
373

Abstract The intended audience is scheduling practitioners and theoreticians as
well as beginners in the field of scheduling. The purpose of this paper is to review
the area of parallel machine scheduling (PMS) on issues of complexity. A criti-
cal review of the methods employed and applications developed in this relatively
new area are presented and notable successes are highlighted. The PMS algo-
rithms are discussed. We have given up-to-date information on polynomially type
of problems based on non-preemptive criteria. It is shown that parallel machine
makespan-minimization problem is NP-hard even for the two-machine problem.
Moreover, the two-machine problem can be solved by the pseudo polynomial
algorithm.

Keywords  Parallel  machine  •  Scheduling  •  Non-preemptive  •  Makespan  •
Polynomial  •  Complexity

1 Introduction

In the twenty-first century, the scheduling research area has made extraordinary
advances in the development of techniques that enable improved solutions to practi-
cal problems [1, 2]. Notwithstanding the strengths of current techniques, the prob-
lems being addressed by current scheduling methods are generally NP-hard and
solved only approximately [3]; there is scope for improvement in techniques for
accommodating different classes of constraints and for optimizing under different
sets of objective criteria [4–7]. The running time or time complexity of an algorithm
expresses the total number of elementary operations, such as additions, multiplica-
tions, and comparisons, for each possible problem instance as a function of the size
of the instance. The input size of a typical scheduling problem is bounded by the
number of jobs n, the number of machines m and the number of bits to represent

Complexity on Parallel Machine
Scheduling: A Review

S. Sathiyamoorthy et al. (eds.), Emerging Trends in Science,
Engineering and Technology, Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-81-322-1007-8_34, © Springer India 2012

D. K. Behera

D. K. Behera (*)
Mechanical Engineering Department, Jadavpur University, Kolkata 700032, India
e-mail: dkb_igit@rediffmail.com

374 D. K. Behera

the largest integer (the processing time, tardiness, the due date etc.,). An algo-
rithm is said to be polynomial or a polynomial-time algorithm, if its running time
is bounded by a polynomial in input size [3–7]. The most real-world problems are
difficult to solve to optimality [3, 7–9]. So, Polynomial-time algorithms (PTA) was
introduced by Cobham in year 1964 in deterministic machine models and later by 
Edmonds in 1965 saying that polynomial time represents efficient computation. An 
algorithm with rational input is said to run in polynomial time if there is an integer
say k such that it runs in O (nk) times where n is the given input size, and all num-
bers in intermediate computations can be stored with O (nk) bits. We term it as a
linear-time algorithm when the value of k becomes unit. PTA are persistently called
“efficient” or “good”. This big O notation is used to classify algorithms by how
they respond (based on processing time requirements) to changes in input factor or
size. Big O notation has utility when efficiency is looked into for analyzing algo-
rithms. The number of hierarchy depends on the particulars of the machine model
on which the algorithm runs, but different types of machines typically vary by only
a constant factor in the number of hierarchy needed to execute an algorithm. In par-
allel machine scheduling (PMS), the relationships between time and space being
the criteria of analysis of complexity, it is important to study for deterministic and
non-deterministic problems [1–8]. Although traditional techniques such as complete
enumeration, dynamic programming, integer programming, and branch and bound
were used to find the optimal solutions for small- and medium-sized problems, they
do not provide efficient solutions for the problems with large size [10, 11] (Table 1).

