
Computing: Theories and Applications (BIC-TA 2012), Advances in Intelligent Systems
and Computing 202, DOI: 10.1007/978-81-322-1041-2 Ó Springer India 2013

175

Parallelization of Genetic Algorithms and
Sustainability on Many-core Processors

Yuji Sato

Faculty of Computer and Information Sciences, Hosei University

3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

yuji@k.hosei.ac.jp

Abstract. In this paper, we study and evaluate fault-tolerant technology for use in the
parallel acceleration of evolutionary computation on many-core processors.
Specifically, we show running evolutionary computation in parallel on a GPU results
in a system that not only performs better as the number of processor cores increases,
but is also robust against any physical faults (e.g., stuck-at faults) and transient faults
(e.g., faults caused by noise), and makes it less likely that the application program
will be interrupted while running. That is, we show that this approach is beneficial for
the implementation of systems with sustainability.

Keywords: Genetic Algorithm, Many-core Processors, Fault-tolerance, Sustainability

1 Introduction

As an approach to speeding up evolutionary computation, the use of evolutionary
computation methods that run on massively parallel computers has been actively
researched since the 1990s [1, 2]. On the other hand, a recent trend has been towards
the growing use of ordinary PCs with inexpensive multi-core processors aimed at
small-scale parallelization using several cores or several tens of cores [3–5]. Research
has also started on accelerating ordinary programs by using graphics processing units
(GPUs) developed for the purpose of accelerating the processing of computer
graphics. Against this background, the study of parallelizing evolutionary
computation through the use of multi-core processors and many-core processors such
as GPUs is getting under way [6–10]. A many-core processor contains multiple core
processors of the same specifications. It should therefore be possible to achieve
improved fault tolerance and reliability by effectively exploiting this feature. A
number of fault-tolerant and enhanced reliability technologies have hitherto been
proposed, principally for applications such as computers and LSIs, and there are also
a good number of practical examples such as using multiplexing techniques to make
computers more reliable, or using redundancy techniques to improve the yield of

_15,

J. C. Bansal et al. (eds.), Proceedings of Seventh International Conference on Bio-Inspired

semiconductor memory devices. Of these conventional techniques, most of the ones
that use redundancy are centered on techniques that presume a multiple module
configuration, and are considered suitable for installation on many-core environments
comprising multiple core processors.

On the other hand, while conventional redundant technology presumes a structure
with a regular arrangement of modules with identical specifications, a many-core
processor has a hierarchical structure and is configured as a system with a different
architecture at each level. For example, a GPU consists of multiple streaming multi-
processors (SMs), each comprising a number of core processors. This results in a
hierarchical structure where the architecture inside an SM differs from the
architecture between SMs. Also, for example, the GPU GTX590 consist of two GPU
(GTX580) are networked together. Accordingly, there is thought to be a need for new
fault-tolerant techniques for many-core processors to replace these existing
techniques.

In section 2 of this paper, we present some typical conventional fault-tolerant
techniques. In section 3, we investigate the relationship between fault-tolerant
techniques and the parallelization of evolutionary computation on a GPU. In section
4, we experimentally evaluate situations where stuck-at faults and transient faults are
assumed to occur, and finally we conclude with a summary.

2 Typical Fault-tolerant Techniques

2.1 Multiplexing

Static redundancy [11] involves using additional components to allow the effects of
faults to be completely hidden (this is called "fault masking"). Typical techniques of
this sort are module multiplexing and error correcting schemes, but when a fault can
cause arbitrary errors to appear at the output, the fault can only be masked by a
multiplexing scheme. We will consider an example of a multiplexing scheme here. To
illustrate the basic concept of a multiplexing scheme, Fig. 1 shows the basic
configuration of an N-Modular Redundancy (NMR) scheme. In this figure, the boxes
labeled with M represent identical modules, from which the final output is produced
via a majority voting element V.

176 Y. Sato

Fig. 1. Basic configuration of the multiplexing scheme

In an NMR scheme, it is possible to mask faults in up to n = (N−1)/2 modules.

