Probabilistic Ramp Detection
and Forecasting for Wind Power Prediction
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1 Introduction

This chapter proposes a new way to detect and represent the probability of ramping
events in short-term wind power forecasting. Ramping is one notable characteristic
in a time series associated with a drastic change in value in a set of consecutive
time steps. Two properties of a ramp event forecast, that is, slope and phase error,
are important from the point of view of the system operator (SO): they have impor-
tant implications in the decisions associated with unit commitment or generation
scheduling, especially if there is thermal generation dominance in the power sys-
tem. Unit commitment decisions, generally taken some 12-48 h in advance, must
prepare the generation schedule in order to smoothly accommodate forecasted
drastic changes in wind power availability. A comprehensive analysis of ramp
modeling and prediction may be found in Ref. [1]. Some important works in this
area are mentioned in the following paragraphs.
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The authors of Refs. [2, 3] define direction, duration and magnitude for ramps
in two basic types: upward (or ramp-ups) and downward (or ramp-downs), related
with meteorological phenomena [4]. To consider a ramp event, the minimum dura-
tion is assumed in Ref. [3] to be of 1 h; however, in Ref. [5], one finds events in
intervals of 5-60 min. The magnitude of a ramp is given as a percentage of the
wind farm nominal power.

In Ref. [2], the authors define a ramp event to be a power output change higher
than 50 % of the wind farm nominal power, occurring over a period of 4 h or less.
They define two metrics: forecast accuracy and ramp capture—these metrics cor-
respond to precision and recall defined in Sect. 5 below.

In Ref. [6], the authors combine feature selection and five data-mining algo-
rithms to predict power ramp rates 10—60 min ahead. They use the mean standard
deviation, maximum and minimum wind speed over all turbines and also the meas-
ured wind farm power and power ramp rate. Considering that the huge number of
predictors can degrade the performance, a boosting tree algorithm was adopted to
select the most interesting features, which are used to train five data-mining algo-
rithms: multilayer perceptron, support vector machines, random forest, classifica-
tion and regression trees and pace regression.

In Ref. [7], the authors present the development, by WEPROG, of a special
purpose tool that provides real-time uncertainty weather forecasts for wind ramp
prediction. The tool uses data from their multi-scheme ensemble prediction system
(MSEPS), taking 75 forecasts to represent uncertainty for several weather param-
eters. An extreme ramp event would be a change in power of more than 80 MW
over an hour.

In Ref. [8], the authors present the development, by AWS Truepower, of a
model that predicts wind ramps between 0 and 6 h ahead. The system capabilities
include the following: a probabilistic ramp forecast module that can predict ramp
rate probabilities for different time resolutions; a hybrid deterministic probabilistic
ramp event forecast that outputs deterministic values; and a confidence interval for
the events satisfying the ramp event definition and also the average power produc-
tion for 15 min intervals. The ramp detection methodology associates algorithms
with ramp types. The system learns models for significantly different weather
conditions. To access the performance of probabilistic ramp rate forecasts and to
compare two forecast methodologies, the critical success index (CSI) [9] and the
ranked probability skill score (RPSS) [9] were computed.

In Ref. [10], the authors identify ramps by mapping the initial wind power
series into a signal that results from computing the average of time power differ-
ences. The authors propose two probabilistic forecasting methods aiming to pre-
dict wind power output using ramp information, as well as to predict ramp timing.
One method uses information extracted from the translated space, ramp intensity
and ramp forecast time information. A method predicting ramping translates the
signal of an ensemble of wind power curves and then uses the ensemble votes to
define a confidence interval for the ramp timing. The quality of results depends on
the number of ensemble members predicting the interval time of ramp occurrence
and the size of the time intervals.
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In Ref. [11], hard constraints are added to decision-making applications: for
instance, in stochastic optimization or risk assessment. In Ref. [3], a probabilistic
ramp event forecasting system is presented. It was shown that by using probabilis-
tic forecasting systems, higher economic benefits can be obtained.

