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   Introduction 

 Fungi are an important and diverse component of 
soil microbial communities. They provide essen-
tial ecosystem functions, such as decomposing 
organic matter, nutrient cycling, and in the case 
of mycorrhizal species, also nutrient transfer 
to plants. In forest ecosystems they are largely 
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  Abstract 

 By producing lignocellulose-degrading enzymes, saprotrophic litter-
decomposing Basidiomycetes can signi fi cantly contribute to the turnover 
of soil organic matter. The production of lignin- and polysaccharide-
degrading enzymes helps in converting the waste litter into value-added 
compost. White-rot fungi (WRF) have tremendous potential for biodegra-
dation of a variety of industrial pollutants. The capability of WRF for bio-
degradation of xenobiotics and recalcitrant pollutants has generated a 
considerable research interest in this area of environmental biotechnology. 
The broad spectrum for biodegradation of pollutants is due to the extracel-
lular and nonspeci fi c nature of the enzyme system of fungi, comprising 
mainly of lignin peroxidase (LiP), manganese peroxidase (MnP), versatile 
peroxidase, and laccase along with other ancillary enzymes. Differential 
biodegradation capabilities of WRF are mainly due to physiological dif-
ferences among them, difference in their genetic makeup, and variable 
pattern and expression of complex lignin-modifying enzymes (LMEs). 
The activities of the LMEs can be increased by the addition of different 
low-molecular-mass mediators, mostly secreted by white-rot fungi 
themselves.  
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responsible for breakdown of the abundant large 
biopolymers cellulose, hemicellulose, lignin, and 
chitin (Dighton et al.  2005 ;    Kellner and Vandenbol 
 2010 ). Recent report suggests the importance 
of both ascomycetes, as well as Basidiomycetes, 
in key biogeochemical cycles (Kellner and 
Vandenbol  2010 ). 

 In terrestrial environments, Basidiomycetes 
are one of the most ecologically signi fi cant 
groups of fungi involved in the breakdown of 
litter components. They constitute a major 
fraction of the living biomass responsible for 
ef fi cient degradation of many recalcitrant organic 
compounds in soil litter and the humic layer 
(Dix and Webster  1995 ; Steffen et al. ( 2007a,   b     ) . 
An ef fi cient group of litter-degrading organisms 
are litter-decomposing Basidiomycetes, which 
produce a wide variety of oxidoreductases and 
hydrolytic enzymes and are also able to degrade 
lignin, the most recalcitrant litter component 
(Steffen et al.  2000  ) . In contrast, Benner et al. 
 (  1986  ) , in a study of lignocellulose degradation 
by microbial samples from two freshwater and 
two marine habitats, stated that bacteria rather 
than fungi were the predominant degraders of 
lignocellulose in aquatic habitat. 

 Basidiomycetes also have tremendous potential 
for biodegradation of a variety of industrial 
pollutants. The broad spectrum for biodegradation 
of pollutants is due to the extracellular and 
nonspeci fi c nature of the enzyme system of white-
rot fungi (WRF), comprising mainly of lignin 
peroxidase (LiP), manganese peroxidase (MnP), 
versatile peroxidase (VP), and laccase along with 
other accessory enzymes (Table  12.1 ). The biodeg-
radation capabilities of WRF for different pollut-
ants are variable, mainly due to physiological 
differences among them and variable pattern and 
expression of complex lignin-modifying enzymes 
(LMEs) in the presence of chemically different 
compounds (Asgher et al.  2008  ) .  

 Extracellular hydrolases and oxidoreductases 
are involved in the breakdown of lignocellulose 
and are produced by many known bacteria, actin-
omycetes, and ligninolytic fungi. Lignocellulytic 
enzymes and their biotechnological application 
have already been discussed in earlier papers, 
but there is still an ongoing interest, especially in 

their occurrence and environmental signi fi cance. 
Cellulases, in particular the complex consisting 
of endoglucanase, cellobiohydrolase, and beta-
glucosidase, hydrolyze the long chains of cellu-
lose, resulting in the liberation of cellobiose and 
 fi nally glucose. Hemicelluloses, such as endo-
1,4- b -xylanase or mannanase, are involved in the 
breakdown of different heterogeneous polysac-
charide chains such as xylans and mannans. 

 Lignin, polysaccharides, and nitrogenous 
compounds contribute in the formation of humus 
(Varadachari and Ghosh  1984 ; Fustec et al.  1989 ; 
Inbar et al.  1989 ). The chemical pathway from 
organic matter to humus involves complex degra-
dative and condensation reactions. According 
to Varadachari and Ghosh ( 1984 ), lignin is  fi rst 
degraded by extracellular enzymes to smaller 
units, which are then absorbed into microbial 
cells where they are partly converted to phenols 
and quinones. Thereafter, the substances are dis-
charged together with oxidizing enzymes into 
the environment, where they get polymerized by 
a free-radical mechanism. Composting is a dynamic 
process carried out by a rapid succession of mixed 
microbial consortia including bacteria, actinomy-
cetes, and fungi (Tuomela et al.  2000 ; Kellner 
and Vandenbol  2010 ). 

 A wide range of bacteria have been isolated 
from different compost environments, including 
species of  Pseudomonas, Klebsiella,  and  Bacillus,  
e.g.,  B. subtilis ,  B. licheniformis,  and  B. circulans  
(Nakasaki et al.  1985 ; Strom  1985a ,  b ; Falcon 
et al.  1987 ). Actinomycetes appear during the 
thermophilic phase as well as the maturation 
phase of composting and can occasionally become 
so numerous that they are visible on the surface 
of the compost. The genera of the thermophilic 
actinomycetes isolated from compost include 
 Nocardia ,  Streptomyces ,  Thermoactinomyces , 
and  Micromonospora  (Waksman et al.  1939 ; 
Strom  1985a ).  

