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Abstract

Toxin-producing cyanobacteria are a worldwide threat to both human and
animal health. Microcystins (MCs) are the most commonly occurring
toxins produced by bloom-forming cyanobacteria, especially Microcystis
sp. This study describes the occurrence of bloom-forming toxigenic
Microcystis aeruginosa MBDU 626 from Manjalar Dam, Theni District,
Tamil Nadu, South India. Two microcystin (MC) variants, MC-LR and
[D-Asp3] MC-LR were identified from the isolated strain using high-
performance liquid chromatography and gas chromatography coupled
mass spectrometry (GC/MS). Four peptides such as aeruginosin,
microginin, kasumigamide and anabaenopeptin were also co-produced
along with these MC variants. Our results show that the presence of
cyanobacterial toxins in essential water resources requires rapid remedial
action and needs to develop a national program for regular monitoring of
toxigenic blooms in freshwater bodies of South India, in general, Tamil
Nadu, in particular.
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Introduction

Cyanobacteria (blue-green algae) are the prom-
inent cause of water blooms in eutrophic lakes
and drinking water reservoirs worldwide (Car-
michael 1994; Sivonen 1996). Toxic bloom-
forming cyanobacteria have been reported
causing animal death and also adversely affect-
ing human health (Carmichael 1994, 2001; Codd
et al. 1997). Microcystins (MCs) are the most
commonly encountered cyanotoxins (Sivonen
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1996). Microcystis, Anabaena, Planktothrix,
Nostoc, Hapalosiphon, Anabaenopsis, etc., are
common MC-producing cyanobacterial genera
(Carmichael 1992; Sivonen and Jones 1999).
However, majority of the MCs-producing
blooms are dominated by Microcystis (Codd
1999; Kabernick et al. 2000; Lehman et al. 2005;
Li et al. 2007; Dai et al. 2008; Xu et al. 2008).

The general structure of MC is cyclo-(D-ala-
nine-X-D-MeAsp-Z-Adda-D-glutamate-Mdha),
where D-MeAsp is D-erythro-b-methyl-aspartic
acid, and Mdha is N-methyldehydroalanine
(Mdha). X and Z are variable L-amino acids
(Sivonen and Jones 1999). To date, more than 90
structural variants of MCs have been reported
(Zurawell et al. 2005; Wood et al. 2008). The most
common MC congener (MC-LR) is characterized
by the presence of leucin (L) and arginin (R) as
L-amino acids in positions 2 and 4 (Xaa2 = L: Ala,
Yaa4 = R: Arg) (Gulledge et al. 2002). Since the
first elucidation of MC structure by Botes et al.
(1984), extensive structural characterizations
of other MC variants have been the subject
for many studies (Sivonen et al. 1990; Namikoshi
et al. 1992a, b; Luukkainen et al. 1994; Namikoshi
et al. 1995; Sano and Kaya 1995, 1998; Beattie
et al. 1998) and resulted in the identification of
different structural variants of MCs to date. MC-
LR is the most toxic and widely encountered MC
variant for which World Health Organization
(WHO) set a guideline value of 1 lg L-1 for
drinking water (WHO 1998). Based on the review
of all the toxicity data, the International Agency for
Research on Cancer (IARC) classified MC-LR as a
potential carcinogen (Group 2B) (Grosse et al.
2006).

Beside MCs, various other linear and cyclic
oligopeptides such as aeruginosins, anabaeno-
peptilides, cyanopeptolins, anabaenopeptins and
microginins are found within the genus Micro-
cystis (Namikoshi and Rinehart 1996). As like
MCs, the structures of these peptides generally
include unusual amino acids residues, such as
3-(4-hydroxyphenyl)-lactic acid (Hpla) and
2-carboxy-6-hydroxy-octahydroindole (Choi) in
aeruginosins, or 3-amino-6-hydroxy-2-piperi-
done (Ahp) in cyanopeptolins, b-amino-a-
hydroxy-decanoic acid in the linear microginins

(Neumann et al. 1997; Fukuta et al. 2004;
Harada 2004; Welker et al. 2004a, b).

In fact, no consistent hypothesis has been
developed so far to explain the high structural
variability and patchy distribution of cyanopep-
tides (Welker et al. 2006). This is partly due to
the still very limited knowledge on the occur-
rence of individual peptides and peptide classes
in environmental samples (Fastner et al. 2001).
These peptides have been found to exhibit a
wide range of biochemical and pharmacological
activities (Fastner et al. 2001; Bister et al. 2004;
Welker et al. 2004a).