The approach proposed in this chapter requires and departs from a probabilis-
tic wind power forecasting model. This model must allow a form of representa-
tion (implicit or explicit) of a joint probability density function (pdf) for the wind
power, taking as variables the wind power prediction at different time stamps
within the forecasting horizon. Such a representation already includes or takes
into account the possible cross-time-step dependencies. This is a designation more
general than just cross-correlations, which are called autocorrelation in the context
of time series, and it involves cross-relations in moments of order higher than the
second order. In theory, given such a pdf, a Monte Carlo sampling process may
allow the generation of scenarios, each consisting of a sequence of predictions for
a number of successive time steps, in a time series fashion.

Our new model departs from a scenario generation procedure and builds a new
ramp detection process and a new probabilistic assessment phase. The scenario
generation model acts as a sampling mechanism in the Monte Carlo sense. Then,
a counting procedure to be detailed below and within the generated sample allows
the definition of probabilities for each ramp event in each hour of the forecasting
horizon.

A refinement of this procedure allows one to build a histogram, for each hour,
of the probability of having a ramping event above a certain magnitude: ramping
becomes represented as a random variable associated with a probability distribu-
tion. This leads to the use of the results for decision making because the risk (or
probability) of having a ramp exceeding a given threshold is quantified.

The robustness of the method, its capacity to avoid false alarms or missed
alarms and its tuning are addressed in this chapter. We present a comparative eval-
uation of performance in the ROC space (i.e., receiver operating characteristic,
plotting true-positive vs. false-positive rates)—from a case study using data from a
wind farm in the USA [12].

2 Generating Wind Power Scenarios

The key piece of the method developed is the availability of an estimate for the
probability density function (pdf) of the wind power prediction. This chapter will
not discuss the methods to obtain such pdf estimate nor their validity. This pdf is
taken as a multivariate function in a high-dimensional space (the number of dimen-
sions equal to the number of time steps represented in the forecasting horizon).
The probability of a ramping event of a given nature then becomes assimilated to
the calculation of a special marginal distribution associated with some matching
filter describing, in the multivariate space, the ramping event defined. In order to
do this, a discrete representation of the pdf by wind power scenarios is necessary.
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Fig. 1 Representation of wind power forecast as intervals (quantiles gathered by pairs and
centered in the median), on the /eft, and scenarios of wind power generation, on the right

By a scenario, one understands a sequence of predicted wind power values
spanning the entire prediction horizon, and by a discrete representation of the pdf
one means a set of scenarios with an empirical density similar to the original pdf.

This is equivalent to some method of generating scenarios from a known pdf
by using a sampling technique and turns the ramp event model into a Monte Carlo
generating process.

Figure 1 shows a usual representation of the uncertainty associated with wind
power in short-term 24-h-ahead prediction, based on quantiles [11], and a discrete
representation. In the work reported in this chapter, a state of the art method to
generate scenarios according to a Monte Carlo sampling was followed [11]. We
should note that we use both historical data and weather forecasts as input to our
scenario generator. Moreover, our ramp detection model is independent of the sce-
nario generation method used.

3 Detecting Ramp Events
3.1 Defining Ramps

A ramp is a change in power output (from a wind farm) with large enough amplitude
and over a relatively short period of time. Figure 2 illustrates this concept. Ramps
may be up or down; in both cases, when not predicted, they may cause serious prob-
lems in system operation and dispatch, with high costs and additional risks incurred.

There is no consensually accepted formal definition of a ramp. The ramp con-
cept is related with the power signal P(?), a defining threshold APramp and a time
interval Az. Some definitions adopted by different authors are as follows.
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Fig. 2 Tllustration of ramp events, defined as a change of at least 50 % in power in an interval of 4 h

Definition 1 Reference [5]: A ramp event is considered to occur at the beginning
of an interval, if the magnitude of the increase or decrease in the power signal, at
time At ahead of the interval, is greater than the ramping threshold value, APpymp:

|P(t+At) — P (1) > APralmp (1)

Definition 2 Reference [5]: A ramp is considered to occur in a time interval Az if
the difference between the maximum and the minimum power output measured in
that interval is greater than the threshold value, APpymp:

max (P [t, t + At]) —min (P [t, t + At]) > APrmp ()