   Lignin Degradation 

 Lignin-degrading Basidiomycetes, collectively 
referred to as white-rot fungi, are common inhab-
itants of forest litter and fallen trees. These are 
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the only microbes that have been convincingly 
shown to ef fi ciently depolymerize, degrade, and 
mineralize all components of plant cell walls 
including cellulose, hemicellulose, and the more 
recalcitrant lignin. As such, white-rot fungi play 
an important role in the carbon cycle (Kersten 
and Cullen  2007  ) . 

 From the chemical point of view, lignin is a 
heterogeneous, optically inactive polymer 
consisting of phenylpropanoid interunits, which 
are linked by several covalent bonds (e.g., aryl-
ether, aryl-aryl, carbon-carbon bonds) (Hofrichter 
 2002  ) . The polymer arises from laccase- and/or 
peroxidase-initiated polymerization of phenolic 
precursors via the radical coupling of their cor-
responding phenoxy radicals. It is synthesized 
by higher plants, reaching levels of 20–30% of 
the dry weight of woody tissue. Because of the 
bond types and their heterogeneity, lignin cannot 
be cleaved by hydrolytic enzymes as most other 
natural polymers. Therefore, lignin is degraded 
with the help of different nonspeci fi c oxi-
doreductases which speci fi cally attack the aro-
matic moieties, preferably phenolic structures. 
The most widely studied enzymes in this group 
are laccase, LiP, MnP, and several other peroxi-
dases such as VP (Sharma and Kuhad  2008  ) . 

   Lignolytic Enzymes and Their 
Occurrence 

 Extracellular oxidative enzymes involved in 
lignin depolymerization include an array of oxi-
dases and peroxidases. These enzymes are 
responsible for generating highly reactive and 
nonspeci fi c free radicals that affect lignin degra-
dation. The nonspeci fi c nature and extraordinary 
oxidation potential of the peroxidases have 
attracted considerable interest in the development 
of several bio-processes. 

   Laccase 
 Laccase (benzenediol, oxygen oxidoreductases, 
EC1.10.3.2) is one of the few lignin-degrading 
enzymes that have been extensively studied since 
the eighteenth century. Laccases are majorly 
reported from eukaryotes, e.g., fungi, plants, and 
insects (Mayer and Staples  2002  ) . However, 

some evidences for its existence in prokaryotes, 
with typical features of multicopper oxidase 
enzyme family, have also been reported (Alexandre 
and Zulin  2000  ) . The  fi rst bacterial laccase was 
detected in the plant root-associated bacterium, 
 Azospirillum lipoferum  (Givaudan et al.  1993  ) , 
where it was shown to be involved in melanin 
formation (Faure et al.  1994  ) . A typical laccase 
containing six putative copper binding sites was 
discovered in marine bacterium  Marinomonas 
mediterranea , but no functional role was assigned 
to this enzyme (Solano et al.  1997 ; Sanchez-
Amat et al.  2001  ) . In insects, laccases have been 
suggested to be active in cuticle sclerotization 
(Dittmer et al.  2004  ) . Two isoforms of  laccase 2  
gene have been found to catalyze larval, pupal, 
and adult cuticle tanning in  Tribolium castaneum  
(Arakane et al.  2005  ) , and a novel laccase has 
been isolated and characterized from a bovine 
rumen metagenome library that neither exhibited 
any sequence similarity to known laccases nor 
contained hitherto identi fi ed functional laccase 
motifs (Beloqui et al.  2006  ) . 

 Recently,    Sharma and Kuhad  (  2009  ) , has 
reported 22 COGs from Archaea, bacteria, 
and eukaryotes (  http://img.jgi.doe.gov    . and   http://
www.ncbi.nlm.nih.gov/cog    ). Genome-speci fi c best 
hit resulted in very exhaustive genomic informa-
tion of diverse multicopper oxidases. Laccase 
(CotA) from  B. subtilis  168 and  B. pumilus  
SAFR-032 was found to share a common clade 
and close ancestry with multicopper oxidase from 
 Pyrobaculum aerophilum , an Archaea. Moreover, 
 P. aerophilum  was also found to be evolutionary 
related to  E. coli  APEC O1 (laccase) and  Yersinia 
pestis  KIM (hypothetical protein). Well-known 
laccases from  T. versicolor  were found to be 
closely related to  Neurospora crassa  OR74A, 
 C. neoformans  var.  neoformans  JEC21, and 
 Drosophila melanogaster , a common fruit  fl y. 
Multicopper oxidases from different yeast, i.e., 
FET3_Yeast,  Pichia stipitis  CBS6054 (FET3.1), 
and  Saccharomyces cerevisiae  (FET5), share a 
common phylogenetic position. An unusual evo-
lutionary history was also established between 
pathogenic Proteobacteria, i.e.,  Burkholderia mallei  
and  Burkholderia pseudomallei , and an archaeal 
species, i.e.,  Haloarcula marismortui  ATCC 43049 
and  Natronomonas pharaonis  DSM2160 (Sharma 

http://img.jgi.doe.gov
http://www.ncbi.nlm.nih.gov/cog
http://www.ncbi.nlm.nih.gov/cog
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and Kuhad  2009  ) . Moreover, laccase has been 
extensively examined since the mid-1970s, and a 
number of reviews have appeared on the subject 
(Malkin et al.  1969 ; Malmstrom et al.  1975 ; 
Holwerda et al.  1976 ; Mayer and Harel  1979 ; 
Reinhammar  1984 ; Thurston  1994 ; Eriksson 
 2000 ; Xu  2005 ; Morozova et al.  2007 ; Sharma 
et al.  2007 ; Sharma and Kuhad  2008  ) .  

