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Abstract. In this paper, we study and evaluate fault-tolerant technology for use in the 
parallel acceleration of evolutionary computation on many-core processors. 
Specifically, we show running evolutionary computation in parallel on a GPU results 
in a system that not only performs better as the number of processor cores increases, 
but is also robust against any physical faults (e.g., stuck-at faults) and transient faults 
(e.g., faults caused by noise), and makes it less likely that the application program 
will be interrupted while running. That is, we show that this approach is beneficial for 
the implementation of systems with sustainability. 
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1 Introduction 

As an approach to speeding up evolutionary computation, the use of evolutionary 
computation methods that run on massively parallel computers has been actively 
researched since the 1990s [1, 2]. On the other hand, a recent trend has been towards 
the growing use of ordinary PCs with inexpensive multi-core processors aimed at 
small-scale parallelization using several cores or several tens of cores [3–5]. Research 
has also started on accelerating ordinary programs by using graphics processing units 
(GPUs) developed for the purpose of accelerating the processing of computer 
graphics. Against this background, the study of parallelizing evolutionary 
computation through the use of multi-core processors and many-core processors such 
as GPUs is getting under way [6–10]. A many-core processor contains multiple core 
processors of the same specifications. It should therefore be possible to achieve 
improved fault tolerance and reliability by effectively exploiting this feature. A 
number of fault-tolerant and enhanced reliability technologies have hitherto been 
proposed, principally for applications such as computers and LSIs, and there are also 
a good number of practical examples such as using multiplexing techniques to make 
computers more reliable, or using redundancy techniques to improve the yield of 
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semiconductor memory devices. Of these conventional techniques, most of the ones 
that use redundancy are centered on techniques that presume a multiple module 
configuration, and are considered suitable for installation on many-core environments 
comprising multiple core processors.  

On the other hand, while conventional redundant technology presumes a structure 
with a regular arrangement of modules with identical specifications, a many-core 
processor has a hierarchical structure and is configured as a system with a different 
architecture at each level. For example, a GPU consists of multiple streaming multi-
processors (SMs), each comprising a number of core processors. This results in a 
hierarchical structure where the architecture inside an SM differs from the 
architecture between SMs. Also, for example, the GPU GTX590 consist of two GPU 
(GTX580) are networked together. Accordingly, there is thought to be a need for new 
fault-tolerant techniques for many-core processors to replace these existing 
techniques. 

In section 2 of this paper, we present some typical conventional fault-tolerant 
techniques. In section 3, we investigate the relationship between fault-tolerant 
techniques and the parallelization of evolutionary computation on a GPU. In section 
4, we experimentally evaluate situations where stuck-at faults and transient faults are 
assumed to occur, and finally we conclude with a summary. 

2 Typical Fault-tolerant Techniques 

2.1 Multiplexing 

Static redundancy [11] involves using additional components to allow the effects of 
faults to be completely hidden (this is called "fault masking"). Typical techniques of 
this sort are module multiplexing and error correcting schemes, but when a fault can 
cause arbitrary errors to appear at the output, the fault can only be masked by a 
multiplexing scheme. We will consider an example of a multiplexing scheme here. To 
illustrate the basic concept of a multiplexing scheme, Fig. 1 shows the basic 
configuration of an N-Modular Redundancy (NMR) scheme. In this figure, the boxes 
labeled with M represent identical modules, from which the final output is produced 
via a majority voting element V. 
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Fig. 1. Basic configuration of the multiplexing scheme 

 
In an NMR scheme, it is possible to mask faults in up to n = (N−1)/2 modules. 

