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Abstract Harmony search (HS) algorithm is relatively a recent metaheuristic opti-
mization method inspired by natural phenomenon of musical improvisation process.
despite its success, the main drawback of harmony search are contained in its ten-
dency to converge prematurely due to its greedy selection method. This probably
leads the harmony search algorithm to get stuck in local optima and unsought so-
lutions owing to the limited exploration of the search space. The great deluge al-
gorithm is a local search-based approach that has an efficient capability of increas-
ing diversity and avoiding the local optima. This capability comes from its flexible
method of accepting the new constructed solution. The aim of this research is to
propose and evaluate a new variant of HS. To do so, the acceptance method of the
great deluge algorithm is incorporated in the harmony search to enhance its conver-
gence properties by maintaining a higher rate of diversification at the initial stage of
the search process. The proposed method is called Harmony Search Great Deluge
(HS-GD) algorithm. The performance of HS-GD and the classical harmony search
algorithm was evaluated using a set of ten benchmark global optimization functions.
In addition, five benchmark functions of the former set were employed to compare
the results of the proposed method with three previous harmony search variations
including the classical harmony search. The results show that HS-GD often outper-
forms the other comparative approaches.
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1 Introduction

Evolutionary algorithms (EAs) are a class of optimization methods which nor-
mally start with a population of random solutions. These solutions are evolutionary
evolved using effective operators that drive the search either randomly or struc-
turally based on the objective function of the current population. These operators
explore and exploit the problem search space to come up with an optimal solution.
However, this class of algorithms easily gets trapped into a chronic premature con-
vergence problem due to identical population in the last stage of search [10].

Harmony Search (HS) algorithm [14] is a recent EA that imitates the behavior of
a group of musicians when improvising a musical harmony. It has several impres-
sive characteristics related to its simplicity, flexibility, adaptability, generality, and
scalability [4]. As such, HS algorithm has been successfully adapted to a plethora of
optimization problems such as Structural Design, Clustering, Bioinformatics, nurse
restoring and timetabling [1, 6, 3, 2, 5, 9, 8, 7] and many others.It has been the
subject of various researches that have been conducted to further improve its perfor-
mance [16, 6]. The Theory of the HS has also undergone improvement as shown in
[4].

HS is initiated with a population of random solutions stored in Harmony Mem-
ory (HM). Iteratively, it generates a new solution using three operators: i) Memory
Consideration, which exploits the current population, ii) pitch adjustment, which
locally refines some solutions in the current population, and iii) random consider-
ation, which explores new solutions. The new solution is then evaluated to replace
the worst solution in HM, if better. This process is repeated until a termination rule
is reached.

As aforementioned, HS greedily accepts the new solution to enter the population,
if and only if, it is better than the worst solution in HM. This acceptance criteria is
similar to Hill climbing optimizer. The main weakness of Hill climbing is related
to its simplicity to get stuck in local optima due to the lack of exploration capabil-
ity. Therefore, several variations of Hill climbing that inject an explorative strategy
with hill climbing were proposed. Examples include Simulated Annealing and Great
Deluge [12]. The acceptance criteria of SA and GD algorithms substitutes the cur-
rent solution with the new solution, if better or if it is accepted by certain threshold
though it is worst [12]. This acceptance criteria empowers an explorative capability
of SA and GD and eventually avoids the trap of local optima.

According to Geem et al., [15], the majority of researches and studies have been
conducted in order to enhance the solution accuracy and speed up the convergence
rate of HS. The resulting variations have advantages in terms of the implementa-
tion time but they still suffer from deficiencies in terms of avoiding the premature
convergence. In this paper, Harmony Search- Great Deluge (HS-GD) algorithm is
proposed. In HS-GD algorithm, the acceptance method of GD and its main related
concepts are incorporated with the greedy acceptance method of classical HS algo-
rithm to empower its explorative properties and eventually avoid a chronic prema-
ture convergence problem. Using standard mathematical functions, the experimental
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results show that the proposed HS-GD algorithm has improve the performance of
the classical HS.

2 Harmony search Great Deluge (HS-GD) algorithm

Harmony Search (HS) is an evolutionary algorithm (EA) inspired by the musical
improvisation process [14], where a group of musicians improvise the pitches of
their musical instruments, practice after practice, seeking for a pleasing harmony
as determined by an audio-aesthetic standard. Analogously in optimization, a set of
decision variables is assigned with values, iteration by iteration, seeking for a’good
enough’ solution as evaluated by an objective function.

