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Abstract: Optimization methods have evolved over the years to solve many 
water resources engineering problems of varying complexity. Today researchers 
are working on soft computing based meta heuristics for optimization as these 
are able to overcome several limitations of conventional optimization methods. 
Particle Swarm is one such swarm intelligence based optimization algorithm 
which has shown a great potential to solve practical water resources 
management problems. This paper examines the basic concepts of Particle 
Swarm Optimization (PSO) and its successful application in the different areas 
of water resources optimization. 
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1 Introduction 

 
Planning, development and management of water resources falls within the 

domain of water resources engineering. Freshwater demand for domestic, 
irrigational, industrial and recreational purposes already exceeds supply in many 
parts of the world and continues to rise due to rapid urbanization and population 
growth. Proper management of the available ground water and surface water 
resources in all user sectors is of utmost importance for any nation for the best 
utilization of the available sources of water. 

One of the areas where this is more important than others is irrigation sector 
since over 80% of water in India is diverted towards agriculture. An entire 
spectrum of activities involving reservoir releases, groundwater withdrawals, 
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use of new irrigation techniques call for optimal solutions to obtain maximum 
benefits from the available water while also meeting all the demands timely. 
Similarly, to minimize floods and droughts, to ensure water quality 
considerations and for well field installations water resources management is 
necessary to meet the competing demands. In this context, the importance of 
optimization in certain specific areas of water resources is considered in this 
paper.  

2 Optimization 

 
Optimization tools are utilized to facilitate optimal decision making in the 

planning, design and operation of especially large water resources systems. The 
entire gamut of operations involved with large water resources projects are 
complex and directly influence the people. The application of optimization 
techniques is therefore necessary and also challenging in water projects, due to 
the large number of decision variables involved. This is further demanded by the 
stochastic nature of the inputs and multiple objectives such as irrigation, 
hydropower generation, flood control, industrial and drinking water demands 
which a project has to meet simultaneously. Presently certain specific cases 
where optimization practices have been used successfully are considered as 
follows: 

 Reservoir planning, design and operation 

 River water pollution control using optimal operation policy 

 Regional scale groundwater pollution and utilization management 

 Identification of unknown groundwater pollution sources 

 Estimation of unknown aquifer parameters in groundwater flow 

through inverse modelling 

 Optimal design of water distribution and waste water systems 

Fundamentally, optimization involves systematically choosing solutions from 
an allowed set of decision variables for maximizing the benefits and minimizing 
the losses. The conventional numerical optimization methods (viz. linear, 
nonlinear and dynamic programming) which were used in the past have limited 
scope in problems of water resources management where objective functions are 
often non convex, nonlinear, not continuous and non-differentiable with respect 
to the decision variables. Nonlinear programming methods have rather slow rate 
of convergence and often result in local optimal solutions since they depend 
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upon initial estimations of variables, whereas the dynamic programming 
approach suffers from the curse of dimensionality [13]. Thus the conventional 
methods which utilize gradients or higher order derivatives of objective 
functions are not suitable for many real world problems in water resources 
management. For the last two decades non-conventional, metaheuristic 
techniques have been used successfully for obtaining optimal solutions. 
Although metaheuristic techniques do not have a rigorous mathematical proof 
like the conventional numerical methods, they follow a certain logical procedure 
that allows them to deliver a near global optimum solution. 

3 Particle Swarm Optimization 

 
Evolutionary Computation is the general term for several computational 

techniques which are based to some degree on the evolution of biological life in 
the natural world. Particle swarm optimization (PSO) is an evolutionary 
computation technique based upon the behaviour of a flock of birds or a school 
of fish [24]. When a swarm looks for food, the individuals will spread in the 
environment and move around independently. Each individual has a degree of 
freedom and randomness in its movements which enables it to find food 
deposits. Sooner or later, one of them will find something digestible and being 
social, announce this to its neighbours. These can then approach the source of 
food too. 

