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Abstract This paper presents a method to address the issue of noise robustness
using wavelet domain in the front end of an automatic speech recognition (ASR)
system, which combines speech enhancement and the feature extraction. The
proposed method includes a time-adapted hybrid wavelet domain speech
enhancement using Teager energy operators (TEO) and dynamic perceptual
wavelet packet (PWP) features applied to a hidden Markov model (HMM)–based
classifier. The experiments are performed using the HTK toolkit for speaker-
independent database which are trained in a clean environment and later tested in
the presence of AWGN. It has been seen from the experimental results that the
proposed method has a better recognition rate than the most popular MFCC-based
feature vectors and HMM-based ASR in noisy environment.
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1 Introduction

An ASR system finds large applications demanding for real-time environments
which are embedded with high ambient noise levels. The performance of an ASR
is acceptable in clean environments; however, the system performance degrades in
the presence of noise. Thus, there is a strong need for noise robustness to be
considered [1–3].

Much of the research in speech recognition aims at first robust feature
extraction and the second being building a robust classifier [4]. The most popular
MFCC features based on short-time Fourier transform (STFT) and power spectrum
estimation do not give a good representation of noisy speech. The features based
on the STFT produce uniform resolution over the time–frequency plane. Due to
this, it is difficult to detect sudden bursts in a slowly varying signal or the highly
non-stationary parts of the speech signal. The recent approach of wavelet packets
which segment the frequency axis and makes uniform translation in time is been
proposed. Wavelet coefficients provide flexible and efficient manipulation of a
speech signal localized in the time–frequency plane which is an alternative to
MFCC [5–7]. The perceptual wavelet filter bank is built to approximate the critical
band responses of the human ear. Wavelet packets decompose the data evenly into
all bins, but PWPs decompose only critical bins [8].

In this paper, we propose a wavelet domain front end for an ASR which
combines speech enhancement and the feature extraction. The proposed method
includes a time-adapted wavelet domain hybrid speech enhancement using Teager
energy operators (TEO) and dynamic perceptual wavelet packet (PWP) features
applied to a hidden Markov model (HMM)–based classifier.

The rest of the paper is organized as follows. Section 2 introduces a block
diagram of the proposed wavelet domain front end of the ASR and provides
detailed description of each constituting part. Section 3 describes the recognizer
and the toolkit used. Section 4 evaluates the performance of the proposed system
under different levels of noise. The conclusion is presented in Sect. 5.

2 Proposed Wavelet Domain Front End of ASR

Figure 1 describes the proposed noise robust wavelet domain front end of an ASR.
The noisy speech input wave files are sampled at 16 kHz and segmented into
frames of 24-ms duration with frame shift interval of 10-ms overlap.
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2.1 Speech Enhancement

In the proposed method, wavelet packet transform (WPT) is applied to each input
frame. The coefficients obtained are then subjected to Teager energy approxima-
tion [9, 10], where the threshold is adapted with respect to the voiced/unvoiced
segments of the speech data. A hybrid thresholding process is adopted which is a
compromise for the conventional hard and soft thresholding in preserving both the
edges and reducing the noise.

2.1.1 Wavelet Packet analysis

For a j-level WP transform, the noisy speech signal y[n] with frame length N is
decomposed into 2j sub-bands. The mth WP coefficient of the kth sub-band is
expressed as follows:

WJ
k;m ¼WPT yðnÞ; jf g ð1Þ

where n = 1,…N, m = 1,…, N/2j and k = 1,…2j.

2.1.2 Teager Energy Operator on Wavelet Coefficients

– Teager energy approximation for each WPT sub-band is computed

TEOi;k ¼ Y2
i;k � Yi;k�1Yi;kþ1 ð2Þ

– TEO coefficients are smoothened in order to reduce the sensitivity to noise

Mi;k ¼ TEOi;k � Hp ð3Þ

– Normalize the TEO coefficients

To Recognizer

Enhancement Stage Feature Extraction

Preprocessing

WPT

Time adaptive TEO
based Hybrid wavelet

thresholding

IWPT

Compute PWP
coefficients

Compute Delta 
and acceleration

Final feature 
vectors

Noisy Speech Input

Fig. 1 Block diagram of proposed wavelet domain front end of ASR
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M0i;k ¼
Mi;k

max Mi;k

� �

" #

ð4Þ

– Time-scale adaptive threshold based on Bayes shrink for each sub-band k is
computed.

ki;k ¼ kið1�M0i;kÞ ð5Þ

2.1.3 Denoising by Thresholding

Denoising using wavelet packet coefficients is performed by thresholding; that is,
the coefficients which fall below the specific value are shrunk and the later
retained. Different thresholding techniques have been proposed. However, there
are two popular thresholding functions used in the speech enhancement systems
which are the hard and the soft thresholding functions [11–13].

