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    Abstract  

  Breast cancer is the second most common malignant cancer and accounts 
for 1.38 million of the total new cancer cases and 458,400 of the total 
cancer deaths reported in 2008. Breast cancer with several subtypes is an 
extremely heterogeneous disease caused by interaction of both genetic and 
environmental risk factors. In order to understand the etiology of this het-
erogeneity, new perspectives like epigenetics are needed. 

 The term  epigenetics  was coined by Conrad Hal Waddington in the 
early 1940s. It refers to the study of gene function and regulation altera-
tions without changes in the DNA sequence of the genome. The main 
epigenetic modifi cations are DNA methylation, histone modifi cations, and 
small noncoding RNAs (miRNAs). DNA methylation is the fi rst to be 
associated with cancer and the most widely studied among epigenetic 
modifi cations. It regulates the gene expression by modifying the accessi-
bility of DNA to the transcriptional machinery. 

 The importance of histone modifi cation has been realized during the 
last 10 years, after identifi cation of the coexistence of histone modifi ca-
tions. From the dynamically changing pattern of histone modifi cation has 
emerged a new concept termed “histone cross talk.” The epigenetic modi-
fi cations are faster and reversible than mutation and easily affected by 
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aging, environmental stimuli, and food in heritable manner. These charac-
teristics provide a vital position in the etiology of diseases. After several 
investigations, it is well understood that the epigenetic modifi cations are 
involved in not only many biological processes such as X-chromosome 
inactivation, genomic imprinting, RNA interference, and programming of 
the genome but also several disease like breast cancer. Today we realize 
that the accumulation of epigenetic modifi cations occurs in the develop-
ment of breast cancer. In addition, the epigenetic modifi cations improve 
our knowledge about the biology and heterogeneity of breast cancer by 
large-scale methods. Therefore, the researchers focused on epigenetic 
alterations-based breast cancer therapy, and it is speculated that epigenetic 
modifi cations may be markers for breast cancer. It is likely that epi-
genetics-based therapy will become a reality in the near future.  
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        Introduction 

 Cancer is the leading cause of death in economi-
cally developed countries and the second leading 
cause of death in developing countries. It is esti-
mated that about 12.7 million cancer cases and 7.6 
million cancer deaths occurred in 2008. Among 
them, 56 % of the cases and 64 % of the deaths 
occurred in economically developing countries 
[ 1 ]. In order to effectively combat it, we must 
understand the basic principles and processes of 
cancer. At the cellular level, we must understand 
the complex circuitries that dictate the cell-divi-
sion cycle, survival, migration, and invasion. At 
the tissue level, the susceptible target cell popu-
lation and the interactions between cancer cells 
and the microenvironment must be understood. 
Finally, the complex features that establish can-
cer “organ” at primary and distant sites, including 
metabolic and physiological effects and the estab-
lishment of a blood nutrient supply (angiogene-
sis), must also be clarifi ed [ 2 ]. It had traditionally 
been considered that the underlying foundation 
of the mechanism of cancer development is the 
accumulation of genetic mutations. However, this 
paradigm has now been expanded to incorporate 
the distribution of epigenetic regulatory mecha-
nisms that are prevalent in cancer [ 3 – 7 ]. 

 Breast cancer is the second most common 
malignant cancer and the leading cause of cancer 
death in women, with increasing age bringing a 
sharp rise in incidence [ 1 ,  8 ]. Breast cancer con-
stituted 23 % (1.38 million) of the total new can-
cer cases and 14 % (458,400) of the total cancer 
deaths reported in 2008. About half the breast 
cancer cases and 60 % of the deaths are estimated 
to occur in economically developing countries. In 
general, incidence rates are high in Western and 
Northern Europe, Australia/New Zealand, and 
North America; intermediate in South America, 
the Caribbean, and Northern Africa; and low in 
sub-Saharan Africa and Asia [ 9 ]. The American 
Cancer Society estimates that approximately 
230,480 new cases of invasive breast cancer and 
39,520 breast cancer deaths occurred among US 
women in 2011 [ 10 ]. 

 Breast cancer is an extremely heterogeneous 
disease with molecular, histological, and pheno-
typic diversity caused by interaction of both 
inherited and environmental risk factors (age, 
obesity, alcohol intake, lifetime estrogen expo-
sure, and mammographic density). Breast cancer 
can be classifi ed into fi ve major subtypes that dif-
fer signifi cantly with regard to both molecular 
and clinical features. These subtypes are luminal 
A, luminal B, triple negative/basal like, HER2 
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enriched, and normal like [ 11 ,  12 ]. However, the 
main classifi cation of breast cancer is based on 
the presence or absence of the estrogen receptor 
(ER), and investigations have been done regard-
ing these subtypes [ 13 ]. Estrogens, sex steroid 
hormones, are responsible for the development of 
sex characteristics like breasts. Estrogens have 
also been recognized as the major factor in the 
development of breast cancers. The activity of 
estrogens is mediated by the two main isoforms 
of intracellular estrogen receptors (ERs): ERα 
and ERβ. The major breast cancer subtypes are 
ER-positive and ER-negative tumors [ 14 ,  15 ]. 
Our knowledge about breast cancer subtypes has 
increased since developing new high-throughput 
molecular techniques, such as microarray, next- 
generation sequencing, etc. [ 16 ,  17 ], and new 
perspectives like epigenetics [ 18 – 20 ].  

    Applications of Epigenomics 
of Breast Cancer 

 In the early 1940s, Conrad Hal Waddington 
coined the term epigenetics as “the causal inter-
actions between genes and their products, which 
bring the phenotype into being.” Nowadays, epi-
genetics refers to the study of gene function and 
regulation alterations in heritable manner. Unlike 
the genotoxic mechanism involving changes in 
genomic DNA sequences leading to mutations, 
the epigenetic modifi cations modulate the gene 
expression directly without changes in the DNA 
sequence of the genome. Epigenetic mecha-
nisms coordinate biological processes such as 
X-chromosome inactivation, genomic imprint-
ing, RNA interference, and programming of the 
genome during differentiation and development 
leading to gene silencing. Both the genetic and 
epigenetic events change the function and regula-
tion of the gene products or lead to gain/loss of 
function of genes. 

 It is now acknowledged that genetic altera-
tions are not the only path to gene disruption; 
reversible epigenetic modifi cations are increas-
ingly being considered in cancer [ 18 ,  21 – 23 ]. In 
cancer cells, oncogenes are activated by muta-
tions or overexpression, whereas tumor- 

suppressor genes become silenced. Accumulation 
of epigenetic modifi cations is also associated 
with oncogenesis. The epigenetic modifi cations 
occur early during carcinogenesis as potentially 
initiating events for cancer development, they 
have been identifi ed as promising new targets for 
cancer prevention strategies [ 24 ]. Nowadays, the 
epigenetic mechanisms are known to be involved 
in several cancer types and diseases [ 25 – 34 ]. The 
epigenetic mechanisms also explain how two 
identical genotypes can give rise to different phe-
notypes in response to the same environmental 
stimulus [ 35 ]. 