2 Notation and Classification

The use of α|β|γ notation given by Graham et al. [1, 2, 4, 8] for scheduling problems,
where α is the machining environment, β is the set of restrictions, and γ is the objective
function. Say, α = 1 which denotes a single machine, while α = P is a parallel machine
environment. For γ, Cj is the total completion time objective. Parallel Machines (PM):

Table 1 The time complexity of different types of problem seen in the literature

Sublinear O(1) Constant-time

O(log log n) Double logarithmic
O(log n) Logarithmic
O(logk n) Polylogarithmic; K is a constant
O(na) a < 1 is a constant; e.g.,O

(

√

n
)

 for a = 1/2
O(n/logk n) k is constant

Linear O(n)
Super linear O(n logk n)

O(nc) Polynomial; c > 1 is a constant; e.g., O (n
√

n) for c = 3/2
O(2n) Exponential
O(22n

) Double exponential

375Complexity on Parallel Machine Scheduling: A Review

means more than one machine is performing the same function. Table 2 gives the gen-
eral notation/parameters considered in any scheduling problem. The PM can be:

•  Identical: all machines have the same speed factors, and they can process all the 
jobs.

•  Uniform: parallel machine system with different speed factor, and each job has 
a single operation.

•  Unrelated: there is no relation between machines.

In a Parallel Machine Environment we consider a simple case say Pm|rj,
Mj|wjTj which denotes a system with m machines in parallel. Job j arrives at
release date rj and has to leave by the due date dj. Job j may be processed only on

Table 2 Notation/parameters for scheduling

Data n Number of jobs
pi (pi;j) Processing time of job i (on machine j)
di Due date of job i
si Desired starting time of job i
ri Release date of job i

Variables Ci completion time of job i
Ei Earliness of job i: Ei = max(0; di−Ci)
Li Lateness of job i: Li = Ci−di

Ti Tardiness of job i: Ti = max(0; Ci−di)
Ui Flag of tardiness for job i: Ui = 1 if i is

tardy and 0 otherwise
Constraints Permu In a flow shop problem the job sequence

is the same for each machine
Pmtn Jobs can be interrupted and resumed later
Nmit No machine idle times are allowed
Ssd Sequence dependent setup times occur

between jobs
Criteria fmax/Cmax/Lmax/Lmin/Tmax/Emax/

C C w) /T /T w/E/Ew/U Uw

General maximum function strictly
increasing with the completion
times/maximum completion of
jobs: Cmax = maxi = 1::n(Ci)/
maximum lateness of jobs:
Lmax = maxi = 1::n(Li)/minimum
lateness of jobs:
Lmin = mini = 1::n(Li)/
maximum tardiness of jobs:
Tmax = maxi = 1::n(Ti)/maximum
earliness of jobs:
Emax = maxi = 1::n(Ei)/sum of com-
pletion times: C = Pn/(Ci) (weighted
sum)/sum of tardiness: T = Pn/(Ti)
(weighted sum)/sum of earliness:
E = Pn/(Ei) (weighted sum)/number
of late jobs: U = Pn(Ui) (weighted
sum)

376 D. K. Behera

one of the machines belonging to the subset Mj. If job j is not completed in time a
penalty wjTj is incurred.

A Complexity Hierarchy may be in following order as per nature of problem.

1. 1||Cmax,
2. P2||Cmax,
3. F2||Cmax,
4. Jm||Cmax,
5.  FFc||Cmax.
6. 1||Lmax,
7. 1|prmp|Lmax,
8. 1|rj|Lmax.
9. 1|rj, prmp|Lmax,

10. Pm || Lmax.

One standard approach for designing polynomial time approximation algo-
rithms for a (difficult, NP-hard) optimization problem P is stated as follows:

(a)  Relax some of the constraints of the hard problem P to get an easier problem
P′ (the so-called relaxation).

(b) Work out (in polynomial time) an optimal solution St for this easier relaxed
problem p′.

(c) Translate (in polynomial time) the solution St into an approximate solution S
for the original problem P.

(d) Analyze the quality of solution S for P by comparing its cost to the cost of
solution S′ for P′.

3 Scheduling Algorithms

Scheduling theory is concerned with the optimal allocation of scarce resources to
activities over. Time horizon [4–6].The practice of this field dates to the first time
two humans contended for a shared resource and developed a plan to share it with-
out bloodshed. Algorithm may be defined as a succession of operations producing
a solution to a problem through data manipulation. These data can be constants, or
variables, or both kinds which can be arranged into data structures. Algorithms can
be viewed as: precise type and approximate type. Precise analysis is quite tedious
and at times unattainable to perform.