While there have been lengthy investigations
regarding the occurrence of toxic cyanobacteria
in many countries, there are only a few reports on
their occurrence in India (Prakash et al. 2009).
This might be due to the prevalence of less toxic
variants like MC-RR, or in some cases, a lack of
awareness and knowledge to correlate properly
the toxicity with the prevailing cyanobacterial
blooms (Sangolkar et al. 2009). Cyanobacterial
blooms that produce MC-LR, MC-RR and its
demethylated variant have been reported in India
(Agrawal et al. 2006; Prakash et al. 2009), and
adjacent tropical countries including Korea (Kim
et al. 1999; Oh et al. 2001) and Thailand (Wang
et al. 2002). In this study, we have reported the
investigations into the occurrence of MC-pro-
ducing Microcystis sp. in Theni District, Tamil
Nadu, South India.

Materials and Methods

Bloom Sampling and Strain Culture
Conditions

Cyanobacterial bloom sample was collected
from Manjalar Dam (10�11037.1500N 77�370

55.8600E), Theni District, Tamil Nadu, India
(Fig. 1). The sample was identified as containing
primarily of Microcystis aeruginosa. Generic
assignment of the isolate was based on mor-
phological criteria (Rippka et al. 1979). The
bloom sample was initially grown in BG-11
medium with nitrate source. The culture was
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incubated under constant light intensity
(50 lE m-2 S-1) for up to 10 days at 25 �C. No
bacterial contamination was detected during
microscopic observation of the culture.

Extraction and Analysis of Microcystins

Toxin was extracted as described previously
(Frias et al. 2006). Briefly, late log phase culture
(15 days old) of Microcystis aeruginosa MBDU
626 was centrifuged at 5,000 9 g for 15 min at
4 �C (Remi, India), and the pellets were freeze
dried and stored at -20 �C until further analysis.
MC was extracted with MeOH/H2O (3:1, v/v)
from frozen samples (*1 g) submitted to sonic
disruption for 25 min. Extract was centrifuged
(10,000 9 g for 15 min) and the supernatant
collected. The pellet obtained was re-extracted.
The supernatant was combined and evaporated
to dryness in a rotary evaporator (40 �C). The
dried material was resuspended in MeOH and
partitioned with CHCl3:MeOH:H2O (7:6:3, v/v/
v) to remove hydrophobic compounds and pig-
ments. The hydro-alcoholic phase was evapo-
rated and dissolved in 1 ml of MeOH/H2O (7:3
v/v). The extract was filtered through 0.45 lm
millipore membranes and injected into the
HPLC system.

HPLC Analysis

A high-performance liquid chromatography
equipped with a constant flow pump (Shimadzu
LC 8A, Japan) was used. Separation was
accomplished under reversed phase isocratic
conditions with (Shim-Pack CLC-Octa decyl
silane) ODS-C18 column (4.6 mm ID 9 25 cm)
and guard column (Shim-Pack G-ODS) (4 mm
ID 9 1 cm) and mobile phase of 100 % metha-
nol. The flow rate was 1 ml/min for analysis, and
UV absorbance at 254 nm was used as detector.

Acid Hydrolysis and Derivatization
of the Toxin

The isolated compound was mixed with 6 N
HCl (100/900 ll) and heated at 110 �C for 22 h.
The reaction mixture was cooled to room tem-
perature and evaporated in a stream of N2, then

Fig. 1 Map of Tamil Nadu, India, showing Theni
District (in red) and the Manjalar Dam was shown in
the picture (10�11037.1500N 77�37055.8600E), where the
bloom sample was collected
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equal volume (200 ll) of dichloromethane
(CH2Cl2) and trifluoroacetic anhydride (TFAA)
was added, and again the mixture was heated at
110 �C for 5 min, then evaporated by N2

(Namikoshi et al. 1992b). The residue was dis-
solved in MeOH for GC/MS analysis.

GC/MS Analysis

GC/MS was performed with an Agilent gas
chromatograph coupled to a JEOL GC/MS II
MATE ion trap mass spectrometer. HP5 fused
silica capillary column (30 m 9 0.25 mm 9

0.25 lm) was operated in a split less mode, and
the injector temperature was 220 �C. The carrier
gas (He) flow was adjusted to 1 ml min-1.
Samples of 1 ll in MeOH were injected into the
GC/MS. The program rate for the analysis of
amino acid derivatives was 80–250 �C at
20 �C/min.