    Epigenomic Markers for Breast 
Cancer Diagnosis 

 The geographical variation of the incidence of 
breast cancer ratio indicates a signifi cant role of 
factors affecting the epigenetic mechanism for 
the breast cancer risk    [ 36 ]. Because epigenetic 
modifi cations are signifi cant factors in the devel-
opment of breast cancers, the assessment of the 
breast cancer in terms of the epigenetics could 
strongly improve our understanding of the biol-
ogy and heterogeneity of breast cancer [ 37 ,  38 ]. 
The best-known epigenetic markers are DNA 
methylation, histone modifi cations and chroma-
tin remodeling, and miRNAs. 

    DNA Methylation and Breast Cancer 
 The fi rst and most widely studied epigenetic 
modifi cation in mammals is DNA (cytosine) 
methylation [ 39 ,  40 ]. DNA methylation plays a 
crucial role in modulating the expression of the 
genetic information by modifying the accessibil-
ity of DNA to the transcriptional machinery, 
generally resulting in transcriptional gene 
silencing (activation of the gene is also possible 
in some cases). It involves several mechanisms 
like imprinting, X-chromosome inactivation, 
and inhibition of repeat elements and transpo-
sons transcription [ 41 ,  42 ].    DNA methyltrans-
ferases (DNMTs) catalyze the addition of the 
methyl group (-CH 3 ) using S-adenosyl-
methionine (SAM) as a methyl donor to dC resi-
dues in DNA. 
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 Although most cytosine methylation occurs 
in the sequence CpG dinucleotides, the cytosine 
nucleotide of the CpA and CpT dinucleotides 
may also be methylated in some cases. CpG 
dinucleotides are found throughout the genome, 
but largely concentrated in small regions termed 
“CpG islands” [ 43 ,  44 ]. CpG islands are short 
sequences (length of 0.5 kilobases to several 
kilobases) of genomic DNA with a G + C con-
tent of at least 50 % and a ratio of observed to 
statistically expected CpG frequencies of at least 
0.6. It is found in approximately 60–70 % of 
gene promoters commonly 5′-regulatory (pro-
moter) regions of many “housekeeping” genes 
(which are essential for general cell function) 
and some tissue-specifi c genes [ 45 – 47 ]. CpG 
islands also can be found in the 3′-region of the 
gene and within the body of the genes (refer-
ring to exonic CpG island) [ 48 ]. Recent studies 
showed that not only methylation of CpGs in 
promoter but also methylation of CpGs within 
the gene bodies associate with transcriptional 
activation [ 49 ]. In contrast to expectation (the 
methylation level negatively correlates with the 
gene expression level), there is a positive cor-
relation between gene-body methylation and 
gene activity in humans. It is proposed that the 
gene-body methylation may repress transcrip-
tional noise, inhibit antisense transcription, and 
relate to replication timing [ 21 ,  50 ]. Intragenic 
methylation is also found at repetitive sequences 
in human DNA [ 51 ]. To date, several DNMTs 
(DNMT1p, DNMT1b, DNMT1o, DNMT1p, 
DNMT2, DNMTB3a,    DNMT3b, and DNMT3L) 
have been identifi ed. Among them only DNMT1, 
DNMTB3a, and DNMT3b have catalytic meth-
yltransferase activity [ 52 ]. DNMT1 recognizes 
established hemimethylated DNA (the one strand 
of the CpG dinucleotides methylated, the other 
one not) and then methylates newly synthesized 
CpG dinucleotide whose partners on the parental 
strand are already methylated [ 53 ,  54 ]. Besides 
the capability of methylating hemimethylated 
DNA, the primary function of DNMT3a and 
DNMT3b is capable of de novo methylation pat-
terns (both strands of the CpG dinucleotides are 
not methylated) during embryogenesis [ 55 ,  56 ]. 
Several methyl-binding proteins such as MBD1, 

MBD2, MBD3, and MeCP2 provide a platform 
for the DNA methylation [ 57 ], and it has already 
been determined that the mutations in DNMTs 
and MBDs contribute to diseases like acute 
myeloid leukemia (AML) [ 58 ,  59 ]. 

 There are three types of DNA methylation: 
hypermethylation, hypomethylation, and loss of 
imprint. The CpG islands in the promoter region 
are commonly unmethylated (genes active) in 
normal tissues. In hypermethylation the CpG 
islands in the promoter region are aberrantly 
methylated, leading to gene silencing through the 
inhibition of transcription via recruitment of 
chromatin remodeling corepressor complexes. 
The loss of DNA methylation occurs in many 
gene-poor genomic areas including repetitive 
elements, retrotransposons, and introns at hypo-
methylation. It causes genomic instability and 
leads to reactivation of the genes. Loss of imprint-
ing could be explained as the loss of specifi c 
monoallelic expression of genes in a parent-
origin- specifi c manner [ 12 ,  35 ,  37 ]. 

 DNA methylation is the fi rst epigenetic mecha-
nism to be associated with cancer after demonstra-
tion of global DNA hypomethylation and 
CpG-island hypermethylation in cancer tissues 
compared to normal tissues [ 60 ]. Global and gene-
specifi c DNA hypomethylation and site- specifi c 
hypermethylation are common features in tumori-
genesis [ 61 ]. The most extensively studied epigen-
etic alteration in cancer is DNA methylation of 
CpG islands. When the CpG islands of important 
genes like tumor-suppressor genes are hypermeth-
ylated, the tumor-suppressor genes become inac-
tive and cancer emerges [ 62 – 64 ]. Nowadays, the 
   next-generation sequencing (NGS) platform gives 
us enormous data relating genome-wide maps of 
CpG methylation. It is demonstrated that 5–10 % 
of normally unmethylated CpG promoter islands 
become abnormally methylated in various cancer 
genomes, and hypermethylation of promoter 
region also affects expression of various noncod-
ing RNAs, some of which have a role in malignant 
transformation [ 5 ,  64 ]. DNA hypomethylation is 
observed in several tumor types, such as colorectal 
and gastric cancers, melanomas, etc. [ 65 ]. 
Decreased DNA methylation is thought to pro-
mote chromosomal instability, eventually leading 
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to carcinogenesis. Genome-wide DNA hypometh-
ylation also affects transcription through loss of 
imprinting and upregulation of silent genes, all of 
which might induce tumor development [ 66 ]. 
During tumor progression, the degree of hypo-
methylation of genomic DNA increases as the 
lesion derives from a benign proliferation of cells 
to an invasive cancer [ 67 ]. 