 Like the other evolutionary computation techniques, PSO is a population-
based search algorithm and is initialized with a population of random solutions, 
called particles. Unlike in the other evolutionary computation techniques, each 
particle in PSO is also associated with a velocity. This velocity connotes an 
improvement in the solution which gets added to the initially assumed solution 
to make it move towards the optimum solution. Particles fly through the search 
space with velocities which are dynamically adjusted according to their 
historical behaviours. Therefore, the particles have a tendency to fly towards the 
better and better search area over the course of search process. Since its 
introduction by Eberhart and Kennedy [4], PSO has attracted considerable 
attention from the researchers around the world and seen gradual improvements 
with the passage of time.  
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3.1 Original PSO Algorithm 

 
The basic concept of the PSO can be technically summarized in the following 

steps: 
1. Initialize a population of random solutions on D dimensions in the search 
space. In the D dimensional search space the ith individual (assumed solution or 
a particle having a position equal to the assumed solution) of the population can 
be represented by a D dimensional vector  

  Xi = (xi1,xi2......xid)
T                                                                                        (1)  

2. Each of the above elements of the assumed solution set is modified in each 
iteration in a probabilistic manner. The improvement made to each of them in 
each iteration is referred to as velocity. Thus the velocity (position change or 
change in solution) of the particle can be represented by another D dimensional 
vector which is also initialized with some random values. 
  Vi = (vi1,vi2....vid)                                                                                              (2)  
3. For each particle (position or assumed solution) evaluate the desired 
optimization fitness function in D variables. 
4. The best previously obtained fitness value of each particle and the 
corresponding value of the particle is noted. They are stored in a D dimensional 
vector 
pid  =  (pi1,pi2....pid)

T                                                                                             (3)                                                           
5. The best fitness value obtained so far by any particle in the population space 
is noted and the value of the particle is stored as pgd 
6. Each of the initially assumed solutions (particles) is improved upon in each 
iteration through the following equation. The improvement in solution is 
denoted by vid (velocity). 

           (4)  

               (5)  
Where c1 and c2 are positive constants, and rand1and rand2 are two random 
functions in the range [0, 1], m is the number of iterations; 
7. Loop to step (2) until a criterion is met, which is either a sufficiently good 
fitness or depends upon maximum number of iterations. At the end of n 
iterations the modified xidfor which the best fitness value has been obtained in 
all these iterations is denoted by pgd (global best) and in the nth iteration the value 
of xid in the solution set which gives the best fitness value is denoted by pid. Thus 
in each iteration initially assumed solution is updated with respect to the best 
fitness value obtained among all the other members of the population set and its 
own previous best. Like other evolutionary algorithms, PSO algorithms is a 
population based search algorithm with random initialization, and interactions 
among population members. However, unlike the other evolutionary algorithms, 
in PSO, each particle flies through the solution space, and has the ability to 

   1   2      
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remember its previous best position, and survives from generation to generation 
[8].  



 

3.2 Parameters of PSO 

 
The first new parameter added into the original PSO algorithm is the inertia 

weight (Eberhart and Shi 1998a, 1998b).They modified dynamic equation (4) of 
PSO as: 

                    (6)                                             

where a new parameter, inertia weight ω is introduced. Equation (5), however 
remains unchanged. The inertia weight is introduced to balance between the 
global and local search abilities. The large inertia weight facilitates global search 
while the small inertia weight facilitates local search. A value of 0.1 – 0.9 is 
recommended in many of the research papers. The introduction of the inertia 
weight also eliminates the requirement of carefully setting the maximum 
velocity Vmaxeach time the PSO algorithm is used. The Vmaxcan be simply set to 
the value of the dynamic range of each variable and the PSO algorithm still 
performs satisfactorily. 
Another parameter - constriction coefficient was introduced to accelerate PSO 
convergence [1][2]. A simplified method of incorporating it appears in Equation 
(7), where k is a function of c1 and c2 as seen in Equation (8). 

