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Abstract. In recent years, Particle Swarm Optimization (PSO) methods have
gained popularity in solving single objective and other optimization tasks. In
particular, solving constrained optimization problems using swarm methods has
been attempted in past but arguably stays as one of the challenging issues. A
commonly encountered situation is one in which constraints manifest themselves
in form of variable bounds. In such scenarios the issue of constraint-handling
is somewhat simplified. This paper attempts to review popular bound handling
methods, in context to PSO, and proposes new methods which are found to be
robust and consistent in terms of performance over several simulation scenarios.
The effectiveness of bound handling methods is shown PSO; however the meth-
ods are general and can be combined with any other optimization procedure.
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1 Introduction

Optimization problems are wide-spread in several domains of science and engi-
neering. The usual goal is to minimize or maximize some pre-defined objective(s)
and specified constraints. Without any loss of generality, the most general form
of constrained optimization problem can be written as a nonlinear programming
problem (NLP):

Minimize f (x̄)

Sub jectto

g j(x̄)≥ 0, j = 1, ...,J

hk(x̄) = 0, k = 1, ...,K

xli ≤ xi ≤ x
u
i , i= 1, ...,n (1)
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The above NLP problem contains n variables (i.e. x̄ is vector of size n), J greater-
than-equal-to type inequality constraints and K equality type constraints. The
problem variables xis are bounded within upper and lower limits.
The classical optimization algorithms employ several constraint handling meth-
ods such as penalty function, Lagrange multiplier, complex search, cutting plane,
reduced gradient, gradient projection, etc. For details see [10, 2].
In context to Particle Swarm Optimization (PSO), several bound handling meth-
ods have already been proposed [8, 6, 1, 7]. However, many of these past pro-
posals exploit the information about location of the optimum and fail to perform
when location of optimum changes [9]. The goal of this paper is to come up with
robust bound handling techniques which never fail to perform. This is achieved
by proposing two stochastic and adaptive distributions to bring particles back into
the feasible region once they fly out the search space. The existing and proposed
bound handling methods are tested on four standard test problems under different
scenarios and their performances are compared.
The rest of the paper is organized as follows: Section 2 reviews different bound
handling techniques and provides a detailed description two newly proposed adap-
tive bound handling methods. Section 3 provides a description on the test prob-
lems, simulation carried out along with results and discussions. Finally, conclu-
sions are made in Section 4.

2 Bound Handling Mechanisms

When objective function is not defined in the infeasible region only following
alternatives are available: (a) creation of feasible-only solutions during the evo-
lutionary search, or (b) an explicit mechanism to repair an infeasible solution i.e.
bringing the infeasible solution back into the feasible search space. Generation of
feasible-only solutions in case of EAs is not always straight- forward task, if not
impossible [3]. Particularly, in context to PSO we need to have an explicit scheme
which can bring an infeasible particle back into the feasible search region.
In past, several methods have been proposed to bring PSO particles back into
feasible regions. In this study we shall refer to them as bound handling methods.
The bound handling methods can be broadly divided into two groups A and B.
Group A techniques carry out feasibility search variable wise, whereas group B
techniques carry out feasibility search vectorially. According to group A tech-
niques, for every solution, each variable is tested for its feasibility with respect
to its bounds and made feasible if found to violate any bound. Here, only the
variables violating their bounds are altered, independently, and other variables
remain unchanged until they are tested and found to violate any bounds. In the
group B techniques, if a solution (vector location) is found to violate any of the
variable bounds, it is brought back into the search space along a vector direction.
In such cases, the variables which have not violated any bound are also modified.
It can be speculated that for separable problems (where variables are not linked
with one-another), techniques belonging to group A are likely to perform well.
However, for problems where optimization of the function requires high-degree
of correlated variable alterations, group B techniques may become more useful
(one such method named Inverse Parabolic (IP) Distribution is proposed in this
paper and utilizes this fact while bringing solutions back into the feasible regions
in a hopefully meaningful way). Next, we discuss some popular bound handling
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methods, using which an infeasible solution (violating variable bounds) can be
made feasible.