   Lignin Peroxidase 
 Lignin depolymerization is catalyzed by extra-
cellular peroxidases of white-rot Basidiomycetes 
such as  Phanerochaete chrysosporium  (Tien and 
Kirk  1983  ) . Lignin peroxidase (LiP) was  fi rst 
discovered based on the H 

2
 O 

2
 -dependent C 

 a 
 –C 

 b 
  

cleavage of lignin model compounds and subse-
quently shown to catalyze the partial depolymer-
ization of methylated lignin in vitro (Glenn 
et al.  1983 ; Tien and Kirk  1983 ; Gold et al.  1984 ; 
Tien and Kirk  1984 ). Due to their high redox 
potentials and their enlarged substrate range in 
the presence of speci fi c mediators, LiPs have 
great potential for application in various industrial 
processes (Paice et al.  1995  ) . LiP, being a heme-
containing glycoprotein with an unusually low 
pH optimum (Glumoff et al.  1990 ), is able to cata-
lyze the oxidation of a variety of compounds with 
reduction potentials exceeding 1.4 V (vs. normal 
hydrogen electrode) (Steenken  1998 ). Contrary to 
other heme peroxidases, ferric LiP is  fi rst oxidized 
by H 

2
 O 

2
  to compound I, a two-electron-oxidized 

intermediate, which is then reduced by one 
substrate molecule to the second intermediate, 
compound II. Further reduction back to the resting 
enzyme can be accomplished either by the same 
substrate molecule or a second one.  

   Manganese Peroxidase 
 Manganese peroxidase (MnP) is considered to be 
the most common lignin-modifying peroxidase 
produced by almost all wood-colonizing Basidio-
mycetes (Tien and Kirk  1983 ; Martínez et al. 
 2005  ) . Multiple forms of this glycosylated heme 
protein with molecular weights normally at 
40–50 kDa are secreted by ligninolytic fungi into 
their microenvironment. There, MnP preferentially 
oxidizes manganese (II) ions (Mn 2+ ), always present 
in wood and soils, into highly reactive Mn 3+ , 
which is stabilized by fungal chelators such as 

oxalic acid. Chelated Mn 3+  in turn acts as 
low-molecular-weight, diffusible redox mediator 
that attacks phenolic lignin structures resulting 
in the formation of instable free radicals that 
tend to disintegrate spontaneously (Kuwahara 
et al.  1984 ; Hofrichter  2002  ) .  

   Versatile Peroxidase 
 Versatile peroxidase (VP) has been recently 
described as a new family of ligninolytic peroxi-
dases, together with lignin peroxidase (LiP) and 
manganese peroxidase (MnP), both reported for 
 P. chrysosporium  for the  fi rst time. The complete 
genome of this model fungus has been recently 
sequenced revealing two families of LiP and MnP 
genes together with a “hybrid peroxidase” gene. 
Till date, VP has been reported from the genera 
 Pleurotus, Bjerkandera, Lepista, Trametes,  and 
 Panus  (Honda et al.  2006 ; Rodakiewicz-Nowak 
et al.  2006  ) . The most noteworthy aspect of VP is 
that it combines the substrate speci fi city charac-
teristics of the three other fungal peroxidase 
families. In this way, it is able to oxidize a variety 
of (high and low redox potential) substrates includ-
ing Mn 2+ , phenolic, and non-phenolic lignin 
dimers,  a -keto- g -thiomethylbutyric acid (KTBA), 
veratryl alcohol, dimethoxybenzenes, different 
types of dyes, substituted phenols, and hydroqui-
nones (Ruiz-Dueñas et al.  2009  ) .  

   Glyoxal Oxidases 
 An important component of the ligninolytic 
system of  P. chrysosporium is  the H 

2
 O 

2
  that is 

required as oxidant in the peroxidative reactions. 
Glyoxal oxidases have been proposed to play a 
role in this regard (Kirk and Farrell  1987 ). The 
temporal correlation of glyoxal oxidase, peroxi-
dase, and oxidase substrate appearances in cultures 
suggests a close physiological connection between 
these components (Kersten and Kirk  1987 ; Kersten 
 1990 ). It is a glycoprotein of 68 kDa with two 
isozymic forms (pI 4.7 and 4.9). The active site of 
the enzyme has not been characterized, but Cu 2+  
appears to be important in maintaining activity of 
puri fi ed enzyme. Glyoxal oxidase is produced in 
cultures when  P. chrysosporium  is grown on 
glucose or xylose, the major sugar components 
of lignocellulosics. The physiological substrates 
for glyoxal oxidase, however, are not these 
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growth-carbon compounds, but their intermediates. 
A number of simple aldehyde,  a -hydroxycarbonyl, 
and  a -dicarbonyl compounds are the known 
substrates (Cullen and Kersten  1996 ). 

 The reversible inactivation of glyoxal oxidase 
is a property perhaps of considerable physiologi-
cal signi fi cance (Kersten  1990 ; Kurek and Kersten 
 1995 ). Glyoxal oxidase becomes inactive during 
enzyme turnover in the absence of a coupled 
 peroxidase system. The oxidase is reactivated, 
however, by lignin peroxidase and non-phenolic 
peroxidase substrates. Conversely, phenolics pre-
vent the activation by lignin peroxidase. This 
 suggests that glyoxal oxidase has a regulatory 
mechanism in the presence of peroxidases, their 
substrates, and their products (e.g., phenolics 
resulting from ligninolysis). Notably, lignin 
will also activate glyoxal oxidase in the cou-
pled reaction with LiP (Cullen and Kersten  1996 ). 
Cellobiose oxidase (Ayers et al.  1978 ) and 
 cellobiose: quinone oxidoreductase (CBQase) 
(Westermark and Eriksson, 1974) may be involved 
in both lignin and cellulose degradation. Limited 
proteolysis of cellobiose oxidase indicates that 
CBQase is probably a breakdown product 
(Henriksson et al.  1991 ; Wood and Wood  1992 ). 
Cellobiose oxidase has two domains, one contain-
ing a  fl avin and the other containing a heme group. 
The  fl avin-containing domain binds cellulose and 
is functionally similar to CBQase. A role proposed 
for these oxidoreductases is to prevent repolymer-
ization of phenoxy radicals produced by peroxi-
dases and laccases during lignin oxidation 
(Eriksson and Goldman  1993 ; Cullen and Kersten 
 1996 ). Moreover the peroxide-generating enzyme, 
i.e., pyranose oxidase (glucose-2-oxidase), which 
is intracellular in liquid culture condition of  P. 
chrysosporium , plays an additional important role 
in wood decay (Daniel et al.  1994 ).    