Molecular Analysis

Total genomic DNA was isolated from the tested
cyanobacterial strain following the previously
described method (Neilan 1995) and was used as
a template in PCR; 16S rDNA was amplified
from the genomic DNA using the cyanobacterial
specific primers (Wilmotte et al. 1993; Nelissen
et al. 1994). Purified PCR product was sequenced
using the BigDye Terminator Cycle Sequencing
v2.0 kit on an ABI 310 automatic DNA
sequencer (Applied Biosystems, CA, USA). The
16S rDNA gene sequence determined in this
study was deposited in the GenBank database
under the accession number JN542384.

Results

Strain Characterization

The results of the present study revealed the
occurrence of M. aeruginosa in Manjalar dam
bloom samples. The isolated strain was charac-
terized by both morphological and 16S rDNA

sequence analysis. Figure 2 shows the typical
morphology of M. aeruginosa strain isolated
from the sampling site. 16S rDNA sequence
analysis revealed that the isolated strain was
having 95 % similarity to M. aeruginosa LME-
CYA 106 (EU078498) and M. aeruginosa
UWOCC 019 (AF139295), confirming its
identity.

GC/MS Analysis of Microcystin

MCs were generally detected as singly proton-
ated molecular ions. GC/MS analysis revealed
the presence of two different MC isoforms. Both
isoforms showed the characteristic fragment ion
peak 135 [M ? H+] (Tables 1 and 2), the Adda
side-chain [PhCH2CH(OMe)+], which is a key
indicator for the presence of MCs. Further
investigation into the fragment ion peaks
enabled the identification of the isoforms as MC-
LR and [D-Asp3] MC-LR.

Product assignation of the fragment at m/z
994.5[M ? H+] in GC/MS spectrum revealed
the presence of MC-LR. The detected fragment
ions at m/z 86 and 112 show the presence of
immonium ions. These m/z values indicate the
presence of Leu and Arg residues, and this result
is also corroborated by the molecular mass of
994 Da. The ion fragment at m/z 553.4 corre-
sponds to [Mdha-Ala-Leu-MeAsp-Arg ? H]+

evidencing the presence of other amino acid
residue characteristic of MCs, Mdha and also

Fig. 2 Photomicrograph illustrating the morphological
features of Microcystis aeruginosa MBDU 626 isolated
from water bloom sample
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indicating the presence of the residues Leu and
Arg at positions 2 and 4, respectively. Addi-
tionally, the following molecular ion species
have provided full confirmation of MC-LR
identity: [Glu-Mdha ? H]+ at m/z 213.1,
[M ? H-Adda]+ at m/z 861.5, [Arg-Adda-
Glu ? H]+ at m/z 599.8, [M ? H-Glu]+ at m/z
866.6 and [C11H14O-Glu-Mdha]+ at m/z 375.2.
A complete list of the detected fragment ion
peaks for MC-LR is shown in Table 1.

The second MC isoform identified in the
strain tested was [D-Asp3] MC-LR at m/z

981.5[M ? H+]. This MC isoform has a
molecular weight of 981 Da. The detected
fragment ion peak at m/z 539[Arg-Asp-Leu-Ala-
Mdha ? H]+ is characteristic for this demethy-
lated MC-LR isoform (Table 2). Indeed, the
fragmentation pattern of the m/z ion completely
matched with that expected from [D-Asp3] MC-
LR. Table 2 shows the product assignation of
the fragment produced in GC/MS. The m/z
ions at 213.2[Glu-Mdha ? H]+, 155.2[Mdha-
Ala ? H]+ and 446.3[C11H14O-Glu-Mdha-
Ala ? H]+ indicated the presence of Mdha and

Table 1 Characteristic
fragment ions in GC/MS
analysis of [M ? H]+ ions at
m/z 994 corresponding to
MC-LR obtained from
M. aeruginosa MBDU 626
strain

Fragment ions MC-LR (m/z)