Definition 3 Reference [6]: A ramp occurs if the difference between the power
measured at the initial and final points of a time interval Af is greater than a
predefined reference value to the power ramp rate, APrymp:

|P (t + A1) — P ()] /At > APramp 3)

The definitions above work directly with the wind power signal. Other
approaches transform the signal into a more appropriate representation, for exam-
ple, considering k-order differences in the power amplitude (see Ref. [10]). Let, P;
be the wind power time series and P; the associated transformed signal that was
obtained according to
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P,f =mean{Pi1p — Pryn—ny; B =1,..., 0am} 4)

where n,ny stands for the number of averaged power differences to consider.
Then,

Definition 4 Reference [9]: A ramp event is said to occur in an interval, if the
absolute value of the filtered signal sz exceeds a given threshold value, APmp:

P/| > APump (5)

Definition 5 This is a new definition developed under the project. It uses a high-
pass filter, that is, a filter that passes high-frequency signals and attenuates (reduces
the amplitude of) signals with frequencies lower than the cutoff frequency. The
simpler high-pass filter can be formulated as follows:

ylil=a(yli—11+x[]—x[i—1] (6)

It can only pass relatively high frequencies because it requires large (i.e., fast)
changes and tends to quickly forget its prior output values (see Fig. 3). The parame-
ter a takes values in the interval [0;1]. Values near 1 imply that the output will decay
very slowly but will also be strongly influenced by small changes in the input signal.

A constant input (i.e., an input with (x [i] — x [i — 1])) will always lead to an
output decay to zero. A small a implies that the output will decay quickly, requir-
ing large changes in the input (i.e., (x [i] — x [{ — 1]) is large) for the output to
vary considerably.

Figure 3 illustrates the concept. The y signal may be further treated by a band
filter, removing small peaks and only keeping the values above a certain threshold,
compatible with the ramp definition accepted.

3.2 Building a Probabilistic Ramp Representation

The detection mechanisms outlined above serve as indicator function for each time
step in one scenario. When applied in a set of scenarios as a sample of the wind
power pdf, we have in place a Monte Carlo process that can give as a result the
probability of a specific ramp event and also an estimate of the ramping probabil-
ity distribution at each time step as a function of the ramp amplitude.

The general algorithm is as follows:

e Generate a large set of N wind power scenarios, sampled with the wind power
forecasting model.
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Fig. 3 Top wind power, Bottom high-pass-filtered signal (o = 0.25)

e For each scenario, detect in each time step if there is a ramp event of each type
defined.

e Count the total of ramp event detections in each time step for the whole sam-
pled set of scenarios, associated with each ramp type.

e Based on the sample ratio of number of detected events n; of type i over the size
N of the sampled set, define probabilities for each ramp event in each time step
of the forecasting horizon.

3.3 Building Cumulative Ramp Probability Diagrams

A histogram may be built by defining a set of bins A? P, ranging from APrymp to
a user-specified maximum power change, and define the vote counting for each
histogram bin b

N
Ve = D 1AYP < F(APY) < AP Q)
j=1

where the lower and upper bound of the histogram bins are bl and bu, and F is the
ramp definition in terms of power change.

This allows the definition of a cumulative ramp probability diagram such as
in Fig. 4. From diagrams such as these, a measure of risk can be associated with
the probability p(AP > AP;) of having a ramp event with a change equal or
greater than P,.
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Fig. 4 A cumulative ramp probability diagram allowing risk evaluation for a ramping value AP;.
APpin is the minimum acceptable power variation that does not trigger a ramp event alarm

3.4 Deciding that a Ramp Event Should be Declared

From the set of scenarios, one may thus define an empirical probability of exceed-
ing a given threshold A Ppapp:

N

1
P(E) = = > [F(AP]) > APy ®)
j=1

By setting a cutoff threshold #hr on the probability P(E), we may declare the
occurrence of an event (ramp) at time step k if

P(Ey) > thr )

This declaration converts the probabilistic ramp prediction into a binary choice
that may lead to a decision to act and is needed in the operation context. Section 5
presents a way to define the threshold A7 in an optimal way.