Thus, if the system reliability R(t) is defined as the probability that no fault will occur
before time t on condition that there are no faults in the system at time 0, then the
reliability Rnmr of the NMR system is as follows:

 Rnmr Rv

N

i

i0

(N 1)/ 2

 1 Rm i
Rm

N i (1)

Here, Rm and Rv represent the reliability of a single module and the reliability of
the voting element, respectively. For example, when it is assumed that there is no
fault in the voting element, the reliability R3mr of triple modular redundancy is given
by the following formula:

 R3mr 3Rm
2 2Rm

3
 (2)

For each constituent module of an NMR system, if it is assumed that the early
failure period has elapsed and the system has entered the period of fixed failure rate,
then the failure rate Rm of a single module is given by Rm=e− λ, where λ is the fixed
failure rate. Substituting this value of Rm into Equation (2) yields the following
formula:

 R3mr 3e2t 2e3t
 (3)

2.2 Stand-by redundancy

In static redundancy schemes such as multiplexing, faults are masked by using
redundancy, and the faults themselves continue to exist within the system. Therefore,
the number of hidden faults gradually increases as the system continues to operate for
a longer period of time. When the number of faults exceeds (N − 1)/2, errors will
occur in the voting output and the system will fail. To deal with this problem,
dynamic redundant systems [11] have been proposed. These consist of a fault
detection means and a system reconfiguration means. For example, Fig. 2 shows a
conceptual diagram of a stand-by redundancy system with a similar configuration to

Parallelization of Genetic Algorithms and Sustainability 177

that of the above multiplex system. The system in this figure comprises a single
operating module, N − 1 spare modules, a fault detection means, and a switching
function. When a fault is detected in the operating module, it is replaced with one of
the spare modules on stand-by.

Here, assuming the ideal case of a 100% fault detection rate, the reliability Rsb of a
stand-by redundancy system can be expressed in terms of the reliability Rm of a single
module and the reliability Rs of the switching circuit as follows:

 Rsb 1 1 Rm N R s (4)

Fig. 2. Conceptual diagram of a stand-by redundancy system

3 Parallelization and Fault-tolerant Technology for EC

3.1 The problems of conventional methods

In general, multiplexing and stand-by redundancy incur costs that rise in proportion
with the number of modules, so the application of these methods to real systems has
chiefly involved duplex or triplex architectures. For example, the 3B20D processor
developed by AT&T for electronic exchange networks [12] used duplex technology
for the CPU, memory and I/O disk system. Another example is the Tandem 16 system
developed by Tandem Computers for processing online transactions by organizations
such as banks [13]. This was a reconfigurable multiprocessor system that achieved
greater reliability by duplexing the disk devices and the buses between processors.
C.vmp [14] was a multiprocessor system that could function correctly even with a
mixture of permanent faults and temporary faults in the hardware. It achieved this by
using a triplex configuration. These technologies are all geared towards architectures
where identical modules are connected according to fixed rules. For example, if an
SM is regarded as a single module, then it is suitable for implementation on a GPU.

On the other hand, in multiplexing schemes, the slowness of communication via
global memory causes problems when voting circuits are implemented at the CPU
end in consideration of regularity, and it is necessary to investigate how to implement
voting circuits. Furthermore, it is not possible to guarantee correct results when there

178 Y. Sato

are faults in more than half the SMs. A problem with implementing stand-by
redundancy on a GPU is the low utilization rate of the SMs that occurs as a result.
Complex technology is needed to implement online processing of switching with
redundant parts. When implemented with offline processing, this raises the problem
of having to temporarily halt the execution of application programs. Extra hardware
is needed to perform switching with redundant parts, and it is also conceivable that
faults may occur in the fault detector circuits or switching circuits. Also, since a GPU
has a hierarchical structure while an SM internally comprises multiple multi-core
processors, the architectures inside SMs and between SMs are configured differently.
We can also consider large-scale systems where multiple GPUs are networked
together. Accordingly, in large-scale systems based on many-core architectures, it
may become necessary to investigate new fault-tolerant technology as an alternative
to conventional schemes.