2.1 Existing Bound Handling Methods

Random This is one of the simplest strategies and belongs to group A. One-by-
one, each variable is checked for bound-violations and modified if necessary. If
Xc is the current infeasible variable location with L and U denoting the upper and
lower bounds for the corresponding dimension (the same notation is used for rest
of the text), then a new feasible location is selected randomly in [L,U].

Periodic This strategy maps an infeasible location, for each variable violating
the bounds, to a feasible location by assuming an infinite search space and was
originally proposed in [11]. This is done by placing repeated copies of original
search space along the dimension of interest. For example, let XC denote the cur-
rent location of a solution along dth dimension, then XC is mapped to XnewC as
follows:

XC → XnewC =

{

U− (L−XC)%Sd IF XC < L
L+(XC−U)%Sd IF XC > U

}

The Periodic method handles all the variables separately and allows the infeasi-
ble solution to re-enter the search space from an end which is opposite to where
it left the search space. For problems where optima is at the boundary this ap-
proach is rendered ineffective, as majority of solutions approaching the boundary
optima shall fall outside the search space and will be brought back into the search
space from opposite end. The entire effort carried out in locating the optima may
be lost. For unimodal problems with optima at the center of the boundary the
Periodic approach may be useful. For PSO, two variants of this strategy are stud-
ied (depending on the way in which velocity is computed), details of which are
provided later.

Set on Boundary As the name suggests, according to this strategy the individ-
ual is reset on the bound of the variable which it exceeds. The strategy belongs of
group A. For example, along dth dimension, let XC denote a current location of a
solution, then XC is set to XnewC as follows:

XC → XnewC =

{

L IF XC < L
U IF XC > U

}

Clearly this approach biases the infeasible solutions on the search boundaries and
can be highly helpful in cases where problem optima lies on the boundary of the
variables. For PSO, three variants of this strategy can be done (depending on the
way in which velocity is computed). The details on the three variants are provided
later.

SHR Originally Shrink (SHR.) method was introduced in context to PSO in [1].
The goal of the SHR. method was to re-adjust the particle’s velocity such that
particles just lands on the closest boundary along its path. To make XC feasible
the solution is dragged back along its line of movement till it reaches the nearest
boundary. It should be noted that this mechanism belongs to group B, as the
movement is carried out vectorially.

Boundary Handling Approaches in Particle Swarm Optimization 289



Exponential Distribution: This method is similar to EXP., which was pro-
posed in [1]. According to this approach a particle is brought back inside the
search space, dimension-wise, in the region between particle’s old position and
the violated bound. The new particle positions are sampled in such a manner that
higher probability is assigned to regions near the boundary, and the probability of
sampling a location decreases exponentially as one moves away from the bound-
ary. We have tried two version for EXP.method: (i) the new position is re-sampled
between the particle’s original location and the bound (lower or upper) that has
been violated, and (ii) the new position is re-sampled in the entire region between
between the upper and lower bounds of the dimension being violated.

2.2 Proposed Boundary Handling Methods
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Fig. 1. Vector based Inverse Parabolic Distribution strategy for handling bounds.

