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    Abstract  

  Breast cancer is a clinically heterogeneous disease, which necessitates a 
variety of treatments and leads to different outcomes; in fact, only some 
women will benefi t from chemotherapy. Identifying patients who will 
respond to chemotherapy and thereby improve their long-term survival has 
important implications to treatment protocols and outcomes, while iden-
tifying nonresponders may enable these patients to avail themselves of 
other investigational approaches or other potentially effective treatments. 

 Furthermore, prognostic tools in early breast cancer are inadequate. 
The evolving fi eld of metabolomics may allow more accurate identifi ca-
tion of patients with residual micrometastases. 

 Metabolomics is a new, rapidly expanding fi eld dedicated to the global 
study of metabolites in biological systems. Many of the studies have 
focused on identifying altered metabolic levels in breast cancer cells or 
tissues and relating these changes to their associated metabolic pathways. 
Metabolomics provides a strong link between genotype and phenotype 
and may provide some insight into oncogenesis. 

 The relatively new approach using metabolomics has just begun to enter 
the mainstream of cancer diagnostics and therapeutics. As this fi eld advances, 
metabolomics will take its well-deserved place next to genomics, transcrip-
tomics, and proteomics in both clinical and basic research in oncology. 

 Results of these investigations show promise for larger studies that could 
result in more personalized treatment protocols for breast cancer patients.  
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        Introduction 

 Breast cancer, although histologically similar, is 
clinically a very heterogeneous and phenotypi-
cally diverse disease, which results in a range of 

mailto:ignaciozapardiel@hotmail.com


212

treatment effectiveness and outcomes [ 1 ]. It is 
composed of several biological subtypes that 
have distinct behavior and response to therapy. 
This heterogeneity was fi rst noted over 100 years 
ago with the identifi cation that simple removal of 
the ovaries was therapeutic in some breast cancer 
patients, but not others. Breast cancer character-
ization (profi ling) has signifi cantly advanced 
since the turn of the millennium due to the devel-
opment of sophisticated technologies, such as 
gene expression arrays, which permit simultane-
ous measurement of thousands of genes to create 
a molecular portrait of the tumor. 

 As an alternative approach for biomarker dis-
covery, metabolomics (or metabolite profi ling) 
enables identifi cation of small-molecule metabo-
lites in biofl uids and tissues that are sensitive to 
altered pathology [ 2 – 4 ]. High-throughput ana-
lytical techniques of nuclear magnetic resonance 
(NMR) spectroscopy and mass spectrometry 
(MS) combined with multivariate statistical anal-
yses provide information on a large number of 
metabolites, including those that have altered lev-
els between healthy subjects and patients with 
various diseases, including cancer [ 5 – 7 ]. 

 So far, the metabolomic-based approaches 
have been used in a large variety of applications, 
including early disease detection, drug response, 
toxicity and nutritional studies, and basic sys-
tems biology [ 8 – 11 ]. Compared with other 
 biomarker discovery approaches for breast can-
cer, metabolomics provides a strong link between 
genotype and phenotype and may provide some 
insight into oncogenesis. Also, once established, 
tests based on metabolic profi les are relatively 
inexpensive and rapid and can be automated [ 12 ]. 

 A growing number of metabolomic studies 
are contributing toward an improved understand-
ing of breast cancer, and these advances have 
been reviewed [ 9 ,  13 ,  14 ]. Many of the studies 
have focused on identifying altered metabolic 
levels in breast cancer cells or tissues and relat-
ing these changes to their associated metabolic 
pathways [ 15 – 18 ]. A very recent study using 
metabolic profi ling of numerous human cancer 
cell lines found a high correlation between breast 
cancer (and other cancer) proliferation and the 
glycine biosynthetic pathway [ 19 ]. Previously, 

 differences between normal and metastatic mam-
mary epithelial cell lines—including upregula-
tion of fatty acid synthesis and alterations in 
glycolysis, the TCA cycle, and others—were 
detected using  13 C stable isotopic label tracing by 
2D NMR and GCeMS methods [ 18 ]. Breast can-
cer tumors could be separated from non-involved 
tissues based on intensities from spectra gener-
ated by high-resolution magic angle spinning 
(HR-MAS) NMR spectroscopy with a sensitivity 
of 83 % and a specifi city of 100 %. Some metab-
olites, such as choline and glycine, were found 
to be signifi cantly upregulated in tumors larger 
than 2 cm [ 20 ]. 

 In another NMR study, a multivariate statisti-
cal model based on 67 urinary metabolites suc-
cessfully identifi ed all the breast cancer patients 
with high specifi city (93 %) [ 21 ]. 

 Breast cancer prognostic factors, such as 
estrogen and progesterone receptor status, could 
be predicted by HR-MAS NMR-based metabolo-
mics on tissue samples [ 22 ]. 

 Metastatic breast cancer patients could be dif-
ferentiated from early-stage patients with 72 % 
prediction accuracy using serum samples 
detected by NMR-based metabolomics [ 14 ]. 

