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Abstract In order to alleviate the effect of additive noise and to reduce the com-
putational burden, we proposed a new computationally efficient cross-correlation
based two-dimensional frequency estimation method for multiple real valued
sinusoidal signals. Here the frequencies of both the dimensions are estimated
independently with a one-dimensional (1-D) subspace-based estimation technique
without eigendecomposition, where the null spaces are obtained through a linear
operation of the matrices formed from the cross-correlation matrix between the
received data. The estimated frequencies in both the dimensions are automatically
paired. Simulation results show that the proposed method offers competitive per-
formance when compared to existing approaches at a lower computational com-
plexity. It has shown that proposed method perform well at low signal-to-noise ratio
(SNR) and with a small number of snapshots.
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1 Introduction

In this paper, we consider the problem of estimating the frequencies of multiple
two-dimensional (2-D) real-valued sinusoids in presence of additive white
Gaussian noise. This problem is the more precise case of estimating the parameters
of a 2-D regular and homogeneous random field from a single observed realization
as of [1]. The real-valued 2-D sinusoidal signal models, also known as X-texture
modes. These modes come into existence naturally in experimental, analytical,
modal and vibrational analysis of circular shaped objects. X-texture modes are
often used for modelling the displacements in the cross-sectional planes of iso-
tropic, homogeneous, thick walled cylinders [2–4], laminated composite cylin-
drical shells [5], and circular plates [6]. These X-texture modes have also been
used to describe the radial displacements of logs of spruce subjected to continuous
sinusoidal excitation [7] and standing trunks of spruce subjected to impact exci-
tation [8–10]. The proposed signal model offers cumbersome challenges for 2-D
joint frequency estimation algorithms. Many algorithms for estimating complex-
valued frequencies are well documented in the literatures [11, 12] and for 1-D real-
valued frequencies in [13–15]. A vivid discussion on the problem of analyzing 2-D
homogeneous random fields with discontinuous spectral distribution functions can
be found in [16]. Parameter estimation techniques of sinusoidal signals in additive
white noise include the periodogram-based approximation (applicable for widely
spaced sinusoids) to the maximum-likelihood (ML) solution [17–19], the Pis-
arenko harmonic decomposition [20], or the singular value decomposition [21]. A
matrix enhancement and matrix pencil method for estimating the parameters of
2-D superimposed, complex-valued exponential signals was suggested in [11]. In
[22], the concept of partial forward–backward averaging is proposed as a means
for en-hancing the frequency and damping estimation of 2-D multiple real-valued
sinusoids (X-texturemodes) where each mode considered as a mechanism for
forcing the two plane waves towards the mirrored direction-of-arrivals. In [23],
2-D parameter estimation of a single damped/undamped real/complex tone is
proposed which is referred to as principal-singular-vector utilization for modal
analysis (PUMA).

We present a new approach of solving the 2-D real valued sinusoidal signal
frequencies estimation problem based on cross-correlation technique to resolve the
identical frequencies. The proposed idea based upon the computationally efficient
subspace based method without eigendecomposition (SUMWE) [24, 25]. The
paper is organized as follows. The signal model, together with a definition of the
addressed problem, is presented in Sect. 2. The basic definition and the proposed
technique both are detailed in Sect. 3 followed by simulation results and con-
clusion in Sects. 4 and 5, respectively. Throughout this paper upper case, bold
letters denote matrices where as lowercase bold letters are vectors. The superscript
T denotes transposition of a matrix.
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2 Data Model and Problem Definition

Consider the following set of noisy data:

r m; nð Þ ¼ x m; nð Þ þ e m; nð Þ ð1Þ

where 0 B m B N1-1 and 0 B n B N2-1. The model of the noiseless data
x(m,n) is described by,

xðm; nÞ ¼
XD

k¼1

akcosðxkmþ u1kÞcosðvknþ u2kÞ ð2Þ

The signal x(m,n) consists of D, two dimensional real-valued sinusoids
described by normalized 2-D frequencies {xk vk}, (k = 1,2…,D), the real
amplitude {ak} (k = 1,2…,D) and the phases /1k and /2k which are independent
random variables uniformly distributed over [0,2p]. e(m,n) is a zero mean additive
white Gaussian noise with variance r2. Further assumed that ak and bk are inde-
pendent of e(m,n).