[Immonium of Arg]+ 70.2

[Leu]+ 86.2

[Immonium of Arg]+ 112.2

[PhCH2CH(OMe)]+ 135.1

[Glu-Mdha ? H]+ 213.3

[Mdha-Ala-Leu ? H]+ 268.1

[Arg-MeAsp ? H]+ 286.2

[C11H14O-Glu-Mdha ? H]+ 375.2

[Arg-MAsp-Leu-Ala ? H]+ 470.1

[C11H14O-Glu-Mdha-Ala ? H]+ 466.2

[Adda-Arg-Masp ? H]+ 599.8

[Arg-Masp-Leu-Ala-Mdha ? H]+ 553.4

Loss of PhCH = CH(OMe) 861.5

[M ? H]+ 994.5

Table 2 Characteristic
fragment ions in GC/MS
analysis of [M ? H]+ ions at
m/z 981 corresponding to
[D-Asp3] MC-LR were
obtained from M. aeruginosa
MBDU 626 strain

Fragment ions [D-Asp3]MC-LR (m/z)

[PhCH2CH(OMe)]+ 135.2

[Mdh-Ala ? H]+ 155.1

[C11H14O ? H]+ 163.3

[(Arg ? NH2) ? 2H]+ 174.4

[Glu-Mdha ? H]+ 213.2

[MeAsp-Arg ? H]+ 272.1

[(Arg ? NH2)-MeAsp ? 2H]+ 289.1

[C11H14O-Glu-Mdha ? H]+ 375.3

[C11H14O-Glu-Mdha-Ala ? H]+ 466.3

[Mdha-Ala-Leu-MeAsp-Arg ? H]+ 539.2

[MeAsp-Arg-(Adda-MeOH) ? H]+ 553.3

[MeAsp-Arg-(Adda-MeOH)-Glu ? H]+ 682.4

[(M-PhCH2CH(OMe)) ? H]+ 847.4

[M ? H]+ 981.5
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Ala in position 7 and 1, respectively. On the
other hand, the m/z ions at 289.1[(Arg ? NH2)-
Asp ? 2H]+, 272.1[Asp-Arg ? H]+, 553.3[Asp-
Arg-(Adda-MeOH) ? H]+ and 682.4[Asp-Arg-
(Adda-MeOH)-Glu ? H]+ strongly indicated the
presence of Asp instead of MeAsp in position 4,
proving the demethylated MC to be [D-Asp3]
MC-LR. The mass spectrum of both MC-LR and
[D-Asp3] MC-LR MC isoforms detected in this
study shown in Figs. 3 and 4, respectively.

It is interesting to note that the tested
M. aeruginosa MDBU 626 had shown five
peptides identical to microginin, aeruginosin
602, aeruginosin 101, anabaenopeptin and
kasumigamide at 698.3 m/z, 603.3 m/z, 645.6 m/
z, 851.5 m/z and 788.6 m/z, respectively. Mi-
croginin are linear peptides with a characteristic
N-terminal 3-amino-2 hydroxydecanoic acid
(Ahda). The fragment ions at m/z 698.3 (Ahda-
Thr-Pro-Tyr-Trp) from the side chain of Ahda

were observed with the same ions in the mass
spectrum (Fig. 6).

The other peptide aeruginosin is linear tetra-
peptides with the unique moiety 2-carboxy-6-
hydroxy-octahydroindole (Choi) and a C-termi-
nal Arg derivative. Fragment spectra of two
peptides characteristically show an intense mass
signal detected at m/z 140 Da, the Choi-immo-
nium ion which is indicative of aeruginosins. A
peptide with [M ? H]+ at m/z 645.36 could also
be identified as an aeruginosin (aeruginosin 644)
with a number of fragments identical to frag-
ments of aeruginosin 602: m/z 86, 140, 250, 266
and 350 Da. The fragment ions at m/z 86.2 (Leu-
or Ile-immonium ions), m/z 140.1 (Choi-immo-
nium ions), m/z 250.1 (Hpla-Leu-Choi-Argal),
m/z 266.2 (Choi-Arginal-CH3N2–H2O ? H) and
m/z 350.4 (Choi-Ac Argininal -NH2 +H) were
observed together with the same ions in the mass
spectrum (Fig. 5). The predominant fragment

Fig. 3 GC/MS spectrum of MC-LR detected from Microcystis aeruginosa MBDU 626. (See Table 1 for fragment ion
identifications)
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ions were observed in the MS spectra of the
related aeruginosin, which are summarized in
the Table 3.