Thus, if the system reliability R(t) is defined as the probability that no fault will occur 
before time t on condition that there are no faults in the system at time 0, then the 
reliability Rnmr of the NMR system is as follows: 

 Rnmr  Rv
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Here, Rm and Rv represent the reliability of a single module and the reliability of 
the voting element, respectively. For example, when it is assumed that there is no 
fault in the voting element, the reliability R3mr of triple modular redundancy is given 
by the following formula: 

 R3mr  3Rm
2 2Rm

3
 (2) 

For each constituent module of an NMR system, if it is assumed that the early 
failure period has elapsed and the system has entered the period of fixed failure rate, 
then the failure rate Rm of a single module is given by Rm=e− λ, where λ is the fixed 
failure rate. Substituting this value of Rm into Equation (2) yields the following 
formula: 

 R3mr  3e2t 2e3t
 (3) 

2.2  Stand-by redundancy 

In static redundancy schemes such as multiplexing, faults are masked by using 
redundancy, and the faults themselves continue to exist within the system. Therefore, 
the number of hidden faults gradually increases as the system continues to operate for 
a longer period of time. When the number of faults exceeds (N − 1)/2, errors will 
occur in the voting output and the system will fail. To deal with this problem, 
dynamic redundant systems [11] have been proposed. These consist of a fault 
detection means and a system reconfiguration means. For example, Fig. 2 shows a 
conceptual diagram of a stand-by redundancy system with a similar configuration to 
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that of the above multiplex system. The system in this figure comprises a single 
operating module, N − 1 spare modules, a fault detection means, and a switching 
function. When a fault is detected in the operating module, it is replaced with one of 
the spare modules on stand-by.  

Here, assuming the ideal case of a 100% fault detection rate, the reliability Rsb of a 
stand-by redundancy system can be expressed in terms of the reliability Rm of a single 
module and the reliability Rs of the switching circuit as follows: 

 Rsb  1 1 Rm N R s  (4) 

 

 
Fig. 2. Conceptual diagram of a stand-by redundancy system 

3 Parallelization and Fault-tolerant Technology for EC 

3.1  The problems of conventional methods 

In general, multiplexing and stand-by redundancy incur costs that rise in proportion 
with the number of modules, so the application of these methods to real systems has 
chiefly involved duplex or triplex architectures. For example, the 3B20D processor 
developed by AT&T for electronic exchange networks [12] used duplex technology 
for the CPU, memory and I/O disk system. Another example is the Tandem 16 system 
developed by Tandem Computers for processing online transactions by organizations 
such as banks [13]. This was a reconfigurable multiprocessor system that achieved 
greater reliability by duplexing the disk devices and the buses between processors. 
C.vmp [14] was a multiprocessor system that could function correctly even with a 
mixture of permanent faults and temporary faults in the hardware. It achieved this by 
using a triplex configuration. These technologies are all geared towards architectures 
where identical modules are connected according to fixed rules. For example, if an 
SM is regarded as a single module, then it is suitable for implementation on a GPU.  

On the other hand, in multiplexing schemes, the slowness of communication via 
global memory causes problems when voting circuits are implemented at the CPU 
end in consideration of regularity, and it is necessary to investigate how to implement 
voting circuits. Furthermore, it is not possible to guarantee correct results when there 
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are faults in more than half the SMs. A problem with implementing stand-by 
redundancy on a GPU is the low utilization rate of the SMs that occurs as a result. 
Complex technology is needed to implement online processing of switching with 
redundant parts. When implemented with offline processing, this raises the problem 
of having to temporarily halt the execution of application programs. Extra hardware 
is needed to perform switching with redundant parts, and it is also conceivable that 
faults may occur in the fault detector circuits or switching circuits. Also, since a GPU 
has a hierarchical structure while an SM internally comprises multiple multi-core 
processors, the architectures inside SMs and between SMs are configured differently. 
We can also consider large-scale systems where multiple GPUs are networked 
together. Accordingly, in large-scale systems based on many-core architectures, it 
may become necessary to investigate new fault-tolerant technology as an alternative 
to conventional schemes. 