Let us define two M 9 1 snapshot vectors with assumption M [ D, described
as follows

yx m; nð Þ, 1
2

y1 m; nð Þ þ y2 m; nð Þ½ � ð3aÞ

yv m; nð Þ, 1
2

y3 m; nð Þ þ y4 m; nð Þ½ � ð3bÞ

where,

y1 m; nð Þ, r m; nð Þ r mþ 1; nð Þ. . .r mþM� 1; nð Þ½ �T ð4aÞ

y2 m; nð Þ, r m; nð Þ r m� 1; nð Þ. . .r m�Mþ 1; nð Þ½ �T ð4bÞ

y3 m; nð Þ, r m; nð Þ r m,nþ 1ð Þ. . .r m,nþM� 1ð Þ½ �T ð4cÞ

y4 m; nð Þ,; left½r m; nð Þ r m,n� 1ð Þ. . .r m,n�Mþ 1ð Þ�T ð4dÞ

From the above set of equations we can obtain pair of expression for the two
M 9 1 snapshot vectors by substituting equation (4a, b) in (3a) and (4c, d) in (3b)
as follows,

yx m; nð Þ ¼ AðxÞs m; nð Þ þ gðm; nÞ ð5Þ

yv m; nð Þ ¼ AðvÞs m; nð Þ þ hðm; nÞ ð6Þ

where A(x) = [c(x1)…c(xD)] and A(v) = [q(v1)…q(vD)] are M 9 D matrices, and
s(m,n) = [a1cos(x1m ? a1)cos(v1n ? b1)…aDcos(xDm ? aD)cos(vDn ? bD)]T is
the D 9 1 signal vector, c(xi) and q við Þ are M 9 1 vectors defined respectively as
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c(xi)=[1 cos(xi)…cos((M-1)xi)]
T and q við Þ ¼ ½1 cos við Þ. . .cos M� 1ð Þvið Þ�T.

The modified M 9 1 error vectors g(m,n) and h(m,n) are defined respectively as

g m; nð Þ , g1 m; nð Þ g2 m; nð Þ. . . gM m; nð Þ½ �T and h m; nð Þ, h1 m; nð Þ h2 m; nð Þ. . .½
hM m; nð Þ�T, where gj m; nð Þ ¼ 1=2 e mþ j� 1; nð Þ þ e m� jþ 1; nð Þ½ � and
hj m; nð Þ ¼ 1=2 e m; nþ j� 1ð Þ½ þ e m; n� jþ 1ð Þ�. The matrices A(x) and A(v) are
full rank matrices because all the columns are linearly independent to each other.

