPR minimized this negative impact and caused significant increase in photosynthe-
sis (Golpayegani and Tilebeni 2011). Heidari and Golpayegani (2011) observed
enhancement in chlorophyll contents in drought stress basil (Ocimum basilicum L.)
by PGPR application. More improvement in chlorophyll content was observed where
PGPR were applied in combination than alone. The increase in shoot length, chloro-
phyll content, and dry weight was observed when banana plants were inoculated with
PGPR (Mia et al. 2010a). According to them, this growth enhancement in addition to
other factors was likely to be due to the higher accumulation of nitrogen that contrib-
uted to chlorophyll formation which consequently increased the photosynthetic activ-
ity. While Xie et al. (2009) demonstrated that enhanced photosynthetic activity in
Arabidopsis by volatile emission from Bacillus subtilis might be due to accumulation
of iron, because iron is often a limiting ion in photosynthesis. They also observed
that when bacterial volatile signal was withdrawn, the photosynthetic capacity and
iron content returned to untreated levels. The importance of iron has already been
documented by Spiller and Terry (1980) who demonstrated that biogenesis of the
photosynthetic apparatus makes heavy demands of iron availability.

Stress Tolerance

Due to sophisticated signaling system, microbes develop high degree of adaptability
to environmental stresses. Bacteria are well known for their ability to tolerate the
stress conditions due to their exceptional genetic makeup. The PGPR strains have
showed tolerance against stress conditions like salinity and drought (Sandhya et al.
2009; Tank and Saraf 2010). Andre’s et al. (1998) demonstrated great resistance
ability of Bradyrhizobium japonicum against high doses of thiram. Although the
microbial adaptations to such situations are difficult to understand (Spaepen et al.
2009), however, it might be due to some of their particular traits which enable them
to survive under unfavorable conditions. For example, production of exopolysac-
charides (EPS) by the bacteria protects them against unfavorable conditions and
enhances their survival (Sandhya et al. 2009; Upadhyay et al. 2011b). In an earlier
study, Hartel and Alexander (1986) also showed a significant correlation between
the amount of EPS produced by the bacteria and their desiccation tolerance. The
accumulation of poly-fB-hydroxybutyrate during saline conditions and other osmo-
protectants like proline and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine
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carboxylic acid) are protective measures taken by bacteria to survive under stress
conditions (Bernard et al. 1993; Arora et al. 2006). The occurrence of such stress-
tolerant strains could be very effective for improving soil fertility and enhancing
plant growth (Mayak et al. 2004a; Egamberdieva and Kucharova 2009), and appli-
cation of such stress-resistant strains could also be very useful for enhancing plant
growth under stress environment (Glick et al. 2007; Nabti et al. 2010). The above-
discussed mechanisms not only show the abilities of bacterial strains to withstand
in variable soil environmental conditions but also enable them to compete effec-
tively with the other microbial population. These mechanisms could be very useful
for maintaining proper soil conditions and promoting sustainable agriculture.

Application of Rhizobacteria for Plant Growth Promotion

Owing to their well-established growth promoting abilities, PGPR are being used
effectively for enhancing crop production. The growth promoting abilities of PGPR
have been observed in laboratory under control conditions as well as in natural
greenhouse and filed conditions. The crop improvement by PGPR inoculation under
normal and stress environment has been reviewed by various workers (Zahir et al.
2004; Glick et al. 2007; Nadeem et al. 2010b; Ahemad and Khan 2011).

