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Abstract Danger Theory is presented with particular predominance on analogies
in the Artificial Immune Systems world. Artificial Immune System (AIS) is rel-
atively naive paradigm for intelligent computations. The inspiration for AIS is
derived from natural Immune System (IS). The idea is that the artificial cells
release signals describing their status, e.g., safe signals and danger signals. The
various artificial cells use the signals in order to adapt their behavior. This new
theory suggests that the immune system reacts to threats based on the correlation
of various (danger) signals and it provides a method of ‘grounding’ the immune
response, i.e., linking it directly to the attacker. In this paper, we look at Danger
Theory from the perspective of AIS practitioners and an overview of the Danger
Theory is presented with particular emphasis on analogies in the Artificial Immune
Systems world.
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Introduction

Over the last decade, a new theory has become popular amongst immunologists.
It is called the Danger Theory, and its chief advocate is Matzinger [1-3]. A variety
of contextual clues may be essential for a meaningful danger signal, and
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immunological studies will provide a framework of ideas as to how ‘danger’ is
assessed in the HIS. The danger signals should show up after limited attack to
minimize damage and therefore have to be quickly and automatically measurable.
Once the danger signal has been transmitted, the artificial immune systems (AIS)
should react to those artificial antigens that are ‘near’ the emitter of the danger
signal. A number of advantages are claimed for this theory; not least that it provides
a method of ‘grounding’ the immune response. The theory is not complete, and
there are some doubts about how much it actually changes behavior and or struc-
ture. Nevertheless, the theory contains enough potentially interesting ideas to make
it worth assessing its relevance to AIS. Few other AIS practitioners are aware of the
Danger Theory, notable exceptions being Burgess [4] and Willamson [5]. Hence,
this deals directly with the Danger Theory. In the next section, we provide an
overview of the Danger Theory, pointing out, where appropriate, some analogies in
current AIS models. We then discuss about anomaly detection for AIS.

Danger Theory

The AIS are computational systems designed on the principles of natural Immune
System (IS), which is highly distributed, adaptive and diverse system [6]. Danger
Theory is presented with particular emphasis on analogies in the Artificial Immune
Systems world [7, 8]. The idea is that the artificial cells release signals describing
their status, e.g., safe signals and danger signals. The immune system is commonly
thought to work at three levels: External barriers (skin, mucus), innate immunity,
and the acquired or adaptive immune system. As part of the third and most complex
level, B Lymphocytes secrete specific antibodies that recognize and react to stimuli.
It is this pattern matching between antibodies and antigens that lie at the heart of
most Artificial Immune System implementations. Another type of cell, the T (killer)
lymphocyte, is also important in different types of immune reactions. Although not
usually present in AIS models, the behavior of this cell is implicated in the Danger
model and so it is included here. From the AIS practitioner’s point of view, the T
killer cells match stimuli in much the same way as antibodies do. It is fundamental
that only the ‘correct’ cells are matched as otherwise this could lead to a self-
destructive autoimmune reaction. Classical immunology [9] stipulates that an
immune response is triggered when the body encounters something non-self or
foreign. It is not yet fully understood how this self-non-self discrimination is
achieved, but many immunologists believe that the difference between them is
learnt early in life. In particular it is thought that the maturation process plays an
important role to achieve self-tolerance by eliminating those T and B cells that react
to self. In addition, a ‘confirmation’ signal is required; that is, for either B cell or T
(killer) cell activation, a T (helper) lymphocyte must also be activated. Matzinger’s
Danger Theory debates this point of view (for a good introduction, see Matzinger
[1]). Technical overviews can be found in Matzinger [2] and Matzinger [3]. Danger
Theory clearly has many facets and intricacies, and we have touched on only a few.
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It might be instructive to list a number of considerations for an Artificial Immune
System practitioner regarding the suitability of the danger model for their appli-
cation. The basic consideration is whether negative selection is important. If so,
then these points may be relevant:

Negative selection is bound to be imperfect, and therefore auto-reactions (false
positives) are inevitable.

The self-/non-self boundary is blurred since self- and non-self antigens often share
common regions.

Self changes over time. Therefore, one can expect problems with memory cells,
which later turn out to be inaccurate or even auto-reactive.

If these points are sufficient to make a practitioner consider incorporating the
Danger Theory into their model, then the following considerations may be
instructive:

1. A danger model requires an antigen-presenting cell, which can present an
appropriate danger signal.

2. ‘Danger’ is an emotive term. The signal may have nothing to do with danger

3. The appropriate danger signal can be positive (presence of signal) or negative
(absence).

4. The danger zone in biology is spatial. In Artificial Immune System applica-
tions, some other measure of proximity (for instance temporal) may be used.