2.1 Data Model Modification

We first obtained two new data models as follows,

zx m; nð Þ ¼ A xð ÞXxs m; nð Þ þ qr m:nð Þ ð7Þ

zv m; nð Þ ¼ A vð ÞXvs m; nð Þ þ qe m:nð Þ ð8Þ

by implementing following mathematical operations,

zxðm; nÞ ¼
1
4

X4

j¼1

zjðm; nÞ ð9aÞ

zv m; nð Þ ¼ 1
4

X8

j¼5

zjðm; nÞ ð9bÞ

where

z1 m; nð Þ, r mþ 1; nð Þ r m; nð Þ r m� 1; nð Þ. . .r m�Mþ 2; nð Þ½ �T ð10aÞ

z2 m; nð Þ, r m� 1; nð Þ r m; nð Þ r mþ 1; nð Þ. . .r mþM� 2; nð Þ½ �T ð10bÞ

z3 m; nð Þ, r m� 1; nð Þ r m� 2; nð Þ r m� 3; nð Þ. . .r m�M; nð Þ½ �T ð10cÞ

z4 m; nð Þ, r mþ 1; nð Þ r mþ 2; nð Þ r mþ 3; nð Þ. . .r mþM; nð Þ½ �T ð10dÞ

z5 m; nð Þ, r m; nþ 1ð Þ r m; nð Þ r m; n� 1ð Þ. . .r m; n�Mþ 2ð Þ½ �T ð11aÞ

z6 m; nð Þ, r m; n� 1ð Þ r m; nð Þ r m; nþ 1ð Þ. . .r m; nþM� 2ð Þ½ �T ð11bÞ

z7 m; nð Þ, r m; n� 1ð Þ r m; n� 2ð Þ r m; n� 3ð Þ. . .r m; n�Mð Þ½ �T ð11cÞ

z8 m; nð Þ, r m; nþ 1ð Þ r m; nþ 2ð Þ r m; nþ 3ð Þ. . .r m; nþMð Þ½ �T ð11dÞ

where zi(m,n) for i = 1,2…8 are M 9 1 observation vectors. Xx and Xv are two
D 9 D diagonal matrices defined respectively as Xx = diag{cosx1…cosxD} and
Xv = diag{cosv1…cosvD}. The two M 9 1 modified noise vectors qr(m,n) and
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qe(m,n) are defined respectively as qr(m,n) = [qr1(m,n)…qrM(m,n)]T, qe(m,n)
= [qe1(m,n) qe2(m,n)…qeM(m,n)]T where qri m; nð Þ ¼ 1=4 e m� iþ 2; nð Þ½
þe mþ i� 2; nð Þ þ e mþ i; nð Þ þ e m� i; nð Þ� and qei m; nð Þ ¼ 1=4 e m; n� iþ 2ð Þ½
þe m; nþ i� 2ð Þ þ e m; nþ ið Þ þ e m; n� ið Þ� for i = 1,2…,M.

2.2 Further Modification of Data Model

As like Sect. 2.1, we deduced another set of modified data models described by,

px m; nð Þ ¼ JA xð ÞXxs m; nð Þ þ qw m:nð Þ ð12Þ

pv m; nð Þ ¼ JA vð ÞXvs m; nð Þ þ qu m:nð Þ ð13Þ

The above two data models were obtained by implementing similar kind of
mathematical operations as that of equation (9a, b) that is,