                  (7) 

k =                                         (8) 

 
where  = c1 + c2 , >4 

Mathematically, Equation (6) and (7) are equivalent by setting inertia weight 
ω to be k, and c1 and c2 meet the condition  = c1 + c2 , > 4. The PSO algorithm 
with the constriction factor can be considered as a special case of the PSO 
algorithm with inertia weight while the three parameters are connected through 
Equation (8). As a rule of thumb a better approach is to utilize the PSO with 
constriction factor while limiting Vmaxto Xmax, the dynamic range of each 
variable on each dimension, or utilize the PSO with inertia weight while 
selecting ω, c1 and c2 according to Equation (8)[6].  

When Clerc’s constriction method is used,  is commonly set equal to 4.1 
and the constant multiplier kis approximately 0.729. This is equivalent to the 
PSO with inertia weight when ω ≈ 0.729 and c1 = c2 = 1.49445. Since the search 

  1  2  

  1  2   22 4  
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process of a PSO algorithm is nonlinear and complicated, a PSO with well-
selected parameter set can have good performance, but much better performance 
could be obtained if a dynamically changing parameter is well designed. 
Intuitively, the PSO should favour global search ability at the beginning of PSO 
while it should favour local search ability at the end of PSO. 

Shi and Eberhart [5] first introduced a linearly decreasing inertia weight to 
the PSO over the course of PSO, then they further designed fuzzy systems to 
nonlinearly change the inertia weight [7][8]. The fuzzy systems have some 
measurements of the PSO performance as the input and the new inertia weight 
as the output of the fuzzy systems. In a more recent study, an inertia weight with 
a random component [0.5 + (rand/2.0)] rather than time decreasing is utilized. 
This produces a randomly varying number between 0.5 and 1.0, with a mean of 
0.75 which is similar to Clerc's constriction factor described above [8]. 

 
 

4 Applications of PSO in Water Resources Engineering 

Researchers have attempted a wide range of problems in water resources 
engineering using PSO. Certain problems where particle swarm techniques have 
been successfully applied in water resources are examined as follows: 

4.1 Reservoir Planning Design and Operation 

 
Reservoir Operation optimization involves determining the optimum amount 

of water that should be released for flood control, irrigation, hydropower 
generation, navigation and municipal water supply. Being a complex problem it 
involves many decision variables, multiple objectives as well as considerable 
risk and uncertainty [14].  

Kumar and Reddy [13] discussed the implementation of Particle Swarm 
Optimization in multipurpose reservoir operation. They considered Bhadra 
reservoir system in India which serves irrigation and hydropower generation. It 
was required to obtain the optimum releases to the left and right bank canals 
(utilized for irrigation and hydropower generation) and to the river bed turbine 
(for hydropower generation). To handle multiple objectives of the problem, a 
weighted approach was adopted. The objective function dealt with minimizing 
the annual irrigation deficits and maximizing the annual hydropower generation 
with greater weightage for minimizing irrigation deficits. The decision variables 
were the monthly releases that should be made to the left and right bank canal 
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and the river bed turbine in a year. The optimization was carried out under a set 
of constraints which included mass balance, storage, canal capacity, power 
production and water quality requirements. 

The performance of the standard PSO algorithm was improved by 
incorporating an Elitist Mutated PSO (EMPSO) in which a certain number of the 
best performing solutions (elites) were retained with mutation during each 
successive iteration to increase population diversity and enhance the quality of 
the population. The results obtained demonstrated that EMPSO consistently 
performed better than the standard PSO and genetic algorithm techniques. They 
concluded that EMPSO is yielding better quality solutions with less number of 
function evaluations. 

4.2 Groundwater utilization 

 
Gaur et.al.[9] used Analytic Element Method and Particle Swarm 

Optimization based simulation optimization model for the solution of a 
groundwater management problem. The AEM-PSO model developed was 
applied to the Dore river basin, France to solve two groundwater hydraulic 
management problems: (1) maximum pumping from an aquifer, and (2) 
minimize the cost to develop the new pumping well system. Discharge as well 
as location of the pumping wells were taken as the decision variables. The 
influence of the piping length was examined in the total development cost for 
new wells. The optimal number of wells was also calculated by applying the 
model to different sets of wells. The constraints of the problem were identified 
with the help of water authority, stakeholders and officials which included 
maximum and minimum discharge limits for the well pumping, minimum 
allowable groundwater drawdown and water demand. 

