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   Introduction 

 Cellulose is one of the most abundant, renewable 
and sustainable source of feedstock, which can be 
utilised for the development of various value-added 
products (   Kuhad and Singh  1993,   2007 ; Kung 

et al.  1997 ; Kuhad et al.  2011 ; Gao et al.  2008  ) . 
The annual production of cellulose has been 
estimated to be approximately 15 × 10 12  t per year 
of the total biomass produced through photosyn-
thesis. Structurally, cellulose is a  fi brous, insoluble 
and a major crystalline polysaccharide constitu-
ent of plant cell walls, composed of repeating 
cellobiose units linked by  b -1,4-glucosidic bonds 
(   Jagtap and Rao  2005 ). 

 In nature, cellulose is used as a food source by 
a wide variety of organisms including fungi, bacte-
ria, plants and protists as well as a wide range of 
invertebrate animals, such as insects, crustaceans, 
annelids, mollusks and nematodes (Watanabe 
and Tokuda  2001 ; Davison and Blaxter  2005 ). 
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  Abstract 

 For a long-range solution to the global issues of energy, chemical and 
food, the most abundant, renewable and sustainable bioresource cellulose 
could be a feasible solution. The depolymerisation of cellulose by a group 
of enzyme cellulases could potentially lead to the development of various 
value-added products. Due to their immense potential, cellulases are 
involved in various industrial and biotechnological applications related to 
pulp and paper, textile, fuel and other organic chemical synthesis indus-
tries. However, to further economise the cellulase production, extensive 
research is being carried out using various approaches including genetic 
manipulation and process engineering. In this chapter, a brief overview of 
cellulases and their potential applications are being discussed.  
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The complete cellulase system includes exo- b -1,
4-glucanases (EC 3.2.1.91), endo- b -1,4-glucanases 
(EC3.2.1.4) and  b -1,4-glucosidase (EC 3.2.1.21) 
(Wilson and Irwin  1999 ). These enzymatic com-
ponents act sequentially in a synergistic system 
to facilitate the breakdown of cellulose and the 
subsequent biological conversion to a utilisable 
energy source, glucose (Beguin and Aubert  1994  ) . 

 Due to their immense potential, cellulases 
have been used in various industrial and technologi-
cal applications. These include use of cellulases 
in deinking of paper waste, paper industry, textile 
industry, biopolishing and biostoning of denim 
jeans, food and feed industry, sugar and oligosac-
charides production, biofuel production and pro-
duction of other value-added commodities. 

 In recent years, fundamental and applied 
researches on cellulase enzyme have not only gen-
erated signi fi cant scienti fi c knowledge but also 
have revealed their enormous potential in bio-
technology, making signi fi cant advances towards 
the production and alteration technology of 
cellulase enzyme using several biotechnological 
approaches. A brief overview about cellulases, 
cellulolytic microbial strain improvement and 
their various biotechnological applications has 
been provided here.  

   Structure of Cellulose 

 Cellulose is a glucan polymer of D-glucopyranose 
units, which are linked together by  b -1,4-glucosidic 
bonds. The cellulose has an average degree of 
polymerisation (DP) of at least 9,000–10,000 and 
possibly as high as 15,000. An average DP of 
10,000 would correspond to a linear chain length 
of approximately 5  m m in wood. An approximate 
molecular weight for cellulose ranges from about 
10,000 to 150,000 Da. Anhydrocello biose is the 
repeating unit of cellulose. Coupling of adjacent 
cellulose chains and sheets of cellulose by hydro-
gen bonds and van der Waals forces results in 
a parallel alignment and a crystalline structure 
with straight, stable supramolecular  fi bres of great 
tensile strength and low accessibility (Demain et al. 
 2005 ; Nishiyama et al.  2003 ; Notley et al.  2004 ; 
Zhang and Lynd  2004 ). The cellulose molecule is 

very stable, with a half-life of 5–8 million years 
for  b -glucosidic bond cleavage at 25°C. There 
are several types of cellulose in wood: crystalline 
and noncrystalline and accessible and non-
accessible. Most wood-derived cellulose is highly 
crystalline and may contain as much as 65% 
crystalline regions. The remaining portion has a 
lower packing density and is referred to as amor-
phous cellulose. Accessible and non-accessible 
refer to the availability of the cellulose to water, 
microorganisms, etc. The surfaces of crystalline 
cellulose are accessible but the rest of the crystal-
line cellulose is non-accessible, whereas most 
of the noncrystalline cellulose is accessible but 
part of the noncrystalline cellulose is so covered 
with both hemicelluloses and lignin that it 
becomes non-accessible. Concepts of accessible 
and non-accessible cellulose are very impor-
tant in moisture sorption, pulping, chemical 
modi fi cation, extractions and interactions with 
microorganisms.  

   Cellulases and Their Mechanism 

 Cellulases are generally de fi ned as enzymes which 
hydrolyse the  b -1, 4 glycosidic bonds within the 
chain that comprise the cellulose polymer. Fungal 
and bacterial cellulases signi fi cantly differ in 
their structure and functions. Fungal cellulases 
are composed of a carbohydrate-binding module 
(CBM) at the C-terminal joined by a short poly-
linker region to the catalytic domain at the 
N-terminal. The CBM is comprised of approxi-
mately 35 amino acid residues, and the linker 
region is a highly glycosylated region unusually 
rich in serine, threonine and proline amino acid 
residues (Divine et al. 1988). This linker region is 
also the site of proteolytic cleavage accomplished 
by several general serine proteases. Broadly, there 
are three types of cellulases:
    1.    Endoglucanase or carboxymethyl cellulase 

(E.C. 3.2.1.4)  
    2.    Exoglucanase or cellobiohydrolase or  fi lter 

paper cellulase (E.C. 3.2.1.91)  
    3.     b -glucosidase or cellobiase (E.C. 3.2.1.21)     