pxðm; nÞ ¼
1
4

X4

j¼1

pjðm; nÞ ð14Þ

pvðm; nÞ ¼
1
4

X8

j¼5

pjðm; nÞ ð15Þ

where

p1 m; nð Þ, r m�Mþ 2; nð Þ. . .r m� 1; nð Þ r m; nð Þ r mþ 1; nð Þ½ �T ð16aÞ

p2 m; nð Þ, r mþM� 2; nð Þ. . .r mþ 1; nð Þ r m; nð Þ r m� 1; nð Þ½ �T ð16bÞ

p3 m; nð Þ, r m�M; nð Þ. . .r m� 3; nð Þ r m� 2; nð Þ r m� 1; nð Þ½ �T ð16cÞ

p4 m; nð Þ, r mþM; nð Þ. . .r mþ 3; nð Þ r mþ 2; nð Þ r mþ 1; nð Þ½ �T ð16dÞ

p5 m; nð Þ, r m; n�Mþ 2ð Þ. . .r m; n� 1ð Þ r m; nð Þ r m; nþ 1ð Þ½ �T ð17aÞ

p6 m; nð Þ, r m; nþM� 2ð Þ. . .r m; nþ 1ð Þ r m; nð Þ r m ; n� 1ð Þ½ �T ð17bÞ

p7 m; nð Þ, r m; n�Mð Þ. . .r m; n� 3ð Þ r m; n� 2ð Þ r m; n� 1ð Þ½ �T ð17cÞ

p8 m; nð Þ, r m; nþMð Þ. . .r m; nþ 3ð Þ r m; nþ 2ð Þ r m; nþ 1ð Þ½ �T ð17dÞ

where pi(m,n) for i = 1,2…8 are M 9 1 observation vectors and J is the M 9 M
counter identity matrix, in which 1 s present in the principal anti-diagonal. The
two M 9 1 modified noise vectors qw(m,n) and qu(m,n) are defined respectively as
qw(m.n) = Jqr(m.n) and qu(m.n) = Jqe(m.n).
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3 Proposed Algorithm

In this section, we present the algorithm for 2-D frequency estimation for multiple
real-valued sinusoidal signals.

3.1 Estimation of First Dimension Frequencies

Under the assumption of data model, from (5) and (7) we easily obtain the cross
correlation matrix Ryz1 between the received data, yx(m,n) and zx(m,n) as,

Ryz1 ¼ E yx m; nð ÞzT
x m; nð Þ

� �
¼ A xð ÞRssXxAT xð Þ ð18Þ

where Rss is source signal correlation matrix defined by Rss,E s m; nð ÞsT m; nð Þf g.
From (12), we have another data model that is px(m,n) in backward way such that
px(m,n) = Jzx(m,n), similarly from (5) and (12) we can obtain another cross-
correlation matrix between the two received data

Ryp1 ¼ E yx m; nð ÞpT
x m; nð Þ

� �
¼ A xð ÞRssJXxAT xð Þ ð19Þ

In noise free case Ryp1 = JRyz1 but in practical case that is when signal is noise
corrupted, then the relation holds true partially that is Ryp1 ffi JRyz1. Considering
the above assumptions we formulated an extended cross correlation of size
M 9 2M as,

Rx ¼ ½Ryz1Ryp1� ¼ ½Ryz1JRyz1� ¼ A xð Þ RssXxAT xð ÞRssJXxAT xð Þ
� �

ð20Þ

Since A(x) is a full rank matrix, we can divide A(x) into two sub matrices as
A(x) = [(A1(x))T (A2(x))T]T where A1(x) and A2(x) are the D 9 D and (M-
D) 9 D sub matrices consisting of the first D rows and last (M-D) rows of the
matrix A(x) respectively. There exists a D 9 M-D linear operator P1 between
A1(x) and A2(x) [26] such that A2(x) = P1

TA1(x), using the above assumptions
we can segregate (20) into the following two matrices.

Rx ¼ A1 xð Þð ÞT A2 xð Þð ÞT
h iT

RssXxAT xð ÞRssJXxAT xð Þ
� �

¼ A1 xð Þð ÞTPT
1 A1 xð Þ T

� �
RssXxAT xð ÞRssJXxAT xð Þ

h i

, RT
x1RT

x2

� �T

ð21Þ

where Rx1 and Rx2 consist of the first D rows and the last M-D rows of the matrix
Rx, and Rx2 ¼ PT

1 Rx1. Hence, the linear operator P1 found from Rx1 and Rx2 as
[26]. However, a least-squares solution [27] for the entries of the propagator
matrix P1 satisfying the relation, Rx2 ¼ PT

1 Rx1 obtained by minimizing the cost
function described as follows,
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n P1ð Þ ¼ jjRx2 � PT
1 Rx1jj2 ð22Þ

where jj:jj2F denotes the Frobenius norm. The cost function n(P1) is a quadratic
(convex) function of P1, which can be minimized to give the unique least-square
solution for P1, that can be evidently shown as,