3.2 Proposal of fault-tolerant technology based on parallelization 
of EC 

The purpose of this study is to propose technology for improving the performance of 
active application programs and achieve greater fault tolerance by performing 
evolutionary computation in parallel on a GPU. As a first step, we investigate an 
example where the evolutionary computation of earlier studies is implemented on a 
GPU. Figure 3 illustrates the basic architecture of Nvidia's GTX460 GPU, and the 
method used to implement the parallel evolutionary computation model. 

 
Fig. 3. GTX460 architecture and implementation of the parallel evolutionary 
computation model 
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The GTX460 consists of 7 SMs and a large (1 GB) global memory. Each SM has 

48 core processors and a small (48 KB) shared memory. In each SM, it is possible to 
define up to 1536 threads. Communication inside the SMs can be performed at high 
speed. But communication between SMs is performed via the global memory and is 
about 100 times slower. We therefore consider a model where the same GA is run 
independently in each SM by changing the random initial value, and the program is 
terminated when an SM that has obtained a solution is found. We will refer to this as 
an "independent competition model".  

The procedure of the parallel GA model for GPU computation is as follows. 
(1) In the host machine, all individuals (population size/SM × #SM) are randomly 

generated and then sent to the global memory of the GPU. 
(2) Each SM copies the corresponding individuals from global memory to its 

shared memory, and the genetic manipulation process is repeated until the termination 
criteria are satisfied. 

(3) Finally, each SM copies the evolved individuals from its shared memory to 
global memory. 

Since there is only a small amount of shared memory inside the SM, the number of 
individuals that can be stored inside the SM is limited. Also, since the number of core 
processors in an SM is at most a dozen or so, the search performance of a single SM 
is not necessarily very high. However, the total population size per GPU is same as 
the number in the host, therefore the number of generations required to get a feasible 
solution will be maintained. In an independent competition model, acceleration is 
achieved due to the effects of parallelization. 

In conventional design, the date stored in memory is the date for the fixed 
calculation or transaction, so the date at a faulty location will cause errors to appear at 
the output. Therefore, multiplexing and stand-by redundancy will be effective for the 
fault masking. On the other hand, in evolutionary computation, most of the data 
stored in memory is the genetic information of individuals, so although a gene stored 
at a faulty location will no longer search effectively for a solution, the populations in 
SMs where there are no faults will still be able to search for a solution. Therefore, 
since a solution can be found as long as there is one SM still operating normally, the 
reliability Rp of the independent competitive model is given by the following formula, 
where Rm is the reliability of the SM when considered as a module: 

 Rp  1 1 Rm N    (5) 

Compared with conventional multiplexing where it is impossible to guarantee 
correct results when there are faults in half or more of the SMs, this approach has 
higher fault tolerance and can find a solution even if there is only one SM functioning 
normally. Also, compared with a stand-by redundancy system, there is no need for 
equipment for the switching of redundant parts, thereby increasing the reliability by a 
factor of 1/Rs. There is also no need for extra hardware such as voting circuits, fault 
detectors or switching circuits. 
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4   Evaluation Experiments 

4.1 Evaluation method 

We performed an evaluation in which stuck-at faults and transient faults were 
assumed to occur. For stuck-at faults, the GTX460 was used to simulate a physical 
fault such as a fault in the shared memory inside the SM or in the path connecting a 
core processor to the shared memory. In the SM where a fault has occurred, it is 
considered that correct genetic operations are prevented from running, and a correct 
solution cannot be found. With an SM regarded as a single module, we investigated 
the reliability and performance (execution time needed to obtain a correct solution) of 
three methods — multiplexing, stand-by redundancy, and parallel evolutionary 
computing. The reliability comparisons were performed by comparing the 
relationships between time and reliability based on Equations (1), (4) and (5), with 
the number of modules fixed at 7. The performance comparisons were made by 
investigating the execution time taken to obtain a correct solution while varying the 
number of SMs used in the experiment from 1 to 7 (i.e., while varying the number of 
faulty SMs from 6 down to 0). The evaluation was performed using a Sudoku solver 
program based on evolutionary computation. 