The distance by which particle exceeds the boundary can also provide useful
information. One way to utilize this distance information is to bring particles back
into the search space with higher probabilities at the boundary when falling-out
distance is small. In situations when particles are too far outside the search space,
i.e. the falling-out distance is large, particles be brought back more uniformly.
Since the distribution of particles back into search space varies it is unlikely that
search becomes stagnated.
Consider a scenario, Figure 1, in which particle was originally located at a vector
point Xnot and after updation it moves to a new vector location XC (which is infea-
sible). The goal is to bring particle back into the feasible region along the vector
joining Xnot and XC. For the purpose of illustration, we consider a case where
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XC violates the bound (U) along some particular dimension as shown in Figure
1. It should be noted that, in general, more than one bounds may be violated. In
such case, the bound intersecting the line joining Xnot and XC and lying closest to
the old location (Xnot ) is selected. Let the intersection of selected bound and line
joining Xnot and XC be X1.
Let the intersection of the line joining XC and Xnot with bound on the opposite
side be X2. At this stage we propose two strategies, namely Inverse Parabolic
Spread Distribution and Inverse Parabolic Confined Distribution, to re-sample a
location x′ in region between X1 and X2. Both, these strategies utilize the follow-
ing probability distribution function:

P(x) =
a

(x−d)2+α2d2
s.t. 0≤ x≤ ∞ (2)

In above equation a is a constant to be determined and α is kept as a user defined
parameter (we choose α equal to 1.2 in this study). According to the Figure 1, it
can be seen that the proposed probability density function has a peak at location
X1. The peak is heightened if α is lowered. The calculation for the distribution
constant a is done by equating the cumulative probability equal to one. The limits
are chosen from XC (taken as origin) till infinity.

∫ ∞

0

a

(x−d)2+α2d2
dx= 1 =⇒ a=

α2d2
π
2 + tan

−1 1
α

(3)

1. Inverse Parabolic Spread Distribution: This strategy aims to sample a loca-
tion between (and inclusive of) X1 and X2, thereby maintaining diversity while
bringing the particles back into the feasible region. The bringing back is done
by redistributing the probability in infeasible region probability into the feasible
region as follows:

let,
∫ |X2−X1|+d

d

a

(x−d)2+α2d2
dx= p1 (4)

Then, the probability distribution function is reconstructed as:

P1(x) =
a

p1((x−d)
2+α2d2)

s.t. d ≤ x≤ |X2−X1|+d (5)

Let X ′ denote the sampled location, r be a uniformly distributed random number
in [0,1] then |X ′| can be found as follows:

r =
∫ |X ′|

d

a

p1((x−d)
2+α2d2)

dx (6)

=⇒ |X ′|= d+αd tan(r tan−1 (|X2|−d)
αd ) (7)

Once |X ′| is calculated, the new vector position X ′ between X1 and X2 can be
easily found.
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2. Inverse Parabolic Confined Distribution: This is similar to method 1, with
the only difference that the re-sampled location in this case (denoted as X ′′) lies
between (and inclusive of) X1 and Xnot . As the name suggests, bringing back of
particle by this method is confined in the region on the line joining old position
and the nearest bound. The probability distribution function and computation of
a remain same as before. The redistribution of probability is carried out in the
region between X1 and Xnot , and new location X ′′ is calculated as follows :

let,
∫ |Xnot−X1|+d

d

a

(x−d)2+α2d2
dx= p2 (8)

P2(x) =
a

p2((x−d)
2+α2d2)

s.t. d ≤ x≤ |Xnot −X1|+d (9)

r =
∫ |X ′′|

d

a

p2((x−d)
2+α2d2)

dx (10)

=⇒ |X ′′|= d+αd tan(r tan−1 (|Xnot |−d)
αd ) (11)

3 Simulations and Results

We have considered four standard test problems: Ellipsoidal (Felp), Schwefel
(Fsch), Ackley (Fack) and Rosenbrock (Fros) with 20 variables. Three different sce-
narios are considered for each problem such that optimum lies (i) on the bound-
ary, (ii) in the center, and (iii) just inside the boundary of the search space. The
test problems are given as follows:

Felp =
n

∑
i=1
ix2i (12)

Fsch =
n

∑
i=1

(

i

∑
j=1
x j

)2

(13)

Fack = −20exp



−0.2

√

√

√

√

1
n

i=n

∑
i=1
x2i



− exp

(

1
n

n

∑
i=1
cos(2πxi)

)

+20+ e (14)