4 Application of the New Model

To verify the quality of the model, we organized an experiment built from real
data from a large wind farm in the United States., in a time period of 12 weeks
(21/10/2009-18/02/2010). We generated 5,000 scenarios (possible predictions
of power) using Ref. [11]. The algorithm described above was run for each 24 h
ahead, and cumulative ramp probability diagrams were built for windows of 3 h,
counting and classifying possible ramps through the use of the high-pass filter to
detect possible ramps and a band filter to eliminate small changes.

Figure 5 shows the case for one day. One can observe a point forecast, pro-
duced by the model in Ref. [13], and the actual values measured. Below, one has
ramp cumulative probability diagrams, for 3-h steps, which provide information
about the probability of having a ramp (given a definition) and also about the prob-
ability of the magnitude of such a ramp.
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Fig. 5 Top actual measured wind power and the point forecast for 24 h (slightly over-forecasting
in most time steps), Botfom cumulative probability diagrams for ramp-up (above) and ramp-down
(below) events. A star marks intervals with a prediction/declaration for a ramp to occur

These diagrams are rotated, relative to Fig. 4, and the vertical axis is associ-
ated with a AP value, while the horizontal axis corresponds to the probability of
having a ramp event of a magnitude equal or greater than a given power threshold.
It is possible to have at the same time some probability of having either ramp-up
or ramp-down, representing a variety of behavior observed in the generated wind
power scenarios for the same type of occurrence.

5 Quality Analysis

Ramp event detection is a process where one may define hits (TP—true positives or
TN-true negatives) and misses (FP—false positives, or false alarms, when a ramp is
predicted but does not occur, and FN—false negatives or missed detections, when no
ramp is predicted but occurs). The results below were obtained using a 3-h aggregation
defining a ramp-up or -down of magnitude change higher than 25 % of the wind farm
nominal power. This is the APy threshold value set for the time period At (=3 h, in
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this case). With this A¢ value, definitions one, two and three lead to equal results. As for
definition 4 (a moving average), the results come from setting nyy, = 2. With nyp, = 1,
one gets almost the same results as when running definitions one, two and three.

Some widely used statistics to assess the quality of deterministic event detections
defined in [0, 1] are precision (or sensitivity, or true-positive rate (TPR)), recall and
specificity. Precision is defined as the ratio between the number of true positives
and of positive forecasts. Recall is defined as the ratio between the number of true
positives and of observed positives. Specificity is the fraction of true negatives, and
the quantity (1-Specificity) may be called the false-positive rate (FPR).

.. TP TP . TN
Precision = —————; Recall = ————; Specificity = ——— (10)
TP+ FP TP+ FN TN+ FP

These concepts can be used to assess the effect of the actions resulting from
probabilistic information. It is evident that in probabilistic forecasts, a new degree
of freedom is introduced: a threshold to define the occurrence of the event.

A technique that may help in choosing a threshold level that optimizes event
detection is the receiver operating characteristic (ROC) curve, which is a graphi-
cal plot in the plane FPR x TPR and domain [0,1] x [0,1]. This plot is achieved
by changing progressively a cutoff value that defines the detection of an event—this
value is associated with the probability of observing a ramp, from examining all sce-
narios. In this ROC domain, the main diagonal (0,0)—(1,1) defines a prediction like
a random guess. The optimum corresponding to perfect discrimination is the point
(0,1) where all positives are detected and no negatives are taken as (false) positives.