Kasumigamide, a linear tetrapeptide con-
taining an N-terminal a-hydroxyl acid with m/z
787.38 (Pla-bAla-Ahipa-Arg-phSer) having the
C-terminal moiety, that is, hydroxy-group of
phenyl-serine was observed in the mass spec-
trum (Fig. 5).

Anabaenopeptins, a group of cyclic hexa-
peptides are characterized by a 19-membered
peptide ring that is formed by cyclization
between the C-terminal amino acid and the e-
amine of a lysine residue. The a-amine of the
lysine is further linked through an ureido group
to a side-chain amino acid. Two anabaenopeptin
variants with similar mass have been identified
in this study. Fragmentation spectrum by GC/
MS was indicated that the peak at m/z
851[M ? H+] corresponded to two isobaric

anabaenopeptin variants, that is, anabaenopeptin
B1 and F. The fragment ions at m/z 57 (MAla-
Immonium ion) m/z 70 (Arg-/Lys-related ions),
m/z 84 (Lys-Immonium ion), m/z 112 and 129
(Arg-Immonium ion), m/z 201 (CO ? Arg) (side
chain) m/z 233 (MAla ? Phe ? H), m/z 286
(Lys ? CO ? Arg-CN2H2), m/z 291(HTry ? I-
le ? H), m/z 376 (MAla ? HTyr ? Ile ? H),
m/z 417 (HTyr ? Ile ? H), m/z 538 (Lys ?

Phe ? MAla ? HTyr ? 2H) and m/z 651
(Lys ? Phe ? MAla ? HTyr ? Ile ? 2H) were
observed together with the same ions in the mass
spectrum (Fig. 6 and Table 4).

Discussion

Occurrence of cyanobacterial blooms and asso-
ciated animal and human poisoning has been
documented from over sixty-five countries

Fig. 4 GC/MS spectrum of [D-Asp3] MC-LR detected from Microcystis aeruginosa MBDU 626. (See Table 2 for
fragment ion identifications)
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Fig. 5 GC/MS spectrum of aeruginosin peptide detected from Microcystis aeruginosa MBDU 626; peak at m/z 603
and m/z 642 corresponding to aeruginosin 602 and aeruginosin 101; peak at m/z 788 identified as kasumigamide. (See
Table 3 for fragment ion identifications)

Table 3 Characteristic
fragment ions in GC/MS
analysis of [M ? H]+ ions at
m/z 603 corresponding to
aeruginosin peptide obtained
from M. aeruginosa MBDU
626 strain

Fragment ions Aeruginosin (m/z)

Leu-immonium ion 86.2

Argal-fragment 100.4

Choi-immonium fragment 140.1

Choi ? H 169.1

(Leu-Choi)fragment 221.2

R1,2-Hpla-Leu-CO ? Hb 250.1

Hpla-Leu-H 266.2

Choi-Argininal-CH3N2-H2O ? Ha 278.4

Choi-Argininal-NH2-H2O ? H 290.6

Choi-Argininal-NH2 ? H 309.2

Choi-AcArgininal-NH2 ? H 350.4

M-Argal 445.1

M-CH3N2-H2O ? Ha 543.2

M-H2O ? H 585.4

M ? H 603.3
a CH3N2 is the ureido group of Argininal; b R1 and R2 are either a hydrogen or a
chlorine in the non-, mono- or di-chlorinated variant, respectively
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Fig. 6 GC/MS spectrum of anabaenopeptin peptide detected from Microcystis aeruginosa MBDU 626; peak at m/z
851 corresponding to a mixture of anabaenopeptin F and [HArg6]-anabaenopeptin B; peak at m/z 699 identified as
microginin. (See Table 4 for fragment ion identifications)

Table 4 Characteristic
fragment ions in GC/MS
analysis of [M ? H]+ ions
at m/z 851 corresponding
to [HArg6]-anabaenopeptin
B and anabaenopeptin F
peptides obtained from
M. aeruginosa MBDU 626
strain