3.2 Proposal of fault-tolerant technology based on parallelization
of EC

The purpose of this study is to propose technology for improving the performance of
active application programs and achieve greater fault tolerance by performing
evolutionary computation in parallel on a GPU. As a first step, we investigate an
example where the evolutionary computation of earlier studies is implemented on a
GPU. Figure 3 illustrates the basic architecture of Nvidia's GTX460 GPU, and the
method used to implement the parallel evolutionary computation model.

Fig. 3. GTX460 architecture and implementation of the parallel evolutionary
computation model

Parallelization of Genetic Algorithms and Sustainability 179

The GTX460 consists of 7 SMs and a large (1 GB) global memory. Each SM has

48 core processors and a small (48 KB) shared memory. In each SM, it is possible to
define up to 1536 threads. Communication inside the SMs can be performed at high
speed. But communication between SMs is performed via the global memory and is
about 100 times slower. We therefore consider a model where the same GA is run
independently in each SM by changing the random initial value, and the program is
terminated when an SM that has obtained a solution is found. We will refer to this as
an "independent competition model".

The procedure of the parallel GA model for GPU computation is as follows.
(1) In the host machine, all individuals (population size/SM × #SM) are randomly

generated and then sent to the global memory of the GPU.
(2) Each SM copies the corresponding individuals from global memory to its

shared memory, and the genetic manipulation process is repeated until the termination
criteria are satisfied.

(3) Finally, each SM copies the evolved individuals from its shared memory to
global memory.

Since there is only a small amount of shared memory inside the SM, the number of
individuals that can be stored inside the SM is limited. Also, since the number of core
processors in an SM is at most a dozen or so, the search performance of a single SM
is not necessarily very high. However, the total population size per GPU is same as
the number in the host, therefore the number of generations required to get a feasible
solution will be maintained. In an independent competition model, acceleration is
achieved due to the effects of parallelization.

In conventional design, the date stored in memory is the date for the fixed
calculation or transaction, so the date at a faulty location will cause errors to appear at
the output. Therefore, multiplexing and stand-by redundancy will be effective for the
fault masking. On the other hand, in evolutionary computation, most of the data
stored in memory is the genetic information of individuals, so although a gene stored
at a faulty location will no longer search effectively for a solution, the populations in
SMs where there are no faults will still be able to search for a solution. Therefore,
since a solution can be found as long as there is one SM still operating normally, the
reliability Rp of the independent competitive model is given by the following formula,
where Rm is the reliability of the SM when considered as a module:

 Rp 1 1 Rm N (5)

Compared with conventional multiplexing where it is impossible to guarantee
correct results when there are faults in half or more of the SMs, this approach has
higher fault tolerance and can find a solution even if there is only one SM functioning
normally. Also, compared with a stand-by redundancy system, there is no need for
equipment for the switching of redundant parts, thereby increasing the reliability by a
factor of 1/Rs. There is also no need for extra hardware such as voting circuits, fault
detectors or switching circuits.

180 Y. Sato

4 Evaluation Experiments

4.1 Evaluation method

We performed an evaluation in which stuck-at faults and transient faults were
assumed to occur. For stuck-at faults, the GTX460 was used to simulate a physical
fault such as a fault in the shared memory inside the SM or in the path connecting a
core processor to the shared memory. In the SM where a fault has occurred, it is
considered that correct genetic operations are prevented from running, and a correct
solution cannot be found. With an SM regarded as a single module, we investigated
the reliability and performance (execution time needed to obtain a correct solution) of
three methods — multiplexing, stand-by redundancy, and parallel evolutionary
computing. The reliability comparisons were performed by comparing the
relationships between time and reliability based on Equations (1), (4) and (5), with
the number of modules fixed at 7. The performance comparisons were made by
investigating the execution time taken to obtain a correct solution while varying the
number of SMs used in the experiment from 1 to 7 (i.e., while varying the number of
faulty SMs from 6 down to 0). The evaluation was performed using a Sudoku solver
program based on evolutionary computation.