 For identifying breast cancer recurrence, 
a  predictive model built on 11 biomarkers 
detected by combining NMR and two-dimen-
sional gas chromatography mass spectrometry 
(GC/MS) provided 86 % sensitivity and 84 % 
specifi city [ 23 ]. 

 For predicting the response to chemotherapy 
in the neoadjuvant setting, a metabolomic 
approach is used. Four metabolites that were 
identifi ed from NMR and MS methods are well 
correlated with a pathological complete response 
(pCR). A statistical model built based on these 
metabolites predicts pCR with high sensitivity 
and specifi city [ 24 ].  

    Predicting Response 
to Neoadjuvant Chemotherapy 

 Neoadjuvant chemotherapy can signifi cantly 
benefi t breast cancer patients; however, the  varied 
response to such therapy means that a signifi cant 
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proportion of the patient population is subjected 
to ineffective treatment while at the same time 
being exposed to the therapy’s toxicities [ 25 ]. 
Pathological complete response (pCR), which is 
defi ned as the disappearance of the invasive can-
cer cells in the breast after chemotherapy, is used 
to evaluate patient response and is strongly asso-
ciated with improved long-term survival rates 
[ 26 – 28 ]. Unfortunately, less than 30 % of patients 
overall show complete response to neoadjuvant 
chemotherapy [ 29 ]. An ability to predict response 
to chemotherapeutic agents should enable devel-
opment of personalized treatment protocols, 
improving survival rates and reducing unneces-
sary exposure of patients to toxic drugs. 

 Research focused on fi nding useful molecular 
or clinical predictors of pCR to neoadjuvant che-
motherapy in breast cancer is relatively sparse. 
Imaging studies, such as magnetic resonance 
imaging (MRI) [ 30 ] and scintimammography 
[ 31 ,  32 ], were proposed to predict pathological 
responses to neoadjuvant chemotherapy, but they 
are somewhat limited by low sensitivity com-
bined with high costs. 

 High levels of MUC-1 antigen (CA 15.3) in 
pretreatment serum and its fall after chemother-
apy can predict responses as well [ 33 ], but many 
patients do not exhibit elevation of this marker 
before treatment, and hence it is not helpful for 
such patients [ 34 ]. Approaches using genomics 
and immunohistochemistry have been explored 
to fi nd serum and tissue biomarkers [ 26 ,  35 – 37 ]. 
It has been shown that gene signatures such as 
HER2 overexpression/amplifi cation and lack of 
ER expression were associated with pCR and 
certain neoadjuvant chemotherapy regimens 
[ 38 – 40 ]. 

 Other molecular markers such as tumor RNA 
[ 41 ], glucose-regulated protein (GRP78) [ 42 ], 
and hormone receptors [ 18 ,  43 ] have also been 

identifi ed as potential predictors of pCR. However, 
suboptimal performance is a major issue that lim-
its their wide applicability. Circulating tumor 
cells (CTC) have also been established as provid-
ing outcome predictions from particular thera-
pies; however, CTCs can be detected in less than 
30 % of early-stage breast cancer patients, which 
limits their clinical applicability [ 44 ]. 

    Study and Results 

 In this study, a metabolomic approach is used to 
predict the response to chemotherapy in the neo-
adjuvant setting. Serum samples from 28 patients 
obtained before preoperative chemotherapy have 
been studied using a combination of NMR, liquid 
chromatography mass spectrometry (LC-MS), 
and multivariate statistics methods. Four metabo-
lites that were identifi ed from NMR and MS 
methods are well correlated with pCR. A statisti-
cal model built based on these metabolites pre-
dicts pCR with high sensitivity and specifi city. 

 Comparison of the NMR data between differ-
ent groups of patients using the Student’s  t -test 
showed four metabolites to be statistically sig-
nifi cant ( p  < 0.05) (Table  10.1 ). These  p -values 
indicate that levels of three metabolites, isoleu-
cine, threonine, and glutamine, were signifi cantly 
different between pCR and stable disease (SD) 
groups and the levels of two metabolites, threo-
nine and glutamine, were different between PR 
and SD. Only one metabolite, histidine, differed 
signifi cantly between pCR and partial response 
(PR). The LC-MS data showed that the most 
statistically differentiating compounds found 
were long-chain lipids or fatty acids. The most 
interesting of these, linolenic acid, was validated 
using a pure, commercially obtained compound. 
This metabolite separated pCR from SD samples 

   Table 10.1    Summary of NMR metabolites having low  p -values   

 Chemical shift  Multiplicity  Assignment   p -value (pCR vs. SD)   p -value (pCR vs. PR)   p -value (PR vs. SD) 

 4.24  m  Threonine  0.04  0.28  0.30 
 1.00  s  Isoleucine  0.04  0.01  0.02 
 2.09  m  Glutamine  0.01  0.10  0.01 
 7.07  s  Histidine  0.29  0.20  0.54 
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perfectly. Statistical analysis shows linolenic 
acid to be signifi cantly different between pCR 
and SD groups ( p  < 0.01). The concentration dis-
tribution for all the metabolites except histidine 
showed a consistent trend from pCR to PR to SD; 
while threonine, glutamine, and linolenic acid 
increased, isoleucine decreased.