 Because of the high histological and molecular 
heterogeneity, the assessment of breast cancer in 
terms of the epigenetic aspects, especially DNA 
methylation, helps us to clarify the breast cancer 
mechanism. It is speculated that changed DNA 
methylation pattern of global or specifi c genes, 
such as RASSF1A, GHSR, etc., may be markers 
for breast cancer, after their appearance in sev-
eral studies [ 68 – 71 ]. To fi nd a reliable biomarker, 
several changed methylation pattern genes in 
breast cancer have been reported during the last 
decade, based on the tumor’s clinicopathological 
characteristics, such as hormonal receptor status 
[ 72 – 76 ]. The methylated RASSF1A, CCND2, 
GSTP1, and TWIST genes for ER-positive breast 
cancers and PGR, TFF1, and CDH13 genes, pre-
dominantly for ER-negative breast cancers, have 
been linked [ 12 ,  37 ]. 

 The involvement ERα in breast cancer is 
already known, and ERα is expressed approxi-
mately in 65–75 % of diagnosed breast tumors. 
ERα is encoded by the estrogen receptor 1 
(ESR1) gene. The promoter region and fi rst exon 
of the ESR1 gene contain fi ve CpG islands 
[ 77 ,  78 ]. Several mechanisms relating the lack of 
ERα expression in ER-negative breast cancer 
have been proposed to date. Among them, the 
suppression of the ESR1 gene by hypermethyl-
ation of CpG islands has been investigated [ 79 ]. 
DNMTs are responsible for this methylation, and 
it has been demonstrated that the re-expression of 
the ER gene is possible by a DNMT1 inhibitor 
(5-aza-2′-deoxycytidine) or antisense oligonu-
cleotide for inhibiting DNMT1 specifi cally [ 80 , 
 81 ]. A recent study also showed that ER pro-
motes genomic methylation through upregulation 
of DNMT1 in ER-positive breast cancer cells 
[ 82 ]. Another important molecule in breast can-
cer, E-cadherin, is responsible for maintaining 
the normal differentiated state of the mammary 

gland epithelium. Similarly, the loss of E-cadherin 
expression in all tumor stages of breast cancer 
has been observed due to hypermethylation of 
CpG islands. Therefore, epigenetic suppression 
of ERα and E-cadherin may occur prior to inva-
sion and then increases as cells acquire invasive-
ness and metastatic potential    [ 18 ,  78 ]. 

 Cancer is a disease characterized by uncon-
trolled cell division due to checkpoints damaged 
by several factors such as chemical, UV, etc. [ 83 , 
 84 ]. Despite the fact that the exact role of the 
BRCA1 protein is not clarifi ed in detail, BRCA1 
protein is known to be a tumor-suppressor gene. It 
involves several important biological processes, 
such as DNA repair damage, induction of apopto-
sis, etc. [ 85 – 87 ]. The mutations on BRCA1 and 
BRCA2 genes increase the development of famil-
ial breast cancers [ 88 ,  89 ]. The other mechanism 
of suppression of BRCA1 expression is hyper-
methylation of promoter region of genes. Recent 
studies have shown that suppression of BRCA1 
expression by hypermethylation is involved not 
only in breast and ovarian cancer but also lung 
and oral cancers [ 90 ,  91 ]. 

 Hypermethylation of CpG islands resulting 
from overactivity of DNMTs occurs in many 
cancers. Several studies reported that DNMTs 
are also overexpressed in breast cancer [ 92 ,  93 ]. 
A recent study in Tunisian breast cancer showed 
overexpression of three hypermethylating 
enzymes (DNMT1,    DNMT3a, and DNMT3b) 
by immunohistochemistry. They found that over-
expression of various DNA methyltransferases 
might be involved in epigenetic inactivation of 
multiple tumor-suppressor genes, leading to the 
development of aggressive forms of sporadic 
breast cancer [ 94 ]. However, re-expression of 
promoter-methylated genes can be achieved after 
DNMT inhibitor treatment, such as 5-aza-2′- 
deoxycytidine treatment [ 95 ,  96 ]. 

 The other epigenetic mechanism, hypometh-
ylation, also is involved in activating genes in 
breast cancer. The promoter region of the MDR1 
gene is always highly methylated in normal con-
ditions, while its hypomethylation occurs during 
tumorigenesis, and it might be a putative implica-
tion in biological aggressiveness of tumors [ 97 ]. 
Several hypermethylated and hypomethylated 
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genes are involved in biological functions linked 
to breast cancer. The demonstrated genes are in 
listed Table  5.1 .

   Moreover, global hypomethylation can be 
seen in breast cancer. It is widely assumed that 
global hypomethylation activates the gene 
expression. However, it might decrease the gene 
expression when accompanied by a gain of 
repressive chromatin. Taken together, it has been 
found that the global hypomethylation silences 
tumor-suppressor genes via repressive chromatin 
domains in breast cancer [ 98 ]. 

 Male breast cancers often differ from female 
breast cancers in several respects. Kornegoor 
et al. studied the comparison of male and female 
breast cancers in terms of the DNA methylation 
patterns. The methylation patterns of the most 
frequently methylated genes (MSH6, WT1, 
PAX5, CDH13, GATA5, and PAX6) were found 
to be similar in male and female breast cancer. 
On the other hand, methylation occurred less 
often in male breast cancer when compared to 
female breast cancer [ 99 ].  

    Histone Modifi cations in Breast Cancer 
    The chromatin is a highly organized structure of
DNA and protein. The organization of DNA in 
chromatin (euchromatin, active; heterochroma-
tin, inactive) has many functions, such as packag-
ing DNA into smaller volume, preventing DNA 
damage, and controlling DNA replication, tran-
scription, and repair [ 100 ]. The fundamental unit 
of chromatin is the nucleosome, an octomeric 
structure containing two copies each of histones 
(H3, H4, H2A, and H2B) around which 147 base 
pairs of DNA are wrapped [ 101 ]. The states of 
chromatin are controlled by chemical modifi ca-
tion of histone tail (N-terminus) via posttran-
scriptional including acetylation, methylation, 
phosphorylation, sumoylation, poly(ADP)-ribo-
sylation, and ubiquitination and histone com-
position in conjunction with other nonhistone 
proteins [ 102 ,  103 ]. 