   Environmental Signi fi cance 

 Bioremediation technology utilizes the metabolic 
potential of microorganisms to clean up the envi-
ronment (Watanabe  2001  ) . Lignin peroxidase 
(LiP), manganese peroxidase (MnP), laccase, and 
versatile peroxidase (VPs) are the major LMEs of 

WRF involved in lignin and xenobiotic degradation 
by white-rot fungi (Pointing  2001  )  (Table  12.1 ). 
Accessory enzymes such as H 

2
 O 

2
 -forming glyoxal 

oxidase, aryl-alcohol oxidase, oxalate producing 
oxalate decarboxylase (ODC), NAD-dependent 
formate dehydrogenase (FDH), and P450 monoox-
ygenase have also been isolated from many 
white-rot fungal strains (Doddapaneni et al.  2005 ; 
Aguiar et al.  2006 ). Lignin peroxidases (LiPs) are 
capable of mineralizing a variety of recalcitrant 
aromatic compounds (Srivastava et al.  2005 ). 
Due to nonspeci fi c nature, lignin-oxidizing enzyme 
is capable of mineralizing a wide variety of toxic 
xenobiotics and recalcitrant substrates. In recent 
years, a lot of work has been done on the devel-
opment and optimization of bioremediation 
processes using WRF, with emphasis on the study 
of their enzyme systems involved in biodegrada-
tion of industrial waste (Thurston  1994 ; Eriksson 
 2000 ; Baldrian  2006 ; Sharma and Kuhad  2008  )  
(Table  12.1 ). 

   Bioremediation of Industrial Pollutant 

 Bioremediation process employs microorganisms 
or plants to remove the contaminating organic 
compounds by metabolizing them to carbon 
dioxide and biomass (Alexander  1994  ) . The pur-
pose of bioremediation is to degrade pollutants to 
undetectable concentrations or to concentrations 
that are below the limits established by regula-
tory agencies. Bioremediation has been used to 
degrade contaminants in soils, ground water, 
wastewater, sludges, industrial waste, and gases 
(Alexander  1994  ) . 

   Biodegradation of Synthetic Dye 
 Large amounts of structurally diverse dyestuffs are 
used for textile dyeing as well as other applications. 
Based on the chemical structure of the chromophoric 
group, dyes are classi fi ed as azo dyes, anthraqui-
none dyes, phthalocyanine dyes, etc. (Kuhad et al. 
 2004 ). Different dyes and pigments are extensively 
used in the textile, paper, plastic, cosmetics, 
pharmaceutical, and food industries (Levin et al. 
 2005  ) . The involvement of LMEs in the dye decol-
orization process has been con fi rmed in several 
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independent studies using puri fi ed cell-free 
enzymes (Table  12.2 ). LiP of  P. chrysosporium  has 
been shown to decolorize azo, triphenylmethane, 
and heterocyclic dyes in the presence of veratryl 
alcohol and H 

2
 O 

2
  (Cripps et al.  1990 ; Ollikka et al. 

1993). Selected Basidiomycetes have been 
observed to decolorize PolyR-478 (Vasdev and 
Kuhad  1994 ) and various triphenylmethane dyes 
(Vasdev et al.  1995 ). Laccase can act on chro-
mophoric compounds such as Remazol Brilliant 
Blue R or triphenylmethane dyes and suggests a 
potential application in bleaching or decolorization 
industrial processes (Vasdev et al.  1995 ).  

 Further, interest in the biodegradation of syn-
thetic dyes has primarily been prompted by con-
cern over their possible toxicity and carcinogenicity 
(Maas and Chaudhari  2005 ; Revankar and Lele 
 2007  ) . White-rot fungi are better dye degraders 
than prokaryotes due to their extracellular 
nonspeci fi c LME system capable of degrading a 
wide range of dyes (Christian et al. 2005). Most of 
the earlier dye decolorization studies were based 
mainly on  P. chrysosporium  and  T. versicolor  
(Toh et al.  2003 ). However, other white-rot fungi 
including  Phellinus gilvus ,  Pleurotus sajor-caju , 
 Pycnoporus sanguineus  (Balan and Monteiro 
 2001 ),  Dichomitus squalens , Irpex  fl avus, 
 Daedalea  fl avida ,  Polyporus sanguineus  (Chander 
et al.  2004 ; Eichlerová et al.  2006 ; Chander and 
Arora  2007 ),  Funalia trogii  ATCC200800 (Ozsoy 
et al.  2005 ),  Ischnoderma resinosum  (Eichlerová 
et al.  2006 ), and  Ganoderma  sp. WR-1 (Revankar 
and Lele  2007  )  have been demonstrated to have 
higher dye decolorization rates than  P. chrysospo-
rium  and  Trametes versicolor  (Table  12.2 ).  

   Biodegradation of Polycyclic Aromatic 
Hydrocarbon 
 Polycyclic aromatic hydrocarbons (PAHs) are 
ubiquitous environmental pollutants that occur in 
soils, sediments, airborne particles, freshwater, 
and marine environments (Bumpus  1989  ) . PAHs 
are nonpolar, neutral, organic molecules that com-
prise two or more fused benzene rings arranged in 
various con fi gurations, including linear, angular, 
and clustered alignments (Collins et al.  1996  ) . 