For transient faults, it is assumed that the faults consist of temporary non-repeating
changes to data values inside each SM due to the effects of noise and the like. In the
evaluation, these faults were assumed to manifest as errors whereby the IDs of parent
individuals are randomly switched during the selection phase. The experiment was
performed using an Intel Core i7 processor, with the error frequency varied as a
parameter. Evaluations were performed using the knapsack problem which restricts
the number 40 and Equation (6) below, which was chosen from the five types of
function minimization problems shown by De Jong.

 2
1

2

2
2
12 1100 xxxF (6)

We used the tournament selection and the parameters used for genetic manipulation
in these evaluation tests are shown in Tables 1.

Table 1. The parameters for genetic manipulation
Population

size
Maximum
generation

Tournament
size

Crossover rate Mutation rate

100 30,000 4 0.7 0.01

4.2 Experimental results and discussion

4.2.1 Evaluation of results for stuck-at faults

Comparative evaluation of reliability. Figure 4 shows the relationship between

Parallelization of Genetic Algorithms and Sustainability 181

reliability and time t for a single module, multiplexing, stand-by redundancy and the
evolutionary computation model. Although this figure shows the results for a single
module failure rate of λ=0.001, there is no change in the overall trends for different
values of λ.

From this figure, it can be seen that the reliability Rnmr of multiplexing is larger
than the reliability Rm of a single module up to a certain time T. The value of Rm has
been observed to reverse for sufficiently large values of t, but since the reliability
after a sufficiently long time had elapsed is not of major importance, it can be
considered that multiplexing is effective for practical purposes. The reliability Rsb of
stand-by redundancy is calculated by assuming a fixed value of 0.9 for the switching
circuit reliability Rs. In fact, the initial value of Rs is closer to 1, but considering that
there is the possibility of a fault occurring in the fault detector circuit and that the
value of Rs also decays over time, we performed these calculations with a fixed value
of 0.9 for the sake of convenience. The value of Rsb starts off close to 1, and although
there is slight degradation in the reliability Rnmr of the multiplexing scheme during the
initial stage, the reliability greater than Rnmr tends to be maintained as the system
operation time becomes longer and the number of hidden faults gradually increases.
The reliability Rp of the parallelized evolutionary computation model maintains the
highest value throughout the entire period, and in terms of reliability it seems that this
is an effective approach to achieving fault-tolerance in many-core architectures such
as GPUs. It also has the advantage of making it unnecessary to add extra hardware
such as voting circuits and switching circuits.

Fig. 4. Variation of the reliability of fault-tolerant techniques with time t.

Comparative evaluation of performance. Table 1 shows the relationship between
the number of SMs and the performance achieved when evolutionary computation for
solving Sudoku puzzles is performed in parallel on a GTX460 GPU. In Table 1, while
varying the number of SMs used, we calculated the number of times a correct
solution was obtained out of 100 attempts where the processes truncated at 100,000

182 Y. Sato

generations (Count), the average number of generations needed to obtain a correct
solution, and the computation time. However, with no set truncation point, a correct
answer would have been obtained in all cases, even with just one SM.

Also, Fig. 5 shows how the execution time varies with the number of SMs in the
multiplexing scheme and the parallelized evolutionary computation model. The
execution times of the evolutionary computation model are the measured values
shown in Table 2, and the execution times of the multiplexing scheme are the
theoretical (lower bound) values for the ideal case where the time taken up by the
voting logic is ignored. The execution time of the stand-by redundancy scheme was
more or less the same as for the multiplexing scheme, and was constant as expected.
The difference in execution times between the multiplexing and stand-by redundancy
schemes corresponds to the difference in time needed to perform fault detection and
switching and the time needed for the voting logic, and their relative merits depend
on how they are implemented. In the multiplexing and stand-by redundancy schemes,
the execution time is constant regardless of the number of SMs, whereas the
parallelized evolutionary computation model has the advantage that the execution
time needed to search for a solution decreases as the number of SMs increases.