Thus scheduling algorithm arises [10, 11]. It is classified based on

1. Basic
(a) as soon as possible
(b) as late as possible

2. Time constrained
(a) force directed
(b) integer linear programming

377Complexity on Parallel Machine Scheduling: A Review

(c) iterative refinement
3.  Resource constrained

(a) List based
(b) static lists

4. Miscellaneous
(a) Simulated annealing (SA)
(b) path based

Figure 3.4 gives details of type of problem in a more elaborate way. Further
heuristics can be classified into three types [12]. They are

•  Index-development based on dispatching rules etc.
•  Solution-construction like NEH.
•  Solution-improvement (metaheuristics such as tabu search, SA etc).

Unfortunately, a simple, accurate, and time-invariant cost model for parallel
machines  does  not  exist  The  LPT,  MULTIFIT,  COMBINE,  LISTFIT  heuristics 
can also be applied in PMS for solving problems [1, 2, 13–16, 19–34] (Fig. 1).

An exact solution can be found by diverse methods of reduced enumeration,
typically by a branch-and-bound algorithm. It is doubtful that an exact solution
can be found by a polynomial-time algorithm. An algorithm is called an approxi-
mation algorithm if it is possible to found analytically how close the generated
solution is to the optimum (either in the worst-case or on usual). The performance
of a heuristic algorithm is usually analyzed experimentally, all the way through a
number of runs using either generated instances or known benchmark instances.

Fig. 1 The classification of scheduling algorithims

378 D. K. Behera

We define a ρ approximation algorithm to be an algorithm that runs in polynomial
time and delivers a solution of value at most ρ times the optimum for any instance
of the problem, i.e., F(SA)

F(SOPT)
≤ ρ. The value of ρ is called a worst-case ratio bound.

OPT stands for optimum value (Fig. 2).
In Fig. 3 P is polynomial time complexity problem and NP-hard belongs to

non-deterministic polynomial. NP-Complete problems are the hardest problems in 
NP and P is subsets of NP.

As incase of PMS problem which is considered as hard optimization problems,
finding this optimal solution is too hard because of the following reasons:

•	 Even with the best programming language available.
•	 Even with the fastest modern computer available.

Fig. 2 Different types of problems as observed in scheduling

Fig. 3 A typical view of complexity classes and their relationships

379Complexity on Parallel Machine Scheduling: A Review

•	 Even with the best programmer in the world.
•	 Even with the best and latest operating system.
•	 Even more years in the future.

The time complexity of an algorithm is the number of steps performed by this
algorithm. For instance, our enumeration algorithm for the P||Cmax has time com-
plexity big O(mn), since it evaluate mn solutions. In any parallel identical machine
scheduling denoted as P||Cmax the following parameters are looked into.

Given data/information for each job, its duration
Constraint  perform all jobs
Decision assign jobs to machines
Objective end the last job as early as possible

4 Literature Review

Classical  PMS  considers  a  series  of  identical  machines  with  a  number  of  jobs 
and diverse processing times [1, 8, 10–34]. It assumes that the jobs are ready
at time zero, and machines are endlessly available during the whole schedul-
ing horizon. The simplest makespan problem arises in classical PMS when jobs
are sequence independent and preemption is allowed. When preemption is per-
mitted, the processing of a job can be interrupted and the remaining processing
can be completed later, possibly on a different machine. When preemption of
the jobs is permitted on all machines, the minimum makespan is obtained by:
M= max

[

∑

n

j=1
p j

/

m, max j

{

p j

}

]

 where n is the number of jobs, pj is the pro-
cessing time of task j, and m is number of machines