 Unlike noncomplexed fungal cellulase, anaer-
obic bacteria possess complexed cellulase systems, 
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called cellulosomes (Doi and Tamaru  2001 ; Demain 
et al.  2005 ). The functional unit of cellulosome 
is scaffoldin   , which contains cohesins, a cellulose- 
binding domain (CBD) or CBM; a dockerin, 
X modules of unknown function and an S-layer 
homology (SLH) module (Doi and Kosugi  2004 ). 
The cohesins are modules made up of ~150 amino 
acid residues and usually present as tandem repeats 
in scaffoldins. It has been demonstrated that 
the cohesins speci fi cally show the interaction to 
the noncatalytic dockerin modules identi fi ed in 
cellulosomal complex (B´eguin et al. 1990, 1994; 
Ding et al.  2008 ; Fontes and Gilbert  2010 ). While 
dockerins consist of approximately 70 amino 
acids containing two duplicated segments (~22 
amino acid residues). Dockerins are usually present 
in a single copy at the C terminus of cellulosomal 
enzymes. The  fi rst 12 amino acid residues in each 
segment resemble the calcium-binding loop of 
EF-hand motifs (helix-loop-helix motif) in which 
the calcium-binding residues, aspartate or aspar-
agine, are highly conserved (Fontes and Gilbert 
 2010 ). These enzymatic subunits are bound to 
the scaffoldin through the interaction of the 
cohesins and dockerins to form the cellulosomes. 
The arrangement of the modules on the scaffoldin 
subunit and the speci fi city of the cohesin(s) 
and/or dockerin for their modular counterpart 
dictate the overall architecture of the cellulosome. 
This interaction (cohesion- dockerin) is species 
speci fi c, i.e. the dockerins that are found in 
 Clostridium cellulolyticum  cellulosomal enzymes 
do not show interaction with the cohesins that 
are found in  C. thermocellum  and vice versa 
(Pages et al.  1997  ) . Moreover, both cohesins and 
dockerins are highly homologous within the same 
species, and the residues directly involved in 
protein: protein recognition are highly conserved 
within a species. 

   Mechanism of Cellulases 

 As discussed in previous section, the structure 
and function of fungal and bacterial cellulases 
are quite different. The fungal cellulase system 
contains three major enzyme components: endo-
glucanase, cellobiohydrolase and  b -glucosidase. 

The exoglucanase acts on the reducing ends of 
the cellulose chain and release cellobiose as the 
end product; endoglucanase randomly attacks 
the internal o-glycosidic bonds, resulting in glucan 
chains of different lengths; and the  b -glucosidases 
act speci fi cally on the  b -cellobiose disaccharides 
and produce glucose (Beguin and Aubert  1994 ; 
Kuhad et al.  1997,   2010a,   b,   c  )  (Fig.  6.1 ).  

 There is a high degree of synergy between 
cellobiohydrolases (exoglucanases) and endogluca-
nases, which is required for the ef fi cient hydrolysis 
of cellulose (Din et al. 1994; Teeri et al.  1998 ; 
Boraston et al.  2004 ; Gupta et al.  2009  ) . The 
products of endoglucanases and cellobiohydro-
lases, which are cellodextrans and cellobiose, 
respectively, are inhibitory to the enzyme’s activity. 
Thus, ef fi cient cellulose hydrolysis requires the 
presence of  b -glucosidases which cleaves the  fi nal 
glycosidic bonds producing glucose (end product). 
Typically, cellobiose and cellodextrins are taken 
up by the microorganism and internally cleaved 
via cellodextrin phosphorylases or cellobiose 
phosphorylases to create glucose monophosphate, 
which is energetically favoured. Some bacteria 
also produce intra- or extracellular  b -glucosidases 
to cleave cellobiose and cellodextrins and produce 
glucose to be taken up by or assimilated by the 
cell. Mechanism of cellulose degradation by 
aerobic bacteria is similar to that of aerobic fungi, 
but it is clear that anaerobic bacteria operate a 
different system. 

 The major difference between fungal enzymes 
and cellulosomal enzymes is that the fungal 
enzymes usually contain a CBM for guiding the 
catalytic domain to the substrate, whereas the 
cellulosomal enzymes carry a dockerin domain 
that incorporates the enzyme into the cellulosome 
complex. Otherwise, both the free and cellulo-
somal enzymes contain very similar types of 
catalytic domains (Bayer et al.  2004 ). 

 The cellulosomes contain substrate-binding 
sites, which bind the cellulosome tightly to the 
substrate and concentrate the hydrolytic enzymes 
to speci fi c sites (Doi  2008  ) . CBMs play a key role 
in the deconstruction of complex insoluble 
composites exempli fi ed by the plant cell wall. 
Initial studies by Bayer and their colleagues 
 (  1998  )  showed that the CBD contained a planar 
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con fi guration that interacted with the cellulose 
and involved the amino acids tryptophan, aspartic 
acid, histidine, tyrosine and arginine in binding 
the scaffoldin protein to cellulose. Upon binding 
to the substrate, the cellulosome complex under-
goes a supramolecular reorganisation so that the 
cellulosomal subunits redistribute to interact with 
the different target substrates. For this purpose, 
the various cellulosomal enzymes include differ-
ent types of CBMs from different families that 
exhibit appropriate speci fi cities that complement 
the action of the parent enzyme (Bayers et al. 
 2004  ) . The presence of a large variety of cellulo-
somal enzymes allows the cellulosome to degrade 
a wide variety of lignocellulosic materials (Maki 
et al.  2009  ) . 