Hard thresholding is given by

Tsðk;wkÞ ¼
wk if wkj j[ k
0 if wkj j � k

�
ð6Þ

Soft thresholding is given by

Ts k;wkð Þ ¼ sgnðwkÞ wkj j � k if wkj j[ k
0 if wkj j � k

�
ð7Þ

where wk represents wavelet coefficients and k the threshold value.
However, hard thresholding is best in preserving edges but worst in denoising,

while soft thresholding is best in reducing noise but worst in preserving edges. In
order to have a general case of both reducing noise and preserving edges, a hybrid
thresholding is used.

Hybrid thresholding is given as follows:

Tsðk;wkÞ ¼ wk � wkj ja�ka

wkj ja if wkj j[ k

0 if wkj j � k

(

ð8Þ

With careful tuning of parameter a for a particular signal, one can achieve best
denoising effect within thresholding framework.

The enhanced speech is then reconstructed using the inverse WP transform

x0ðnÞ = WPT�1 W 0JK ; j
� �

ð9Þ
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2.2 Dynamic Perceptual Wavelet Packet Feature Extraction

Wavelet coefficients provide flexible and efficient manipulation of a speech signal
localized in the time–frequency plane [5–7]. The perceptual wavelet filter bank is
built to approximate the critical band responses of the human ear. Wavelet packets
decompose the data evenly into all bins but PWPs decompose only critical bins
[5, 8, 14]. The size of the decomposition tree is directly related to the number of
critical bins. The decomposition is implemented by an efficient 7-level tree
structure, depicted in Fig. 2. The PWP transform is used to decompose nx(n) into
several frequency bands that approximate the critical bands. The terminal nodes of
the tree represent a non-uniform filter bank.

The PWP coefficients for the sub-bands are generated as follows:

wj; iðkÞ ¼ pwpt nx ðnÞð Þ ð10Þ

where n = 1, 2, 3,…L (L is the frame length),

j = 0, 1, 2,…, 7 (j is the number of levels),
i = 1, 2, 3,… (2j-1) (i is the sub-band index in each level of j).

The static PWP coefficients are made more robust by computing the delta and
the acceleration coefficients.

Fig. 2 Tree structure of PWPT
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3 Speech Recognition

HMMs are the most successful statistical models for classification of speech.
HMM is a stochastic approach which models the given problem as ‘doubly
stochastic process’ [15–17].

A N-state HMM is defined by the parameter set k ¼ pi; aij; biðxÞ;
�

i; j ¼ 1; . . .Ng, where
pi initial state probability for state i,
aij transition probability from state i to state j,
biðxÞ state observation probability density function (pdf) that is usually modeled

by a mixture of Gaussian densities.
A five-state continuous density HMM is used as the statistical model for

classification of speech signals. The hidden Markov model toolkit (HTK) is a
portable toolkit for building and manipulating HMMs optimized for speech
recognition [18].

4 Experimental Setup and Results

To evaluate the performance of the proposed method, recognition experiments
were carried out using TIMIT database. The data were digitized with sampling rate
of 16 kHz and 16 bits/sample quantization. This database consists of 200 training
sentences from 6 male and female speakers and testing sentences randomly picked
from training data. To simulate various noisy conditions, the testing sentences
were corrupted by the additive white Gaussian noise with SNR conditions from 40
to 0 dB. The baseline recognition system was implemented on HTK toolkit with
continuous density HMM models.

In the proposed feature extraction method, the perceptual wavelet features are
extracted using MATLAB and written into HTK format using htkwrite function
available from voicebox MATLAB package. The 24 perceptual wavelet filter
banks are constructed by trial and error. The proposed tree shows excellent results
using the Daubechies 45 prototype. Using a hamming windowed analysis frame
length of 20 ms, the resulted 13-dimensional features plus their delta and delta–
delta features, in other word, totally 39-dimensional features were used for speech
recognition.

Table 1 shows that compared to the standard wavelet thresholding method,
time-adapted wavelet-based hybrid thresholding using the TEOs as proposed in
this paper has a better enhancement effect for SNR levels ranging from -10 to
+10 db. The proposed wavelet domain front end features with HMM classifier–
based ASR performs better recognition when compared to the conventional ASR
with MFCC features and HMM as shown in Table 2. The PWPs capable of
decomposing the critical bins during feature extraction supports in providing
robust features for the ASR.
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5 Conclusions

A wavelet domain front end for an ASR which combines both the enhancement
and the feature extraction for different noise levels has been presented. The pro-
posed time-adapted wavelet-based hybrid thresholding using the TEOs outper-
forms the conventional wavelet-based denoising schemes, as shown in Table 1.
The dynamic PWP features, which decomposes only the critical sub-bands applied
to a HMM–based classifier along with the proposed enhancement algorithm,
recognize better than the conventional MFCC features with HMM as shown in
Table 2. Further the ASR can be improved with a hybrid classifier into context and
for larger database.