Fragment ions [HArg6]-
Anabaenopeptin
B m/z

Anabaenopeptin
F m/z

MAla-Immonium ion 57 57

Arg/Lys-related ions 70 70

Lys-Immonium ions 84 84

Arg-Immonium ions 112 112

[MAla ? CO ? H] 114 114

Arg-Immonium ions 129 129

[CO ? Arg](side chain) 201 201

[HTyr ? Val ? H] 277 –

Lys ? CO ? Arg-CN2H2 286 286

[HTyr ? Ile ? H] – 291

[MAla ? HTyr ? Val ? H] 362 –

[MAla ? HTyr ? Ile ? H] – 376

[HTyr ? Val ? Lys] 403 –

[HTyr ? Ile ? Lys] – 417

[Lys ? Phe ? MAla ? HTyr ? 2H] – 538

[Lys ? Phe ? MAla ? HTyr ? Val ? 2H] 637 –

[Lys ? Phe ? MAla ? HTyr ? Ile ? 2H] – 651

[M ? H]+ 851 851
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(Codd et al. 2005), including India (Agrawal
et al. 2006), Sri Lanka (Jayatissa et al. 2006) and
Bangladesh (Welker et al. 2005). The warm
water temperature in India promotes dense Mi-
crocystis growth almost throughout the year
(Parker et al. 1997; Agarwal et al. 2001). There
have been few reports of MC occurrence in India
(Sangolkar et al. 2009), and information about
the evidence of bloom formation and toxicity in
South Indian water bodies is particularly scarce.
During the biodiversity survey of different
freshwater ponds of Thanjavur District, Tamil
Nadu, it is reported that potentially toxic
cyanobacterial blooms are common in the
freshwater ponds of Tamil Nadu region (Muth-
ukumar et al. 2007). Out of the five ponds
investigated, Dabeerkulam pond showed low
diversity of cyanobacteria which was attributed
to a massive bloom of Microcystis aeruginosa
(Muthukumar et al. 2007). Similarly, this study
indicates the presence of toxigenic M. aerugin-
osa MBDU 626 in the fresh water of Manjalar
Dam in Periyakulam, Theni District. The fresh-
water bodies of South India in general, Tamil
Nadu in particular, have so far been given less
attention. This work was an extension of our
earlier report on the presence of MC-LA-pro-
ducing Microcystis aeruginosa MBDU 013 in
Kuttappar Lake at Tiruchirappalli District,
Tamil Nadu (communicated data).

GC/MS method has been developed for
screening MCs, in complex samples such as sed-
iments. It is based on the detection of 2-methyl-3-
methoxy-4-phenylbutyricacid (MMPB), which is
formed when the Adda residue is split following
oxidation of MCs (Harada et al. 1996; Kaya and
Sano 1999; Tsuji et al. 2001). Mass spectrometry
(MS) has proved to be a valuable technique for
providing structural information on MCs (Harada
1995; Kondo and Harada 1996; Meriluoto et al.
2000), without need for toxin standards or specific
retention times that are required for HPLC anal-
yses (Jungblut et al. 2006).

The [D-Asp3] MC-LR and MC-LR have been
shown to form [M ? H] + ion of m/z 981 and
995 (Diehnelt et al. 2005; Jungblut et al. 2006;
Del Campo and Ouahid 2010). Similar fragment
ions for [D-Asp3] MC-LR and MC-LR were

reported from an Antarctic cyanobacterial mat
community by Q-Star quadrupole-TOF hybrid
mass spectrometer (Jungblut et al. 2006). The
characteristic fragment ion for MC-LR has also
been reported by Diehnelt et al. (2005). In Uttar
Pradesh, India, five eutrophic temple ponds in
the vicinity of Varanasi city were reported for
MC-LR-producing Microcystis blooms (Prakash
et al. 2009). In addition to Microcystis, MC-LR
forming Nostoc sp. BHU001 was reported from
the agricultural pond of Banaras Hindu Univer-
sity, Varanasi, India (Bajpai et al. 2009). Frias
et al. (2006) have reported that the occurrence of
MC-LR in a bloom in the eutrophic reservoir
Billings, Sao Paulo City, Brazil, by ESI–MS/MS
analysis. In a similar study, ten out of 12 MCs,
including [D-Asp3] MC-LR and MC-LR, were
detected from International Culture Collections
strains of Microcystis (Del Campo and Ouahid
2010) and reported the fragment ions for [D-
Asp3] MC-LR at m/z 155.2, 213.2, 289.1, 553.3
and 682.4. Similar fragment ions were obtained
from our experiment (Figs. 4 and 5). [D-Asp3]
MC-LR also has been detected in bloom samples
from Morocco (Oudra et al. 2001) and the
Philippines (Baldia et al. 2003). The character-
istic Adda fragment for MCs was seen at
135.2 m/z (Figs. 3 and 4), possibly generated by
the a-cleavage at the methoxy group of the Adda
b-amino acid moiety (Ortea et al. 2004).