For transient faults, it is assumed that the faults consist of temporary non-repeating 
changes to data values inside each SM due to the effects of noise and the like. In the 
evaluation, these faults were assumed to manifest as errors whereby the IDs of parent 
individuals are randomly switched during the selection phase. The experiment was 
performed using an Intel Core i7 processor, with the error frequency varied as a 
parameter. Evaluations were performed using the knapsack problem which restricts 
the number 40 and Equation (6) below, which was chosen from the five types of 
function minimization problems shown by De Jong. 

    2
1

2

2
2
12 1100 xxxF    (6) 

 
We used the tournament selection and the parameters used for genetic manipulation 
in these evaluation tests are shown in Tables 1. 
 

Table 1. The parameters for genetic manipulation 
Population 

size 
Maximum 
generation 

Tournament 
size 

Crossover rate Mutation rate 

100 30,000 4 0.7 0.01 

4.2 Experimental results and discussion 

4.2.1 Evaluation of results for stuck-at faults 

Comparative evaluation of reliability. Figure 4 shows the relationship between 
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reliability and time t for a single module, multiplexing, stand-by redundancy and the 
evolutionary computation model. Although this figure shows the results for a single 
module failure rate of λ=0.001, there is no change in the overall trends for different 
values of λ.  

From this figure, it can be seen that the reliability Rnmr of multiplexing is larger 
than the reliability Rm of a single module up to a certain time T. The value of Rm has 
been observed to reverse for sufficiently large values of t, but since the reliability 
after a sufficiently long time had elapsed is not of major importance, it can be 
considered that multiplexing is effective for practical purposes. The reliability Rsb of 
stand-by redundancy is calculated by assuming a fixed value of 0.9 for the switching 
circuit reliability Rs. In fact, the initial value of Rs is closer to 1, but considering that 
there is the possibility of a fault occurring in the fault detector circuit and that the 
value of Rs also decays over time, we performed these calculations with a fixed value 
of 0.9 for the sake of convenience. The value of Rsb starts off close to 1, and although 
there is slight degradation in the reliability Rnmr of the multiplexing scheme during the 
initial stage, the reliability greater than Rnmr tends to be maintained as the system 
operation time becomes longer and the number of hidden faults gradually increases. 
The reliability Rp of the parallelized evolutionary computation model maintains the 
highest value throughout the entire period, and in terms of reliability it seems that this 
is an effective approach to achieving fault-tolerance in many-core architectures such 
as GPUs. It also has the advantage of making it unnecessary to add extra hardware 
such as voting circuits and switching circuits. 
 

 
Fig. 4. Variation of the reliability of fault-tolerant techniques with time t. 

Comparative evaluation of performance. Table 1 shows the relationship between 
the number of SMs and the performance achieved when evolutionary computation for 
solving Sudoku puzzles is performed in parallel on a GTX460 GPU. In Table 1, while 
varying the number of SMs used, we calculated the number of times a correct 
solution was obtained out of 100 attempts where the processes truncated at 100,000 
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generations (Count), the average number of generations needed to obtain a correct 
solution, and the computation time. However, with no set truncation point, a correct 
answer would have been obtained in all cases, even with just one SM.  

Also, Fig. 5 shows how the execution time varies with the number of SMs in the 
multiplexing scheme and the parallelized evolutionary computation model. The 
execution times of the evolutionary computation model are the measured values 
shown in Table 2, and the execution times of the multiplexing scheme are the 
theoretical (lower bound) values for the ideal case where the time taken up by the 
voting logic is ignored. The execution time of the stand-by redundancy scheme was 
more or less the same as for the multiplexing scheme, and was constant as expected. 
The difference in execution times between the multiplexing and stand-by redundancy 
schemes corresponds to the difference in time needed to perform fault detection and 
switching and the time needed for the voting logic, and their relative merits depend 
on how they are implemented. In the multiplexing and stand-by redundancy schemes, 
the execution time is constant regardless of the number of SMs, whereas the 
parallelized evolutionary computation model has the advantage that the execution 
time needed to search for a solution decreases as the number of SMs increases. 
 