   Further analysis focused on evaluating the 
performance of the metabolites in combination. 
Combining three NMR-derived markers (threo-
nine, glutamine, and isoleucine) with LC-MS 
detected linolenic acid. The model provides 
100 % selectivity and 80 % sensitivity for the 
prediction of pCR vs. SD with an AUROC of 
0.95. 

 The results suggest that metabolites in the 
serum of breast cancer patients are indicators of 
tumor/host metabolism and that they can predict 
both sensitivity and resistance to chemotherapy a 
priori. 

 A prediction model for the outcome of breast 
cancer neoadjuvant chemotherapy based on met-
abolic profi ling studies is presented. It combines 
NMR and LC-MS methods. A combination of 
four metabolites, three detected by NMR: threo-
nine, glutamine, and isoleucine, and one by MS, 
linolenic acid, distinguishes groups of patients 
with no, partial, or complete response. 

 It clearly indicates that several blood-based 
metabolite markers are sensitive to response and 
that the approach is promising for predicting the 
response to chemotherapy. In addition, consider-
ing the strong performance as a biomarker, lino-
lenic acid and possibly other fatty acids might be 
of particular interest for further validation 
studies.   

    Potential Early Diagnosis 

 For breast cancer, screening mammography is 
considered the gold standard for early detection; 
however, the sensitivity of this test is between 54 
and 77 %, depending on the type of mammogra-
phy [ 45 ]. Furthermore, mammography is uncom-
fortable for many patients and exposes them to 
radiation. As a result, many women do not obtain 
yearly mammograms. There is a need to fi nd a 

general screening test for all cancers that would 
ideally be noninvasive and have high sensitivity 
and specifi city. 

 Monitoring of blood or urine for glucose and 
creatinine continues to be an integral part of diag-
nostic tests run today. Although these one- or 
two-component chemical tests provide a quick 
and inexpensive way to monitor health, what dis-
tinguishes metabolomics from clinical chemistry 
is that metabolomics measures tens to hundreds 
and potentially thousands of metabolites at once, 
rather than just one or two. Through urinary mea-
surement, it has the potential to become a general 
screening test because it is convenient, easy to 
obtain, and noninvasive. In this study, metabolo-
mics is applied to study urine from women with 
breast cancer. 

    Study and Results 

 Comparison of 67 metabolite concentrations 
from healthy subjects ( n :62) and subjects with 
breast cancer ( n :38) revealed signifi cant differ-
ences. Application of multivariate statistical data 
analysis (OPLS-DA) to this dataset resulted in 
distinction between individuals with breast can-
cer and those without. Five of the healthy indi-
viduals overlapped with the breast cancer 
category. The model parameters and validation of 
the PLS-DA (multivariate statistical data analy-
sis) suggested a good model. OPLS-DA class 
prediction was performed as for the EOC sub-
jects, on a total of 20 subjects, 10 each of breast 
cancer and healthy. As may be observed, all 
breast cancer and healthy test subjects were cor-
rectly classifi ed [ 21 ]. 

 Analysis of urinary metabolite changes 
revealed that many metabolites decreased in rela-
tive concentration with a cancer phenotype when 
compared with healthy. That the majority of uri-
nary metabolites appeared to decrease in concen-
tration in cancer patients is a similar result to 
what has been seen in colon cancer tissue metab-
olomics. Interestingly, some metabolites that 
were shown to increase in cancer tissue (such as 
some of the amino acids) were lower in the urine 
of cancer patients. Concentrations of many amino 
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acids decrease in cancer patients relative to 
healthy. Decreases in tricarboxylic acid (TCA) 
cycle intermediates are suggestive of a sup-
pressed TCA cycle. In a study of urinary markers 
of colorectal cancer, it was observed that several 
TCA cycle intermediates decrease in those with 
colorectal cancer as compared with those without 
[ 46 ]. The biological reason behind the metabolite 
changes is largely speculative at this point but 
likely involves a shift in energy production, as 
tumors rely primarily on glycolysis as their main 
source of energy. This phenomenon is known as 
the Warburg effect [ 47 ], and decreases in TCA 
cycle intermediates and glucose in the urine 
could be indicative of this phenomenon. Clearly, 
lower glucose concentrations were observed in 
women with ovarian cancer as compared with 
breast cancer. This could be because of the fact 
that more of the women with ovarian cancer were 
in an advanced stage of the disease. Furthermore, 
the use of amino acids by tumors requires the 
upregulation of amino acid transporters, [ 48 ] 
pulling these metabolites from the blood. 
Decreases in circulating glucose and amino acids 
could subsequently result in an overall decrease 
in energy metabolism elsewhere in the body, 
diminishing other metabolic pathways such as 
the urea cycle, resulting in lower concentrations 
of urea and creatine, and potentially affecting gut 
microbial population and/or metabolism. 