 The AEM flow model was developed to facilitate the management model in 
particular, as in each iteration optimization model calls a simulation model to 
calculate the values of groundwater heads. The AEM-PSO model was found to 
be efficient in identifying the optimal location and discharge of the pumping 
wells. A penalty function approach was used to penalize constraint violations 
and this was found to be valuable in PSO and also acceptable for groundwater 
hydraulic management problems. 

 
 

Particle Swarm in Water Resources Optimization 47



4.3 Groundwater Pollution Control 

 
In many parts of our country and in the world ground water is excessively 

contaminated due to various anthropogenic and industry related activities. 
Pollution of groundwater happens due to the leachate from animal and human 
waste dumped on the land, fertilizer application, industrial effluents and 
municipal waste dumped into surface water bodies. Mategaonkar and Eldho[15] 
presented a simulation optimization (SO) model for the remediation of 
contaminated groundwater using a PAT system. They developed a simulation 
model using Mesh Free Point Collocation Method (PCM) for unconfined 
groundwater flow and contaminant transport and an optimization model based 
upon PSO. These models are coupled to get an effective SO model for the 
groundwater remediation design using pump and treat mechanism. In 
groundwater pollution remediation using PAT, optimization is aimed at 
identification of cost-effective remediation designs, while satisfying the 
constraints on total dissolved solids concentration and hydraulic head values at 
all nodal points. Also, pumping rates at the pumping wells should not be more 
than a given specified rate. Only minimization of the remediation cost is 
considered as the objective function in this remediation design. The decision 
variables were the pumping or injection rates for the wells considered and the 
purpose of the design process is to identify the best combination of those 
decision variables. The cost function includes both the capital and operational 
costs of extraction and treatment. The PCM PSO model is tested for a field 
unconfined aquifer near Vadodara, Gujarat, India. 

 

4.4 Estimation of unknown aquifer parameters in groundwater 
flow through inverse modeling 

 
Jianqing and Hongfei[11] applied the PSO algorithm to the function 

optimization problem of analyzing pumping test data to estimate aquifer 
parameters of transmissivity and storage coefficient. The objective function was 
to minimize the difference between simulated and observed groundwater head 
values with transmissivity and storage coefficient as the decision variables. The 
results showed that 1) PSO algorithm may be effectively applied to solve the 
function optimization problem of analyzing pumping test data in aquifer to 
estimate transmissivity and storage coefficient, 2) the convergence of PSO 
algorithm and the computation time are influenced by the number of particles  
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and that fewer iterations are needed in computation with the larger number of 
particles and 3) the ranges of initial guessed values of transmissivity may also 
bring some effect on the convergence of PSO algorithm and the computation 
time. They found that larger the ranges are, the more number of iterations and 
longer computation time are needed for a guaranteed convergence of PSO 
algorithm. 

A few other applications of PSO are listed below in Table1. 
 

 
                                         Table 1. Applications of PSO 

Author/s  Application  Decision 
variable  

Empirical constants 
Chosen  

Mattot 
et.al [17]  

PSO is used for the cost 
minimization of a pump and 
treat optimization problem.  

Extraction and 
Injection Rates 
of the wells and 
Number of wells 
required  

 

Zhou 
et.al.  
[25]  

Training of Artificial 
Networks by PSO to classify 
and predict water quality  

Weights of the 
input and hidden 
layers of ANN  

1) ω = .9-.4 2) No of 
particles - 80 3) c1 = 
c2 = 2 4) k is not 
used5) Termination - 
1000 iterations  

Gill et.al  
[10]  

Multi Objective PSO 
(MOPSO) to calibrate the (i) 
Sacramento soil moisture 
accounting model model and 
(ii) a support vector machine 
model for soil moisture 
prediction  

Parameters of 
both the models 
(16+3)  

1) ω(linearly varying) - 
0.9 - 0.01 2) No of 
particles - (i) 100 (ii) 
50 3) c1 = c2 = 0.5  