 There have been several reports to use biore-
mediation of PAHs. Eukaryotic microorganisms, 

such as fungi, cannot use PAHs as a sole carbon 
source for growth but usually co-metabolize 
the PAH to dead-end metabolites. In contrast, 
bacteria can completely degrade many PAHs and 
use them as the sole carbon and energy source for 
growth (Sutherland  1992 ). At present, many 
microorganisms are known to metabolize the 
lower-molecular-weight PAHs, but these PAHs 
tend not to be highly carcinogenic. Less is known 
about the potential for biodegradation of higher-
molecular-weight PAHs, which tend to be more 
carcinogenic. A microorganism’s ability to degrade 
PAHs is dependent on the bioavailability of the 
compound (Vandertol-Vanier  2000  ) . 

 White-rot fungi can completely mineralize 
some polycyclic aromatic hydrocarbons (PAHs), 
indicating that complete oxidation of PAHs occurs. 
However, there are few examples of in vitro 
oxidation of PAHs by culture supernatants and 
puri fi ed enzymes. The oxidation of anthracene 
and pyrene by lignin and manganese peroxidases 
from  P .  chrysosporium  and oxidation of many 
PAHs by the laccases of  T. versicolor  have been 
reported (Bumpus  1989 ; Collins et al.  1996  ) . 
Pickard et al.  (  1999  )  have shown that previously 
uncharacterized fungal strains could metabolize 
selected PAHs in vivo.  C .  gallica  was one of the 
strains studied and was found to degrade several 
PAHs. Anthracene concentration decreased by 
up to 90%; pyrene, up to 20%; and phenanthrene, 
up to 40% (Vandertol-Vanier  2000  )  (Table  12.2 ).  

   TNT and Other Explosives 
 The explosives TNT, HMX, and RDX are integral 
components of many armaments. Degradation 
of TNT was studied by Donnelly et al. in  1997 , 
using four different strains of white-rot fungi  P. 
chrysosporium ,  Phanerochaete sordida ,  Phlebia 
brevispara , and  Cyathus stercoreus  in liquid 
medium (Donnelly et al.  1997  ) . They found that 
within 21 days of incubation, all fungi were able 
to reduce the TNT concentration (from 90 mg/L) 
in the liquid medium to below detection limits. 
 P. sordida  showed a relatively high growth rate 
and the fastest rate of TNT degradation. White-rot 
fungi were also found to degrade monoamino-
dinitrotoluenes, the major chemical metabolites 
in the initial transformation of TNT. The studies 
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   Table 12.2    Applications of ligninolytic enzyme producing organism in treatment of environmental pollution   

 Application  Organism  References 

 Decolorization 
of dyes 

  Aspergillus  (recombinant)  Soares et al.  (  2001a  )  
  Aspergillus  (recombinant)  Soares et al.  (  2001b  )  
  A. niger   Soares et al.  (  2002  )  
  Cerrena unicolor   Michniewicz et al.  (  2003  )  
  Coriolopsis gallica   Reyes et al.  (  1999  )  
  C. rigida   Gómez et al.  (  2005  )  
  Funalia trogii   Ünyayar et al.  (  2005  )  
  Ganoderma  sp. WR-1  Revankar and Lele  (  2007  )  
  Irpex lacteus   Kasinath et al. ( 2003 ) 
  Laetiporus sulphureus  and  Coriolus 
versicolor  

 Mazmanci et al.  (  2009  )  

  Myceliophthora thermophila , 
 Polyporus pinsitus ,  Trametes 
versicolor  

 Claus et al.  (  2002  )  

  Pleurotus eryngii ,  Pycnoporus 
cinnabarinus ,  T. versicolor  

 Camarero et al.  (  2004  )  

  Pleurotus ostreatus   Hou et al.  (  2004  ) , Palmieri et al.  (  2005  )  
  P. cinnabarinus   McCarthy et al. ( 1999 ) and Schliephake et al. ( 2000 ) 
  Sclerotium rolfsii ,  Trametes hirsute   Campos et al.  (  2001  )  
  Streptomyces cyaneus   Arias et al.  (  2003  )  
  Stereum ostrea   Viswanath et al.  (  2008 ) 
  S. maltophilia  AAP56  Dube et al.  (  2008  )  
  T. hirsuta   Abadulla et al.  (  2000  ) , Domínguez et al.  (  2005  ) , Moldes 

et al.  (  2003  ) , Rodríguez Couto et al.  (  2004b ,  2005 ,  2006 ), 
Rodríguez Couto and Sanromán  (  2006  ) , Couto and 
Toca-Herrera  (  2006a,   b  ) , Minussi et al.  (  2007  ) , Nyanhongo 
et al.  (  2002  ) , Levin et al.  (  2005  ) , and Maceiras et al.  (  2001  )  

  T. modesta   Rodríguez Couto et al.  (  2002  )  
  T. trogii   Kulys et al.  (  2003  )  and Peralta-Zamora et al.  (  2003  )  
  T. versicolor   Maceiras et al.  (  2001  ) , Lorenzo et al.  (  2002  ) , and Blánquez 

et al.  (  2004  )  
  T. villosa   Potin et al.  (  2004  ) , Saito et al.  (  2004  ) , Tavares et al.  (  2004  ) , 

Zille et al.  (  2003  ) , Knutson and Ragauskas  (  2004  ) , 
Yamanaka et al.  (  2008  ) , Ciullini et al.  (  2008  ) , and Yang 
et al.  (  2009  )  

  Trametes  sp.  strain SQ01   Pickard et al.  (  1999  )  
 Strain I-4 of the family 
 Chaetomiaceae  