 So, it is suggested that a urine test is faster, 
easier to administer, less costly, and noninvasive 
and could be used as a prescreen to other forms of 
more invasive or uncomfortable screening.   

    Prediction of Prognostic Factors 

 There are few predictive and prognostic markers 
in breast cancer, but some specifi c markers are 
routinely being used for treatment planning and 
evaluating prognosis [ 49 ]. Estrogen receptor 
(ER) and progesterone receptor (PgR) status pre-
dict a possible endocrine responsive tumor, 
whereas human epidermal growth factor receptor 
2 (HER-2)-positive tumors may be suitable for 
trastuzumab treatment. ER, PgR, and axillary 
lymph node status, together with tumor size and 

lymphovascular invasion, are important for pre-
dicting the clinical outcome of breast cancer 
patients [ 49 – 51 ]. 

 High-resolution magic angle spinning mag-
netic resonance spectroscopy (HR-MAS MRS) 
can be used to describe the metabolic profi le of 
intact tissue samples. Metabolic profi les have 
been shown to correlate with characteristics of 
several malignant diseases such as breast [ 15 ,  17 , 
 20 ], brain [ 52 ], colon [ 53 ], and cervical cancer 
[ 54 ]. More than 30 metabolites have been 
described by HR-MAS MRS analysis of breast 
cancer tissue [ 20 ]. 

 The study of the metabolic profi le of certain 
cell or tissue types in combination with multi-
variate and analytical statistics is referred to as 
metabolomics. In a study, Bathen et al. showed 
that hormone receptor and axillary lymph node 
status, as well as histological grade, could be pre-
dicted by MR metabolomics [ 17 ]. The study by 
Bathen et al. was, however, performed using 
spectra from a restricted number of patients 
( n :77) and verifi ed on a small amount of blind 
samples ( n :12). 

 The purpose of a recent study [ 22 ] was to fur-
ther explore the potential of MR metabolomics to 
provide clinically useful prognostic factors for 
breast cancer patients. The use of HR-MAS MRS 
and chemometrics as tools for determining prog-
nostic and predictive factors of breast cancer was 
evaluated. Several multivariate classifi cation 
techniques exist, and in this study, partial least 
squares discriminant analysis (PLS-DA), proba-
bilistic neural networks (PNNs), and Bayesian 
belief networks (BBNs) were used. The relation-
ship between the metabolic profi les of breast can-
cer tissue and the status of ER, PgR, and axillary 
lymph nodes was examined, and blind samples 
were predicted for verifi cation. 

    Study and Results 

 ER and PgR status were best predicted by 
PLS-DA (Tables  10.2  and  10.3 ). For ER status, 
the number of correctly classifi ed blind samples 
were 44/50 and 42/50 for Kennard-Stone and 
SPXY sample selection, respectively, while PgR 
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status had a correct blind sample classifi cation of 
39/50 for the Kennard-Stone test set and 36/50 
for SPXY. Similar results for both Kennard-Stone 
and SPXY sample selection indicate robust clas-
sifi cation by PLS-DA. The sensitivity and 
 specifi city of classifi cation were approximately 
equal; this is in contrast to the results of PNN and 
BBN where the sensitivity was higher than the 
specifi city. The higher sensitivity may be due to 
the fact that, especially for ER status, there are 
more positive than negative samples. This could 
lead to networks that are more specialized in 

 recognizing positive than negative samples. Since 
the probability of a sample being positive is much 
higher than the probability of it being negative, 
the network achieves a greater number of total 
correct classifi ed samples by classifying most of 
the samples as positives. In PNNs, this can be 
partly overcome by the customized fi tness func-
tion, allowing the user to insert a penalty when-
ever a negative sample is classifi ed incorrectly. In 
this study, the same penalty was used for both the 
Kennard-Stone and the SPXY training and test 
sets. Although this improved the classifi cation 
ability of the networks compared to networks 
without penalty, the classifi cation error was still 
higher than that achieved by PLS-DA.

    A PLS-DA model of the whole dataset with 
three latent variables (LVs) explains 43.8 % of 
the  X -variance and 42.7 % of the  Y -variance. The 
score values for ER + and ER- samples are sig-
nifi cantly different for all three LVs ( t- test, 
 p  < 0.001), and it is possible to discriminate 
between ER + and ER- samples in a score plot of 
LV1, LV2, and LV3. ER + and ER- samples are 
mainly separated on the fi rst LV that represents 
70 % of the  Y -variance explained by the model, 
and ER- samples have higher score for LV1 than 
ER + samples. The loading profi le for LV1 reveals 
that samples with higher score for LV1 have more 
of the metabolites glycine (Gly), glycerophos-
phocholine (GPC), choline (Cho), and alanine 
(Ala) and less ascorbate (Asc), creatine (Cr), tau-
rine (Tau), and phosphocholine (PC) than sam-
ples with lower LV1 scores. The regression vector 
of the PLS-DA model gives an indication of the 
overall infl uence of the variables based on all 
three LVs. The regression vector of ER- samples 
appears similar to LV1 and shows the same meta-
bolic patterns. In addition, lactate (Lac) appears 
to be more expressed in ER- samples. 