 Mechanistically, the reactions catalysed by 
all cellulases are suggested to involve general 
acid–base catalysis by a carboxylate pair at the 
enzyme active site, though different in structure. 
One residue acts as a general acid and protonates 
the oxygen of the o-glycosidic bond; at the same 

time, the other residue acts as a nucleophile. 
Depending on the distance between the two car-
boxylic groups, either inverting (~10 Å distances) 
or retaining (~5 Å-distances) mechanisms are 
observed in cellulases. Moreover, the involvement 
of multiple enzymes with a wide range of substrate 
speci fi cities enables constant enzymatic actions 
on lignocellulosics.   

   Sources of Cellulases 

 Exploitation of cellulose depends on their ef fi cient 
microbial degradation. A broad spectrum of 
 cellulolytic microorganisms mainly fungi and 
bacteria have been identi fi ed over the years 
(Kuhad and Singh  2007 ). Moreover, the genetic 
material recovered directly from environmental 
samples has also shown the potential to exploit 
the novel cellulases trapped in the genomes of 
unculturable microbes. Different sources of cellu-
lases are brie fl y described in this section. 

  Fig. 6.1    Schematic representation of enzymatic hydrolysis of cellulose       
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   Cellulases from Fungi 

 Fungi are well-known agents of decomposition 
of organic matter in general and of cellulosic sub-
strate in particular; however, it is still unclear 
how broadly and deeply cellulolytic capability 
extends through the fungal world. Cellulase-
producing fungi are widespread among fungi 
and include species from the ascomycetes 
( Trichoderma reesei ), basidiomycetes ( Fomitopsis 
palustris ) and also few anaerobic species 
( Orpinomyces  sp.) (Kuhad et al.  1994 ; Hodrova 
et al.  1998 ; Wyk et al.  2000 ; Srinivasan et al. 
 2001 ; Leite et al.  2008  ) . Few cellulase-producing 
fungi are listed in Table  6.1 .  

 Among fungi, soft rot are the best known 
for producing cellulases, and among them, 
 Trichoderma  has been the best characterised 
(Juhasz et al.  2005 ; Wen et al.  2005 ; Kovacs et al. 
 2008  ) . Other well-known cellulase-producing 
soft rots are  Aspergillus niger, Fusarium oxyspo-
rum, Neurospora crassa,  etc. (Kuhad et al.  1997 ; 
Daroit et al.  2007 ; Gao et al.  2008 ; Sun et al. 
 2008  ) . Besides soft rots, brown rot and white rot 
fungi are also actively involved in the cellulose 
degradation; however, both of these classes of 
fungi degrade wood by distinctly different mech-
anisms (Kuhad et al.  1994  ) . Brown rot fungi 
depolymerise cellulose rapidly during the early 

decay of wood, and one reason may be the lack 
of exoglucanase (Kuhad et al.  1997  ) . However, 
there are also few contrasting reports of exoglu-
canases-producing microbes. Recently, Deswal 
and coworkers  (  2011  )  have reported a brown 
rot fungus     Fomitopsis  sp. RCK 2010 having a 
good amount of all the three enzymes and have 
also shown the hydrolysis ef fi ciency of pretreated 
lignocellulosic substrates. Besides  Fomitopsis  sp., 
other well-known cellulase-producing brown rots 
are  Poria placenta, Lenzites trabea, Coniophora 
puteana  and  Tyromyces palustris . The cellulase-
producing ability in white rots is heterogeneous. 
These microbes are most commonly known for 
lignin degradation. The common examples of 
cellulase-producing white rots are  Phanerochaete 
chrysosporium, Sporotrichum thermophile  and 
 Trametes versicolor . 

 Anaerobic fungi also play a key role in the 
degradation of plant cell wall materials. They 
have the ability to degrade plant cellulose because 
they can produce an array of all the cellulolytic 
enzymes. Anaerobic fungi can only degrade the 
structural polysaccharides but cannot utilise the 
lignin moieties. Among anaerobic fungi, the most 
studied are  Neocallimastix frontalis  (Srinivasan 
et al.  2001  )  , Piromyces  ( Piromonas )  communis  
(Kim et al.  2008  )  , Orpinomyces  sp .  (Hodrova 
et al.  1998  ) , etc.  

   Table 6.1    Cellulase-producing fungi   

 Microorganism  Reference  Microorganism  Reference 

  Acremonium 
cellulolyticus  

 Fang et al.  (  2008  )    Paecilomyces in fl atus   Kluczek-Turpeinen et al. 
 (  2007  )  

  Agaricus arvensis   Jeya et al.  (  2010  )    Penicillium echinulatum   Camassola and Dillon  (  2009  )  
  Aspergillus niger  NIAB 
280 

 Hanif et al.  (  2004  )    Penicillium decumbens   Sun et al.  (  2008  )  

  Aspergillus terreus M11   Gao et al.  (  2008  )    Penicillium brasilianum   Jorgensen and Olsson  (  2006  )  
  Daldinia eschscholzii   Karnchanatat et al.  (  2008  )    Pleurotus ostreatus   Membrillo et al.  (  2008  )  
  Humicola grisea   Mello-De-Sousa et al.  (  2011  )    Phlebia gigantea   Niranjane et al.  (  2007  )  
  Lentinus tigrinus   Lechner and Papinutti  (  2006  )    Piromyces communis   Kim et al.  (  2008  )  
  Melanocarpus  sp.  Kaur et al.  (  2006  )    Sclerotium rolfsii   Ludwig and Haltrich  (  2003  )  
  Monascus purpureus   Daroit et al.  (  2007  )    Scytalidium thermophilum   Kaur et al.  (  2006  )  
  Myceliophthora  sp.  Badhan et al.  (  2007  )    Thermoascus      aurantiacus   Leite et al.  (  2008  )  
  Mucor circinelloides   Saha  (  2004  )    Trichoderma atroviride   Kovacs et al.  (  2008  )  
  Neocallimastix frontalis   Srinivasan et al.  (  2001  )    Trichoderma reesei  RUT 30  Juhasz et al.  (  2005  )  
  Orpinomyces  sp.  Hodrova et al.  (  1998  )  
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   Bacteria 