The great deluge(GD) algorithm has a special acceptance method. It accepts the
new generated solution if its quality is better than or equal to a predefined linearly
boundary (called “level” or “ceiling”) increasing (in maximization) or decreasing
(in minimization) that increases or decreases according to a fixed rate. This method
is incorporated in HS. The flowchart of the HS-GD algorithm is shown in Figure 1
where the acceptance method of GD is highlighted by the red diamond. The HS-GD
algorithm has five main steps illustrated as follows:

Step 4

Yes

Update HM

?Yes

O

Step 1

Initialize No N No
problem and HS < f)<B
parameters v

Step 3

Step 2
Initialize HM

Improvise
New Harmony

Fig. 1 The flowchart of the HS-GD algorithm

1. Initialize the problem and HS-GD parameters. Normally, the optimization
problem is initially modeled as: min{f(x) |x € X}, where f(x) is the objective
function; x = {x;|i = 1,...,N} is the set of decision variables. X = {X;|i =
1,...,N} is the possible value range for each decision variable, where X; €
[LB;,UB;], where LB; and UB; are the lower and upper bounds for the decision
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variable x; respectively and N is the number of decision variables. The parame-
ters of the HS-GD algorithm required to solve the optimization problem are also
specified in this step as described in Table 1. Since this work only attends to
the minimization problems, it is always referred to the boundary of accepting a
worse solution with ‘ceiling’ instead of ‘level’.

Table 1 Parameters of HS-GD algorithm

Parameter Description
The Harmony Memory Consideration Itis used in the improvisation process to determine whether
Rate (HMCR) the value of a decision variable is to be selected from the

solutions stored in the Harmony Memory (HM)
The Harmony Memory Size (HMS) It is similar to the population size in Genetic Algorithm
The Pitch Adjustment Rate (PAR) It decides whether the decision variables are to be adjusted
to a neighbouring value.

Number of Improvisations (NI) It corresponds to the number of iterations.

Distance Bandwidth (BW) It determines the distance of adjustment in the pitch adjust-
ment operator.

Ceiling (B) The ceiling is the boundary of the acceptability of the qual-

ity of a candidate solution. It is called “level” in maximiza-
tion and “ceiling” in minimization problems

Decay rate (Af3) The decay rate is the rate that the ceiling changes during the
search process (increases in maximization and decreases in
minimization)

2. Initialize the harmony memory. The harmony memory (HM) is an augmented
matrix of size N x HMS which contains sets of solution vectors determined by
HMS (see (1)). In this step, these vectors are randomly generated as follows: x{ =
LB;+(UB;—LB;)xU(0,1),Vi=1,2,...,NandVj=1,2,... HMS, and U(0, 1)
generate a uniform random number between 0 and 1. The generated solutions are
stored in HM in ascending order according to their objective function values.

1 1 1

x% x% . x]2V
xl x2 e xN
HM= | | . .- (1)
HMS |, HMS HMS
xl -x2 e xN

After the HM is randomly filled by the solution vectors, the ceiling () is initial-
ized to be assigned the fitness value of the worst solution vector in HM.

In an analogous manner to the HS-GD algorithm, the decay rate (Af) of the
ceiling is calculated using the following formula.

Bo — f(xP")

AB =
B NI

2
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where f is the initial value of the ceiling that is set to the fitness value of the
worst solution in the initial HM, f(x°/") is the estimated quality of the final
solution (the global optimum) and NI is the maximum number of improvisations.
3. Improvise a new harmony. In this step, the HS-GD algorithm generating (im-
provising) a new harmony vector from scratch, x’ = (x},x},--- ,x)), based on
three operators: (1) memory consideration, (2) random consideration, and (3)
pitch adjustment.
Memory consideration. In memory consideration, the value of the first decision
variable x’l is randomly selected from the historical values, {)c%,)c%7 .. ,xﬁlMs},
stored in HM vectors. Values of the other decision variables, (x},x5,...,x}), are
sequentially selected in the same manner with probability (w.p.) HMCR where
HMCR € (0,1).
Random consideration. Decision variables that are not assigned with values ac-
cording to memory consideration are randomly assigned according to their pos-
sible range by random consideration with a probability of (1-HMCR) as follows:

, xhe {xl a2, xIMSY wp. HMCR
Xxj —
' ¥, €X; W.p. 1 - HMCR.