5. If there is an analogue of an immune response, it should not lead to further
danger signals. In biology, killer cells cause a normal cell death, not danger.

6. Matzinger proposes priming killer cells via antigen presenting cells for greater
effect. Depending on the immune system used (it only makes sense for spatially
distributed models) this proposal may be relevant.

7. There are a variety of considerations that are less directly related to the danger
model. For example, migration—how many antibodies receive signal one/two
from a given antigen-presenting cell? In addition, the Danger Theory relies on
concentrations, i.e., continuous not binary matching.

This theory is borne out of the observation that there is no need to attack
everything that is foreign, something that seems to be supported by the counter
examples above. In this theory, danger is measured by damage to cells indicated
by distress signals that are sent out when cells die an unnatural death (cell stress or
Iytic cell death, as opposed to programmed cell death, or apoptosis). Figure 1
depicts how we might picture an immune response according to the Danger
Theory. A cell that is in distress sends out an alarm signal, whereupon antigens in
the neighborhood are captured by antigen-presenting cells such as macrophages,
which then travel to the local lymph node and present the antigens to lymphocytes.
Essentially, the danger signal establishes a danger zone around itself. Thus, B cells
producing antibodies that match antigens within the danger zone get stimulated
and undergo the clonal expansion process. Those that do not match or are too far
away do not get stimulated.
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Another way of looking at the danger model is to see it as an extension of the
Two-signal model by Bretscher and Cohn [10]. In this model, the two signals are
antigen recognition (signal one) and co-stimulation (signal two).

Co-stimulation is a signal that means “this antigen really is foreign” or, in the
Danger Theory, “this antigen really is dangerous”. How the signal arises will be
explained later. The Danger Theory then operates by applying three laws to
lymphocyte behavior (the laws of lymphotics [11]):

Law 1. Become activated if you receive signals one and two together. Die if you
receive signal one in the absence of signal two. Ignore signal two without signal
one.

Law 2. Accept signal two from antigen-presenting cells only (or, for B cells,
from T helper cells). B cells can act as antigen-presenting cells only for experi-
enced (memory) T cells. Note that signal one can come from any cells, not just
antigen-presenting cells.

Law 3. After activation (activated cells do not need signal two) revert to resting
state after a short time.

For the mature lymphocyte, (whether virgin or experienced) these rules are
adhered to. However, there are two exceptions in the lymphocyte lifecycle. First,
immature cells are unable to accept signal two from any source. This enables an
initial negative selection screening to occur. Second, activated (effector) cells
respond only to signal one (ignoring signal two), but revert to the resting state
shortly afterwards.

The Danger Theory and Some Affinity to AIS

Danger Theory clearly has many features and dilemmas, and we have touched on
only a few. It might be instructive to list a number of considerations for an
Artificial Immune System practitioner regarding the suitability of the danger
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model for their application. The basic consideration is whether negative selection
is important. If so, then these points may be relevant:

e The self-/non-self boundary is blurred since self- and non-self antigens often
share common regions.

e Self changes over time. Therefore, one can expect problems with memory cells,
which later turn out to be inaccurate or even auto reactive.

e Negative selection is bound to be imperfect, and therefore auto reactions (false
positives) are inevitable.

If these points are sufficient to make a practitioner consider incorporating the
Danger Theory into their model, then the following considerations may be
instructive:

1. A danger model requires an antigen-presenting cell, which can present an
appropriate danger signal.

2. ‘Danger’ is an emotive term. The signal may have nothing to do with danger.

3. The appropriate danger signal can be positive (presence of signal) or negative
(absence).

4. The danger zone in biology is spatial. In AIS applications, some other measure
of proximity (for instance temporal) may be used.

5. If there is an analogue of an immune response, it should not lead to further
danger signals. In biology, killer cells cause a normal cell death, not danger.

6. Matzinger proposes priming killer cells via antigen presenting cells for greater
effect.

Depending on the immune system used (it only makes sense for spatially dis-
tributed models) this proposal may be relevant.