 Axillary lymph node status was best predicted 
by BBN with 34 of 50 blind samples correctly 
classifi ed. However, this was only true for the 
samples chosen by SPXY sample selection, and 
the same number of correctly classifi ed samples 
was not achieved using Kennard-Stone sample 
selection. PLS-DA and BBN gave similar results, 
and overall, all three methods gave unacceptably 
high classifi cation errors. However, the number 

   Table 10.2    Results from prediction of ER status a    

 PLS-DA 
(1 LVs)  BBN  PNN 

  Kennard-stone  
 Correct classifi cation   44/50   39/50  40/50 
 Sensitivity (%)   90   95  82 
 Specifi city (%)   82   18  73 
  SPXY  
 Correct classifi cation  42/50  41/50  42/50 
 Sensitivity (%)  87  97  90 
 Specifi city (%)  73  38  64 

  Correct classifi cation: number of samples in the test set 
predicted to have the correct ER status. Sensitivity: the 
proportion of ER-positive samples correctly classifi ed. 
Specifi city: the proportion of ER-negative samples cor-
rectly classifi ed 
  a The best predictions are emphasized in bold  

   Table 10.3    Results from prediction of PgR status a    

 PLS-DA 
(1 LVs)  BBN  PNN 

  Kennard-Stone  
 Correct classifi cation   39/50   35/50  35/50 
 Sensitivity (%)   81   77  71 
 Specifi city (%)   74   58  68 
  SPXY  
 Correct classifi cation  36/50  36/50  36/49 b  
 Sensitivity (%)  77  84  80 
 Specifi city (%)  63  53  63 

  Correct classifi cation: number of samples in the test set 
predicted to have the correct PgR status. Sensitivity: the 
number of PgR-positive samples correctly classifi ed. 
Specifi city: the number of PgR-negative samples cor-
rectly classifi ed 
  a The best predictions are emphasized in bold 
  b One row not classifi ed  
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of correctly classifi ed samples was better than 
expected by chance for all methods. This indi-
cates that there is a difference between the MR 
spectra of lymph node-positive and lymph node- 
negative patients and that the metabolic profi le is 
altered in patients with lymphatic spread com-
pared to patients without spread. 

 In conclusion, ER and PgR status were suc-
cessfully predicted by MR metabolomics. There 
is also a relationship between metabolic profi le 
and lymph node status, although prediction of 
lymph node status based on MR spectra did not 
reach a reliable level of correctly classifi ed sam-
ples. By combining MR spectroscopy with multi-
variate modeling, the biological differences 
between different metabolic profi les could be 
revealed. Here hormone receptor-negative 
patients appear to have more of the metabolites 
glycine (Gly), glycerophosphocholine (GPC), 
and choline (Cho) than receptor-positive patients. 
The data also indicate different metabolic pro-
fi les between ER status and PgR status. Thus, this 
study has shown that MR profi les contain prog-
nostic information that may be of benefi t in treat-
ment planning and patient follow-up, and MR 
metabolomics may become an important tool for 
clinical decision-making in breast cancer patients.   

    Identifi cation of the Presence 
of Micrometastasis 

 Current approaches, using traditional clinico-
pathological features or gene profi ling, assess 
the primary tumor and estimate the risk of 
recurrence based on the presumption of micro-
metastatic disease. These tools have limitations. 
Consequently, an individual’s risk may be over- 
or underestimated. 

 The 21-gene Oncotype Dx assay was assessed 
in 355 placebo-treated patients from the 
NSABP-B14 trial in node-negative ER-positive 
disease. Ten-year distant recurrence-free survival 
for these patients treated with surgery alone was 
86, 62, and 69 % for low, intermediate, and high 
recurrence scores, respectively [ 1 ]. The 70-gene 
MammaPrint applied to 151 lymph node- negative 
patients, only ten of whom received any adjuvant 

therapy, showed differential 10-year distant 
metastases-free survival between good and poor 
prognosis signatures at 87 and 44 %, respectively 
[ 55 ]. A striking feature of these studies is that 
some individuals, despite apparent high-risk dis-
ease, clearly have excellent long-term outcomes. 
This refl ects heterogeneity of disease, host, and 
risk and highlights overestimation of risk by cur-
rent prognostic tools. 