Fros =
n−1

∑
i=1

(100(x2i − xi+1)
2+(xi−1)

2) (15)

Felp, Fsch and Felp have their minimum at x∗i = 0, whereas Fros has its minimum at
x∗i = 1. All the functions have minimum value of F

∗ = 0. Felp is the only variable
separable problem.
After initializing the population randomly and uniformly in the search domain,
we count the number of function evaluations needed for the algorithm to find a
solution close to the optimal solution. We choose a function value of 10−10 for
Felp, Fsch and Felp and 10−3 for Fros (which is a relatively difficult problem). This
is similar to what has been proposed in [5, 4].
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Each algorithm is tested on a test problem 50 times (each run starting with a
different initial population). A particular run is concluded if termination criterion
is met or the number of function evaluations exceed one million. If only a few
out of 50 runs are successful then we report the count of successful runs in the
bracket. In this case, the best, median and worst number of function evaluations
are computed from the successful runs. If none of the runs are successful, we
denote this by marking with (DNC) (Did Not Converge). In such cases, we report
the best, median and worst attained function values of the best solution at the end
of each run.

Once the particle is brought back into the search space the velocity can either
be left unchanged or re-computed. By re-computed we mean that if X ′

t+1 is the
new feasible location corresponding to Xt , then the velocity is re-adjusted as
Vt+1 = X ′

t+1−Xt . For Inverse Parabolic Spread Distribution, Inverse Parabolic
Confined Distribution and Exponential Distribution the velocity is re-computed.
For Periodic, Random and SetOnBoundary velocity is either left unchanged and
re-computed. For SetOnBoundary additional strategy of velocity reflection is also
tried i.e. if a particle is set on the ith boundary, then vt+1i is changed to−vt+1i . The
goal of the velocity reflection is to explicitly allow particles to move back into the
search space. For SHR. the particle is placed on the boundary as discussed earlier
and velocity is set to zero. To this end, a total of 13 different bound handling
cases are tested. The simulations results for four test problems in three different
settings are provided in Tables 1 to 4.

Following key inferences can be drawn from the tabulated results:

1. The bound handling methods show a large variation in the performance de-
pending on the choice of test problem and location of the optimum with
respect to the search space.

2. The performance of bound handling is comparable when optimum lies in
the center. This can be understood intuitively from the fact that tendency of
particles to fly out of the search space is little when the optimum is in the
center of the search space. For e.g., the Periodic methods fail in all the cases
but are able to show convergence for all the test problems when optimum is
in the center. When optimum is on the boundary or close to the boundary
then effect of bound handling method becomes critical.

3. Inverse Parabolic Spread Distribution never failed in any of the 12 simula-
tion scenarios. Inverse Parabolic Confined Distribution, Exponential Con-
fined Distribution and Exponential Spread Distribution are successful in 11,
10 and 8 cases, respectively. It is speculated that proposed IP distributions
allow greater chances of creating an offspring close to the boundary then
the exponential probability distribution, and hence the performance using IP
method is better.

4. SHR. (Vel. Recomputed and Vel. Set Zero)methods succeeded in 10 cases. Set
on Boundary: Vel. Recomputed, Vel., Reflected and Vel. SetZero succeeded 7,
7, 9 times, respectively. Random (Velocity re-computed and Vel. Set Zero)
succeed in 5 cases.