P1 ¼ Rx1RT
x1

� ��1
Rx1RT

x2 ð23Þ

further by defining another matrix Qx ¼ ½PT
1 � IM�D�T , such that Qx

TA(x) = 0(M-D)9D

which can be used to estimate the real valued harmonic frequencies offirst dimension
{xk} for k = 1,2…,D as like [25]. Thus when the number of snapshots are finite the
frequencies of first dimension can be estimated by minimizing following cost

function, f̂ xð Þ ¼ aT xð ÞÊa xð Þ where aðxÞ ¼ ½1cosx. . .cos M � 1ð Þx�T and Ê,Q̂x

ðQ̂T
xQ̂xÞ�1Q̂T

x. The orthonormality of matrix Q̂x is used in order to improve the
estimation performance while E is calculated implicitly using matrix inversion
lemma as [24] and Ê andQ̂x are the estimates of E and Qx.

Steps for estimating xk:

• Calculate the estimate R̂x of the cross-correlation matrix Rx using (20).
• Partition R̂x and determine R̂x1 and R̂x2.
• Determine the estimate of the propagator matrix P1 using (23).

• Define Q̂x ¼ ½P̂T
1 � IM�D�T and from Q̂x find out Ê,Q̂xðQ̂T

xQ̂xÞ�1Q̂T
x using

matrix inversion lemma.
• The first dimension frequencies that is, {xk} for k = 1,2…,D estimated by

minimizing the following cost function, f̂ xð Þ ¼ aT xð ÞÊa xð Þ.

3.2 Estimation of Second Dimension Frequencies

The method adopted for estimating the first dimension frequencies xi for i = 1,
2,…,D, can be used for estimating the second dimension frequencies vi for i = 1,
2,…,D. That is the same procedure used in Sect. 3.1 of this Section applied to
estimate second dimension frequencies. The second dimension frequencies
obtained by doing similar kind of operation across the data models developed in
(6), (8) and (13).

The proposed method has notable advantages over the conventional MUSIC
algorithm [15], such as computational simplicity and less restrictive noise model.
Though it required peak search but there is no eigenvalue decomposition (SVD or
EVD) involved in the proposed algorithm unlikely MUSIC, where the EVD of the
auto correlation matrix is needed. It also provide quite efficient estimate of the
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frequencies and the estimated frequencies in both dimensions are automatically
paired.

4 Simulation Results

Computer simulation have been carried out to evaluate the frequency estimation
performance of the proposed algorithm for 2-D multiple real-valued sinusoids in
presence of additive white Gaussian noise. The average root-mean-square-error
(RMSE) is employed as performance measure, apart from that some other simu-
lations also conducted to show the detection capability and bias of estimation.
Besides CRLB, the performance of the proposed algorithm is compared with those
of 2D-MUSIC and 2D-ESPRIT [28] algorithms for real-valued sinusoids. Four
type of analysis have been performed.

4.1 Analysis of Frequency Spectra

The signal parameters are N1 = N2 = 50 and the dimension of snapshot vector
M = 20. Number of undamped 2-D real-valued sinusoids D = 2, amplitude
{ak = 1} for k = 1,2…,D. The first dimension frequencies, and the second
dimension frequencies are (x1,x2) = (0.1p,0.13p) and (v1,v2) = (0.13p,0.16p)
respectively. Note that the frequency separation is 0.03, which is smaller than the
Fourier resolution capacity 1/M (=0.05). This means classic FFT-based method
cannot resolve these two frequencies, and also this method can resolve identical
frequencies present in different dimensions (x2 = v1 = 0.13p). Figure 1 displays
spectra of the proposed algorithm at SNR = 10 dB. We can see from Fig. 1 that
the frequency parameters in both the dimensions are accurately resolved. The
estimated frequencies are shown in Table 1.

In second analysis that is shown in Fig. 2 where we considered the signal
parameters are N1 = N2 = 100 and the dimension of snapshot vector M = 50,
keeping all other parameters same as previous experiment. The detection of fre-
quencies in both the dimensions are found to be more accurate. The estimated
frequencies of this analysis are shown in Table 2.