 Cellulolytic bacteria often produce cellulases in 
small amounts, and degradation of cellulose 
seems to take place by a cluster of multienzyme 
complexes, which are dif fi cult to disrupt without 
the loss of total activity (Kuhad et al.  1997 ; Doi 
 2008  ) . Most of the bacterial cellulolytic enzymes 
are reported from  Bacillus  (Lee et al.  2008 ; Arif fi n 
et al.  2008 ; Rastogi et al.  2010  ) ,  Acinetobacter  
(Ekperigin et al. 2007; Lo et al.  2010  ) , 
 Cellulomonas  (Rajoka and Malik  1997 ; Lo 
et al.  2009  )  and  Clostridium  (Chinn et al.  2008 ; 
Desvanux et al.  2000 ; Dharmagadda et al.  2010  ) . 
Typically, aerobic bacteria play predominant roles 
in natural systems, accounting for 90–95% of 
bacterial cellulose degradation, the remaining 
10% or less is degraded by diverse bacteria under 
anaerobic conditions (Carere et al.  2008  ) . In addi-
tion to these, rumen bacteria have also shown to 
be producers of cellulase enzymes that can 
degrade structural components of cell walls 
(Kuhad et al.  1994  ) . Among these,  Fibrobacter     
 succinogenes  (Bera-Maillet et al.  2009  )  and 
 Ruminococcus albus  (Ohara et al.  2000  )  are most 
extensively studied. Recently, cellulolytic activity 
has been reported from thermophilic bacteria 
 Anoxybacillus  sp. (Liang et al.  2009  ) ,  Bacillus  

sp. (Rastogi et al.  2010  ) ,  Geobacillus  sp. (Rastogi 
et al.  2010  )  and  Bacteroides  sp. (Ponpium et al. 
 2000  ) . The list of few cellulase-producing bacteria 
is shown in Table  6.2 .   

   Metagenomic Cellulolytic Genes 

 In addition to the culturable microbes, several 
metagenomic studies have also been carried out 
for the isolation of cellulase gene from various 
environmental samples (Ferrer et al.  2005 ; Palackal 
et al.  2007 ; Duan et al.  2009 ; Liu et al.  2009 ; 
Shedova et al.  2009 ; Wang et al.  2009  ) . Ferrer 
et al.  (  2005  )  isolated seven new clones encoding 
 b -1, 4-endoglucanase activity from cow rumen. 
Pottkamper et al.  (  2009  )  identi fi ed three novel 
cellulases that can degrade cellulose even in the 
presence of ionic liquids. Duan and coworkers 
 (  2009  )  isolated a novel endoglucanase C67-1, gene 
from buffalo rumen, which is very stable under 
both acidic (up to pH 3.5) and alkaline (up to pH 
10.5) conditions. In another report, an endoglu-
canase Umcel5G, derived from rabbit cecum, 
was isolated which has the property to hydrolyse 
a wide range of substrates (Feng et al.  2007  ) . 
Few studies on isolation of cellulase gene from 
metagenomic approaches are listed in Table  6.3 .    

   Table 6.2    Cellulase-producing bacteria   

 Source  Reference  Source  Reference 

  Acinetobacter junii F6-02   Lo et al.  (  2010  )    Butyrivibrio  fi brisolvens A 
46  

 Hazlewood et al.  (  1990  )  

  Anoxybacillus  sp.  527   Liang et al.  (  2009  )    Cellulomonas ANS-NS2   Lo et al.  (  2009  )  
  Acinetobacter anitratus   Ekperigin  (  2007  )    Cellulomonas biazotea   Rajoka and Malik  (  1997  )  
  Bacillus subtilis   Heck et al.  (  2002  )  

and Kim et al.  (  2009  )  
  Clostridium thermocellum   Chinn et al.  (  2008  )  and 

Dharmagadda et al.  (  2010  )  
  Bacillus subtilis CBTTK 106   Krishna  (  1999  )    Clostridium cellulolyticum   Desvaux et al.  (  2000  )  
  Bacillus pumilus EB3   Arif fi n et al.  (  2008  )    Clostridium acetobutylium   Sabathe et al.  (  2002  )  
  Bacillus amyloliquefaciens 
DL-3  

 Lee et al.  (  2008  )    Clostridium papyrosolvens   Thirumale et al. ( 2001 ) 

  Bacillus licheniformis   Bischoff et al.  (  2006  )    Eubacterium cellulosolvens   Moon and Anderson  (  2001  )  
  Bacillus  sp.  AC-1   Li et al.  (  2008  )    Fibrobacter succinogenes S 

85  
 Bera-Maillet et al.  (  2009  )  

  Bacillus  sp.  DUSELR 13   Rastogi et al.  (  2010  )    Geobacillus  sp.  WSUCF1   Rastogi et al.  (  2010  )  
  Bacillus circulans   Hakamada et al.  (  2002  )    Paenibacillus 

curdlanolyticus  
 Waeonukul et al.  (  2009  )  

  Bacillus  fl exus   Trivedi et al.  (  2011  )    Salinivibrio  sp.  NTU-05   Wang et al.  (  2009  )  
  Bacteroides  sp. P-1   Ponpium et al.  (  2000  )    Ruminococcus albus F-40   Ohara et al.  (  2000  )  
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   Industrial Application of Cellulases 

 Cellulases    have biotechnological potential in 
various industries, including food, brewery and 
wine, industrial waste to chemical feedstock, 
animal feed, textile and laundry, pulp and paper 
and agriculture, as well as in research and develop-
ment of single-cell protein (Poutanen  1997 ; Bhat 
and Bhat  1997 ; Bajpai  1999 ; Bergqvist et al.  2005 ; 
Bamforth  2009 ; Kuhad et al.  2011  ) . 