It is shown that parallel machine makespan-minimization problem is NP-hard
[1, 2, 6, 10] so far for the two-machine scheduling problem. Moreover, the two
machine problem can be solved by the pseudo polynomial algorithm but solving prob-
lems with more than two machines is very tough and it becomes a Non-deterministic
Polynomial-time hard problem which is NP-hard. Using some heuristics for generating
one or more near-optimal individuals in the initial step can get better the last solutions
obtained by meta-heuristic algorithms. Different criterion can be used for evaluating
the efficiency of scheduling algorithms, the most important of which are makespan
and flowtime [23]. Many researchers studied PMS problems in past. Cheng and Sin [8]
and later Mokotoff [1] surveyed a PMS problem and Allahverdi et al. [13, 31] inves-
tigated a comprehensive review of setup time research for scheduling problems clas-
sifying into batch, non-batch, sequence independent, and sequence-dependent setup.
Potts and Kovalyov [14] reviewed the literature on family scheduling models with sin-
gle-machine, shop problems, and parallel machine. Brono et al. [17] proved that even
a two-machine system for finding the weighted sum of flow times with an unequally
weighted set of jobs is NP-hardness [19, 20, 27, 34]. A comparative analysis of PMS
studied by Behera and Laha [18] indicates Listfit is better than all other algorithms.

380 D. K. Behera

5 Conclusions and Future Research

From the extensive literature review presented here, it can be concluded that inter-
est in the area of PMS is growing. More direct search methods need to be explored
for suitability to simulation optimization problems in PMS algorithms.

In this work, we consider a comprehensive survey of the PMS problems which
is one of the most common and thoroughly studied problems in the scheduling lit-
erature. The papers surveyed include exact as well as heuristic techniques for many
different multi-objective approaches. In numerous papers, SA is compared with
Tabu search on scheduling problems and SA is observed to perform better than Tabu
Search. SA forces the designer to either spend too much time or incur losses on the
quality of solutions in scheduling problems. Different types of methods such as LPT,
MULTIFIT, LISTFIT is studied in the literature [1, 2, 8, 13, 18, 19, 31]. Research in 
PMS will continue and is promising and there is scope for improvement.

References

  1. Mokotoff E (2001) Parallel machine scheduling problems: a survey. Asia-Pacific J Oper Res 
18:193–242

  2. Baker KR, Trietsch D (2009) Principles of sequencing and scheduling. Wiley, New york
  3. Garey  MR,  Johnson  DS  (1979)  Computers  and  intractability:  a  guide  to  the  theory  of  NP 

completeness. Freeman, San Francisco
  4. Graham RL, Lawler EL, Lenstra JK, Kan AHGR (1979) Optimization and approximation in 

deterministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326
  5. Karp RM (1972) Reducibility among combinatorial problems: complexity of computer com-

putations. Plenum Press, New York, pp 85–103
  6. Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB (1993) Sequencing and scheduling: algo-

rithms and complexity. Handbooks in operations research and management science 4, logis-
tics of production and inventory, North Holland, Amsterdam, pp 445–524

  7. Papadimitriou CH (1994) Computational complexity, Addison-Wesley, Boston
  8. Cheng T, Sin C (1990) A state-of-the-art review of parallel-machine scheduling research. Eur 

J Oper Res 47:271–292
  9. Filippi C, Romanin-Jacur G (2009) Exact and approximate algorithms for high-multiplicity 

parallel machine scheduling. J Sched 12:529–541
 10. Levner E (2007) Multiprocessor scheduling: theory and applications. Itech Education and

Publishing, Vienna, p 436. ISBN 978-3-902613-02-8
 11. Koulamas C (1993) Total tardiness problem: review and extensions. Oper Res 42:1025–1041
 12. Chen CL (2009) A bottleneck-based heuristic for minimizing makespan in a flexible flow line 

with unrelated parallel machines. Comput Oper Res 35:3073–3081
 13. Allahverdi A, Gupta JND, Aldowaisan T (1999) A review of scheduling research involving

setup considerations. Omega 27:219–239
 14. Potts  CN,  Kovalyov  MY  (2000)  Scheduling  with  batching:  a  review.  Eur  J  Oper  Res 