 It was fi rst proposed in 1964 that histone mod-
ifi cations may affect the regulation of gene 
expression, after demonstrating acetylation of the 
ε-amino group of lysine residues on histones 

   Table 5.1    Hypermethylated and hypomethylated genes in human breast cancer   

 Gene (description)  Function 
 Sample 
obtained  Case # 

 Methy. 
status  Marker  Reference 

 14-3-3-σ/stratifi n (SFN)  Cell cycle 
regulation 

 Cell lines, 
tissue 

 20  Hyper  Therapeutic  Ferguson et al. 
[ 202 ] 

 14-3-3-σ/stratifi n (SFN)å  Cell cycle 
regulation 

 Serum  100  Hyper  Diagnostic, 
prognostic 

 Mirza et al. [ 203 ] 

 ESR1 (estrogen receptor 1) 
or 14-3-3-σ/stratifi n (SFN) 

 Cell cycle 
regulation 

 Serum  106  Hyper  Diagnostic  Martínez-Galán 
et al. [ 204 ] 

 RASSF1A (ras association 
domain family protein1) 

 Cell cycle 
regulation 

 Cell lines, 
tissue 

 45  Hyper  Therapeutic  Dammann et al. 
[ 205 ] 

 APC (adenomatous polyposis 
of the colon) 

 Inhibitor of 
β-catenin 

 Tissue  50  Hyper  Therapeutic  Jin et al. [ 206 ] 

 RASSF1, APC, DAPK1  Serum  34  Hyper  Diagnostic  Dulaimi et al. 
[ 207 ] 

 RARβ (retinoic acid 
receptor β) 

 Cell cycle 
regulation 

 Cell lines, 
tissue 

 24  Hyper  Therapeutic  Sirchia et al. 
[ 208 ] 

 RASSF1A and RARβ  Cell cycle 
regulation 

 Serum  20  Hyper  Diagnostic, 
prognostic 

 Shukla et al. 
[ 209 ] 

 RASSF1A or ATM  Cell cycle 
regulation 

 Plasma  50  Hyper  Diagnostic  Papadopoulou 
et al. [ 210 ] 

 RASSF1, RARB, MGMT, 
APC 

 Serum, 
tissue 

 33  Hyper  Prognostic  Taback et al. 
[ 211 ] 

 TMS1 (target of methylation-
induced silencing-1) 

 Involved in 
apoptosis 

 Cell lines, 
tissue 

 27  Therapeutic  Conway et al. 
[ 212 ] 
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[ 104 ]. After nearly half a century, it is has been 
elucidated that the posttranscriptional modifi ca-
tions of histone tails determine not only 
 transcriptional activity but also all DNA-
templated processes. The identifi cation of the 
coexistence of histone modifi cations associated 

with  activation or repression led to the proposal 
that the modifi cation constitutes a code that could 
be  recognized by transcription factors to deter-
mine the transcriptional state of a gene 10 years 
before [ 105 ]. However, these patterns appear to 
be not static, and a dynamically changing and 

 Gene (description)  Function 
 Sample 
obtained  Case # 

 Methy. 
status  Marker  Reference 

 TMS1, BRCA1, ERα, and 
PRB 

 Serum  50  Hyper  Diagnostic  Mirza et al. [ 173 ] 

 CCND2 (cyclin D2)  Cell cycle 
regulation 

 Tissue  106  Hyper  Diagnostic, 
prognostic 

 Evron et al. 
[ 213 ] 

 CCND2, CDKN2A, and 
SLIT2 

 Serum, 
tissue 

 36  Hyper  Diagnostic, 
prognostic 

 Sharma et al. 
[ 214 ] 

 CDH1 (E-Kadherin)  Cell adhesion 
and invasion 

 Tissue  151  Hyper  Prognostic  Shinozaki et al. 
[ 215 ] 

 CDH1 (E-Kadherin)  Cell adhesion 
and invasion 

 Tissue  79  Hyper  Prognostic  Caldeira et al. 
[ 216 ] 

 CDKN2A (cyclin- dependent 
kinase inhibitors) 

 Cell cycle 
regulation 

 Plasma  35  Hyper  Diagnostic  Silva et al. [ 217 ] 

 CDKN2A or CDH1  Serum  36  Hyper  Diagnostic, 
prognostic 

 Hu et al. [ 218 ] 

 CDH 13 (H-Kadherin)  Cell adhesion 
and invasion 

 Cell lines, 
tissue 

 55  Hyper  Therapeutic  Toyooka et al. 
[ 219 ] 

 BRCA1 (breast cancer 1)  DNA repair and 
recombination 

 Tissue  143  Hyper  Diagnostic  Birgisdottir et al. 
[ 220 ] 

 BRCA1, CDKN2A, or 
14-3-3σ 

 Serum  38  Hyper  Diagnostic  Jing et al. [ 221 ] 

 APC, RASSF1, or ESR1  Serum  79  Hyper  Prognostic  Van der Auwera 
et al. [ 222 ] 

 GSTP1 (glutathione-S- 
transferase P1) 

 Carcinogen 
detoxifi cation 

 Tissue  77  Hyper  Prognostic  Esteller et al. 
[ 223 ] 

 GSTP1, RARB, RASSF1, or 
APC 

 Plasma  47  Hyper  Diagnostic  Hoque et al. 
[ 224 ] 

 TWIST (TWIST homology of 
drosophila) 

 Involved in cell 
death 

 Mammary 
ducts’ 
fl uid 

 72  Hyper  Therapeutic  Vesuna et al. 
[ 225 ] 

 CCND2, RARB, TWIST1, or 
SCGB3A1 

 Plasma  34  Hyper  Diagnostic  Bae et al. [ 226 ] 

 RUNX3 (run-related 
transcription factor 3) 

 Transcriptional 
regulation 

 Cell lines, 
tissue 

 44  Hyper  Diagnostic  Lau et al. [ 227 ] 

 RUNX3, CDKN2A, RASSF1, 
or CDH1 

 Serum  19  Hyper  Diagnostic, 
prognostic 

 Tan et al. [ 228 ] 

 MDR1 (multidrug resistance 
1) 

 Transmembrane 
effl ux pump 

 Serum, 
tissue 

 100  Hypo  Prognostic  Sharma et al. 
[ 97 ] 

 CAV1 (Caveolin 1)  Cell invasion, 
metastasis 

 Cell line  30  Hypo  Prognostic  Rao et al. [ 229 ] 

 NAT1 (N-acetyltransferase 
type 1) 

 Cell invasion, 
metastasis 

 Tissue  103  Hypo  Prognostic  Kim et al. [ 230 ] 

 UPA (Urokinase)  Cell invasion, 
metastasis 

 Cell line  1  Hypo  Therapeutic  Pakneshan et al. 
[ 231 ] 

Table 5.1 (continued)
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complex landscape via the chromatin signaling 
pathway led to the new concept termed “histone 
cross talk.” This term represents the infl uence one 
or more coexisting histone modifi cations have on 
the deposition, interpretation, or erasure of other 
histone modifi cations [ 5 ,  106 ].    The recent inves-
tigations showed that histone cross talk mecha-
nisms commonly seen and have a great importance 
for biological processes in organism [ 107 ,  108 ]. 