Pitch adjustment. Each decision variable x/,i € {1,2,...,N} of a new harmony
vector, that has been assigned a value by memory considerations is pitch adjusted
with the probability of PAR where PAR € (0,1) as follows:

Yes w.p. PAR

Pitch adjusting decision for x} «
No w.p. 1-PAR.

If the pitch adjustment decision for x} is Yes, the value of x/ is modified to its
neighboring value as follows: x} = x; +U(—1,1) x BW

4. Update the harmony memory.
This section describes the main focus of this research. The worst vector in HM
is excluded and the new harmony x’ is included if its fitness value meets the
following two conditions:

e Better than the fitness value of the worst solution vector in HM (greater in the
maximization problems and less in minimization problems).
e Better than or equal to the current ceiling (f3).

The ceiling (f) is degraded with every improvisation of a new solution vector by
subtracting the decay rate (Af}) value.

5. Check the stop criterion. Step 3 and step 4 of HS algorithm are repeated until
NI is reached.

The procedure of HS-GD algorithm can be presented as in Algorithm 1:



280 M. A. Al-Betar

Algorithm 1 HS-GD algorithm

Set HMCR, PAR, NI, HMS, BW.
x°P! = expected optimal solution of the minimization problem.
x] =LB;+ (UB; —LB;) xU(0,1),¥i=1,2,...,N and Vj = 1,2,...,HMS {generate HM solu-
tions}
Calculate(f(x/)), Vj = (1,2,...,HMS)
Bo =B = f(x"™) of the initial HM.
AB =(Bo - f(x*"))/ NI
itr =0
while (i < NI) do
X =0
fori=1,---,N do
if (U(0,1) < HMCR) then
xie {xhx2, .. xMSY fmemory consideration}
if (U(0,1) <PAR) then
xp=x+U(—1,1) x FW { pitch adjustment }
end if
else
x}=LB;+ (UB; — LB;) x U(0,1) { random consideration }
end if
end for
if (f(x') < /(x**™)) OR (f(x') < B) then
Include x’ to the HM.
Exclude x"°'' from HM.
end if
B=B-AB
itr =itr+1
end while

3 Experimental results

3.1 Benchmark Functions

Table 2 overviews a summary for 10 global minimization benchmark functions
used to evaluate HS-GD algorithm most of which previously used in [16, 4]. These
benchmark functions provide a trad-off between unimodal and multimodal func-
tions. The benchmark functions were implemented with N=30, with the exception
of Six-Hump Camel-Back function which is two-dimensional.

3.2 Sensitivity Analysis of HS-GD Algorithm

The effect of different parameter settings of the HS-GD parameters (fp and Af)
is investigated. The parameters (HMCR, HMS and PAR) are set as recommended
in the previous work of HS as follows [4]: HMS=50, HMCR=0.98, PAR=0.3,
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Table 2 Benchmark functions used to evaluate HS variations

Function Name Expression Search Range Optimum Value Category
171
X 2
Sphere function f1x) = Z X x; €[=100,100]  min(f}) = f(0,..., 0) =0 unimodal
i=1
N N
Schwefel’s Problem 2.22 f(x) = Y [x; [+ [ 1| x; €[10,10] min(fy) = f(0....,0) =0 unimodal
[20] i=1 i=1
N
Step function f30x) = Z (|x; +0.5J)2 x; € [=100,100]  min(f3) = f(0,..., 0) =0 unimodal &
i=1 discontinues
N-1 Y
Rosenbrock function Fax) =Y (100(x;4 —x?)‘ +(x; — 12) x; € [-30,30] min(fy) = f(1,..., 1) =0 multimodal
i=1
N i 2
Rotated hyper-ellipsoid f5(x) = Z < Z .rj> x; € [=100,100]  min(fs) = £(0,..., 0) =0 unimodal
function i=1\j=1
N —
Schwefel’s problem 2.26 f (x) = — Y (A,- <i|\(\/\xi\)) xj €[~500,500]  min(fg) =/(420.9687, ..., multimodal
[20] i=1 420.9687) = —12569.5
N 2
Rastrigin function fr(x) = Z (xf — 10cos (2mx;) +10) x; € [=5.12,5.12] min(f7) =/(0,...,0) =0 multimodal

i=1

N
Ackley’s function ) = —ZOexp( - 02 ?L() Z)?) — x;€[-32,32 min(fg) =£(0,...,0) =0 multimodal
=1