5. On lowering α Inverse Parabolic Distributions showed an improvement in
the performance. For the sake of brevity we exclude those results.
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4 Conclusion

In this paper, we have compared existing and newly proposed bound handling
methods in context to PSO. Four test problems with three different settings of
optimum with respect to the search space were tried. The performance of the
bound handling strategy dependent upon the test problem and location of the
optimum. Inverse Parabolic Spread Distribution was found to be most the most
robust method and never failed. Inverse Parabolic Confined Distribution and Ex-
ponential Spread Distribution were found competitive. SHR. methods were suc-
cessful too but took larger number of function evaluations. Other bound handling
strategies were either too deterministic or did not utilize the information of the
particle’s location properly. It can be concluded that probabilistic way of bringing
the solutions back into the search space while utilizing the information of their
initial location is an appropriate approach, and guarantees a robust performance.
Although, the illustrations made in this paper are in context to PSO, but the bound
handling strategies can be applied to any other evolutionary algorithm.
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Table 1. Results on Felp

Strategy Best Median Worst
Felp in [0,10]

IP Spread Dist. 39,900 47,000 67,000
IP Confined Dist. 47,900 (49) 88,600 140,800
Exponential Spread Dist. 3.25e-01 5.02e-01 1.08e+00
Exponential Confined Dist. 4,600 5,900 7,500
Periodic(Vel. Recomputed) 3.94e+02 (DNC) 6.63e+02 (DNC) 1.17e+03(DNC)
Periodic(Vel. Unchanged) 8.91e+02 (DNC) 1.03e+03 (DNC) 1.34e+03 (DNC)
Random(Vel. Recomputed) 1.97e+01 (DNC) 3.37e+01 (DNC) 8.10e+01(DNC)
Random(Vel. Unchanged) 5.48e+02 (DNC) 6.69e+02 (DNC) 9.65e+02 (DNC)
SetOnBoundary(Vel. Recomputed) 900 (44) 1,300 5,100
SetOnBoundary(Vel. Reflected) 242,100 387,100 811,400
SetOnBoundary(Vel. Set Zero) 1,300 (48) 1,900 4,100
SHR.(Vel. Recomputed) 8,200 (49) 10,900 14,300
SHR.(Vel. Set Zero) 33,000 40,700 53,900

Felp in [-10,10]
IP Spread Dist. 31,600 34,000 37,900
IP Confined Dist. 30,900 33,800 38,500
Exponential Spread Dist. 30,500 34,700 38,300
Exponential Confined Dist. 31,900 35,100 38,200
Periodic(Vel. Recomputed) 32,200 35,100 37,900
Periodic(Vel. Unchanged) 33,800 36,600 41,200
Random(Vel. Recomputed) 31,900 34,800 37,400
Random(Vel. Unchanged) 31,600 34,900 38,100
SetOnBoundary(Vel. Recomputed) 31,900 35,500 40,500
SetOnBoundary(Vel. Reflected) 50,800 (38) 83,200 484,100
SetOnBoundary(Vel. Set Zero) 31,600 35,000 37,200
SHR.(Vel. Recomputed) 32,000 34,400 48,200
SHR.(Vel. Set Zero) 31,400 34,000 37,700

Felp in [-1,10]
IP Spread Dist. 28,200 31,900 35,300
IP Confined Dist. 28,300 32,900 44,600
Exponential Spread Dist. 28,300 30,700 33,200
Exponential Confined Dist. 29,500 33,000 44,700
Periodic(Vel. Recomputed) 4.86e+01 (DNC) 1.41e+02 (DNC) 4.28e+02 (DNC)
Periodic(Vel. Unchanged) 2.84e+02 (DNC) 5.46e+02 (DNC) 8.28e+02 (DNC)
Random(Vel. Recomputed) 36,900 41,900 45,600
Random(Vel. Unchanged) 1.13e+02 (DNC) 2.26e+02 (DNC) 4.35e+02 (DNC)
SetOnBoundary(Vel. Recomputed) 1.80e+01 (DNC) 7.60e+01 (DNC) 3.00e+02 (DNC)
SetOnBoundary(Vel. Reflected) 2.13e-01 (DNC) 2.17e+01 (DNC) 1.06e+02 (DNC)
SetOnBoundary(Vel. Set Zero) 31,700 (2) 31,700 32,600
SHR.(Vel. Recomputed) 29,500 (6) 36,100 42,300
SHR.(Vel. Set Zero) 28,400 (36) 32,700 65,600
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Table 2. Results on Fsch