 Histone modifi cations affect the chromosome 
function via several mechanisms. Generally it is 
believed that histone modifi cations cause struc-
tural changes in histone. This structural change 
may act as specifi c binding sites for protein 
domains (e.g., bromodomains, chromodomains, 
tudor domains) [ 109 ,  110 ]. Among the epigenetic 
mechanisms, histone modifi cations have further 
grown over the last decade with the discovery 
and characterization of a large number of histone- 
modifying molecules and protein complexes. The 
deregulation of these molecules or complexes 
may lead to deregulation of the control of 
chromatin- based processes by changing histone 
modifi cations and may have been associated with 
a large number of human malignancies. Genome- 
wide studies revealed that the histone modifi ca-
tions of malignant cells patterns disrupted when 
compared to healthy cells [ 111 ]. The posttransla-
tional modifi cation at amino acid tail of histone 
protein may result in changed transcription of 
important genes such as tumor suppressors. 
Changed patterns of histone modifi cations are a 
hallmark of cancer, and great amount of histone 
modifi cations have been linked to several cancer 
types to date [ 112 ]. The most well-known histone 
modifi cations types are acetylation/deacetylation 
and methylation/demethylation [ 113 ]. 

   Histone Acetylation/Deacetylation 
in Breast Cancer 
 Histone acetylation/deacetylation status regulates 
several important regulatory proteins and tran-
scription factors and is controlled by the interplay 
of histone acetyltransferases (HATs) and histone 
deacetylases (HDACs), respectively. HATs trans-
fer acetyl groups from acetyl-CoA to the amino 
group of lysine residues in histone tail. It removes 
the positive charges, thereby reducing the affi nity 
between histones and DNA. This makes RNA 

polymerase and transcription factors easier to 
access the promoter region. So histone acetylation 
facilitates gene expression by allowing transcrip-
tion factors to access the DNA. In contrast, the 
HDACs remove the acetyl group from histones to 
coenzyme A (CoA), resulting in coiling of chro-
matin, which inhibits transcription [ 22 ,  103 ]. 

 At least 25 HATs and 18 HDACs have been 
identifi ed in humans [ 114 ]. HATs were the fi rst 
enzymes shown to modify histones [ 115 ]. There 
are two major classes of HATs: type A and type 
B. The type A HATs are nuclear proteins and can 
be grouped into at least three families—Gcn5/
PCAF, MYST, and p300/CBP—depending on 
amino acid sequence homology [ 116 ]. In contrast 
to type A HAT, the type B HATs are predomi-
nantly cytoplasmic and show similar highly con-
served primary structures, with acetylate-free 
histones but not those already deposited into chro-
matin, and newly synthesized histones H4 at K5 
and K12. This pattern of acetylation is important 
for deposition of the histones [ 117 ]. The HDACs 
also have critical importance in the regulation of 
expression of genes involving cell survival, prolif-
eration, differentiation, and apoptosis and can be 
divided into four major groups depending on 
sequence homology and target both histone and 
nonhistone proteins. Class I includes HDACs 1, 2, 
3, and 8; class II includes HDACs 4, 5, 6, 7, 9, and 
10; and class IV includes HDAC 11. In contrast to 
other HDACs, class III HDACs consist of NAD + -
dependent sirtuin family 1–7 [ 5 ]. HDACs also 
regulate the expression of tumor-suppressor and 
specifi c cell cycle regulatory genes. It has been 
observed that high HDAC expression level and 
hypoacetylation can be seen in several cancers. So 
HDAC inhibitors have been targeted for cancer 
therapy [ 118 ,  119 ]. The mechanism of the antip-
roliferative effects of HDAC inhibitors is com-
plex. The target of HDAC inhibitors is the zinc 
cofactor at the active site of the HDACs to change 
chromatin structure and cause re-expression of 
aberrantly silenced genes [ 120 ].  

   Histone Methylation/Demethylation 
in Breast Cancer 
 Besides the gene promoter regions, the methyla-
tion/demethylation can occur on histone protein 
residues. DNA methylation at CpG islands of 
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promoter regions generates long-term gene 
silencing and makes the majority chromatin inac-
cessible for transcription, but histone methylation 
results in short-term inhibition of gene expres-
sion. Methylation, unlike acetylation and phos-
phorylation, does not alter the overall charge of 
the molecule [ 5 ,  18 ]. Histone methylation takes 
place at lysine and arginine residues by histone 
methyltransferases (HMTs). HMTs transfer a 
methyl group from the cofactor S-adenosyl 
methionine to lysine or arginine residues on his-
tone tails, which play important roles in chroma-
tin remodeling and transcriptional activity. The 
methylation at arginine residue of histone tails 
usually activates the gene transcription, although 
it may be involved in transcriptional repression in 
some cases. The methylation at lysine residue of 
histone tails can contribute to either activation or 
repression of transcription, depending on the 
position of methylation, and adjacent modifi ca-
tions [ 121 ,  122 ]. Some lysine methylases (like 
H3K4, H3K36, H3K79) often activate genes in 
euchromatin, while others (like H3K9, H3K27, 
and H3K20) are associated with heterochromatin 
regions of the genome. The methylation status 
(mono-, di-, or trimethylation) also alters gene 
expression. For example, the monomethylations 
of H3K27, H3K9, H4K20, H3K79, and H2BK5 
are all linked to gene activation, whereas trimeth-
ylations of H3K27, H3K9, and H3K79 are linked 
to repression [ 123 ]. Histone demethylases 
(HDMs), discovered nearly 7 years ago, have 
been classifi ed into two groups depending on 
their mechanism of action [ 124 ]. 

 Several HMTs and HDTs relevant to cancer 
development have been identifi ed to date [ 125 ]. 
The EZH2 one of the HMTs acts mainly as a 
gene silencer; it is the major enzyme that methyl-
ates lysine-27 of histone H3 (H3K27). EZH2 can 
add up three methyl groups to the ε-amino group 
of the lysine side chain, leading to chromatin 
condensation [ 126 ,  127 ,  128 ]. The overexpres-
sion of EZH2 is seen in many cancer types, 
including prostate and melanoma [ 129 ,  130 ]. The 
elevated EZH2 levels are associated with breast 
cancer [ 131 ]. It also correlates with tumor aggres-
siveness and poor prognosis, which suggests that 
EZH2 was an oncogene [ 132 ,  133 ].    However, 
loss-of-function mutations in EZH2 gene have 

described several malignancies, suggesting 
EZH2 was tumor-suppressor gene [ 134 ,  135 ]. In 
addition, some chemicals like diethylstilbestrol 
(DES) or bisphenol A (BPA) contribute to the 
formation of breast cancer by increasing EZH2 
expression [ 136 ]. 

 Another study relating EZH2 to breast cancer 
concluded that the overexpression of EZH2 regu-
lates BRACA1 gene expression and genomic 
instability mediated by PI3K/Akt-1 pathway 
[ 137 ]. These investigations suggest that EZH2 
histone methyltransferase is involved in breast 
cancer etiology. 