Growth Promotion Under Normal Conditions

The use of PGPR is an effective biological approach to increase crop yield and is
applied to a wide range of agricultural species. Inoculation with PGPR promotes
plant growth through phytohormone production, phosphate solubilization, sidero-
phore production, regulation of hormonal level, and certain other mechanisms
which have been discussed in the previous section. The root length of canola, let-
tuce, tomato, barley, wheat, and oats increased when seeds of these crops were
treated with PGPR (Hall et al. 1996). Qiaosi et al. (2005) also reported that the
roots of inoculated plants were more in number and longer than untreated control.
This growth enhancement is due to common and some particular trait of bacteria,
as is evident from the work of Cattelan et al. (1999) who tested eight strains of
PGPR for their growth-promoting activity in soybean. They examined that six
strains promoted growth more as compared to other, and they observed that these
strains contained ACC-deaminase activity in addition to other characteristics. The
growth enhancement by the PGPR has also been reported under natural field con-
ditions. Inoculation with PGPR increased the dry weight of leaf, stem, and grain
of maize (Gholami et al. 2012). They observed that inoculation caused significant
effects on leaf area index and crop growth index. A number of other studies have
also shown the importance of PGPR for improving plant growth and development,
and some selected examples have been mentioned in Table 2.1.
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Considerable work conducted by different researchers shows that PGPR can
be used as biofertilizers, and, thus, the use of chemical fertilizer can be reduced
(De Freitas et al. 1997; Rabouille et al. 2006). Work of Godinho et al. (2010)
showed that application of four PGPR strains having various growth-promoting
traits enhanced biomass of eggplant due to balanced nutrient availability and
uptake. This growth promotion was also associated with other growth-promot-
ing traits especially indole acetic acid and siderophores. Similarly in a green-
house study, the application of six bacterial strains on maize plant promoted
root and shoot growth and the nutrient status of plant particularly nitrogen and
phosphorus (Marques et al. 2010). Such findings have confirmed the perspec-
tives of PGPR as phytostimulators and biofertilizer for agricultural crops. These
microbes are also equally effective for promoting growth of fruit trees like
apple, apricot, strawberry, plum, and mulberry (Sudhakar et al. 2000; Esitken
et al. 2006, 2010; Karakurt and Aslantas 2010; Erturk et al. 2012). Early studies
conducted by most of the workers show growth-promoting activity of the PGPR
by some common direct and indirect mechanism; however, the production of
volatile compound by the bacteria is another growth-promoting mechanism.
Zou et al. (2010) found that volatile compounds produced by Bacillus megate-
rium had great growth promotion activity in A. thaliana. The fresh weight of
inoculated plants was twofold more than uninoculated. They suggested that
2-pentylfuran is a compound that plays an important role in the plant growth
promotion activity of this bacterial strain. Prior to this work, Ryu et al. (2003)
showed the growth promotion of A. thaliana by the volatile compounds
2,3-butanediol and acetoin.

Effectiveness in Stress Agriculture

Environmental stresses are the most limiting factors for crop productivity. Both
biotic and abiotic stresses including salinity, drought, extreme temperature, chill-
ing, heavy metals, and insect and pathogen attack are the most detrimental and
common stresses plants face in the natural environments. These stresses affect the
normal plant processes in one or other way and therefore cause significant reduc-
tion in crop yield. PGPR inoculation also proved effective for alleviating the nega-
tive impact of these stresses. In addition to improved plant growth under normal
conditions, PGPR have great potential for enhancing plant growth under adverse
conditions. PGPR use various mechanisms to combat these stresses and enable
the plant to maintain their growth under stress environment (Fig. 2.2). There are a
number of reports elaborating the effectiveness of PGPR for improving plant
growth under stress environment (Glick et al. 2007; Nadeem et al. 2010b; Nabti
et al. 2010). The PGPR strains were found equally effective for this growth pro-
motion in variable stress environment like salinity, drought, heavy metal, nutrient
stress, and pathogen. Some of the selected examples have been discussed in this
section and also listed in Table 2.2.
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l Salinity H Drought l
I Flooding I I Temperature I

Reduce stress-

Leafabscission
Senescence
Nutritionalimbalance
Hormonel imbalance
Rootinhibition
Shootinhibition

Production of plant growth regulator
Siderophores production
Induced Systemic Resistance
Enzymatic activity
Exopolysaccharides production
Enhanced anticadant system

Fig. 2.2 Impact of environmental stresses on plant growth and effectiveness of PGPR for mitigat-
ing this negative impact