 An alternative to presuming residual disease is 
actual measurement of micrometastases. Studies 
of micrometastatic disease are intriguing, partic-
ularly those of isolated tumor cells (ITC) in the 
bone marrow and circulating tumor cells (CTC) 
[ 56 – 58 ]. Of particular interest is that not all 
patients with ITC or CTC develop clinically 
detectable metastatic disease. Thus, tumor sur-
vival depends on both favorable tumor and host 
characteristics. Indeed, assessment of this 
dynamic multifactorial interaction is a strength of 
the evolving fi eld of metabolomics. 

 Transformed human cells exhibit profound 
metabolic shifts, particularly refl ecting the 
induction of cell membrane phospholipids bio-
synthesis and breakdown, and preferential use 
of glucose through non-oxidative pathways. 
Metabolomic analyses of patient serum and urine 
samples have been shown to delineate between 
healthy, benign, and malignant conditions. 
Specifi cally with breast cancer, there is cell line 
evidence of metabolomic distinction between 
normal and malignant and, even more specifi -
cally, identifi cation of malignant breast cell lines 
with greater metastatic potential. With breast tis-
sue, metabolomic analyses distinguish normal 
tissue, benign disease, carcinoma in situ, and 
invasive carcinoma. The subsequent challenge 
is to capture the malignant metabolomic signal 
among the complex serum metabolomic fi nger-
print for an individual [ 59 ]. 

 Information on the metabolite pattern altera-
tions that can be signifi cantly associated to the 
pathology is directly obtained through statistical 
analysis of the NMR profi les. A metabolomic fi n-
gerprint may exist for micrometastatic disease. 
More specifi cally, a fi ngerprint may exist which 
identifi es the interaction between host and any 
residual disease. 
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 Metabolomic analyses in breast cancer 
patients with early and metastatic disease have 
been carried out and compared. Prognostic abil-
ity of the fi ngerprint has been explored by com-
parison with 10-year mortality rates determined 
by the current prognostic tool Adjuvantionline. 
The pilot model, developed in 44 early breast 
cancer patients, was then validated in a second 
cohort of 45 early breast cancer patients. 

    Study and Results 

 The appeal of metabolomics is concurrent assess-
ment of tumor and host. Indeed, survival of a spe-
cifi c tumor in a specifi c host relies on a dynamic 
interaction, with evasion of normal host immu-
nity and favorable stromal environment for meta-
static deposits as key factors. In this recent study, 
metastatic subjects were characterized by higher 
values of phenylalanine, glucose, proline, lysine, 
and N-acetyl cysteine and lower values of lipids, 
when compared to the spectra of both post- and 
preoperative patients [ 60 ]. 

 A strength of metabolomics, as compared 
with current prognostic tools, may be confi rma-
tion rather than assumption of micrometastatic 
disease. Results reveal differential metabolomic 
fi ngerprints for most early and metastatic breast 
cancer patients. Among the normal noise of the 
metabolomic fi ngerprint, most patients were dis-
tinguished based on metabolomic analysis of one 
serum sample [ 60 ]. 

 Metabolomic analysis assigns more patients 
to low risk than are assigned by Adjuvantionline. 
Similarly, when compared with conventional 
clinical and pathological factors, prognostic gene 
expression signatures generally identify more 
patients of low risk. The 21-gene Oncotype Dx 
shows direct concordance of 36 % in relapse risk 
stratifi cation compared with an adjusted 
Adjuvantionline [ 61 ]. The 70-gene MammaPrint, 
when compared with Adjuvantionline, had stron-
ger predictive power and provided lower-risk 
estimates for more patients [ 62 ]. These low-risk 
patients may be spared or receive less intensive 
adjuvant treatment. 

 In conclusion, the benefi t of metabolomics is 
the incorporation of both a specifi c tumor profi le 
with metastatic features and a specifi c host pro-
fi le conducive to tumor growth. A preliminary 
exploration in a limited number of patients of a 
potential role for the evolving fi eld of metabolo-
mics in assessment of micrometastatic disease in 
early breast cancer has been presented. Clearly, 
this approach requires refi nement and validation, 
but the distinction identifi ed between early and 
late disease and the prognostic role of the metab-
olomic fi ngerprint provide an exciting platform 
for further work.   