 The HMT G9a methylates at the ε-amino 
group of lysine 9 residues of histone 3. It has 
also been proven that G9a is involved in Snail- 
mediated E-cadherin repression by interacting 
with Snail in human breast cancer [ 138 ]. 
Another study proposed that G9a contributes to 
the estradiol (E2)-dependent induction of some 
endogenous target genes of estrogen receptor 
(ER)α in MCF-7 breast cancer cells [ 139 ]. Other 
lysine HMTs (NSD1, NSD3L, and SMYD3) are 
overexpressed in several cancers [ 125 ,  140 ]. 
Unlike lysine HMT, arginine HMTs have not 
been as well characterized. Arginine HMTs cat-
alyze methylation of nitrogen of arginine resi-
dues, called protein arginine methyltransferases 
(PRMT). The 10 PRMTs are nearly identifi ed 
and categorized into two groups based on the 
type’s methylarginine products they produced 
[ 141 ]. Among PRMTs, the altered PRMT1 gene 
expression has been investigated in breast can-
cer [ 142 ]. 

 Several types of histone lysine demethylases 
(HDMs) have been identifi ed, but the pathologi-
cal roles of their dysfunction in human disease 
have not been clarifi ed. Among them, lysine- 
specifi c demethylase (LSD1) is the fi rst identifi ed 
histone lysine demethylase. LSD1 specifi cally 
demethylates histone H3 lysine 4, which is linked 
to active transcription [ 143 ]. After discovery of 
LSD1, the concept of histone methylation 
changed, and it is understood that histone meth-
ylation is a dynamically regulated process under 
enzymatic control rather than chromatin marks 
that could only be changed by histone  replacement 
[ 19 ]. It has been reported that the expression 
level of LSD1 is elevated in human bladder [ 144 ], 
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small cell lung, colorectal, and neuroblastoma 
cancers, and the mutation of LSD1 gene causes 
prostate cancer [ 145 ]. 

 In breast cancer, LSD1 expression has been 
found to be strongly upregulated in ER-negative 
breast cancer; it makes LSD1 a putative bio-
marker for aggressive tumor biology and a novel 
attractive therapeutic target for treatment of 
ER-negative breast cancer [ 146 ]. It is also dem-
onstrated that LSD1 inhibits the invasion of 
breast cancer cells in vitro and suppresses breast 
cancer metastatic potential in vivo [ 147 ]. Other 
histone demethylase genes GASC1, PLU-1, and 
JMJD2B are involved in human breast cancers. 
The GASC1 gene may be linked to the stem cell 
phenotypes and show oncogene properties in 
human breast cancer [ 148 ]. PLU-1 is an H3K4 
demethylase and plays an important role in the 
proliferative capacity of breast cancer cells 
through repression of tumor-suppressor genes, 
including BRCA1 [ 149 ]. The methylation status 
of histone H3 lysine 4 (H3K4) and of H3K9 is 
mutually exclusive, and H3K9 trimethyl demeth-
ylase JMJD2B is an integral component of the 
H3K4-specifi c methyltransferase MLL2. It has 
been demonstrated that the JMJD2B/MLL2 com-
plex interacts to defi ne the methylation status of 
H3K4 and H3K9 in ERα-activated transcription, 
and JMJD2B itself is transcriptionally targeted 
by ERα and may thus form a feed-forward regu-
latory loop in promoting hormonally responsive 
breast carcinogenesis [ 150 ]. JMJD2B also func-
tions as coregulator of ERα signaling in breast 
cancer growth and mammary gland development 
[ 151 ]. And the histone protein LSD1 is able to 
demethylate nonhistone proteins, such as p53 and 
DNMT1 [ 152 ,  153 ].   

    miRNA in Breast Cancer 
 Scientists have long been aware of the existence 
of noncoding RNAs (ncRNAs). In spite of the 
great amount of knowledge about the function 
and types of ncRNAs, we are still far from fully 
knowing the role of large fractions of the tran-
scriptome that do not encode for proteins [ 154 ]. 
Among ncRNAs, microRNAs are 18–25 
nucleotides- long RNA molecules encoded in the 
genome that are transcribed by RNA polymerase 
II and important regulators of protein of gene 

expression that control both physiological and 
pathological processes, such as DNA methyla-
tion, development, differentiation, apoptosis, and 
proliferation [ 155 ,  156 ]. miRNAs are synthesized 
and processed in the nucleus, exported to the 
cytoplasm, and then bind to the target mRNA. The 
regulation of RNA transformation by miRNA is 
accomplished through RNA-induced silencing 
complex (RISC). miRNAs can inhibit mRNA 
translation or degrade mRNA [ 157 ,  158 ]. Major 
mechanisms of miRNA deregulation include 
genetic and epigenetic alterations as well as 
defects in the miRNA processing machinery. 
Each miRNA regulates multiple mRNAs and, 
conversely, each mRNA may be targeted by mul-
tiple RNAs (several hundreds). They can act as 
oncogenes or tumor suppressors and have been 
implicated in cancer initiation and progression, 
and the profi les of miRNA expression differ 
between normal and tumor tissues and between 
tumor types [ 159 – 161 ]. To date, several investi-
gations relating to miRNA profi ling has led to the 
identifi cation of miRNAs’ changed expression 
level in human breast cancer [ 162 ,  163 ]. The 
expression level of these miRNAs was correlated 
with specifi c breast cancer biopathological fea-
tures, such as estrogen and progesterone receptor 
expression, tumor stage, vascular invasion, or 
proliferation [ 164 ]. miRNAs act as tumor sup-
pressors and are oncogenic in breast cancer like 
other cancer types. So, tumor formation may 
arise from the overexpression (or amplifi cation) 
of oncogenic miRNA and/or reduction (or dele-
tion) of a tumor-suppressor miRNA [ 165 ]. 

 miRNA-21 is overexpressed in breast cancer 
like in other cancer types [ 164 ,  166 ]. p53 and 
programmed cell death 4 (PDCD4) are tumor- 
suppressor proteins, and the deregulation of them 
may lead to cancer development. miRNA have 
been linked to breast cancer by targeting these 
proteins in breast cancer cells [ 167 ].   

    Epigenomic Markers for Breast 
Cancer Prognosis 

 Despite the extreme heterogeneity of breast can-
cer, global breast cancer survival rates have 
increased during the past decades due to advances 
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in the central role of genetic alterations in the 
diagnosis, treatment, prevention of breast cancer, 
and prognosis [ 2 ,  168 ]. Survival rates should be 
further improved by fi nding epigenetic molecular 
markers associated with risk assessment and/or 
prognosis of breast cancer. The knowledge about 
epigenetic alterations profi les in detail might 
prove vital in many respects. First, it might help 
us to estimate breast cancer risk and take precau-
tions before breast cancer develops. In addition, 
there are several subtypes of breast cancer and 
corresponding therapies currently used. Each 
subtype, even each individual, has unique molec-
ular epigenetic characteristics. The elucidating of 
epigenetic characteristic might contribute to a 
better estimation of breast cancer prognosis and 
lead to the choice of the most useful therapy 
[ 169 ]. In this way, patients will not be exposed to 
ineffective toxins associated with expensive ther-
apy. Several reports have proposed that hyper-
methylation or hypomethylation of specifi c genes 
and global methylation status might be useful 
epigenetic markers for breast cancer prognosis. 
The recent studies also included miRNAs’ 
expression profi les into putative epigenetic mark-
ers of breast cancer. 