Strategy Best Median Worst
Fsch in [0,10]

IP Spread Dist. 67,200 257,800 970,400
IP Confined Dist. 112,400 (6) 126,500 145,900
Exponential Spread Dist. 3.79e+00 (DNC) 8.37e+00 (DNC) 1.49e+01 (DNC)
Exponential Confined Dist. 4,900 6,100 13,500
Periodic(Vel. Recomputed) 4.85e+03 (DNC) 7.82e+03(DNC) 1.34e+04 (DNC)
Periodic(Vel. Unchanged) 7.69e+03 (DNC) 1.11e+04 (DNC) 1.51e+04 (DNC)
Random(Vel. Recomputed) 2.61e+02 (DNC) 5.44e+02 (DNC) 1.05e+03 (DNC)
Random(Vel. Unchanged) 5.30e+03 (DNC) 7.60e+03 (DNC) 1.22e+04 (DNC)
SetOnBoundary(Vel. Recomputed) 800 (30) 1,100 3,900
SetOnBoundary(Vel. Reflected) 171,500 241,700 434,200
SetOnBoundary(Vel. Set Zero) 1,000 (40) 1,600 5,300
SHR.(Vel. Recomputed) 6,900 9,100 11,600
SHR.(Vel. Set Zero) 17,900 31,900 49,800

Fsch in [-10,10]
IP Spread Dist. 106,700 127,500 144,300
IP Confined Dist. 111,500 130,100 149,900
Exponential Spread Dist. 112,300 131,400 149,000
Exponential Confined Dist. 116,400 131,300 148,200
Periodic(Vel. Recomputed) 113,400 130,900 150,600
Periodic(Vel. Unchanged) 121,200 137,800 159,100
Random(Vel. Recomputed) 112,900 129,800 151,100
Random(Vel. Unchanged) 117,000 130,600 148,100
SetOnBoundary(Vel. Recomputed) 118,500 (49) 132,300 161,100
SetOnBoundary(Vel. Reflected) 3.30e-06 (DNC) 8.32e+01(DNC) 2.95e+02 (DNC)
SetOnBoundary(Vel. Set Zero) 111,900 132,200 149,700
SHR.(Vel. Recomputed) 111,800 (49) 131,800 183,500
SHR.(Vel. Set Zero) 108,400 125,100 143,600

Fsch in [-1,10]
IP Spread Dist. 107,200 130,400 272,400
IP Confined Dist. 120,100 (44) 171,200 301,200
Exponential Spread Dist. 92,800 109,200 126,400
Exponential Confined Dist. 110,200 127,400 256,100
Periodic(Vel. Recomputed) 8.09e+02 (DNC) 2.01e+03 (DNC) 5.53e+03(DNC)
Periodic(Vel. Unchanged) 2.16e+03 (DNC) 4.36e+03 (DNC) 6.87e+03 (DNC)
Random(Vel. Recomputed) 123,300 165,600 280,000
Random(Vel. Unchanged) 8.17e+02 (DNC) 1.96e+03 (DNC) 2.68e+03 (DNC)
SetOnBoundary(Vel. Recomputed) 2.50e+00 (DNC) 1.25e+01 (DNC) 5.75e+02 (DNC)
SetOnBoundary(Vel. Reflected) 1.86e+00 (DNC) 7.76e+00 (DNC) 5.18e+01 (DNC)
SetOnBoundary(Vel. Set Zero) 1.00e+00 (DNC) 5.00e+00 (DNC) 4.21e+02 (DNC)
SHR.(Vel. Recomputed) 5.00e-01 (DNC) 3.00e+00 (DNC) 1.60e+01 (DNC)
SHR.(Vel. Set Zero) 108,300 (8) 130,300 143,000
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Table 3. Results on Fack

Strategy Best Median Worst
Fack in [0,10]