4.2 Performance Analysis Considering RMSE

The same signal parameters as first analysis of Sect. 4.1 of this section is con-
sidered. We compared root-mean-square-error (RMSE) on the estimates for the
proposed algorithm, MUSIC and 2-D ESPRIT algorithm as a function of SNR.
Here a Monte-Carlo simulation of 500 runs was performed. Figure 3a shows the
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RMSEs and the corresponding CRB of first 2-D frequencies {xk}, while Fig. 3b
shows the second 2-D frequencies {vk} (k = 1,2…,D). It is clearly seen that the
proposed algorithm outperforms the ESPRIT algorithm and in lower SNR case the

Table 1 Estimated frequencies considering M = 20

Frequency Original frequency(rad/sec) Estimated frequency(rad/sec)

x1 0.1p 0.1012p
x2 0.13p 0.1285p
v1 0.13p 0.1289p
v2 0.16p 0.1594p

Fig. 2 Spectrum of frequencies in both dimensions (M = 50)

Table 2 Estimated frequencies considering M = 50

Frequency Original frequency(rad/sec) Estimated frequency(rad/sec)

x1 0.1p 0.1003p
x2 0.13p 0.1303p
v1 0.13p 0.1303p
v2 0.16p 0.1604p

Fig. 1 Spectrum of frequencies in both dimensions (M = 20)
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performance is similar to that of MUSIC algorithm. As SNR increases the pro-
posed algorithm performs exactly same as that of MUSIC algorithm.

4.3 Performance Analysis Considering Probability of Correct
Estimation and Bias of Estimation

In this analysis, we considered Probability of correct estimation of frequencies as
performance measure. Taking the same signal parameters as of last two Sections,
we determined the probability of correct estimation of 2-D real-valued sinusoidal
signal frequencies for both dimensions by varying SNR. The obtained results are
shown in Fig. 4a, b. From the above analysis, it is evident that proposed method
performs far superior compared to 2-D ESPRIT and behaves in a same way as
conventional MUSIC algorithm but without any eigendecomposition (EVD/SVD).
Similarly we analyzed the bias of estimation for each dimensions and the results
are plotted in Fig. 5a, b respectively. From bias analysis, it is clear that the pro-
posed method performs much better than ESPRIT and almost similar to that
conventional MUSIC algorithm in varied SNR ranges.

4.4 Performance Analysis Considering Computational Time

In this section we compared the performance of proposed method and conventional
MUSIC algorithm based on their computational timing. Considering the same
signal parameters at a fixed SNR of 10 dB we vary the snap shot vector dimension
(M) and the results are plotted in Fig. 6. From Fig. 6 its clear that proposed method
is less time consuming compared to conventional MUSIC algorithms.

Fig. 3 a RMSE (dB) for first dimension frequencies vs SNRs (dB). b RMSE (dB) for second
dimension frequencies vs SNRs (dB)
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Fig. 4 a Probability of correct estimation for first dimension frequencies vs SNRs (dB).
b Probability of correct estimation for second dimension frequencies vs SNRs (dB)

Fig. 5 a Bias of the estimator for first dimension frequencies vs SNR’s (dB). b Bias of the
estimator for second dimension frequencies vs SNR’s (dB)

Fig. 6 Average
computational time vs M at
SNR = 10 dB
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5 Conclusion

We have proposed a new approach based on subspace method without eigende-
compostion using cross-correlation matrix for estimation of multiple real-valued
2-D sinusoidal signal frequencies embedded with additive white Gaussian noise. We
have analytically quantified the performance of the proposed algorithm. It is shown
that our algorithm remains operational when there exist identical frequencies in both
the dimensions. Simulation results show that the proposed algorithm offers
comparative performance when compared to MUSIC algorithm, but at a lower
computational complexity and exhibit far superior performance when compared to
ESPRIT algorithm. The frequency estimates thus obtained are automatically paired
without an extra pairing algorithm.
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