 The major breast cancer subtype is 
ER-positive, and it has generally had a more 
favorable prognosis than ER-negative tumors. It 
is well established that ERα and E-cadherin are 
frequently involved in pathogenesis of breast 
cancer. The aberrant methylation of these genes 
is associated with malignant progression in 
human breast cancer [ 170 ]. ERα expression level 
is also regulated by miRNAs in the context of 
breast cancer. miRNA-206 [ 171 ] and    miRNA-
221/222 [ 77 ] target and regulate human ERα. 
miRNA-206 was upregulated in ERα-negative 
breast cancer. Another study found that miRNA-
 206 inhibits the expression of ESR1 mRNA 
through two binding sites in the ESR1 3′-untrans-
lated region (3′-UTR). The researchers also 
found other miRNAs (miRNA-18a, miRNA-18b, 
miRNA-193b, and miRNA-302c) targeting to 
ESR1 mRNA in breast cancer cells [ 172 ]. 
Therefore, the aberrant methylation of the ESR1 
gene and certain miRNAs altering the ESR1 gene 
expression might be putative epigenetic markers 
for human breast cancer prognosis. 

 BRCA1-associated breast cancer, hereditary 
or nonhereditary, occurs at early age due to 
involvement of the cellular DNA repair machin-
ery. The inactivation of the BRCA1 by hyper-
methylation has been suggested to be the putative 
prognostic marker in breast cancer [ 173 ]. Besides 
the methylation, BRCA1 expression level could 
be regulated by miRNA-335. Overexpression of 
miR-335 resulted in an upregulation of BRCA1 
mRNA expression, suggesting a functional domi-
nance of ID4 signaling [ 174 ]. 

 RASSF1A (Ras association domain family 1 
isoform A) is a recently discovered tumor- 
suppressor gene. The protein encoded by 
RASSF1A interact is involved in the regulation 
of the cell cycle, apoptosis, and genetic instabil-
ity. Thus, loss or altered expression level of the 
RASSF1A gene has been associated with several 
cancers. After illustrating the association between 
inactivation of the RASSF1A gene and the hyper-
methylation of its CpG-island promoter region, 
the RASSF1A gene has become the attractive 
biomarker for early cancer detection, diagnosis, 
and prognosis in many cancer types [ 175 ,  176 ]. 
The increased methylation level of the RASSF1A 
gene was observed in tumor size and lymph node 
status in breast cancer [ 177 ]. Similar results have 
been obtained by a meta-analysis of published 
data conducted with 1795 breast cancer patients. 
They concluded that RASSF1A promoter hyper-
methylation associates with worse survival in 
breast cancer patients [ 178 ]. These fi ndings have 
indicated the great potential for the methylation 
of the RASSF1A gene in terms of the prognostic 
value of the breast cancer. 

 EZH2, histone-lysine N-methyltransferase 
acts as gene silencer by methylation and is related 
to several cancers. The overexpression of EZH2 
is associated with aggressive breast cancer 
because of the enhanced cancer cell proliferation 
and a marker of poor prognosis in many solid 
tumor carcinomas including breast [ 179 – 181 ]. 

 It has been investigated that several miRNAs 
are involved in breast cancer pathogenesis like 
cell regulation, and it has been proposed to be a 
prognostic factor for breast cancer. The    miRNA-
17-5p and miRNA-17/20 have been reported to 
be involved in breast cancer cell proliferation 
[ 182 ,  183 ]. miRNA-21 also could be a molecular 
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prognostic marker for breast cancer and disease 
progression because of its association with 
advanced clinical stage, lymph node metastasis, 
and patient poor prognosis [ 184 ]. 

 Another strategy to clarify the role of miRNA 
in breast cancer is the analysis of DNA methyla-
tion and expression miRNAs in combination. 
Alteration of methylation in the promoters of 
miRNAs has also been linked to transcriptional 
changes in cancers.    Morita et al. found that DNA 
methylation in the proximal promoter of  miRNAs 
is tightly linked to transcriptional silencing [ 185 ].  

    Applications of Epigenomics in Breast 
Cancer Therapy 

 Cancer emerges not only because of the accumu-
lation of genetic mutations, but also because of 
the reversible epigenetic changes. The dynamic 
alterations of the epigenetic mechanisms offer us 
a new fi eld for developing novel cancer drugs that 
can react to epigenetically silenced tumor- 
suppressor genes [ 186 ]. So histone deacetylases 
and DNA methyltransferases have become the 
main targets for cancer therapy. In breast cancer, 
epigenetic silencing of tumor-suppressor genes 
due to alteration in both HATs and HDACs (his-
tone modifi cation) in combination with DNA 
hypermethylation is commonly observed [ 187 ]. 
The clarifi cation of the epigenetic dysregulation 
mechanism in breast tumorigenesis has great 
importance in terms of the development of new 
therapies for breast cancer patients. 

 Aberrant HDAC activity has been investigated 
in several cancer types, especially in breast cancer. 
HDAC-1 expression and HDAC-3 protein expres-
sions were analyzed immunohistochemically on a 
tissue microarray containing 600 core biopsies 
from 200 patients by Krusche et al. They found that 
moderate or strong nuclear immunoreactivity for 
HDAC-1 was observed in 39.8 % and for 
HDAC-3 in 43.9 % of breast carcinomas. HDAC-1 
and HDAC-3 expressions correlated signifi cantly 
with estrogen and progesterone receptor expression 
[ 188 ]. Another study concentrated on HDAC-6 
expression levels in breast cancer has been done by 
Zhang et al. They also found that HDAC-6 mRNA 

expression is at signifi cantly high levels in breast 
cancer patients with small tumors measuring less 
than 2 cm, with low histological grade, and in estro-
gen receptor α- and progesterone receptor-positive 
tumors.    However, multivariate analysis concluded 
that the mRNA and protein of HDAC-6 were not 
independent prognostic factors for both overall sur-
vival and disease-free survival [ 189 ].    These studies 
led to the development of new therapies for breast 
cancer by fi nding suitable HDAC inhibitors. To 
date, a number of HDAC inhibitors have been 
designed and synthesized based on their chemical 
structure and are generally divided into four groups 
including hydroxamic acids, benzamides, cyclic 
peptide, and aliphatic acids (small chain fatty 
acids). The potential use of these inhibitors for 
breast cancer therapy has been investigated, as 
shown in Table  5.2 .