Table 2. The number of generations until the correct solution was obtained, the 
execution time, and the rate of correct answers (SD1, Givens: 24) 

 Count [%] Average Gen. Execution time 

#SM: 1 62 57,687 16s 728 

#SM: 2 80 40,820 11s 845 

#SM: 4 98 19,020 5s 527 

#SM: 7 100 10,014 2s 906 

 

0 

4 

8 

12 

16 

20 

1 2 3 4 5 6 7 

Number of the streaming multi-processor (#SM)

Execution time 
[sec]

NMR

Parallel GA

 
Fig. 5. Variation of execution time with number of SMs 
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4.2.2  Evaluation of results for transient faults 

Figure 6 shows how the average number of generations needed to search for the 
minimum value of the function shown in Equation (6) varies with the number of 
threads. Figure 7 shows how the average number of generations needed to search for 
the solution of the knapsack problem which restricts the number 40.  

Here, it can be seen that the average number of generations it takes to find a 
solution tends to increase gradually as the transient fault probability increases, 
regardless of how many threads are being used. However, in each case a solution was 
still obtained despite the addition of transient faults. Transient faults can also be 
thought to play a role in increasing diversity in the GA search process, and GA is 
thought to be intrinsically less susceptible to the adverse effects of transient errors. 

Also, regardless of the probability of transient errors, it can be seen that the 
number of generations needed to find a solution decreases as the number of threads is 
increased (i.e., with increasing parallelism). It can thus be seen that parallelization of 
evolutionary computation in a many-core environment is not only robust against 
stuck-at faults but also against transient faults. 

 
Fig. 6. Average number of generations needed to find the minimum value of a 
function shown in eq. (6). 
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Fig. 7. Average number of generations needed to find the solution of the knapsack 
problem. 
 

From the above, when parallel evolutionary computation is performed in many-
core processors using a scheme based on independent competition, it seems that 
benefits such as higher reliability and lower susceptibility to transient errors can be 
achieved compared with when using conventional fault-tolerant techniques. There is 
also no need for extra hardware such as voting circuits or switching circuits. It is also 
thought to be effective at improving the performance as the degree of multiplicity or 
redundancy is increased. Although the performance decreases as the number of faulty 
physical SMs increases, a correct result can still be obtained even when there is only 
one functioning SM remaining, so it is though that this approach offers enhanced 
sustainability by increasing the performance of application programs running on the 
GPU and allowing application programs to continue running due to the increased 
fault tolerance. 

In the future, it will be necessary to investigate the fault-tolerant performance in 
island models where modules communicate with each other as a parallelized 
evolutionary computation method using many-core processors. With regard to 
transient errors, it will be necessary to investigate in more detail whether there are 
any differences in trends due to the type of transient error or the problem 
dependencies. There is also a need for further research on the fault tolerance achieved 
when core processors inside the SMs are regarded as separate modules or when 
working with modules of two different types (core processors and SMs), and the fault 
tolerance of large-scale systems with multiple GPUs connected by a network.  
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5 Conclusion 

In this paper, we have studied and evaluated fault-tolerant technology for use in 
the parallel acceleration of evolutionary computation in a many-core environment. 
This not only offers the benefits of parallel execution, but also acts as a fault-tolerant 
technology. Specifically, we compared the “independent competition model” with 
two conventional models, “multiplexing” and “stand-by redundancy”. As the number 
of physical fault locations increases, the performance declines but the functionality is 
maintained. Accordingly, there is less likelihood that running applications will be 
halted when a physical fault occurs, which is advantageous for the realization of 
systems with sustainability.  
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