   Role of Cellulases in Food Industry    

 Cellulases play a prominent role in extraction of 
juice from a wide range of fruits and vegetables 
(Humpf and Schrier  1991 ; Sreenath et al.  1994 ; 
Bhat  2000 ; Bergqvist et al.  2005 ; Kuhad et al. 
 2011  )  (Table  6.4 ). Cellulases are used not only to 
improve the cloud stability and texture of nectars 

and purees but also to decrease their viscosity 
(Grassin and Fauquembergue  1996 ; Bhat  2000 ; 
Hui  2006  ) . Cellulases are also used for food 
colouring agents production and in the extraction 
of olive oil and carotenoids (Grohman and 
Baldwin  1992 ; Faveri et al.  2008 ; Belitz et al. 
 2009  ) . Moreover, cellulase is also used to alter 
the sensory properties of fruits and vegetables, by 
increasing their aroma and volatile characteristics 
(Humpf and Schrier  1991 ; Krammer et al.  1991 ; 
Dauty  1995 ; Bhat  2000 ; Hui  2006  ) .   

   Role of Cellulases in Beer Industry 

 Beer brewing involves malting of the barley in 
a malt house followed by the preparation and 
fermentation of the wort in the brewery. Malting 
depends mainly on germination of seed, which 
initiates the biosynthesis and activation of 

   Table 6.3    List of metagenomic sources of cellulases   

 Cellulase type  Source  Library type  Insert (kb)  Substrate  Reference 

 Endoglucanase  Anaerobic digester  Plasmid  12-Feb  CMC,MUC  Healy et al.  (  1995  )  
 Endoglucanase  Lake sediment   l  phage  10-Feb  CMC  Rees et al.  (  2003  )  

 Endoglucanase  Soil  Cosmid  25–40  CMC  Voget et al.  (  2003  )  
 Endoglucanase  Lake sediment   l  phage  2.0–5.5  CMC  Grant et al.  (  2004  )  

 Endoglucanase  Cow rumen   l  phage  5.5  OBR-HEC  Ferrer et al.  (  2005  )  

  b -glucosidase  Soils from wetland  Fosmid  35  MUC  Kim et al.  (  2007  )  

 Endoglucanase  Rumen  fl uid   l  phage  3  Dye-linked 
azo-xylan 

 Palackal et al.  (  2007  )  

 Endoglucanase/ b -
glucosidase 

 Rabbit cecum  Cosmid  35.1  CMC,MUC, 
EH-FAC 

 Feng et al.  (  2007  )  

 Endoglucanase  Hindgut of
 higher termite 

 Fosmid and 
plasmid 

 –  PASC  Warnecke et al.  (  2007  )  

 Endoglucanase  Soil  Fosmid  –  CMC  Kim et al.  (  2008  )  

 Endoglucanase/ b -
glucosidase 

 Soil, rumen   l  phage  5.3  CMC,MUC, 
EH-FAC 

 Wang et al.  (  2009  )  

 Endoglucanase  Cow rumen  Plasmid  15  CMC  Shedova et al.  (  2009  )  

 Endoglucanase/ b -
glucosidase 

 Compost  Cosmid  33  CMC  Pang et al.  (  2009  )  

 Endoglucanase/ b -
glucosidase/
Cellodextrinase 

 Buffalo rumen  Cosmid  35  CMC,MUC, 
EH-FAC 

 Duan et al.  (  2009  )  

 Endoglucanase  Buffalo rumen  Cosmid  46.1  MUC  Liu et al.  (  2009  )  

  b -glucosidase  Alkaline polluted soil  Plasmid  3.5  EH-FAC  Jiang et al.  (  2009  )  

 Endoglucanase  Aquatic community 
and soil 

 Cosmid  –  CMC  Pottka¨mper et al.  (  2009  )  

  b -glucosidase  Sludge  Cosmid  35  EH-FAC  Jiang et al.  (  2010  )  

 Endoglucanase  Pot soil  Fosmid  40  CMC  Sita  (  2010  )  
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   Table 6.4    Role of cellulases in food biotechnology   

 S. no.  Function  Application  Reference 

 1.  Hydrolysis of cell wall 
components; decreasing the 
viscosity and maintaining the 
texture of fruit juice 

 Improvement in pressing and extraction 
of juice from fruits and oil from olives; releasing 
 fl avour, enzymes, proteins, polysaccharides, 
starch and agar 

 Galante et al.  (  1998  ) , 
Bergqvist et al.  (  2005  ) , and 
Kuhad et al.  (  2011  )  

 2.  Infusion of pectinase and 
glucosidase for easy 
peeling/ fi rming of fruits and 
vegetables 

 Alteration of the sensory properties 
of fruits and vegetables 

 Krammer et al.  (  1991  )  

 3.  Partial or complete hydrolysis 
of cell wall polysaccharides 
and substituted celluloses 

 Improvement in soaking ef fi ciency; homogeneous 
water absorption by cereals; the nutritive quality 
of fermented foods; the rehydrability of dried 
vegetables and soups; the production of oligosac-
charides as functional food ingredients and 
low-calorie food substituents and biomass 
conversion; extract of olive oil, Purees 

 Beguin and Aubert  (  1994  ) , 
Bhat and Bhat  (  1997  ) , Cinar 
 (  2005  ) , and Faveri et al. 
 (  2008  )  

 4.  Hydrolysis of arabinoxylan 
and starch 

 Separation and isolation of starch and gluten 
from wheat  fl our 

 Bhat  (  2000  )  

 5.  Release of antioxidants from 
fruit and vegetable pomace 

 Controlling coronary heart disease and 
atherosclerosis; reducing food spoilage 

 Bhat  (  2000  )  

amylases, carboxypeptidase and cellulases 
which act in synergy under optimal conditions 
to produce high-quality malt. Therefore, the 
addition of cellulases is known to improve not 
only the beer qualities but also their overall 
production ef fi ciency (Galante et al.  1998  ) .  