Table 1 Input/output SNR values obtained with different thresholding methods

Input SNR/output SNR (in db) -10 -5 0 5 10

Hard thresholding Without TEO 0.4184 1.2036 3.0537 6.2870 11.7655
With TEO 1.9318 3.0627 7.3341 10.6041 14.9781

Soft thresholding Without TEO 0.6155 1.7538 4.2496 8.1132 13.8283
With TEO 4.2299 5.7624 8.0517 11.8721 16.8563

Hybrid thresholding Without TEO 0.8724 2.1756 5.0328 9.1108 13.8886
With TEO 6.0823 5.9035 8.8096 13.0061 17.0388
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Table 2 Comparison of recognition accuracy for different features at various noise levels

Noise level MFCC_E_D_A MWAVELET_E_D_A

0 db 20.33 21
5 db 41.23 49.36
10 db 68.66 71.26
20 db 79.88 82.46
25 db 82.63 86.43
30 db 85.55 89.65
35 db 89.66 90.35
40 db 91.56 93.24

Robust Speech Recognition Using Wavelet Domain 441



Acknowledgments We would like to express our sincere thanks to Aeronautical Development
Agency, Ministry of Defence, DRDO, Bangalore, India, for supporting to do our research work.

References

1. Gong Y (1995) Speech recognition in noisy environments: a survey. Speech Commun
16(3):261–291

2. Rabiner L, Juang BH (1996) Fundamentals of speech recognition, vol 103 Prentice Hall
Englewood Cliffs, New Jersey

3. O’Shaughnessy D (2001) Speech communication: human and machine. IEEE Press
4. Yusnita MA (2011) Phoneme-based or isolated-word modelling speech recognition system.

In: IEEE 7th international colloquium on signal processing and its applications, pp 304–309
5. Jiang H et al (2003) Feature extraction using wavelet packet strategy. In: Proceedings of 42nd

IEEE conference on decision and control, pp 4517–4520
6. Jie Y, Zhenli W (2009) Noise robust speech recognition by combining speech enhancement

in the wavelet domain and Lin-log RASTA. ISECS 415–418
7. Gupta M, Gilbert A (2002) Robust speech recognition using wavelet coefficient features.

IEEE Trans Speech Audio Process 445–448
8. Bourouba H et al (2008) Robust speech recognition using perceptual wavelet de-nosing and

Mel-frequency product spectrum Cepstral coefficient features. Proc Informatica 32:283–288
9. Hesham T (2004) A time-space adapted wavelet de-noising algorithm for robust ASR in low

SNR environments. IEEE Trans Speech Audio Process 1:311–314
10. Bahoura M, Rouat J (2001) Wavelet speech enhancement based on the Teager energy

operator. Signal Process Lett IEEE 8(1):10–12
11. Chang S, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and

compression. IEEE Trans Image Process 9(9):1532–1546
12. Donoho DL, Johnstone IM (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory

41(3):613–627
13. Donoho DM, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage.

J Am Stat Assoc 90(432):1200–1224
14. Mallat S (2001) A wavelet tour of signal processing. Academic Press, London
15. Jisn H et al (2006) Large margin HMMs for speech recognition. IEEE Trans Speech Audio

Lang Process 14(5):1584–1595
16. Vaseghi SV, Milner BP (1997) Noise compensation methods for HMM speech recognition in

adverse environments. IEEE Trans Speech Audio Process 5(1):11–21
17. Mark J, Gales F, Young SJ (1996) Robust continuous speech recognition using parallel model

combination. IEEE Trans Speech Audio Process 4(5):352–359
18. Young S (2009) The HTK book. Version 3.4. Cambridge University Engineering

Department. Cambridge, UK

442 Rajeswari et al.


	44 Robust Speech Recognition Using Wavelet Domain Front End and Hidden Markov Models
	Abstract
	1…Introduction
	2…Proposed Wavelet Domain Front Endwavelet domain front end of ASR
	2.1 Speech Enhancement
	2.1.1 Wavelet Packet analysis
	2.1.2 Teager Energy Operator on Wavelet Coefficients
	2.1.3 Denoising by Thresholding

	2.2 Dynamic Perceptual Wavelet Packet Feature Extraction

	3…Speech Recognition
	4…Experimental Setup and Results
	5…Conclusions
	Acknowledgments
	References