Abiotic Stress Tolerance

Among various stresses, salinity and drought are the most common that cause
adverse effects on crop production in most of the arid and semiarid regions of the
world. Salinity limits the production of nearly over 6 % of the world’s land and
20 % of the irrigated land (Rhoades et al. 1992; Munns 2005). The changes in envi-
ronmental scenario result in increasing aridity due to decrease in annual rainfall and
because of agriculture under sustained pressure to feed an ever-increasing popula-
tion. Water limitation in the growing medium reduces diffusion, nutrient uptake by
roots, and transport of nutrients from roots to shoots due to restricted transpiration
rate, impaired active transport, and altered membrane permeability (Sardans et al.
2008a, b). Similarly, under salinity stress, increasing Na* contents cause an increase
in Na* uptake and, in general, decrease in K* and Ca?* contents of plant. Moreover,
under stress conditions, plants produce significant quantity of ethylene which can
damage them due to negative impact on roots, and it can also cause epinasty, prema-
ture senescence, and abscission (Nadeem et al. 2010b). Many efforts have been
made to understand the adaptive mechanisms of stress tolerance. These include the
reduction of stress ethylene, reduction of toxic ion uptake such as Na*, and forma-
tion of stress-specific protein in plants. Microbial inoculation to alleviate stresses in
plants could be a more cost-effective and environment-friendly option which could
be available in a shorter time frame.
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Stress environment can also make physicochemical and biological properties of
soil unsuitable for microbial and plant growth. However, particular characteristics
of certain bacteria enable them to survive under such harsh environments.
For example, certain bacterial strains have the ability to tolerate high salinity, and,
similarly, the production of exopolysaccharides by the bacteria protects them from
water stress. Besides developing mechanisms for stress tolerance, microorganisms
can also impart some degree of tolerance to plants toward abiotic stresses like
drought, salinity, metal toxicity, and high temperature (Grover et al. 2011). The
exopolysaccharides released into soil can be adsorbed by clay particles and form
a protective layer around soil aggregates (Tisdall and Oades 1982) and, therefore,
protect the plant from desiccation. Moreover, exopolysaccharide production
increases root colonization of microbes (Santaella et al. 2008), improves soil
aggregation (Sandhya et al. 2009), channelizes water and nutrients to plant roots
(Tisdall and Oades 1982; Roberson and Firestone 1992), and forms biofilm
(Seneviratne et al. 2011) which is beneficial to plant growth and development.
Alami et al. (2000) observed a significant increase in root-adhering soil per root
tissue (RAS/RT) ratio in sunflower rhizosphere inoculated with the EPS-producing
rhizobial strain YAS34 under drought conditions. The inoculation with ACC
(1-aminocyclopropane-1-1carboxylic acid)-deaminase-containing bacteria can reduce
negative impact of stress-induced ethylene (Mayak et al. 2004a, b). The elevated
level of ethylene caused negative impact on plant growth by inhibiting the root
growth particularly. These microorganisms secrete enzyme ACC-deaminase that
hydrolyses ACC into ammonia and a-ketobutyrate. The rhizobacteria bound to plant
roots act as sink for ACC (immediate precursor of ethylene) and thereby lower
the level of ethylene in a developing seedling or stressed plant. Therefore, the
inoculation of seeds with such strains containing ACC-deaminase would be very
useful for enhancing plant growth under stress conditions by diluting the negative
impact of stress-induced ethylene on root growth (Glick et al. 2007). As is evident
from one of our greenhouse study conducted under salinity-stressed conditions, that
application of PGPR strains having ACC-deaminase activity significantly enhanced
the root length of maize compared to uninoculated control (Fig. 2.3). The work of
Mayak et al. (2004a) shows that bacterial strain (Achromobacter piechaudii)
containing ACC-deaminase conferred tolerance to water deficit in tomato and
pepper. Ethylene production was reduced in inoculated plants, resulting in significant
increase in fresh and dry weights compared to uninoculated controls. Pseudomonas
spp. also improved the growth of pea (Pisum sativum) under drought stress in axenic
conditions as well as in potted soil (Zahir et al. 2008). They concluded that inocula-
tion might have reduced the ethylene synthesis, which resulted in better plant growth
under drought stress. Similar results were also obtained by Arshad et al. (2008)
while studying the effectiveness of Pseudomonas spp. for eliminating the drought
effect on growth, yield, and ripening of pea. It has been observed that the presence
of elevated levels of ethylene in the vicinity inhibits the nitrogen fixation by rhizo-
bia. However, the co-inoculation of Rhizobium with PGPR having ACC-deaminase
activity can minimize this negative impact of ethylene and enhance nodulation
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Un-inoculated Control Inoculated with different PGPR strains