N
1
exp (ﬁ ,-;] cos (lﬂx,-)) +20+e
. NN o
. » NN ST S 7 L o _ o
Griewank function fo(x) 3000 i;]x, iglu»(\ﬂ>+1 x; € [~600.600]  min(fg) =£(0,...,0) =0 multimodal
Six-Hump Camel-Back fy(x) =43~ 2.1x7 + 1x0 11wy 43 1444 5 €[5.5 in(f1g) =f(~0.08983, multimodal
- p Camel-Back fj¢(x) =4x] —2.1x] 3,xl+t1,xz x5 +4x5 x; € [-5,5] min(fjg) =/(-0. 3, multimodal
function 0.7126) = —1.0316285

NI=100,000, BW=0.03. Note that the default value of ceiling fy is f(x"*"*") where

. . e e . — opt
x"°1t is the worst vector in the initial HM. Furthermore, Af is %

3.2.1 The effect of initializing the ceiling (3)

In this section, the performance of the proposed HS-GD using two different ceiling
values () is investigated. Table 3 summarizes the results of two values for ini-
tializing the ceiling parameter (f3y) in HS-GD. Firstly, the ceiling is initialized by
assigning it the cost function of the best solution vector of the initial HM. Secondly,
the ceiling is initialized by assigning it the cost function of the worst solution vector
of the initial HM.

The results show that HS-GD is sensitive to the ceiling value of setting the initial
ceiling. The best results are obtained when the ceiling is assigned the cost function
of the worst harmony f(x"°™") of the initial HM. Notably, assigning the best cost
function f(x%¢") of the initial HM to (By) might hinder accepting the worst moves at
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Table 3 The effect of initializing the ceiling in HS-GD for ten benchmark functions

Function Bo = f(xPe) Bo = f(x"orst)
f1: Sphere 7.026E-09 5.555E-09
(3.862E-09) (2.602E-09)
f>: Rosenbrock 1.020E+00 8.338E-01
(5.344E-01) (5.140E-01)
f3: Ackley 9.423E-05 8.722E-05
(2.587E-05) (2.637E-05)
fa: Griewank 5.547E-02 4.347E-02
(3.057E-02) (2.755E-02)
f5: Rastrigin 8.374E-07 7.684E-07
(4.384E-07) (4.986E-07)
f6: Schwefel Problem 2.22 1.245E-04 1.341E-04
(3.290E-05) (3.580E-05)
f7: Step 7.140E-09 6.681E-09
(4.589E-09) (5.605E-09)
f3: Rotated hyper-ellipsoid 7.754E+01 5.664E+01
(7.554E+01) (4.243E+01)
fo: Schwefel Problem 2.26 -4.190E+03 -4.190E+03
(7.531E-09) (3.571E-09)
f10: Camel-Back -1.032E+00 -1.032E+00
0 0

the early stage of the search process (especially when the fitness values of both the
worst and the best harmonies of the initial HM are relatively distant). This probably
allows the greedy replacement to dominate at the initial stage of the run, and thus to
speed up the convergence towards, probably, unsought solutions.

3.2.2 Effect of the decay rate (Af3)

The performance of the proposed method using high and low decay rate (Af) is
investigated in this section. The different values of A indicate the speed that the
ceiling of accepting the worst moves is degraded.

— The effect of using high decay rates

The results for the ten benchmark functions using varying high (A ) values (i.e.
AB %20, ABx2, AB x1.05 and the standard A 8) are summarized in Table 4.

The fast decay of the ceiling narrows the condition of accepting the worst moves.
The value (A 8 x20) means that the decay rate is proportional to 5% of the entire run.
The value (A x2) means that the decay rate is proportional to 50% of the entire run.
The value (A x 1.05) means that the decay rate is proportional to roughly 95% of
the entire run.