   Among them, some HDAC inhibitors like 
vorinostat (SAHA) and romidepsin (FK-228) 
have already been approved by the US Food 
and Drug Administration for clinical treatment 
of cutaneous T-cell lymphoma. Vorinostat is the 
fi rst HDAC inhibitor and currently under evalu-
ation in several phase II trials in breast cancer. It 
is already shown that vorinostat has profoundly 
antiproliferative activity and inhibits prolifera-
tion of both ER-positive and ER-negative breast 
cancer cell lines [ 190 ]. Entinostat (MS-275) and 
panobinostat (LBH-589) HDAC inhibitors are in 
phase I and II studies in combination with endo-
crine therapies, chemotherapeutic agents, or novel 
targeted therapy in women with breast cancer 
[ 12 ,  120 ]. A recent phase II study relating to the 
HDAC inhibitor vorinostat combined with tamox-
ifen for the treatment of patients with ER-positive 
metastatic breast cancer using 43 patients has 
been done. Even though the number of patients 
was small, they concluded that the combination 
of vorinostat and tamoxifen is well tolerated and 
exhibits encouraging activity in reversing hor-
mone resistance. HDAC inhibitor with tamoxifen 
may restore hormone sensitivity by causing re-
expression of a silenced ER gene [ 191 ]. 

 In addition to phase trials, preclinical investi-
gations have been widely done. The other idea 
for treatment of ER-negative breast cancer cells 
is using the synergistic effects of a combination 
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   Table 5.2    The investigations of HDAC inhibitors in breast cancer   

 Agent(s) 
 Alternative 
name  Class 

 Study 
design  Samples  Case #  Reference 

 Vorinostat  SAHA, 
suberoylanilide 
hydroxamic acid 

 Hydroxamic 
acid 

 Preclinic  Human breast 
cancer cells 

 Munster et al. 
[ 190 ] 

 Vorinostat  Phase II  Metastatic 
breast cancer 

 14  Luu et al. [ 232 ] 

 Vorinostat + tamoxifen  Phase II  ER-positive 
metastatic 
breast cancer 

 43  Munster et al. 
[ 191 ] 

 Vorinostat + 
paclitaxel + bevacizumab 

 Phase I–II  Metastatic 
breast cancer 

 54  Ramaswamy 
et al. [ 233 ] 

 Panobinostat  LBH-589  Hydroxamic 
acid 

 Preclinic  Human breast 
cancer cells 

 Chen et al. 
[ 234 ] 

 Panobinostat  Preclinic  ER-negative 
human breast 
cancer cells 

 Zhou et al. 
[ 194 ] 

 Panobinostat  Preclinic  Human breast 
cancer cells 

 Rao et al. [ 235 ] 

 Panobinostat  Preclinic  Triple- negative 
breast cancer 
cells 

 Tate et al. 
[ 236 ] 

 Entinostat  MS-275, 
SNDX-275 

 Benzamide  Preclinic  Human breast 
cancer cells 

 Lee et al. [ 237 ] 

 Entinostat  Preclinic  Human breast 
cancer cells 

 Huang et al. 
[ 238 ] 

 Entinostat  Preclinic  ERα-negative 
human breast 
cancer cells 

 Sabnis et al. 
[ 239 ] 

 Entinostat + trastuzumab  Preclinic  Human breast 
cancer cells 

 Huang et al. 
[ 120 ] 

 Romidepsin  Depsipeptide 
(FK-228), 
FR901228 

 Cyclic 
peptide 

 Preclinic  Human breast 
cancer cells 

 Hirokawa et al. 
[ 240 ] 

 Valproic acid  –  Aliphatic 
acids 

 Preclinic  Human breast 
cancer cells 

 Jawed et al. 
[ 241 ] 

 Valproic acid + tamoxifen  Preclinic  Human breast 
cancer cells 

 Hodges- 
Gallagher et al. 
[ 242 ] 

 Valproic 
acid + trichostatin A 

 Preclinic  Human breast 
cancer cells 

 Reid et al. 
[ 243 ] 

 Valproic acid + retinoic 
acid + 
5-aza-2′-deoxycytidine 

 Preclinic  Human breast 
cancer cells 

 Mongan et al. 
[ 244 ] 

 Phenylbutyrate  –  Aliphatic 
acids 

 Preclinic  Human breast 
cancer cells 

 Dyer et al. 
[ 245 ] 

treatment of HDAC inhibitors and DNMT inhibi-
tors (demethylating agents). Fan et al. and 
Sharma et al. used    5-aza-2′-deoxycytidine (AZA) 
as a DNMT1 inhibitor and trichostatin A (TSA) 
as a HDAC inhibitor to investigate this  synergistic 

effect. Both studies have shown the reactivate 
ERα and PR gene expression in ER-negative 
breast cancer cell lines, which are known to be 
aberrantly silenced in breast cancer [ 192 ,  193 ]. 
Other studies have shown that the HDAC 
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 inhibitors lead to reactive of ERα and PR expres-
sion by inhibition of the HDAC activity in breast 
cancer cells [ 194 – 196 ]. 

 The other enzyme families to target for cancer 
therapy are HMTs and HDMs, previously impli-
cated in cancer, infl ammation, and diabetes 
[ 197 ].    The gene expressions level of the histone-
modifying enzymes (HDMs and HTMs) are spe-
cifi c to cell types and highly correlated with 
target gene expression [ 198 ]. A recent study 
examined the expression profi les of 16 different 
histone-modifi er genes including HATs, HDACs, 
and HDMs in breast cancer. They found that sig-
nifi cantly different expression levels of histone-
modifi er genes exist between breast tumors and 
normal tissue, and their fi ndings were signifi -
cantly associated with conventional pathological 
parameters and clinical outcomes. So, it appears 
that histone-modifi er enzymes offer utility as 
biomarkers and potential for targeted therapeutic 
strategies [ 199 ]. 

 After these recent fi ndings, miRNAs also have 
become the target for developing therapies for 
breast cancer. The miRNA-based treatments, in 
combination with traditional chemotherapy, may 
be a new strategy for the clinical management of 
drug-resistant breast cancers in the near future 
[ 200 ]. One of the initial studies has concluded 
that miRNA-221/222 confers breast cancer ful-
vestrant resistance by regulating multiple signal-
ing pathways [ 201 ].   

    Conclusion and Future Perspective 

 A new fi eld has been opened to developing effec-
tive clinical therapies now that we understand the 
importance of epigenetic alterations. In contrast to 
genetic code, the epigenetic codes may be easily 
affected by aging, environmental stimuli, and food 
in heritable manner. Breast cancer is a multifacto-
rial disease with molecular, histological, and phe-
notypic diversity caused by the interaction of both 
inherited and environmental risk factors. The 
importance of epigenomics for breast cancer 
development has been realized after gaining of 
great amount of knowledge by large-scale meth-
ods. Epigenetics-based therapy for breast cancer 
will most likely become a reality in the near future.     
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