Fig. 2.3 Effect of PGPR containing ACC-deaminase on root growth of maize in a pot trial at 12
dS m™! salinity level

(Ahmad et al. 2011). Stimulation of root elongation and biomass production of
different plant species by inoculation with PGPR having ACC-deaminase activity
has been repeatedly documented, particularly when the plants were subjected
to stressful growth conditions (Nadeem et al. 2007, 2010a; Saravanakumar and
Samiyappan 2007; Tank and Saraf 2010; Siddikee et al. 2012). Similarly, the
presence of other growth-promoting characteristics like indole acetic acid (IAA),
siderophore production, phosphate solubilization, and phytohormone production
may provide extra benefits for stress tolerance in plants and improve their growth.
The production of antioxidant enzymes protects the plant from the harmful impact
of reactive oxygen species. The reactive oxygen species (ROS) as singlet oxygen
(O"), hydrogen peroxide (H,0,), and hydroxide ions (OH") are developed in the
photosystem of plants. These ROS denature cell membranes, proteins, and DNA
through oxidation reaction. To combat/reduce the impact of these ROS, plant’s
immune system generates antioxidant enzymes such as superoxide dismutase,
peroxide dismutase, catalase, and glutathione reductase (Arora et al. 2002). The
PGPR inoculation also enhances the activity of these enzymes and helps them to
reduce the negative impact of stress (Fu et al. 2010). Similarly, enhanced production
of osmoprotectants by bacterial inoculation under stress enables the plant to maintain
their internal water potential for better uptake of water and nutrients.
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Rhizobacteria as Biocontrol Agent

In soil environment, there are a number of plant pathogens that reduce crop yield.
Although these plant pathogens can be controlled by the application of chemicals
and growing disease-resistant varieties, however, there are certain environmental
concerns about the use of such chemicals like their persistent nature in the soil as
well as accumulation of toxic residues of these chemicals in the food parts. Some
of these toxic chemicals have been banned due to their persistent nature. Similarly
in certain cases, the resistance of genetically resistant crops is often broken by the
pathogen that results in reduction in crop yield (Fry 2008). An alternative strategy
to overcome this problem is the use of PGPR that act as biocontrol agent by virtue
of their certain biocontrol mechanisms like production of antibiotics, production of
antifungal metabolites, decreasing availability of iron for pathogenic organisms,
production of fungal cell wall-degrading enzymes, and through induced systemic
resistance. Number of reports have shown the effectiveness of PGPR for enhancing
plant growth by protecting them from pathogens (Siddiqui et al. 2005; Ayyadurai
et al. 2007; Ravindra Naik et al. 2008; Srinivasan and Mathivanan 2009). PGPR
have competitive advantage over fungi for iron uptake due to production of sidero-
phores. These siderophores have very high affinity for iron, and bacteria can take
up iron—siderophore complex. By using this mechanism, PGPR retard the patho-
gen growth by reducing the availability of iron and therefore providing protection
to the plant against diseases (Penyalver et al. 2001).

The above-discussed review and number of examples mentioned in Tables 2.1
and 2.2 show the effectiveness of PGPR for enhancing plant growth and develop-
ment under normal as well as stress environment. Such growth promotion was due
to certain direct and indirect mechanisms used by PGPR. It was also evident from
discussion that inoculation of plant seed or seedlings with most promising strains
having best growth-promoting traits not only enables the plant to maintain their
proper growth but also causes positive impact on soil health.

Role of Bacterial Consortium in Advance Agriculture:
Effectiveness and Challenges