Table 2. The number of generations until the correct solution was obtained, the
execution time, and the rate of correct answers (SD1, Givens: 24)

 Count [%] Average Gen. Execution time

#SM: 1 62 57,687 16s 728

#SM: 2 80 40,820 11s 845

#SM: 4 98 19,020 5s 527

#SM: 7 100 10,014 2s 906

0

4

8

12

16

20

1 2 3 4 5 6 7

Number of the streaming multi-processor (#SM)

Execution time
[sec]

NMR

Parallel GA

Fig. 5. Variation of execution time with number of SMs

Parallelization of Genetic Algorithms and Sustainability 183

4.2.2 Evaluation of results for transient faults

Figure 6 shows how the average number of generations needed to search for the
minimum value of the function shown in Equation (6) varies with the number of
threads. Figure 7 shows how the average number of generations needed to search for
the solution of the knapsack problem which restricts the number 40.

Here, it can be seen that the average number of generations it takes to find a
solution tends to increase gradually as the transient fault probability increases,
regardless of how many threads are being used. However, in each case a solution was
still obtained despite the addition of transient faults. Transient faults can also be
thought to play a role in increasing diversity in the GA search process, and GA is
thought to be intrinsically less susceptible to the adverse effects of transient errors.

Also, regardless of the probability of transient errors, it can be seen that the
number of generations needed to find a solution decreases as the number of threads is
increased (i.e., with increasing parallelism). It can thus be seen that parallelization of
evolutionary computation in a many-core environment is not only robust against
stuck-at faults but also against transient faults.

Fig. 6. Average number of generations needed to find the minimum value of a
function shown in eq. (6).

184 Y. Sato

Fig. 7. Average number of generations needed to find the solution of the knapsack
problem.

From the above, when parallel evolutionary computation is performed in many-
core processors using a scheme based on independent competition, it seems that
benefits such as higher reliability and lower susceptibility to transient errors can be
achieved compared with when using conventional fault-tolerant techniques. There is
also no need for extra hardware such as voting circuits or switching circuits. It is also
thought to be effective at improving the performance as the degree of multiplicity or
redundancy is increased. Although the performance decreases as the number of faulty
physical SMs increases, a correct result can still be obtained even when there is only
one functioning SM remaining, so it is though that this approach offers enhanced
sustainability by increasing the performance of application programs running on the
GPU and allowing application programs to continue running due to the increased
fault tolerance.

In the future, it will be necessary to investigate the fault-tolerant performance in
island models where modules communicate with each other as a parallelized
evolutionary computation method using many-core processors. With regard to
transient errors, it will be necessary to investigate in more detail whether there are
any differences in trends due to the type of transient error or the problem
dependencies. There is also a need for further research on the fault tolerance achieved
when core processors inside the SMs are regarded as separate modules or when
working with modules of two different types (core processors and SMs), and the fault
tolerance of large-scale systems with multiple GPUs connected by a network.

Parallelization of Genetic Algorithms and Sustainability 185

5 Conclusion

In this paper, we have studied and evaluated fault-tolerant technology for use in
the parallel acceleration of evolutionary computation in a many-core environment.
This not only offers the benefits of parallel execution, but also acts as a fault-tolerant
technology. Specifically, we compared the “independent competition model” with
two conventional models, “multiplexing” and “stand-by redundancy”. As the number
of physical fault locations increases, the performance declines but the functionality is
maintained. Accordingly, there is less likelihood that running applications will be
halted when a physical fault occurs, which is advantageous for the realization of
systems with sustainability.