Figure 6 displays the ROC curves that we obtain in the classification of ramp-
up events using definition 1, 4 and 5 and setting APpamp (amplitude of the band
filter that eliminates small events) equal to 25 % of the nominal power. The model
produces a better result than random guessing. The cutoff value that should be

Ramp UP
o
'
@ »
= s
t‘ld
@ f
2 %
e Y
a '}
33 7 -
f — Deft
= /! Detd
! — Defs
31 /
ol
b=
0.0 02 04 06 08 10
False positive rate

Fig. 6 ROC curves for definitions 1, 4 and 5
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adopted depends [14] on the relative costs of missing a positive and of assuming a
positive when there is none. If these costs are equal, and assuming a uniform event
distribution, then the slope of TPR/FPR equals 1 and the cutoff value to be adopted,
to accept or reject an alarm, should be the one that leads to the tangent to the ROC
curve with slope 1 that is closest to the optimum point (0,1). This is relevant in the
application of the method to wind power ramp prediction: the cot of missing a posi-
tive may be related with emergency ramping of generators or power purchases at
high spot prices or load disconnection; the cost of accepting a false alarm is related
with higher unit commitment costs or higher cost of operational reserve allocated.

Assume binary forecasts, where each example can be labeled using one of
two classes in the set {y,n}, and a forecast can output the corresponding {Y,N}.
Consider that we know the distribution of yes and no events, that is, the proba-
bilities P(y) and P(n), and that we define the costs cost(Y;n) and cost(N;y) to be,
respectively, the costs of predicting a event when no event occurs (false positive)
and the cost of predicting no event when an event actually occurs (false negative).
The slope of the line (a tangent line) that touches the ROC curve at the optimum
operating point—a point with coordinates (FPRg, TPRy) that is associated with a
probability threshold thrp—is given by P(n)cost(Y;n)/P(y)cost(N;y).

If this distribution is unknown, we can estimate the distribution from the obser-
vations. The point (FPR, TPR() where the tangent line and the curve touch is the
optimum operating point, in the sense that this point minimizes the expected cost
given by the following expression:

EC = P(Y;n) xcost(Y;n)+ P(N;y) x cost(N;y) (11

where P(Y;n) is the probability of predicting an event when it does not occur
(probability of a false positive) and P(N;y) is the probability of predicting that an
event does not occur when it really occurs (probability of a false negative).

Figure 7 presents the tangent lines and identifies the associated optimum oper-
ating point, including the optimal thry associated with Eq. (9), that we get by
running definition 1 and setting two error cost configurations to predict ramp-up
events. In Conf. 1, we define the error costs to be cost (N;y) = 200, that is, the cost
of a FN (cFN), and cost (Y;n) = 10, that is, the cost of a FP (cFP). In Conf. 2, we
consider cost (N;y) = 10 and cost (Y;n) = 200.

The ROC curve is annotated with the corresponding empirical probability val-
ues, observed on the set of scenarios. The point obtained from optimizing Eq. (11)
is associated with the optimal threshold thry value. If the probability calculated
is above thry, one should declare the prediction of occurrence of a ramp; if not, a
prediction of no ramp. Referring to Fig. 5, this declaration was produced for the
intervals marked with a star, where the probability of a ramp of magnitude above
25 % of the wind farm nominal power exceeds the optimal thry ~ 0.2 obtained
from optimizing Eq. (11) over the ROC curve.

Figure 8 plots the expected cost for a set of probability thresholds. These plots
were generated by running definition 1 to identify ramp-ups. In these figures,
we can easily identify the minimum expected costs that define the cutoff probabil-
ity threshold corresponding to the optimum operating point.
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Forecasters that assign a probability to each event often use the Brier Score
(BS) [15], which is a score function that measures the average squared deviation
between predicted probabilities and the actual outcomes. It is computed as

1 N
BS = ~ Z (X, — Y,)? (12)

t=1

where X, is the event forecast probability; Y, is the actual outcome (0 if not
happened, 1 if happened) and N—number of forecasting instances. It is obvi-
ous that the optimum Brier Score would be of 0, for perfect sharp predic-
tions. The Brier Score obtained in the experiment being described gave the
values described in Table 1. By inspecting these results, we can see that by using
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Table 1 Brier scores for the probabilistic forecasting system for both ramp types

Ramp-up Ramp-down
D1 D4 D5 D1 D4 D5
BS 0.078 0.091 0.082 0.080 0.086 0.076

Table 2 CSI comparison against a point forecast system: CSI for three ramp definitions and
considering phase errors with a lag of 2 and 4 h