Although above-discussed review highlights the effectiveness of rhizobacteria for
enhancing plant growth under stress environment, however, under certain cases, the
results obtained in the laboratory could not be reproduced in the field (Zhender et al.
1999; Smyth et al. 2011). This might be due to the low quality of the inocula and/or
the inability of the bacteria to compete with the indigenous population under adverse
environmental conditions (Brockwell and Bottomley 1995; Catroux et al. 2001).
Great variations in the plant response to PGPR in laboratory and field assays demon-
strate that the full potential of rhizobacteria to promote plant growth should be more
extensively investigated. It is necessary to develop efficient inocula that can perform
better under field conditions (Ahmad et al. 2008). The application of multistrain
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PGPR in combination could be more beneficial than a single strain. It has been
reported that co-inoculation and coculture of microbes have better ability to fulfill the
task in an efficient way than single-strain inoculation (Guetsky et al. 2002). Each
strain in the multistrain consortium can compete effectively with the indigenous rhi-
zosphere population and also enhance plant growth with its partners (Shenoy and
Kalagudi 2003). The two strains used in a consortium showed that each strain not
only competed successfully for rhizospheric establishment but also promoted plant
growth (Shenoy and Kalagudi 2003). The co-inoculation of Rhizobium with PGPR
proved useful for promoting growth and increasing nodulation (Tilak et al. 2006).
The use of multistrain inoculants could be a good strategy that enables organisms to
successfully survive and maintain themselves in communities (Andrews et al. 1991).
Van Veen and others (1997) critically reviewed the reasons for the poor performance
of agricultural bioinocula in natural environments and in the rhizosphere of host
plants and suggested that instead of using a single strain for a single trait, multiple
microbial consortia could be used for multiple benefits. Microbial studies performed
without plants indicated that some combinations allow the bacteria to interact with
each other synergistically, provide nutrients, remove inhibitory products, and stimu-
late growth of each other through physical and biochemical activities that may have
beneficial impacts on their physiology (Bashan 1998). Rajasekar and Elango (2011)
studied the effectiveness of Azospirillum, Azotobacter, Pseudomonas, and Bacillus
sp. separately and in combination on Withania somnifera for two consecutive years.
They observed that PGPR consortia significantly increased plant height, root length,
and alkaloid content in W. somnifera when compared to the uninoculated control and
single inoculation. Similarly, dual inoculation with Azotobacter and Azospirillum
significantly increased total dry weight, leaf area index, and crop growth index
(Gholami et al. 2012). Jha and Saraf (2012) observed that growth of Jatropha
(Jatropha curcas) plant improved maximally in greenhouse and field experiments
when three strains were applied together. Co-inoculation provided the largest and
most consistent increases in shoot weight, root weight, total biomass, shoot and root
length, total chlorophyll, shoot width, and grain yield. Similarly, the consortia of
three strains gave the best performance in terms of growth parameters of Lycopersicum
esculentum (Ibiene et al. 2012). They demonstrated that the use of combined biofer-
tilizers containing consortia of bacteria is an excellent inoculant for growth perfor-
mance of plants.

As far as growth under stress environment is concerned, Annapurna et al. (2011)
studied the effectiveness of PGPR separately and in combination for reducing the
impact of salinity on wheat growth. They found that single and dual inoculations of
PGPR strains showed variations in their effect to enhance the crop tolerance to salts.
The bacterial consortium was more effective for inducing salinity tolerance in wheat
plants. They considered it as an acceptable and environment-friendly technology to
improve plant performance and development under stress environment. In another
study, Upadhyay et al. (2011a) evaluated the growth-enhancing potential of single
and dual inoculation of B. subtilis SU47 and Arthrobacter sp. SU18 on wheat under
saline conditions. They observed that in addition to enhancing dry biomass, soluble
sugars, and proline content, wheat sodium content was reduced under co-inoculated
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conditions but not after single inoculation with either strain or in the control. The
results indicate that co-inoculation with B. subtilis and Arthrobacter sp. could alle-
viate the adverse effects of soil salinity on wheat growth. The bacterial consortium
is also effective for protecting the plant from disease under field condition. It is
evident from the work of Srinivasan and Mathivanan (2009) that effective control of
necrosis virus in sunflower can be obtained by the application of powder and liquid
formulations of PGPR consortia. They applied two bacterial consortia consisting of
Pseudomonas, Bacillus, and Streptomyces spp. along with farmer’s practice, i.e.,
imidacloprid + mancozeb. They observed a significant reduction in disease with an
increase in seed germination, plant height, and crop yield. They demonstrated
that PGPR consortia show high benefit—cost ratio compared to farmer’s practice
and untreated control.

Inoculant Technology: Formulation and Commercialization

The application of PGPR for improving crop production is becoming an emerging
technology owing to their environmental friendly traits. For that purpose various
microbial inoculants have been formulated and are being marketed. A number of
strains having ability to protect plant from pathogens belonging to genera Bacillus,
Pseudomonas, and Agrobacterium are being used as biopesticides (Fravel 2005).