    Early Detection of Recurrence 

 Common methods of routine surveillance for 
recurrent breast cancer include periodic mam-
mography, self- or physician-performed physical 
examination, and blood tests. The performance 
of such tests is lacking and extensive investiga-
tions for surveillance have not proven effective 
[ 63 ]. Often, mammography misses small local 
recurrences or leads to false positives, resulting 
in suboptimal sensitivity and specifi city and 
unnecessary biopsies. In view of the unmet need 
for more sensitive and earlier detection methods, 
the last decade or so has witnessed the develop-
ment of a number of new approaches for detect-
ing recurrent breast cancer and monitoring 
disease progression using blood-based tumor 
markers or genetic profi les. The in vitro diagnos-
tic (IVD) markers include carcinoembryonic 
antigen (CEA), cancer antigen (CA 15–3, CA 
27.29), tissue polypeptide antigen (TPA), and tis-
sue polypeptide specifi c antigen (TPS). Such 
molecular markers are thought to be promising 
since the outcome of the diagnosis based on these 
markers is independent of expertise and experi-
ence of the clinician, and their use potentially 
avoids sampling errors commonly associated 
with conventional pathological tests such as his-
topathology. However, currently, these markers 
lack the desired sensitivity and/or specifi city, and 
often respond late to recurrence, underscoring the 
need for alternative approaches [ 64 ]. 
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 A new approach is to use metabolite profi l-
ing (or metabolomics), which can detect disease 
based on a panel of small molecules derived 
from the global or targeted analysis of meta-
bolic profi les of samples such as blood and urine, 
and this approach is increasingly gaining inter-
est. Metabolite profi ling utilizes high-resolution 
analytical methods such as nuclear magnetic 
resonance (NMR) spectroscopy and mass spec-
troscopy (MS) for the quantitative analysis of 
hundreds of small molecules (less than 1,000 Da) 
present in biological samples. Owing to the com-
plexity of the metabolic profi le, multivariate 
statistical methods are extensively used for data 
analysis. The high sensitivity of metabolite pro-
fi les to even subtle stimuli can provide the means 
to detect the early onset of various biological per-
turbations in real time. Metabolite profi ling has 
applications in a growing number of areas, includ-
ing early disease diagnosis, investigation of met-
abolic pathways, pharmaceutical development, 
toxicology, and nutritional studies. Moreover, the 
ability to link the metabolome, which constitutes 
the downstream products of cellular functions, 
to genotype and phenotype can provide a better 
understanding of complex biological states that 
promises routes to new therapy development. 

 Metabolite profi ling gg methods are applied to 
investigate blood serum metabolites that are sen-
sitive to recurrent breast cancer. We utilize a 
combination of NMR and two-dimensional gas 
chromatography resolved MS (GCxGC-MS) 
methods to build and verify a model for early 
breast cancer recurrence detection based on a set 
of 257 retrospective serial samples. Performance 
of the derived 11-metabolite biomarker model is 
compared with that of the currently used molecu-
lar marker, CA 27.29, in particular, for providing 
a sensitive test for follow-up surveillance of 
treated breast cancer patients. 

 This is the fi rst metabolomic study that com-
bines the information-rich analytical methods of 
NMR and MS to derive a sensitive and specifi c 
model for the early detection of recurrent breast 
cancer. The results indicate that such an approach 
may provide a new window for earlier treatment 
and its benefi ts. 

    Study and Results 

 The development of a metabolomic-based profi le 
for the early detection of breast cancer recurrence 
is presented in a recent study [ 23 ]. The investiga-
tion makes use of a combination of analytical 
techniques, NMR and MS, and advanced statis-
tics to identify a group of metabolites that are 
sensitive to the recurrence of breast cancer. 

 The new method distinguishes recurrence 
from no evidence of disease (NED) patients with 
signifi cantly improved sensitivity compared to 
CA 27.29. Using the predictive model, the recur-
rence in over 55 % of the patients was detected as 
early as 13 months before the recurrence was 
diagnosed based on the conventional methods. 

 Breast cancer recurs in over 20 % of patients 
after treatment. Up to nearly 50 % improvement 
in the relative survival of patients can be achieved 
by detecting at least local recurrence at asymp-
tomatic phase, underscoring the need to develop 
reliable markers indicative of secondary tumor 
cell proliferation [ 65 ]. Currently, a number of 
rapid and noninvasive tests based on circulating 
tumor markers such as carcinoembryonic antigen 
and cancer antigens are commercially available. 
However, the performance of these markers may 
be too poor to be of signifi cant value for improv-
ing early detection because the levels of these 
markers are also elevated in numerous other 
malignant and nonmalignant conditions uncon-
nected with breast cancer. Considering such limi-
tations, the American Society of Clinical 
Oncologists (ASCO) guidelines recommend the 
use of these markers only for monitoring patients 
with metastatic disease during active therapy in 
conjunction with numerous other examinations 
and investigations [ 66 ]. The results presented in a 
recent study [ 23 ] based on the detection of mul-
tiple metabolites in the patients’ blood provide a 
new approach for earlier detection. 

 Although perturbation in the metabolite levels 
were detected for nearly all the 40 metabolites 
that were used in the initial analysis (Table  10.4 ), 
the use of smaller numbers of metabolites pro-
vided improved models. Particularly, the group 
of 11 metabolites (7 from NMR and 4 from GC; 
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Table  10.5 ) contributed signifi cantly to distin-
guishing recurrence from NED. Further, the pre-
dictive model derived from these 11 metabolites 
performed signifi cantly better in terms of both 
sensitivity and specifi city when compared to 
those derived using individual metabolites or a 
group of metabolites derived from a single ana-
lytical method, NMR or MS, alone. Evaluation of 
other models with fewer metabolites indicated 
that they could also provide useful profi les. The 
AUROC for an 8-metabolite profi le (4 detected 
by NMR and 4 by GC-MS) was 0.86, while a 
7-marker model detected by NMR alone had an 
AUROC of 0.80. Nevertheless, the model based 
on 11 metabolites had the best performance and 
clearly outperformed the accepted monitoring 
assay CA 27.29 currently used for monitoring 

patients. These results promise a signifi cant 
improvement for early detection and potentially 
better treatment options for recurring patients.