Ramp-up-CSI

Probabilistic forecast Point forecast
Phase error D1 D4 D5 D1 D4 D5
- 0.12 0.20 0.15 0.09 0.17 0.08
2 0.30 0.36 0.32 0.18 0.31 0.24
4 0.38 0.45 0.38 0.26 0.37 0.32

definition 1, we get a lower BS when detecting ramp-ups. In contrast, definitions 4
and 5 get lower BS for detection of ramp-down events.
Another useful metric is the critical success index (CSI), defined as follows:

TP
CSI= tprmnsre 2

The CSI metric takes values in the interval [0;1], where 1 means correct predic-
tion. CSI measures the fraction of observed and/or forecast events that were cor-
rectly predicted.

In Table 2, we present CSI values obtained in experiments to predict upward
ramp events, for definitions 1, 4 and 5 and considering phase errors for time lags
of 2 and 4 periods. The probability cutoff value is 0.3. The results for ramp-down
display a similar performance. Regarding other definitions and parameters, we
can say that the performance of our model improves when we consider large sizes
of the time step (Af?), large aggregation windows and, obviously, consider phase
error. Overall, we can say that we obtain the best results of our experiments by
running the detection process for ramp definitions 4 and 5.

6 Ramp Forecasting and Unit Commitment

Figure 9 makes explicit the role of probabilistic ramp forecasting. By setting
alarms at specific hours and by defining probabilities associated with ramp pres-
ence and amplitude, the model establishes risk levels for ramp events—in the form
of a probability of having a ramp of a given amplitude or greater. A system opera-
tor may then decide, based on the risks he is willing to take, whether to accept a
specific unit commitment or to hedge against the adverse event and plan for some
extra reserve, at some cost. This also indicates how system operators may take full



42 C. Ferreira et al.

Implicit pdf model

gt

/Large discrete scenario set N / Ramp analyzer \
\_ v
/Condensed discrete scenario N /Alarm generator \
set
N / N )
(" Stochastic Unit Commitment ) 3 Hedging
 — | —
(— |]:> | ] ]
| — | E—
[ ] [ ]
1
- J

Fig. 9 Conceptual modules relating scenario generation, unit commitment and ramp event anal-
ysis

advantage of probabilistic wind power forecasting models—to adopt a stochastic
model for the unit commitment exercise. However, even if a classical model is
used, the reasoning about ramp risks and hedging applies.

7 Conclusions

Ramp forecasting has been recognized as a difficult exercise, related with predic-
tions about the derivative of a time series. But, it is of the utmost importance to
take into account the possibility of ramp events, especially in systems with high
penetration of wind and where the remainder generation resource is dominantly of
the slow thermal type, such as coal and nuclear power. The problem is somewhat
less serious if the power system has significant hydro generation or gas turbines—
but the system security and costs incurred in mitigating risks, that is, the cost of
adopting hedging policies, are still very important.

To adequately assess costs and risks, a probabilistic approach is mandatory.
This chapter brings to light a new approach to define a probabilistic model for
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ramp forecasting, in a form that is useful for system operators that have to decide
generation unit commitment. The output is a histogram, at every hour, indicating
the probability of a ramp exceeding a certain threshold, for all magnitudes above
a minimum ramp level defined. The approach does not provide dispatch decision
suggestions—however, the declaration of a ramp event based on a probability
threshold contributes to the decision process: it may serve as input to a hedging
process, where the operator may decide to run the risk of being subject to a ramp
event (e.g., in the case of a low probability for an event of a damaging magnitude)
or to hedge by changing the unit commitment in an appropriate (more costly) way
to avoid problems in case the event materializes.

Tests with real data from a US wind farm have proved the validity and usefulness
of the approach. The experimental results, evaluated under the ROC curve concept,
show clear advantages of the probabilistic forecaster over point forecasts and ran-
dom guesses. It must be said that the quality of ramp forecasting depends a great deal
on the quality of meteorological forecasts, translated into numerical weather models,
which supply data to the general short-term wind power forecasting problem.

In sum, the work presented here, by assigning a probability to each possible ramp
magnitude, is a clear step forward, providing a methodology useful to the industry.
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