Formulation of Microbial Inoculants

A number of PGPR strains have great potential to be formulated as biofertilizer for
improving plant growth and development under normal and stress environment.
Successful inoculation of PGPR can result in better plant growth and therefore
higher economic return to the farmers. For effective transfer of research findings
from laboratory to field, an excellent formulation technology has great advantages.
Various microbial inoculants have been formulated, marketed, and applied success-
fully (Reed and Glick 2004). Commercial bioinoculants prepared from Bacillus
spp. are used widely as biocontrol agents (Ongena and Jacques 2007). B. thurin-
giensis, which is used to control insect pest, is estimated having sale of >70 %
(Ongena and Jacques 2007; Sanchis and Bourguet 2008). Pseudomonas putida,
Paenibacillus, and Bacillus sp. are formulated and have successfully enhanced the
growth and yield of wheat (Cakmakci et al. 2007). Similarly, field application of
salt-tolerant bioformulation of certain bacteria enhanced plant growth under salinity
stress (Paul et al. 20006).

The major bottleneck to the commercial use of PGPR as biofertilizers is their
inconsistent performance in the field. In certain cases, plant growth promotion due
to microbial inoculation is not so effective in terms of investment applied and net
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return when compared with chemical fertilizers (Lucy et al. 2004). The development
of valuable formulation is a challenging task for improving the efficacy of microbial
inoculants. Actually, formulation is one of the crucial steps that determines the
success or failure of a PGPR strain. However, this important step is generally
neglected which results in less efficient outcome. The reason of this failure is the
preparation of microbial formulation under lack of quality control and proper
guidelines (Paau 1988; Berg 2009). The active ingredient in a microbial formulation
is its viable culture. Regardless of the organism used, the success of bioagent
depends upon the preparation of such inoculum having high level of viability
and vigor (Jones and Burges 1998). In microbial formulation, the maintenance of
bacterium in metabolically and physiologically active state is an important aspect
for gaining maximum advantage (Paau 1998). In certain environmental conditions,
where single-strain inoculum is unable to perform better, the development of multi-
strain inoculum can be very effective (Domenech et al. 2006). Such multistrain
inoculum would be more effective for enhancing plant growth and development
due to the presence of more growth-promoting traits which might not be possible in
single strain.

Another important aspect regarding formulation is carrier material, which
plays active role in shelf life of formulation. It aids in the stabilization and pro-
tection of the microbial cells during storage and transport (Xavier et al. 2004). It
also protects the active ingredient, i.e., microbe from environmental conditions,
and enhances its activity in field (Deaker et al. 2004). Various organic and inor-
ganic carrier materials are used for formulation development (Bashan and
Levanony 1990; Bashan 1998). Organic carriers like peat have some advantages
due to their higher nutrient content, and, however, complete sterilization by
steam is difficult, and also during sterilization, toxic by-products are produced
that may cause decrease in bacterial population (Weiss et al. 1987). Therefore,
the use of inorganic carrier may be a good strategy for enhancing the effective-
ness of the microbial formulation. However, the effectiveness of these inorganic
carrier materials may also be different, as it is evident from the work of Saharan
et al. (2010) who used talc and aluminum silicate powders to develop inorganic
carrier-based formulation. They observed that the shelf life of talc powder-based
formulation was higher compared to aluminum silicate-based formulation. It was
also observed that both sterile and nonsterile carrier formulations significantly
enhanced the growth of Vigna mungo and Triticum aestivum. The application of
microbial inoculants in the form of granular or liquid form is also attaining much
attention nowadays. For optimizing nodulation, granular inoculants particularly
rhizobia can be placed below or at the side of seeds with appropriate equipment
according to seeding depth and moisture availability (Stephens and Rask 2000).
On the other hand, due to easy application of liquid inoculants, liquid formula-
tion has also achieved much popularity (Xavier et al. 2004). However, both types
of formulations have shown their effectiveness for enhancing the biomass yield
of soybean (Atieno et al. 2012). They have also demonstrated that formulation of
rhizobia and PGPR gave better response.
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Bacterial Characters for Formulation Development