Izquierdo 
et.al  
[12]  

design of (i) 2 water 
distribution networks, the 
Hanoi new water distribution 
network and the  
New York tunnel water 
supply system (ii) the design 
of a waste water network and 
(iii) the calibration and 
identification of leaks in a 
water distribution network  

pipe diameters 
and slopes  

1). ω= 0.5 + 1/(2(ln(k) 
+1)) ;k -iteration no 2). 
No of particles - (i) 
100 (ii) 100 (iii) 300 
3). c1 = 3 ; c2 = 2 4). 
Termination after no of 
iterations - (i) 200 (ii) 
800 (iii) 200  

Mathur et 
al  
[16]  

optimal schedule of irrigation 
from lateral canals  

no of minor 
canals(21) and 
no of days (120)  

1)ω(0.9-0.4) 2) 
particles - 200 3) 
c1=c2=1.5 4)Stop after 
200steps  
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5 Conclusions and further Scope 

 
Particle Swarm Optimization has been successfully used in various complex 

water resources engineering problems to decide water management policies.  
Some of the advantages of PSO are as follows: 
1. In comparison to other evolutionary algorithms PSO is simpler to understand 
and implement. 
2. The method does not depend on the nature of the function it maximizes or 
minimizes.  Thus approximations made in conventional techniques are avoided. 
3. It uses objective function information to guide the search in problem space. 
Therefore it can easily deal with non differentiable and non convex objective 
functions. 
4. Non Linear Programming solutions are dependent upon the initial estimation 
of solutions. Therefore different initial estimates of parameters give different 
suboptimal solutions. PSO method is not affected by the initial searching points, 
thus ensuring a quality solution with high probability of obtaining the global 
optimum for any initial solution. 
5. In PSO particle movement uses randomness in its search. Hence, it is a kind 
of stochastic optimization algorithm that can search a complicated and uncertain 
area. Thus it is more flexible and robust than conventional methods. 
6. The convergence is not affected by the inclusion of more constraints. 
7. It also has the flexibility to control the balance between the global and local 
exploration in search space. This property enhances the search capabilities of the 
PSO technique and yields better quality solutions with fewer function 
evaluations. 
8. The algorithm of PSO, demands fewer adjusted key parameters of the 
algorithm and its arithmetic process is convenient and programmable. It can be 
easily implemented, and is computationally inexpensive, since memory and 
CPU speed requirements are low. 
PSO has been highly successful and within little more than a decade hundreds of 
papers have reported successful applications of PSO. As it is a technique of 
recent origin, the number of applications of PSO in water resources engineering 
is relatively less and there is still a lot of scope for a wider application of PSO to 
solve water related problems. Therefore there is a possibility that it may emerge 
as a powerful optimization tool in water resources research. Some of the 
possible areas in water resources where further research may be done is as 
follows 

 Ground water – utilization management, detection of unknown 
groundwater pollution sources, contaminant remediation, estimation of 
unknown aquifer parameters, estimation of water table by geo physical 
methods, optimization for design of multi layered sorptive systems, 
management of salt water intrusion in coastal aquifers.  
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The decision variables are specific to the problem under study. It can 
include the location, number and discharge of pumping wells, unknown 
aquifer parameters, depth of water table etc 

 Reservoir – planning, design and operation.  
The decision variables may include the optimum discharge values for 
each time period such that the all the demands are met. 

 Hydrology – Calibration of hydrological and ecological models , Time 
Series Modelling, stream flow forecasting,  
The calibration of various models involve the estimation of the various 
parameters associated with them. It may not be possible to obtain them 
from physical observations. Hence optimization methods have a 
definite advantage. 

 Irrigation – scheduling of irrigation canals, Canal design 
 River  Stage forecasting , River Water Quality Control and Prediction 
 Design of Water Distribution Networks, Calibration and improvement 

of urban drainage systems, Detection of leaks and its rectification 
 Climate Variability and Change, Calibration of climate models 

There are efforts by many researchers to develop better variations of PSO to 
increase population diversity and ensure global convergence of the algorithm. 
These researches may make it more suitable for large scale complex 
combinatorial optimization problems. 
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