It is observed that the best results for the majority of the benchmark functions
are obtained when the decay rate is proportional to the entire run.
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Table 4 The effect of using high decay rates for ten benchmark functions

Function AP %20 ABx2 AP x1.05 ABx1

J1: Sphere 6.840E-09 6.084E-09 6.618E-09 5.555E-09
(5.155E-09)  (4.588E-09)  (4.395E-09)  (2.602E-09)

/> Rosenbrock 9.338E-01 1.127E+00 1.027E+00 8.338E-01
(5.636E-01)  (4.854E-01)  (5.901E-01)  (5.140E-01)

Jf3: Ackley 8.639E-05 8.913E-05 8.765E-05 8.722E-05
(2.422E-05)  (2.640E-05)  (2.877E-05)  (2.637E-05)

fa: Griewank 4.547E-02 6.363E-02 5.431E-02 4.347E-02
(2.425E-02)  (3.275E-02)  (3.020E-02)  (2.755E-02)

f5: Rastrigin 9.965E-07 8.325E-07 9.026E-07 7.684E-07

(6.988E-07)  (4.553E-07)  (6.025E-07)  (4.986E-07)
f6: Schwefel Problem 2.22  1.370E-04 1.276E-04 1.279E-04 1.341E-04
(3.544E-05)  (3.528E-05)  (3.666E-05)  (3.580E-05)
f7: Step 7.192E-09 7.212E-09 8.045E-09 6.681E-09
(3.162E-09)  (3.961E-09)  (3.506E-09)  (5.605E-09)
fs: Rotated hyper-ellipsoid ~ 6.822E+01 6.262E+01 6.602E+01 5.664E+01
(5.222E+01)  (5.442E+01) (7.556E+01) (4.243E+01)
fo: Schwefel Problem 2.26  -4.190E+03  -4.190E+03  -4.190E+03  -4.190E+03
(5.414E-09)  (2.011E-09) (4.096E-09)  (3.571E-09)
fi0: Camel-Back -1.032E+00  -1.032E+00  -1.032E+00  -1.032E+00

() (V) (V) 0

— The effect of using low decay rates

The results for the same ten benchmark functions using different low A 8 values (i.e.
AB-+20, AB+2, AB-1.05 and the standard A 3) are summarized in Table5.

The slow decay of the ceiling expands the condition of accepting the worst
moves. The value (AB-+20) means that the entire run is proportional to 5% of the
entire decay of the ceiling. The value (A-+2) means that the entire run is propor-
tional to 50% of the entire decay. The value (A 8+1.05) means that the entire run is
proportional to roughly 95% of the entire decay.

It is observed that the best results for the majority of the benchmark functions
are obtained at the standard value of A3 where the entire run is proportional to the
entire decay of the ceiling 3.

3.3 Comparative Analysis

Numerous variations of harmony search are presented in the literature [13]. To have
a fair comparison, two improved variations of HS in addition to the basic HS algo-
rithm are selected taking into consideration that all the selected methods are compa-
rable to the proposed method in terms of the number of the basic operations that each
method achieves (i.e. the time complexity). Furthermore, comparable recommended
setting of the unified parameters among the selected methods is also considered. The
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Table 5 The effect of using low decay rates for ten benchmark functions

Function AB-+20 AB+2 AB-+1.05 AB-=+1

Jf1: Sphere 7.264E-09 6.908E-09 6.802E-09 5.555E-09
(4.325E-09)  (4.685E-09)  (4.461E-09)  (2.602E-09)

Jf2: Rosenbrock 9.319E-01 1.134E+00 1.027E+00 8.338E-01
(5.586E-01)  (4.878E-01)  (5.924E-01) (5.140E-01)

f3: Ackley 8.302E-05 8.658E-05 9.585E-05 8.722E-05
(1.608E-05)  (2.956E-05)  (2.952E-05)  (2.637E-05)

fa: Griewank 4.699E-02 6.363E-02 5.430E-02 4.347E-02
(2.714E-02)  (3.274E-02)  (3.018E-02)  (2.755E-02)

f5: Rastrigin 8.801E-07 8.748E-07 9.141E-07 7.684E-07

(4.818E-07) (4.250E-07) (6.031E-07)  (4.986E-07)
fo: Schwefel Problem 2.22  1.257E-04  1343E-04  1279E-04  1.341E-04
(3.733E-05)  (3.976E-05)  (3.666E-05)  (3.580E-05)
f7: Step 8274E-09  9.000E-09  8.131E-09  6.681E-09
(6.788E-09)  (4.578E-09)  (4.004E-09)  (5.605E-09)
fs: Rotated hyper-ellipsoid ~ 6.703E+01  6.708E+01  6.503E+01  5.664E+01
(5.417E+01)  (6.124E+01) (7.482E+01) (4.243E+01)
fo: Schwefel Problem 2.26  -4.190E+03  -4.190E+03  -4.190E+03  -4.190E+03
5902E-09  (1.965E-09) (2.939E-09) (3.571E-09)
fi0: Camel-Back -1.032E+00  -1.032E+00  -1.032E+00  -1.032E+00