 Vandertol-Vanier et al.  (  2002  )  

 Degradation of 
xenobiotics 

  Cladosporium sphaerospermum   Cho et al.  (  2002  )  

  Coprinus cinereus ,  Myceliophthora 
thermophila ,  P. pinsitus ,  Rhizoctonia 
solani  

 Itoh et al.  (  2000  )  

  C. gallica   Okazaki et al.  (  2002  ) , Nicotra et al.  (  2004  ) , and Casa et al. 
 (  2003  )  

  Coriolus hirsutus   Zavarzina et al.  (  2004  )  
  Coriolus versicolor   Eggen  (  1999  )  and Hublik and Schinner  (  2000  )  
     Myceliophthora thermophila , 
 Trametes pubescens  

 Keum and Li  (  2004  )  

  Panus tigrinus   Mougin et al.  (  2002  )  

(continued)
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 Application  Organism  References 

  P. ostreatus   Lante et al.  (  2000  )  and Carunchio et al.  (  2001  )  
  P. ostreatus ,  T. versicolor   Moeder et al.  (  2004  )  
  P. cinnabarinus   Niku-Paavola and Viikari  (  2000  )  
  Pyricularia oryzae   Böhmer et al.  (  1988  )  and Tanaka et al.  (  2001  )  
  Rhus vernicifera   Tanaka et al.  (  2003  )  
  T. hirsute   Collins et al.  (  1996  )  and Johannes et al.  (  1998  )  
  Trametes  sp.  Majcherczyk et al.  (  1998  )  and Johannes and Majcherczyk 

 (  2000  )  
  T. versicolor   Majcherczyk and Johannes  (  2000  )  and Castro et al.  (  2003  )  
  T. villosa   Dodor et al.  (  2004  ) , Fabbrini et al.  (  2001  ) , Fukuda et al. 

 (  2001  ) , Kang et al.  (  2002  ) , Cantarella et al.  (  2003  ) , and 
Jung et al. ( 2003  )  

  Trichophyton  sp. LKY-7  Steffen et al.  (  2007a,   b  ) , Cabana et al.  (  2007  ) , and Cambria 
et al.  (  2008  )  

  Stropharia rugosoannulata   Calvo et al.  (  1998  )  
  Stropharia coronilla   Murugesan  (  2003  )  
  Coriolopsis polyzona   D’Annibale et al.  (  1999  )  
  Rigidoporus lignosus   D’Annibale et al.  (  2000  )  
  Gliocladium virens   D’Annibale et al.  (  2004  )  

 Ef fl uent treatment   Lentinula edodes   Tsioulpas et al.  (  2002  ) , Aggelis et al.  (  2003  ) , and Jaouani 
et al.  (  2005  )  

  P. tigrinus   Durante et al.  (  2004  )  
  Pleurotus  spp.  Jolivalt et al.  (  2000  )  
  Pycnoporus coccineus   Edwards et al.  (  2002  )  
  R. vernicifera   Lucas et al.  (  2003  )  
  Trametes  sp. strain AH28-2  Pedroza et al.  (  2007  )  
  T. versicolor   Cordi et al.  (  2007  )  
  Lentinula edodes   Cordi et al.  (  2007  )  
  Botrytis cinerea   Ellouze et al.  (  2008  ) , Bourbonnais et al.  (  1997  ) , and Call 

and Mücke  (  1997  )  
  Trametes trogii   Archibald et al.  (  1997  )  
  Lentinus tigrinus   Crestini and Argyropoulos  (  1998  )  
  Fomes fomentarius ,  Ganoderma 
callosum ,  Lentinus edodes ,  Merulius 
tremellosus ,  Phlebia radiata , 
 P. ostreatus ,  T. versicolor  

 Kandioller and Christov  (  2001  )  

  C. versicolor   Cordi et al.  (  2007  )  
  T. versicolor   Cordi et al.  (  2007  )  

 Biopulping   T. versicolor   Paice et al.  (  1995  )  and Cordi et al.  (  2007  )  
  Peniophora  sp.,  Pycnoporus san-
guineus ,  T. hirsuta ,  T. versicolor  

 Oudia et al.  (  2008  )  

  T. versicolor, T. villosa   Balakshin et al.  (  2001  )  
  Lentinula edodes   Camarero et al.  (  2004  )  
  Botrytis cinerea   Georis et al.  (  2003  )  
  C. versicolor   Archibald et al.  (  1997  )  
  P. eryngii, P. cinnabarinus, 
T. versicolor  

 Bastos and Magan  (  2009  )  

  P. cinnabarinus   D’Souza-Ticlo et al.  (  2009  )  
 Biobleaching   T. versicolor   Molina-Guijarro et al.  (  2009  )  

  T. versicolor   Punnapayak et al.  (  2007  )  and Zhao et al.  (  2010  )  

Table 12.2 (continued)
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established that white-rot fungi are capable of 
metabolizing and detoxifying TNT under aerobic 
conditions in a non-ligninolytic liquid medium. 
The degradation of TNT by white-rot fungi is a 
two-step process: the  fi rst step was to be degraded 
to OHADNT and ADNT, and the second step 
was to DANT (Aken et al.  1999  ) . As reported by 
Axtell et al.  (  2000  ) , the strains of  P. chrysosporium  
and  P. ostreatus  adapted to grow on high concen-
trations of TNT thus were able to cause extensive 
degradation of TNT, HMX, and RDX.  

   Bioremediation of Contaminated Sites 
 Many pesticides, xenobiotics, coal substances, 
and industrial products derived from polycyclic, 
aromatic, halogenated hydrocarbons, and other 
organic compounds are hazardous environment 
pollutants. Using oxidoreductases to detoxify and 
remove them is attracting active research efforts. 
Laccase and peroxidase have been used to transform 
(often in the presence of redox mediators) various 
xenobiotics, polycyclic aromatic hydrocarbons, 
and other pollutants found in industrial waste and 
contaminated soil or water (Xu  2005  ) . 