IP Spread Dist. 150,600 (49) 220,900 328,000
IP Confined Dist. 4.17e+00 (DNC) 6.53e+00 (DNC) 8.79e+00 (DNC)
Exponential Spread Dist. 2.76e-01 (DNC) 9.62e-01 (DNC) 2.50e+00 (DNC)
Exponential Confined Dist. 7,800 9,600 11,100
Periodic(Vel. Recomputed) 6.17e+00 (DNC) 6.89e+00 (DNC) 9.22e+00 (DNC)
Periodic(Vel. Unchanged) 8.23e+00 (DNC) 9.10e+00 (DNC) 9.68e+00 (DNC)
Random(Vel. Recomputed) 3.29e+00 (DNC) 3.40e+00 (DNC) 4.19e+00 (DNC)
Random(Vel. Unchanged) 6.70e+00 (DNC) 7.46e+00 (DNC) 8.57e+00(DNC)
SetOnBoundary(Vel. Recomputed) 800 1,100 2,100
SetOnBoundary(Vel. Reflected) 420,600 598,600 917,400
SetOnBoundary(Vel. Set Zero) 1,100 1,800 3,100
SHR.(Vel. Recomputed) 33,800 (5) 263,100 690,400
SHR.(Vel. Set Zero) 3.65e+00 (DNC) 6.28e+00 (DNC) 8.35e+00 (DNC)

Fack in [-10,10]
IP Spread Dist. 53,900 (46) 58,600 66,500
IP Confined Dist. 54,800 (49) 59,200 64,700
Exponential Spread Dist. 55,100 59,300 63,600
Exponential Confined Dist. 56,800 59,600 65,000
Periodic(Vel. Recomputed) 55,700 (48) 59,900 64,700
Periodic(Vel. Unchanged) 57,900 (49) 62,100 66,700
Random(Vel. Recomputed) 55,100 (47) 59,400 65,100
Random(Vel. Unchanged) 56,300 59,700 65,500
SetOnBoundary(Vel. Recomputed) 55,100 (49) 58,900 65,400
SetOnBoundary(Vel. Reflected) 86,900 (4) 136,400 927,600
SetOnBoundary(Vel. Set Zero) 53,900 (49) 59,600 67,700
SHR.(Vel. Recomputed) 55,800 (47) 58,700 65,800
SHR.(Vel. Set Zero) 55,700 (49) 58,900 62,000

Fack in [-1,10]
IP Spread Dist. 54,600 (5) 55,100 56,600
IP Confined Dist. 63,200 (1) 63,200 63,200
Exponential Spread Dist. 51,300 55,200 58,600
Exponential Confined Dist. 1.42e+00(DNC) 2.17e+00 (DNC) 2.92e+00 (DNC)
Periodic(Vel. Recomputed) 2.88e+00 (DNC) 4.03e+00 (DNC) 5.40e+00 (DNC)
Periodic(Vel. Unchanged) 6.61e+00 (DNC) 7.46e+00 (DNC) 8.37e+00 (DNC)
Random(Vel. Recomputed) 60,300 (45) 66,200 72,200
Random(Vel. Unchanged) 4.21e+00 (DNC) 4.93e+00 (DNC) 6.11e+00 (DNC)
SetOnBoundary(Vel. Recomputed) 2.74e+00 (DNC) 3.16e+00 (DNC) 3.36e+00 (DNC)
SetOnBoundary(Vel. Reflected) 824,700 (1) 824,700 824,700
SetOnBoundary(Vel. Set Zero) 1.70e+00 (DNC) 2.63e+00 (DNC) 3.26e+00 (DNC)
SHR.(Vel. Recomputed) 1.45e+00 (DNC) 2.34e+00 (DNC) 2.73e+00 (DNC)
SHR.(Vel. Set Zero) 2.01e+00 (DNC) 3.96e+00 (DNC) 6.76e+00 (DNC)
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Table 4. Results on Fros