   Role of Cellulases in Animal 
Feed Industry 

 Cellulases have a wide range of potential appli-
cations in animal feeding (Lewis et al.  1996 ; 
Bhat  2000 ; Knowlaton et al.  2007 ; Pariza and 
Cook  2010  ) . Cellulases are the main class of 
enzymes used in monogastric feed and ruminant 
feed (Graham and Balnave  1995 ; Lewis et al. 
 1996 ; Kung et al.  1997  ) . They can be used either 
to eliminate anti-nutritional factors present in 
raw materials or to degrade certain cereal com-
ponents in order to improve the nutritional value 
of feed.  

   Role of Cellulases in Textile 
and Laundry Industry 

 The cellulases in textile industry are most commonly 
used for biostoning, biopolishing and bio fi nishing 

(Kirk et al.  2002 ; Lima et al.  2005 ; Ibrahima et al. 
 2010  ) . The advantages of using cellulase-based 
biostoning are less labour-intensive, worn look, 
reduce damage, and create the possibility to auto-
mate the process (Galante et al.  1998 ; Pazarlioglu 
et al.  2005  ) . While during biopolishing, the 
cellulases act on small  fi bre ends that protrude 
from the fabric surface, where the mechanical 
action removes these  fi bres and polishes the 
fabrics (Sukumaran et al.  2005  ) . The cellulases 
remove short  fi bres and surface fuzziness, smoothen 
the appearance, remove the soil, improve colour 
brightness and increase hydrophilicity and mois-
ture absorbance (Sukumaran et al.  2005 ;   http://
www.mapsenzymes.wm/enzymes_detergent.asp    ).  

   Role of Cellulases in Pulp and Paper 
Industry 

 Cellulase has been used in the pulp and paper indus-
try for various purposes. The effect of enzymatic 
modi fi cation of coarse mechanical pulp using 
cellulase led to signi fi cant energy saving (Pere 
et al.  1996  ) . Cellulases have also been used for 
the modi fi cation of  fi bre properties to improve 
drainage, beatability and runnability of the paper 
industry (Noe et al.  1986 ; Pommier et al.  1989, 
  1990  ) . The cellulases have also been observed to 

http://www.mapsenzymes.wm/enzymes_detergent.asp
http://www.mapsenzymes.wm/enzymes_detergent.asp
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be the most effective for recycling the waste 
papers from books, magazines and newspaper 
which could have value addition via deinking 
and reuse of  fi bre either in manufacturing of 
newspaper or ethanol production (Kuhad et al. 
 2010a,   b,   c  ) . The main advantage of enzymatic 
deinking is the avoidance of the use of alkali. 
Deinking, using enzymes at acidic pH, also 
prevents the alkaline yellowing, simpli fi es the 
deinking process, changes the ink particle size 
distribution and reduces the environmental pollu-
tion (Kirk et al.  2002 ; Kuhad et al.  2010a,   b,   c ; 
Liu et al.  2010  ) . In addition, the enzymatic deinking 
improves the  fi bre brightness, strength properties, 
pulp freeness and cleanliness as well as reduces 
 fi ne particles in the pulp (Liu et al.  2009 ; Kuhad 
et al.  2010a,   b,   c  ) .  

   Role of Cellulases in Agriculture 
Industry 

 Many cellulolytic fungi such as  Trichoderma  sp., 
 Geocladium  sp.,  Chaetomium  sp. and  Penicillium  
sp. are known to facilitate enhanced seed germi-
nation, rapid plant growth and  fl owering and 
increased crop yields (Bailey and Lumsden  1998 ; 
Harman and Bjorkman  1998 ; Bhat  2000 ; Fontaine 
et al.  2004 ; Wei et al.  2009  ) .  b -1,3-glucanase 
from  T. harzianum  CECT 2413 induced morpho-
logical changes such as hyphal tip swelling, leakage 
of cytoplasm and the formation of numerous 
septae and inhibited the growth of  Rhizopus solani  
and  Fusarium  sp. (Benitez et al.  1998  ) . Besides, 
they are also capable of degrading the cell wall of 
plant pathogens and controlling the plant disease. 
Cellulase is also used to improve soil quality and 
reduce dependence on mineral fertilisers (Escobar 
and Hue  2008 ; Han and He  2010  ) .  

   Role of Cellulases in R&D Industries 

 Cellulases and related enzymes can also be used 
as potential tools for generating new strains 
capable of producing high levels of enzymes of 
commercial interest. Mixture of cellulases and 
other enzymes results in the solubilisation of 

fungal or plant cell wall to produce protoplast 
(Beguin and Aubert  1994  ) . Cellulose-binding 
domains (CBD) of cellulases, which function 
normally when fused to heterologous proteins, 
have been successfully used either as an af fi nity 
tag for the puri fi cation of proteins or immo-
bilisation of fusion proteins (Assouline et al. 
 1993 ; Greenwood et al.  1992 ; Tomme et al. 
 1995 ). Similarly, using the scaffoldin CBD of the 
 C. thermocellum  cellulosome, a novel af fi nity 
column was prepared for the puri fi cation of anti-
bodies (Bayer et al.  1995  ) .  