0 0 0 0

methods that are used to compare the proposed variant of HS are summarized in Ta-
ble 6.

Table 6 The methods used in the comparative study.

Method Denotation Reference

A new heuristic optimization algorithm: harmony search HS Geem et al., [14]
Self-adaptive harmony search algorithm SaHS Wang and Huang, [19]
An improved harmony search algorithm with differential DHS Chakraborty et al., [11]

mutation operator

Table 7 summarizes the results of comparing the proposed method with the se-
lected methods for ten-dimensional objective function (n=10). The results of HS,
SaHS and DHS are obtained from [18].

As can be seen from the results, the proposed HS-GD algorithm outperforms
the other methods for the majority of the benchmark optimization functions. fj is a
unimodal problem, and it is straightforward and easy to solve. Thus the HS variant
that tends to converge prematurely seems to be a more efficient choice for such
problems.

/> is a unimodal and can be considered as a multimodal problem. It has a nar-
row valley from its local optima to its global optimum. f3 has one narrow global
optimum valley and many shallow local optima. f4 is more difficult when the di-
mensions of the function decrease. f5 is considered a more complex multimodal
problem with multiple local optima that may lead to an ambush into a local optima
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Table 7 Mean and standard deviation of five benchmark function’s optimization results (N=10)

Function HS SaHS DHS HS-GD
Sphere 3.52E-09 1.90E-02 8.13E-02 5.56E-09
-6.75E-09 -1.95E-02 -5.21E-02 -2.60E-09
Rosenbrock 1.05E+00 5.66E+00 6.03E+00 8.34E-01
-4.97E-01 -2.58E+00 -1.65E+00 -5.14E-01
Ackley 9.56E-05 5.82E-02 1.47E-01 8.72E-05
-2.68E-05 -4.90E-02 -6.70E-02 -2.64E-05
Griewanks 5.91E-02 8.42E-02 1.57E-01 4.35E-02
-3.37E-02 -3.67E-02 -5.00E-02 -2.76E-02
Rastrigin 8.89E-07 1.39E-02 3.48E-02 7.68E-07
-6.04E-07 -1.39E-02 -2.31E-02 -4.99E-07

easily. Therefore, an algorithm that is more efficient in maintaining a higher rate of
diversity may be more capable of obtaining better results for these functions. Appar-
ently, the proposed HS-GD algorithm seems to be the best choice for solving such
problems.

4 Conclusion and future work

This paper has proposed a Harmony Search Great Deluge (HS-GD) algorithm which
is able to avoid the premature convergence situation by means of employing the ac-
ceptance method of GD. In this context, the HS-GD algorithm is able to maintain
the right balance between diversification (exploration) and intensification (exploita-
tion) during the search. The HS-GD is evaluated using ten benchmark mathematical
functions circulated in the literature. The proposed method is able to perform better
than the classical HS. Additionally, comparative evaluation shows that the proposed
method can also be considered as an efficient technique for global optimization
problems. For future work, the following three directions can be recommended:

1. Incorporating other methods, such as local search techniques, in HS-GD is sug-
gested to reinforce the intensification specifically at the advanced stage of the
search process.

2. Modifying HS-GD itself in a way that the decay rate changes dynamically
throughout the decrease of the ceiling (in minimization) or the increase of the
level (in maximization).

3. The performance of the proposed method can be further investigated by utilizing
itin solving the combinatorial problems such as the Travelling Salesman Problem
(TSP), the Knapsack Problem (KP) and Timetabling Problems. These problems
are constrained and the algorithm that attempts to solve them is more likely to
fall into local minima easily. Accordingly, an algorithm that maintains a higher
rate of diversity, such as HS-GD, seems to be an efficient choice.
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