 Contrary to most of the research on bioreme-
diation using bacterial strains, fungal bioremedi-
ation has attracted in the past few years. White-rot 
fungi have potential to withstand toxic levels of 
most organopollutants. Five main genera of white-
rot fungi have shown potential for bioremedia-
tion,  viz .,  Phanerochaete, Trametes, Bjerkandera, 
Pleurotus,  and  Cyathus  (Table  12.2 ). These fungi 
cannot use lignin as a sole source of energy, how-
ever, instead require substrates such as cellulose 
or other carbon sources. Thus, carbon sources 
such as corncobs, straw, and sawdust can be easily 
used to enhance degradation rates by these 
organisms at polluted sites. Also, the branching, 
 fi lamentous mode of fungal growth allows for 
more ef fi cient colonization and exploration of 
contaminated soil. The main mechanism of 
biodegradation employed by this group of fungi, 
however, is the use of lignin degradation system 
of enzymes. The enzymes LiP, MnP, and laccase 
involved in lignin degradation are highly nonspeci fi c 
with regard to their substrate range; this is not 
surprising considering their mode of action via 
the generation of radicals (Reddy and Mathew 
 2001 ; Kapoor et al.  2005  ) .  

   Degradation of Medical Waste 
 Exposure to alkyl-substituted polynuclear aromatic 
hydrocarbons, stilbenes, genistein, methoxychlor 
and endocrine-disrupting chemicals (EDC), 
nonylphenol (NP) and bisphenol A (BPA), and 
the personal care product ingredient triclosan 
(TCS) (Asgher et al.  2008  )  has been associated 
with a variety of reproductive responses in  fi sh 
(Kiparisis et al.  2003  ) . Degradation of genistein 
by  Phanerochaete sordida  YK-624 and detection 
of the activities of ligninolytic enzymes, MnP, 
and laccase during treatment show the involvement 
of WRF extracellular lignolytic system in disap-
pearance of genistein (Tamagawa et al.  2005  ) . 
MnP, laccase, and the laccase-HBT systems of 
WRF are also effective in removing the estrogenic 
activities of bisphenol A (BPA), nonylphenol (NP), 
17b-estradiol (E2), and ethinylestradiol (EE2) with 
production of high-molecular-weight oligomeric 
metabolites (Asgher et al.  2008 ; Lee et al.  2005 ). 
Further, removal of NP and BPA is associated 
with the production of laccase by  T. versicolor  
and  Bjerkandera  sp. BOL13 (Soares et al.  2005, 
  2006  ) . The enhanced biocatalytic elimination 
of nonylphenol (NP), bisphenol A (BPA), and 
triclosan (TCS) by  Coriolopsis polyzona  by 
the addition of ABTS (Cabana et al.  2007  )  also 
suggested the involvement of laccase-mediator 
system. 

 The ligninolytic enzymes of white-rot fungi 
catalyze the degradation of pollutants by using 
a nonspeci fi c free-radical mechanism. When an 
electron is added or removed from the ground 
state of a chemical, it becomes highly reactive, 
allowing it to give or take electrons from other 
chemicals. This provides the basis for the nonspeci-
 fi city of the enzymes and their ability to degrade 
xenobiotics, chemicals that have never been 
encountered in nature (Pointing  2001  ) .  

   Biodegradation of Rubber Industry Waste 
 Recycling of spent rubber material is problematic 
due to the vulcanization, which creates strong 
sulfur bonds between the rubber molecules (Liu 
et al.  2000  ) . Different processes for desulfuriza-
tion of rubber material and to facilitate the reuse 
of waste rubber have been developed, including 
biotechnological processes (Bredberg et al.  2002  ) . 
Microbial devulcanization is a promising way 
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to increase the recycling of rubber materials. 
However, several microorganisms tested for 
devulcanization are sensitive to rubber additives 
(Christiansson et al.  2000 ; Asgher et al.  2008  ) . 
Most of the common rubber additives are aro-
matic compounds and can be effectively removed 
by LMEs of WRF.  Resinicium bicolor  is the most 
effective fungus for detoxi fi cation of rubber 
material, especially the ground waste tire rubber 
(Bredberg et al.  2002  ) . Treatment of aromatic 
rubber additives with  R. bicolor  enhances the 
growth of  Thiobacillus ferrooxidans  bacterium as 
well as desulfurization compared to the untreated 
rubber (Asgher et al.  2008  ) .   

   Control of Pitch in Paper Pulp 
Manufacturing 

 Wood extractives cause production and environ-
mental problems in pulp and paper manufacturing. 
The lipophilic compounds, which form the 
so-called wood resin, are the most problematic, 
and they include free fatty acids, resin acids, 
waxes, fatty alcohols, sterols, sterol esters, glyc-
erides, ketones, and other oxidized compounds. 
During wood pulping and re fi ning of paper pulp, 
the lipophilic extractives in the parenchyma cells 
and softwood resin canals is released, forming col-
loidal pitch. These colloidal particles can coalesce 
into larger droplets that deposit in pulp or machin-
ery forming “pitch deposits” or remain sus-
pended in the process waters. Pitch deposition 
has a detrimental environmental impact when 
released into wastewaters (Gutiérrez et al.  2001  ) . 