Strategy Best Median Worst
Fros in [1,10]

IP Spread Dist. 89,800 195,900 243,300
IP Confined Dist. 23,800 164,300 209,300
Exponential Spread Dist. 9.55e-01 (DNC) 2.58e+00 (DNC) 7.64e+00 (DNC)
Exponential Confined Dist. 3,700 128,100 344,400
Periodic(Vel. Recomputed) 1.24e+04 (DNC) 2.35e+04 (DNC) 4.24e+04 (DNC)
Periodic(Vel. Unchanged) 6.99e+04 (DNC) 1.01e+05 (DNC) 1.45e+05 (DNC)
Random(Vel. Recomputed) 6.00e+01 (DNC) 1.37e+02 (DNC) 4.42e+02 (DNC)
Random(Vel. Unchanged) 2.32e+04 (DNC) 3.90e+04 (DNC) 8.22e+04 (DNC)
SetOnBoundary(Vel. Recomputed) 900(45) 1,600 89,800
SetOnBoundary(Vel. Reflected) 2.14e-03 (DNC) 6.01e+02 (DNC) 5.10e+04 (DNC)
SetOnBoundary(Vel. Set Zero) 1,400(48) 3,000 303,700
SHR.(Vel. Recomputed) 3,900(44) 5,100 406,000
SHR.(Vel. Set Zero) 15,500 136,200 193400

Fros in [-8,10]
IP Spread Dist. 302,300(28) 774,900 995,000
IP Confined Dist. 296,600(32) 729,000 955,000
Exponential Spread Dist. 208,800(24) 754,700 985,200
Exponential Confined Dist. 301,100(33) 801,400 961,800
Periodic(Vel. Recomputed) 26,200(27) 705,100 986,200
Periodic(Vel. Unchanged) 247,300(32) 776,800 994,900
Random(Vel. Recomputed) 311,200(30) 809,300 990,800
Random(Vel. Unchanged) 380,100(29) 793,300 968,300
SetOnBoundary(Vel. Recomputed) 248,700(35) 795,600 973,900
SetOnBoundary(Vel. Reflected) 661,900(1) 661,900 661,900
SetOnBoundary(Vel. Set Zero) 117,400(25) 858,400 995,400
SHR.(Vel. Recomputed) 347,900(33) 790,500 996,300
SHR.(Vel. Set Zero) 353,300(26) 788,700 986,800

Fros in [1,10]
Strategy Best Median Worst

IP Spread Dist. 184,600(47) 442,200 767,500
IP Confined Dist. 229,900(40) 457,600 899,200
Exponential Spread Dist. 19,400(47) 378,200 537,300
Exponential Confined Dist. 6.79e-03 (DNC) 4.23e+00 (DNC) 6.73e+01 (DNC)
Periodic(Vel. Recomputed) 1.51e-02 (DNC) 3.73e+00 (DNC) 5.17e+02 (DNC)
Periodic(Vel. Unchanged) 1.92e+04 (DNC) 2.86e+04 (DNC) 6.71e+04(DNC)
Random(Vel. Recomputed) 103,800 432,200 527,200
Random(Vel. Unchanged) 2.33e+02 (DNC) 1.47e+03 (DNC) 4.23e+03 (DNC)
SetOnBoundary(Vel. Recomputed) 1.71e+01 (DNC) 1.87e+01 (DNC) 3.13e+02 (DNC)
SetOnBoundary(Vel. Reflected) 6.88e+00 (DNC) 5.52e+02 (DNC) 2.14e+04 (DNC)
SetOnBoundary(Vel. Set Zero) 6.23e+00 (DNC) 1.80e+01 (DNC) 3.12e+02 (DNC)
SHR.(Vel. Recomputed) 350,300(3) 350,900 458,400
SHR.(Vel. Set Zero) 163,700(26) 418,000 531,900
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