The Danger Theory and Anomaly Detection

In anomaly detection we watch not for a known intrusion—a signal—but rather for
abnormalities in the traffic; we assume that something abnormal is probably sus-
picious. The construction of such a detector starts by forming an opinion on what
constitutes normal for the observed subject (which can be a computer system, a
particular user etc.), and then deciding on what percentage of the activity to flag as
abnormal and how to make this particular decision (Fig. 2). This detection prin-
ciple flags behavior that is unlikely to originate from the normal process, without
needing actual intrusion scenarios [12].

In this section we will present indicative examples of such artificial systems,
explain their current shortcomings, and show how the Danger Theory might help
overcome some of these.

One of the first such approaches is presented by Forrest et al. [13] and extended
by Hofmeyr and Forrest [15]. This work is concerned with building an AIS that is
able to detect non-self in the area of network security where non-self is defined as
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Fig. 2 A typical anomaly detection system

an undesired connection. All connections are modeled as binary strings and there
is a set of known good and bad connections, which is used to train and evaluate the
algorithm. To build the AIS, random binary strings are created called detectors.
These detectors then undergo a maturation phase where they are presented with
good, i.e., self, connections. If they match any of these they are eliminated
otherwise they become mature, but not activated. If during their further lifetime
these mature detectors match anything else, exceeding a certain threshold value,
they become activated. This is then reported to a human operator who decides
whether there is a true anomaly. If so the detectors are promoted to memory
detectors with an indefinite life span and minimum activation threshold. Thus, this
is similar to the secondary response in the natural immune system, for instance
after immunization.

An approach such as the above is known in AIS as negative selection as only
those detectors (antibodies) that do not match live on. It is thought that T cells
mature in similar fashion in the thymus such that only those survive and mature
that does not match any self cells after a certain amount of time.

An alternative approach to negative selection is that of positive selection as
used for instance by Forrest et al. [14] and by Somayaji and Forrest [16]. These
systems are a reversal of the negative selection algorithm described above with the
difference that detectors for self are evolved. From a performance point of view
there are advantages and disadvantages for both methods. A suspect non-self string
would have to be compared with all self-detectors to establish that it is non-self,
whilst with negative selection the first matching detector would stop the com-
parison. On the other hand, for a self-string this is reversed giving positive
selection the upper hand. Thus, performance depends on the self to non-self ratio,
which should generally favor positive selection.

However, there is another difference between the two approaches: the nature of
false alarms. With negative selection inadequate detectors will result in false
negatives (missed intrusions) whilst with positive selection there will be false
positives (false alarms). The preference between the two in this case is likely to be
problem specific.

What could such danger signals be? They should show up after limited infec-
tion to minimize damage and hence have to be quickly and automatically mea-
surable. Suitable signals could include:
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Too low or too high memory usage.

Inappropriate disk activity.

Unexpected frequency of file changes as measured for example by checksums or
file size.

SIGABRT signal from abnormally terminated UNIX processes.

Presence of non-self.

Of course, it would also be possible to use ‘positive’ signals, as discussed in the
previous section, such as the absence of some normal ‘health’ signals.

Consequently, those antibodies or detectors that match (first signal) those
antigens within a radius, defined by a measure such as the above (second signal),
will proliferate. Having thereby identified the dangerous components, further
confirmation could then be sought by sending it to a special part of the system
simulating another attack. This would have the further advantage of not having to
send all detectors to confirm danger. In conclusion, using these ideas from the
Danger Theory has provided a better grounding of danger labels in comparison to
self/non-self, whilst at the same time relying less on human competence.

Conclusion

To conclude, the Danger Theory is not about the way AIS represent data. Instead,
it provides ideas about which data the AIS should represent and deal with. They
should focus on dangerous, i.e., interesting data.

It could be argued that the shift from non-self to danger is merely a symbolic
label change that achieves nothing. We do not believe this to be the case, since
danger is a grounded signal, and non-self is (typically) a set of feature vectors with
no further information about their meaning.

The danger signal helps us to identify which subset of feature vectors is of
interest. A suitably defined danger signal thus overcomes many of the limitations
of self-non-self selection. It restricts the domain of non-self to a manageable size,
removes the need to screen against all self, and deals adaptively with scenarios
where self (or non-self) changes over time.

The challenge is clearly to define a suitable danger signal, a choice that might
prove as critical as the choice of fitness function for an evolutionary algorithm. In
addition, the physical distance in the biological system should be translated into a
suitable proxy measure for similarity or causality in an AIS. We have made some
suggestions in this paper about how to tackle these challenges in a variety of
domains, but the process is not likely to be trivial. Nevertheless, if these challenges
are met, then future AIS applications might derive considerable benefit, and new
insights, from the Danger Theory.
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