 The ability to colonize ligni fi ed plant material 
is a characteristic of wood decay fungi, which 
include white-rot, brown-rot, soft-rot, and sapstain 
species. The fungi that cause white rot and brown 
rot are Basidiomycetes and are characterized by 
their ability to degrade lignin and cellulose, 
respectively, resulting in white, i.e., cellulose or 
brown-colored, i.e., lignin-enriched decayed 
substrates. The typical sapstain fungi, also called 
“blue-staining fungi,” colonize wood vessels and 
rays (as well as softwood resin canals) penetrating 
through the cell-wall pits. The growth of sapstain 
fungi is supported by easily degradable extractives 
and causes discoloration and minimal weight 

loss. Wood discoloration is caused by the presence 
of melanin that has a role in the protection of 
fungal hyphae against harmful radiation. Because 
most lipophilic compounds involved in the for-
mation of pitch deposits are concentrated in wood 
rays and resin canals, the sapstain fungi were the 
 fi rst candidates for the biological control of pitch 
during wood pulping. Wood-rotting Basidiomycetes 
have also been investigated for biotechnological 
application in paper pulp manufacturing. Brown-
rot fungi are of little applied interest because they 
degrade cellulose, the most valuable wood con-
stituent for industrial utilization. Biopulping, 
in combination with chemical and mechanical 
treatments, represents an attractive alternative to 
reduce the consumption of pulping chemicals 
and energy. White-rot fungi and their enzymes 
are also of biotechnological interest for pulp bleach-
ing. The advantages of WRF in the degradation 
of lipophilic extractives have also being realized. 
The main purpose of biobleaching is to reduce 
the consumption of the chlorinated reagents 
traditionally used to bleach pulp, which have a 
detrimental impact in the water environment 
(Gutiérrez et al.  2001  ) .  

   Enzymatic Pulp Bleaching 

 New environmentally benign, elemental chlorine-
free (ECF), and totally chlorine-free (TCF) 
bleaching technologies are necessary for mini-
mizing the hemicellulose content in dissolving 
pulp, adjusting the brightness at a high level 
and improving, simultaneously, the quality of 
the ef fl uent in terms of toxicity and absorbable 
organic halogen (AOX). Biological methods of 
pulp prebleaching using xylanases (Taneja et al. 
 2002 ) provide the possibility of selectively 
removing up to 20% of xylan from pulp and 
saving up to 25% of chlorine-containing bleach-
ing chemicals. Alternatively, pulp can be bleached 
with white-rot fungi and their ligninolytic enzymes, 
enabling chemical savings to be achieved and a 
chlorine-free bleaching process. 

  Bjerkandera  sp. strain BOS55,  Polyporus cil-
iatus ,  Stereum hirsutum ,  Phlebia radiata,  and 
 Lentinus tigrinus  have been found to be ef fi cient 
biobleachers (Akhtar et al.  1992 ). Kirk and Yang 
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( 1979 ) were the  fi rst to attempt to bleach pulp 
with  P. chrysosporium  and some other white-rot 
fungi. This could lower the kappa number of 
unbleached softwood kraft pulp up to 75%, lead-
ing to reduced requirement for chlorine during 
the subsequent chemical bleaching.  T. versicolor  
could markedly increase the brightness of hard-
wood kraft pulp. The fungal treatment was 
carried out in agitated, aerated cultures for 5 days. 
The kappa number was decreased from 12 to 8, 
and the brightness increased by 34–48%.  P. cin-
nabarinus  was found to produce laccase and also 
its own laccase redox mediator, 3-hydroxy anthra-
nilic acid (3-HAA) (Eggert et al.  1996 ). The pres-
ence of laccase is essential for lignin degradation 
by  P. cinnabarinus  and that in its absence pulp 
bleaching is greatly reduced. The biobleaching of 
kraft with laccase mediator continues to receive 
strong interest, in part due to the discovery of 
new mediators for laccase. A number of media-
tors have recently been used for the use of laccase 
enzyme in biobleaching, e.g., ABTS    2,2 ¢ -azino-
b i s (3 -e thy lbenz th iazo l ine -6-su l fona te ) 
(Bourbonnais and Paice  1996 ), HBT,  N -acetyl- N -
phenylhydroxylamine (NHA) and violuric acid 
(VA) (Chakar and Ragauskas  2004 ). HBT oxida-
tion leads to the discovery of a new class of medi-
ators with NOH as the reactive species (R-NO). 
Kraft pulp treatment with laccase and ABTS was 
found to effectively demethylate and delignify 
hardwood kraft pulp when the mediator ABTS is 
present (Bourbonnais and Paice  1996 ). 

 Laccase, like other phenol-oxidizing enzymes, 
such as peroxidases (Huttermann et al.  1980 ; 
Haemmerli et al.  1986 ; Kern and Kirk  1987 ), 
preferentially polymerizes lignin by coupling of 
the phenoxy radicals produced by the oxidation 
of lignin phenolic groups. When laccase is used 
alone, the only reaction that can be observed on 
kraft lignin is polymerization. The fact that ABTS 
prevents polymerization of kraft lignin by laccase 
cannot be explained only by inhibition or reduc-
tion of the lignin phenoxy radicals produced 
by laccase, because when ABTS was added after 
lignin polymerization by laccase, the lignin was 
effectively depolymerized. It seems likely that 
ABTS functions as a diffusible electron carrier, 

because laccase is a large molecule and therefore 
cannot enter the secondary wall to contact the 
lignin substrate directly.   

   Conclusion 

 The ligninolytic enzymes of white-rot fungi 
catalyze the degradation of pollutants by using a 
nonspeci fi c free-radical mechanism. The enzymes 
LiP, MnP, laccase, and other ancillary enzymes 
involved in lignin degradation are highly 
nonspeci fi c with regard to their substrate range. 
This is not surprising considering their mode 
of action via the generation of radicals. This 
provides the basis for the nonspeci fi city of the 
enzymes and their ability to degrade xenobiotics 
and other industrial waste that have never been 
encountered as a natural substrate and are delete-
rious to ecosystem. Lignolytic enzyme system 
holds potential for cleaning the degraded and 
contaminated sites, using combinatorial, holistic, 
and ecofriendly approaches.      
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