   Role of Cellulases in Biofuel Industry 

 A potential application of cellulases is the conver-
sion of cellulosic material to glucose and other 
fermentable sugars, which in turn can be, used as 
microbial substrate for the production of single-
cell protein or fermentation products like ethanol 
(Sukumaran et al.  2005 ; Kuhad et al.  2010a,   b,   c  ) . 
Production of ethanol from renewable resources 
via fermentation represents an important process 
for production of alternative fuels (Sukumaran 
et al.  2005 ; Kuhad et al.  2010a,   b,   c,   2011  ) . 
Ethanol has a unique combination of attributes 
including low life-cycle greenhouse gas emis-
sions, a high level of sustainability, and seamless 
integration into the existing transport system 
with potential to have a large-scale impact (Ward 
and Singh  2002 ; Gupta et al.  2009 ; Kuhad et al. 
 2010a,   b,   c  ) .  

   Cellulase in Pharmaceutical Industries 

 Since humans poorly digest cellulose  fi bre, taking 
a digestive enzyme product, like digestin, that 
contains cellulase enzymes could be important 
for healthy cells. Fungal hemicellulase and cel-
lulase enzyme system helps in rapid hydrolysis 
of cellulose, hemicellulose and beta-glucan 
polymers in food. The gummy substances take up 
a lot of water and swell up to about ten times, 
thus hindering the action of enzymes on other 
biomolecules (  http:/www.expresspharmaonline.
com/20041028/biochemicals01.html    ).   

http://http:/www.expresspharmaonline.com/20041028/biochemicals01.html
http://http:/www.expresspharmaonline.com/20041028/biochemicals01.html
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   Strategies for Cellulase Improvement 

 The use of cellulases for various applications 
demands their cost-effective production. Therefore, 
to improve cellulases titer and their ratios, various 
approaches like mutagenesis, genetic engineering 
and protein engineering have been used. 

 Mutation is one of the most commonly used 
approaches for the cellulase improvement (Durand 
et al.  1988 ; Anwar et al.  1996 ; Chand et al.  2005 ; 
Adsul et al.  2007  ) . There are several reports where 
mutagenised strains have shown better properties 
over their parent strain. Chand et al.  (  2005  )  gave 
ETBr and 1-methyl −3-nitro-1-nitrosoguanidine 
treatment to  A. niger,  and the resultant strain 
 A. niger  CMV5-A10 exhibited twofold enhanced 
cellulase production. Similarly Adsul et al.  (  2007  )  
increased the cellulase production twofold from 
EMS and UV-mutated  P. janthinellum  NCIM 
1171. Though mutagenesis has improved the 
cellulase quality, but the instability of mutants 
due to reversion remains a big hurdle. 

 Moreover, cloning and expression of both 
bacterial and fungal cellulase genes in various 
hosts have also been attempted to improve the 
cellulase production (Kataeva et al.  1999 ; Abdeev 
et al.  2003 ; Park et al.  2005 ; Hong et al.  2009 ; 
Mekoo et al.  2010  )  (Table  6.5 ). Cloning of cellu-
lases (endoglucanase and cellobiohydrolase) from 
 Clostridium  has been reported by several workers 
(Shima et al.  1989 ; Wang et al.  1993  ) . A hyperther-
mophile cellulase from  Pyrococcus horikoshii  

was successfully cloned and overexpressed in 
the  B. brevis  host vector system and enhanced the 
cellulase production by 20-fold (Kashima and 
Udaka  2004  ) . Similarly, Park and coworkers 
 (  2005  )  have cloned a thermostable exoglucanase 
gene from  Streptomyces  sp. M23 in  S. lividans  
TK-24 which was stable up to 100°C. In another 
report, Li et al.  (  2008  )  cloned a thermostable 
endoglucanase gene from  B. subtilis  in  E. coli  
successfully with threefold increase in activity. 
   While recently a novel, acid-tolerant endogluca-
nase from  Martelella mediterranea  a marine 
bacterium cloned and expressed in  E. coli  with 
unchanged properties (T   able  6.6 ).   

 Similar to bacterial cellulases, cloning of fungal 
cellulases and expression in appropriate host 
have also been carried out since long (Table  6.5 ). 
Hamada and Hirohashi  (  2000  )  successfully 
cloned and characterised the exocellulase gene 
from white rot fungus  Irpex lacteus  using northern 
hybridisation. Haakana et al.  (  2004  )  cloned three 
genes (two endoglucanase and one CBH) from 
 Melanocarpus albomyces  and expressed in  T. reesei  
under the control of the  T. reesei  CBHI promoter 
increasing the production level several times. 
While Hong et al.  (  2007  )  reported cloning of 
thermostable  b -glucosidase from  T. aurantiacus  
and expressed the  b -glucosidase gene in  Pichia 
pastoris  and as a result, they developed recombi-
nant yeast strain able to utilise cellobiose as a 
carbon source. Further, to improve the  b -glucosi-
dase yield and total cellulase activity of  T. reesei , 

   Table 6.5    Applications of plant cell-wall-degrading enzymes and cellulolytic microorganisms in research and 
development as well as in agriculture   

 S. no.  Function  Application  Reference 

 1.  Solubilisation of plant 
or fungal cell walls 

 Production of plant or fungal protoplasts, 
hybrid and mutant strains 

 Beguin and Aubert  (  1994  )  

 2.  Inhibition of spore germina-
tion, germ tube elongation 
and fungal growth 

 Biocontrol of plant pathogens and diseases  Lorito et al.  (  1994  ) , Benitez et al. 
 (  1998  ) , and Harman and Kubicek 
(1998) 

 3.  Af fi nity tag, af fi nity 
systems, conjugation 
and gene fusion 

 Af fi nity puri fi cation, immobilisation and 
fusion of proteins, enzymes and antibodies; 
production of hybrid molecules for various 
applications 

 Bayer et al.  (  1995  )  

 4.  Exogenous cellulase 
accelerated decomposition 
of cellulose in soil 

 Soil fertility, plant growth  Han and He  (  2010  )  
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extracellular  b -glucosidase was overexpressed 
under the control of the modi fi ed four-copy CBHI 
promoter (Zhang et al.  2010  ) . 