120:228–249
 15. Lee H, Guignard M (1996) Hybrid bounding procedure for the workload allocation problem 

on parallel unrelated machines with setups. J Oper Res Soc 47:1247–1261
 16. Weng MX, Lu J, Ren H (2001) Unrelated parallel machine scheduling with setup considera-

tion and a total weighted completion time objective. Int J Prod Econ 70:215–226

381Complexity on Parallel Machine Scheduling: A Review

 17. Bruno  J,  Sethi  R  (1978) Task  sequencing  in  a  batch  environment  with  setup  times.  Found 
Control Eng 3:105–117

 18. Behera DK, Laha D (2012) Comparison of heuristics for identical parallel machine schedul-
ing. Adv Mater Res 488–489:1708–1712

 19. Radhakrishnan  S,  Ventura  JA  (2000)  Simulated  annealing  for  parallel  machine  schedul-
ing  with  earliness/tardiness  penalties  and  sequence-dependent  set-up  times.  Int  J  Prod  Res 
38:2233–2252

 20. McNaughton R (1959) Scheduling with deadlines and loss function. Manage Sci 6:1–12
 21. Kim  DW,  Kim  KH,  Jang W,  Frank  Chen  F  (2002)  Unrelated  parallel  machine  scheduling 

with setup times using simulated annealing. Rob Comput Integr Manufact 18:223–231
 22. Koulamas C (1997) Decomposition and hybrid simulated annealing heuristics for the paral-

lel-machine total tardiness problem. Nav Res Logistics 44:105–125
 23. Izakian H, Abraham A, Snášel V Comparison of heuristics for scheduling independent tasks 

on heterogeneous distributed environments, collected from internet
 24. Armentano VA, Yamashita DS (2000) Tabu search for scheduling on identical parallel

machines to minimize mean tardiness. J Intell Manufact 11:453–460
 25. Park MW, Kim YD (1997) Search heuristics for a parallel machine scheduling problem with 

ready times and due dates. Comput Ind Eng 33:793–796
 26. Li X, Yalaoui F, Amodeo L, Chehade H (2002) Metaheuristics and exact methods to solve a 

multiobjective parallel machines scheduling problem. J Intell Manuf 23(4):1179–1194
 27. Brucker P, Sotskov YN (2007) Complexity of shop-scheduling problems with fixed number 

of jobs: a survey. Math Meth Oper Res 65:461–481
 28. Johnson  DS,  Aragon  CR,  Mageoch  LA,  Schevon  C  (1989)  Optimization  by  simulated 

annealing: an experimental evaluation; part 1, graph partitioning. Oper Res 37:865–892
 29. Ghirardi  M,  Potts  CN  (2005)  Makespan  minimization  for  scheduling  unrelated  parallel 

machines: a recovering beam search approach. Eur J Oper Res 165(2):457–467
 30. Martello S, Soumis F, Toth P (1997) Exact and approximation algorithms for makespan mini-

mization on unrelated parallel machines. Discrete Appl Math 75:169–188
 31. Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2007) A survey of scheduling problems 

with setup times or costs, Eur J Oper Res
 32. Chen CL, Chen CL (2009) Hybrid metaheuristics for unrelated parallel machine scheduling 

with sequence-dependent setup times. Int J Adv Manufact Technol 43(1-2):161–169
 33. Tavakkoli-Moghaddam  R,  Mehdizadeh  E  (2007) A  new  ILP  model  for  identical  parallel-

machine scheduling with family setup times minimizing the total weighted flow time by a
genetic algorithm, IJE Transactions a: basics, vol 20(2)

 34. Pinedo ML (2008) Scheduling—theory, algorithms, and systems. Prentice–Hall, Englewood 
Cliffs

	Complexity on Parallel Machine Scheduling: A Review
	1 Introduction
	2 Notation and Classification
	3 Scheduling Algorithms
	4 Literature Review
	5 Conclusions and Future Research
	References