Although a good number of microbial strains are used for formulation development
and also their performance is observed, however, there are various constraints for
commercialization of microbial inocula. One of the challenges for developing
PGPR inoculants on commercial basis is the selection of such strains which could
have competitive advantage over indigenous population and also have the ability to
maintain their growth under unfavorable environment. The most important aspect in
this regard is the selection of such strains which have host plant specificity as well
as adaptation to soil and climatic conditions (Bowen and Rovira 1999). An organ-
ism with properties like phosphate solubilization, phytohormone production, root
colonization, siderophore, and indole acetic acid production is thought to be an
ideal bioinoculant.

To develop a successful PGPR formulation, in addition to above-mentioned
growth-promoting traits, bacteria should have the ability to tolerate harsh environ-
mental conditions like drought, heat, salinity, and toxic metals. It should have high
rhizosphere competence and compatibility with other rhizobacteria. Such bacteria
should also have capability of multiplication and broad spectrum of action. In addi-
tion to possessing a number of other characteristics, a PGPR should also have great
viability and good shelf life (Lianski 1985). Cost-effectiveness, shelf life, and deliv-
ery systems are very important aspects that should be kept in mind while preparing
the microbial formulation.

Concluding Remarks and Future Prospects

The above discussion showed the effectiveness of PGPR for enhancing the growth
and development of plants. These beneficial effects are obtained owing to a number
of direct and indirect mechanisms including phosphate solubilization, production
of plant growth regulators, iron sequestration by siderophores, production of
antibiotics, synthesis of antifungal metabolites, production of fungal cell wall
degrading enzymes, inducing systemic resistance, reducing deleterious effects of
stress-induced ethylene by ACC-deaminase activity, and production of vitamins.
These plant growth promoting abilities of microbes under normal as well as stress
conditions have certified their role in sustainable agriculture. For better perfor-
mance, the PGPR strain must be rhizosphere competent that should be able to
survive and colonize (Cattelan et al. 1999). In addition to rhizosphere competency,
the compatibility between the rhizodeposition of compounds by the plant host and
the ability of the inoculated bacteria to utilize them are also very important (Strigul
and Kravchenko 2006). However, there is still lack of evidence about the consistent
performance of these microbes, particularly under field conditions. In certain
cases, the results obtained in laboratory are not reproduced in the field (Zhender
et al. 1999; Smyth et al. 2011). This may occur due to the low quality of the
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inoculum and/or the inability of the bacteria to compete with the indigenous
population (Brockwell and Bottomley 1995; Catroux et al. 2001). Therefore, the use
of such technologies that enhance the agriculture production is indispensable to
feed the burgeoning population. The application of multistrain bacterial consortium
over single inoculation could be an effective approach for reducing the harmful
impact of stress on plant growth. Strains that have the ability to protect the plant
from diseases through biocontrol mechanisms may also be included in the formu-
lation. The efficacy of such strains may be enhanced by ACC-deaminase gene (Hao
et al. 2007). Therefore, the application of such strains which have multitraits for
growth promotion should be preferred for inoculant formulation. It is also neces-
sary to understand the interactions between microbial consortium and plant sys-
tem. Understanding of such interactions could be very effective for improving
plant growth (Raja et al. 2006).

It has been seen that certain growth-promoting traits may interact with each
other and have influence on plant growth. For example, in one of our studies (sub-
mitted for publication), the strain having high ACC-deaminase activity and low
TAA and/or high ACC-deaminase and high IAA performed better compared to a
strain having high IAA and low ACC-deaminase. Therefore, such aspects need
further research so that most effective strains or combinations of strains can be
selected. Other beneficial aspects of bacterial inoculation also need special atten-
tion. For example, the addition of ice-nucleating bacteria to agriculture has poten-
tial benefits of protecting crops from frosts dropping below freezing, which might
contribute to a solution of the worldwide problem of starvation and chronic hunger.
Therefore, the application of these bacteria could be an effective technology for
enhancing plant growth at low temperature. Similarly, cyanide-producing bacteria
can be used effectively for disease suppression. Certain Pseudomonas strains
produce allelochemicals that can be used as bioherbicides to minimize the use of
chemicals and therefore eliminate environmental hazards.
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