Five peptides were identified as to aerugino-
sin, microginin, anabaenopeptin and kasumiga-
mide (Figs. 5 and 6), and these were also
identified from the m/z of GC/MS analysis. The
MS approach was successful in detecting a
multitude of known and new peptides from very
small samples of cyanobacterial cells. Detect-
ability of individual peptides depends partly on
the efficiency with which they can be protonated
(Karas et al. 2000). Further information on the
identity of oligopeptides was gained from the
comparison with published fragmentation data
from pure substances and from a fragment
database (Haande et al. 2007).

The co-occurrence of MCs and cyanopeptolins
in Microcystis spp. dominated field samples was
reported previously (Jacobi et al. 1996; Neumann
et al. 2000). Many of the substances detected
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belong to well-known groups of cyanobacterial
peptides like MCs, anabaenopeptins, microgi-
nins, cyanopeptolins and aeruginosins, of which
many have been discovered in Microcystis spp.
(Namikoshi et al. 1996). With respect to known
peptides, combinations of anabaenopeptins, mi-
croginins and aeruginosins were observed, while
MCs were found along with aeruginosins. This
correlates to the detection of aeruginosins as well
as cyanopeptolins in both toxic and nontoxic
Microcystis culture strains (Namikoshi et al.
1996; Dittmann et al. 1997).

A fragment ion m/z at 698.3[M ? H]+,
characteristics of microginin, was reported from
bloom material of lake Tegamura, Japan
(Kodani et al. 1999). Our experiments identified
similar fragment ions from the tested organism.
A peptide with a molecular mass of m/z
603[M ? H]+ is probably a new variant of an
aeruginosin-type peptide, as suggested by the
fragment ion of m/z 140, indicating the presence
of the unusual amino acid Choi, which is unique
to aeruginosin-type molecules (Murakami et al.
1995; Matsuda et al. 1997; Erhard 1999). Ishida
et al. (1999) have reported that aeruginosin 101
was originally isolated from Microcystis aeru-
ginosa (NIES 101). Agarwal et al. (2006) have
reported the presence of aeruginosin by
MALDI-TOF/MS analysis, in the Microcystis
blooms from Gosalpur Lake of Jabalpur in
Central India. Kasumigamide, a novel antialgal
peptide which shows a characteristic fragment
m/z at 787.3[M ? H]+ was originally isolated
from freshwater cyanobacterium, Microcystis
aeruginosa (NIES-87) (Ishida and Murakami
2000). Microcystis colonies isolated from lakes
Müggelsee, Pehlitzsee and Parsteiner See in and
around Berlin, Germany, were shown to possess
mainly of kasumigamide linear peptide (Welker
et al. 2004a).

The co-occurrence of both MCs and anabae-
nopeptins in natural populations has been well
documented (Kodani et al. 1999; Fastner et al.
2001; Grach-Pogrebinsky et al. 2003). In the
samples dominated by Microcystis spp., anaba-
enopeptins were found only when MCs also
were present (Gkelis et al. 2005) and similar
results have been reported from natural

population samples studied (Kodani et al. 1999;
Fastner et al. 2001; Grach-Pogrebinsky et al.
2003). However, it is still unclear whether
cyanobacterial strains produce both types of
peptides simultaneously or produce only MCs.
Our results support the hypothesis of the coex-
istence of toxic MC with nontoxic peptides.

This study reinforces the earlier investiga-
tions into cyanobacterial blooms in Central India
on the occurrence of toxigenic species in fresh-
water bodies of Indian ecosystem and states that
major concern should be given for the screening
program at least for those freshwater bodies used
for animal or human consumption.

For a variety of reasons, the harmful impact
of cyanobacteria on human health was always
been a topic of interest (Falconer 1996, 1997).
Concern about the MCs health risk to humans
through drinking water, led the WHO to develop
and suggest a provisional guideline level of MC-
LR at 1 lg/L-1. Up to now, this value has been
considered as a safe level in drinking water
(Falconer et al. 1999). Further research and data
analysis are needed to generate the information
on MC occurrence, diversity and distribution
with reference to climatic zones, namely tem-
perate, tropical and subtropical regions
(Sangolkar et al. 2009). This study clearly
revealed that toxigenic Microcystis strains are
present in the freshwater bodies of Southern
Indian region and major attention should be
given for the effective screening and mitigation
strategies.
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