 In addition to genetic engineering strategies, 
protein-engineering approaches have also been used 
to improve cellulase quality. Escover-Kousen et al. 
 (  2004  )  observed 40% increase in cellulase activity 
on amorphous cellulose or soluble cellulose 

using integration of computer modelling and 
site-directed mutagenesis. Moreover, by com-
bining 2 CBDs, one from  T. reesei  and other 
from  C. stercorarium,  Mahadeven et al.  (  2008  )  
increased the activity by 14–18 folds. Recently, 
Scott et al.  (  2010  )  modi fi ed the linker peptides 
of cellulase to reduce its binding to lignin for 
enhanced cellulose hydrolysis.  

   Table 6.6    List of some recombinant cellulase-producing microorganisms   

 Microorganisms  Type 
 Cloning/expression 
vector  Cloning host  Reference 

  A. Bacteria  
  Pectobacterium 
chrysanthemi  

 Glycosyl hydrolase  pBluescript II SK +   E. coli   Cho et al.  (  2002  )  

  Sinorhizobium meliloti   CMCase  pUC 18, pet 22b   E. coli   Michaud et al.  (  2002  )  
  Clostridium thermocellum   Endoglucanase  E35S-L-lic B   Tobacco   Abdeev et al.  (  2003  )  
  Bacillus licheniformis   Endoglucanase  pBluescript SK(+)   E. coli   Liu et al.  (  2004  )  
  Xylella fastidiosa   Endoglucanase  pet 20(b)   E. coli   Wulff et al.  (  2006  )  
  Pseudomonas DY 3   –  pGEMT   E. coli   Zeng et al.  (  2006  )  
  Cytophaga hutchinsonii   Endoglucanase  pGEM/pet 28 a   E. coli XLB- Gold   Louime et al.  (  2007  )  
  Bacillus subtilis   Endocellulase  pGEMT/pet 28 a   E. coli   Li et al.  (  2008  )  
  Myxobacter  sp.  AL-1   Cellobiohydrolase  pCR-Blunt II-TOPO   E. coli   Ramírez et al.  (  2008  )  
  Bacillus subtilis   Cel L 15, Cel L73  pet 28 a   E. coli   Li et al.  (  2009  )  
  Caldicellulosiruptor 
saccharolyticus  

  b -glucosidase  pet 28 a   E. coli ER 2566   Hong et al.  (  2009  )  

  Martelella mediterranea   Endoglucanase  pUC 18/pGEX-6p-1   E. coli   Dong et al.  (  2010  )  
  B. Fungi  
  Thermoascus aurantiacus   CBH   l gt10 vector   S. cerevisiae   Hong et al.  (  2003  )  

     Aspergillus aculeatus   Cellobiohydrolase   A. oryzae   Kanamasa et al. ( 2003 ) 
  Thermobi fi da fusca   Endoglucanase  pIJ699   S. lividans   Posta et al.  (  2004  )  
  Melanocarpus albomyces   Endoglucanase  pALK1231   T. reesei   Haakana et al.  (  2004  )  
  Talaromyces emersonii    b -glucosidase  lGEM-11   E. coli   Collins et al.  (  2007  )  

  Penicillium chrysogenum   CBH  pGEM-T vector   E. coli   HOU et al.  (  2007  )  
  Thermoascus aurantiacus    b -glucosidase  pPICZ a vector   P. pastoris   Hong et al.  (  2007  )  

  Irpex lacteus   Cellobiohydrolase  pUC119/PT7-Blue   E. coli   Toda et al. ( 2008 ) 
  Rhizopus stolonifer   CMCase  –   E. coli   Tang et al.  (  2009  )  
  Chaetomium thermophilum   Cellobiohydrolase  –   P. pastoris   Li et al.  (  2008  )  
  Penicillium  sp.  Endoglucanase  pJAL721   A. oryzae   Krogh et al.  (  2009  )  
  Neocallimastix  sp.  pCT/pTRW10   Lactococcus lactis   Ozkose et al.  (  2009  )  
  Penicillium echinulatum   Endoglucanase  pPIC9   P. pastoris   Rubini et al.  (  2009  )  
  Oenococcus oeni   Phosphoglucosidase  pet 14 b   E. coli   Capaldo et al.  (  2011  )  
  Penicillium decumbens   Endoglucanase  pMD18-T/ pAJ401   S. cerevisiae   Xiao- Min et al. 

( 2010 ) 
  Trichoderma reesei   CBH,  pMI519   Ashbya gossypii   Ribeiro et al.  (  2010  )  
  Trichoderma reesei    b -glucosidase, CBH  pMD18-T   T. reesei   Zhang et al.  (  2010  )  

  Penicillium occitanis   CBH   pMOSblue T-vector    Penicillium 
occitanis  

 Bhiri et al.  (  2010  )  
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   Conclusion 

 In a world with a rapidly increasing population 
and approaching exhaustion of many natural 
resources, enzyme technology offers a great 
potential for many industries to help meet the chal-
lenges they will face in years to come. As outlined 
above, cellulases are used in several different 
industrial products and processes, and new areas 
of application are constantly being added. The 
use of recombinant gene technology has further 
improved manufacturing processes and enabled 
the commercialisation of enzymes that could 
previously not be produced. Furthermore, the latest 
developments within modern biotechnology, intro-
ducing protein engineering and directed evolu-
tion, have further revolutionised the development 
of industrial enzymes, which are opening new 
avenues for utilisation of various agrowastes as a 
source of renewable resources and could solve 
the problem of waste management as well.      
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