Acknowledgment

This research is partly supported by the collaborative research program 2012,
Information Initiative Center, Hokkaido University, and a grant from the Institute for
Sustainability Research and Education of Hosei University 2012

References

[1] Mühlenbein, H.: Evolution in time and space - the parallel genetic algorithm. In
Foundations of Genetic Algorithms, pp. 316–337. Morgan Kaufmann (1991)

[2] Shonkwiler, R.: Parallel genetic algorithm. In Proc. of the 5th International Conference on
Genetic Algorithms, pp. 199–205 (1993)

[3] Pham, D., Asano, S., Bolliger, M., Day, M. N., Hofstee, H. P., Johns, C., Kahle, J.,
Kameyama, A, Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D., Suzuoki, M.,
Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T., and Yazawa, K.: The
design and implementation of a first-generation CELL processor. In 2005 IEEE
International Solid- State Circuits Conference, vol. 1, pp. 184–592 (2005)

[4] Shiota, T., Kawasaki, K., Kawabe, Y., Shibamoto, W., Sato, A., Hashimoto, T.,
Hayakawa, F., Tago, S., Okano, H., Nakamura, Y., Miyake, H., Suga, A., and Takahashi,
H.: A 51.2 gops 1.0 gb/sdma single-chip multi-processor integrating quadruple 8-way vliw
processors. In 2005 IEEE International Solid-State Circuits Conference, vol. 1, pp. 194–
593 (2005)

[5] Torii, S., et al.: A 600mips 120mw 70ua leakage triple-cpu mobile application processor
chip. In the IEEE ISSCC Digest of Technical Papers, pp. 136–137 (2005)

[6] Byun, J.-H., Datta, K., Ravindran, A., Mukherjee, A., and Joshi, B.: Performance analysis
of coarse-grained parallel genetic algorithms on the multi-core sun UltraSPARC T1. In
SOUTHEASTCON’09. IEEE, pp. 301–306 (2009).

[7] Serrano, R., Tapia, J., Montiel, O., Sep´ulveda, R., and Melin, P.: High performance
parallel programming of a GA using multi-core technology. In Soft Computing for Hybrid
Intelligent Systems, pp. 307–314 (2008)

186 Y. Sato

[8] Tsutsui, S., and Fujimoto, N.: Solving quadratic assignment problems by genetic
algorithms with GPU computation: a case study. In Proceedings of the 2009
ACM/SIGEVO Genetic and Evolutionary Computation Conference, pp. 2523–2530
(2009)

[9] Sato, M., Sato, Y., and Namiki, M.: Proposal of a multi-core processor from the
viewpoint of evolutionary computation. In Proceedings of the 2010 IEEE Congress on
Evolutionary Computation, CD-ROM (2010)

[10] Sato, Y., Hasegawa, N., and Sato, M.: GPU Acceleration for Sudoku Solution with
Genetic Operations. In Proceedings of the 2011 IEEE Congress on Evolutionary
Computation, CD-ROM (2011)

[11] Lara, P. K.: Fault Tolerant and Fault Testable Hardware Design. Prentice-Hall
International Ltd (1985)

[12] Toy, W. N., and Gallaher, L. E.: Overview and architecture of 3B20D processor. Bell Syst.
Tech. J., Vol. 62, No. 1, pt. 2, pp. 181-19 (1983)

[13] Bartlet, F.: The Tandem 16; A “NonStop” operating system. In The Theory and Practice
of Reliable System Design (Ed. By D. P. Siewiorek and R. S. Searz), pp. 453-460 (1982)

[14] Siewiorek, D. P., et al.: A case study of C.mmp, Cm and C.Vmp: Part 1 – Experience with
fault-tolerance in multiprocessor systems. ibid., pp. 1178-1199 (1978)

Parallelization of Genetic Algorithms and Sustainability 187

	15Parallelization of Genetic Algorithms and Sustainability on Many-core Processors
	1 Introduction
	2 Typical Fault-tolerant Techniques
	3 Parallelization and Fault-tolerant Technology for EC
	4 Evaluation Experiments
	5 Conclusion
	Acknowledgment
	References