    A number of studies to date have used NMR 
or MS methods to detect altered metabolic pro-
fi les in different types of malignancy owing to the 
ability of the analytical techniques to analyze a 
large number of metabolites in a single experi-
ment. In particular, several investigations have 
focused on establishing breast cancer biomarkers 
using a metabolomic approach, and numerous 
metabolites including glucose, lactate, lipids, 
choline, and amino acids are shown to correlate 
with breast cancer [ 20 ,  67 ]. A sensitivity of 
100 % and specifi city of 82 % in the classifi ca-
tion of tumor and non-involved tissues was 
achieved from the analysis of NMR data [ 20 ]. 

   Table 10.4    Summary    of clinical and demographic characteristics of the patients used in the Asiago et al. study   

 Clinical diagnosis 

 Control  Recurrence 

 Samples  (Patients)  Samples  (Patients) 

 No evidence of disease (NED)  141  (35) 
 Pre-recurrence (pre)  –  67  (20) 
 Within recurrence (within)  –  18  (18) 
 Post-recurrence (post)  –  31  (20) 
  Age mean (range)   53  (37–75)  55  (36–69) 
  Breast cancer stage  
 Stage I  47  (11)  7  (1) 
 Stage II  53  (16)  21  (5) 
 Stage III  10  (3)  34  (6) 
 Unknown  25  (6)  54  (8) 
  Estrogen receptor status  
 Positive  65  (15)  67  (11) 
 Negative  64  (18)  33  (7) 
 Unknown  12  (3)  16  (2) 
  Progesterone receptor status  
 Positive  52  (13)  71  (11) 
 Negative  77  (20)  29  (7) 
 Unknown  12  (3)  16  (2) 
  CA27.29   140  (36)  92  (19) 
  Site of recurrence  
 Bone  –  37  (6) 
 Breast  –  13  (2) 
 Liver  –  11  (2) 
 Lung  –  10  (2) 
 Skin  –  6  (2) 
 Brain  –  15  (2) 
 Lymph  –  6  (1) 
 Multiple sites  –  18  (3) 
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A majority of these investigations focused on 
either breast cancer tumors or cell lines and all 
used NMR methods alone, except for a recent 
study that utilized a combination of NMR and 
MS methods [ 18 ]. 

 The 11-serum metabolites represent some of 
the changes in metabolic activity of several path-
ways associated with breast cancer, including 
amino acids metabolism (glutamic acid, histi-
dine, proline, and tyrosine), glycolysis (lactate), 
phospholipid metabolism (choline), and fatty acid 
metabolism (nonanedioic acid). Choline is one of 
the most prominent metabolites in cell biology 
and is invariably associated with increased activ-
ity of tumor cell proliferation in breast cancer. 
Increased lactate is one of the early fi ndings of 
metabolic changes reported for breast tumors. 
Similarly, association of a number of amino 
acids, fatty acids, and organic acids with breast 
cancer has been established earlier. Correlation 
of the metabolites with clinical parameters, such 
as the cancer stage and estrogen and progester-
one receptor status, contributes to the extent by 
which the disease can be detected early. Recently, 
a link between tumor metabolites and estrogen 

and progesterone receptor status was shown with 
a prediction accuracy of 88 and 78 %, respec-
tively, indicating the metabolic profi le does vary 
with estrogen and progesterone receptor status of 
the patient [ 22 ]. These results support our obser-
vations and suggest that inclusion of such param-
eters may help advance further development of 
early-detection metabolite profi les. 

 Therefore, the development of a new tool for 
the surveillance of breast cancer recurrence based 
on the metabolic profi ling of blood samples from 
patients obtained serially is recently showed. 

 The performance of the model was optimal 
when metabolites detected by both NMR and MS 
were combined. This multiple metabolite model 
outperforms the current diagnostic methods 
employed for breast cancer patients, including 
the tumor marker CA 27.29, for which compari-
son data on the same samples was available for 
direct comparison. Metabolic profi ling of blood 
serum by NMR and mass spectroscopy can detect 
breast cancer relapse before it occurs, opening a 
window of opportunity for patients and oncolo-
gists to improve treatment.   

    Conclusion and Future Perspective 

 The study of all metabolites produced in the 
body, called metabolomics, which often includes 
fl ora and drug metabolites, is the omics approach 
that can be considered most closely related to a 
patient’s phenotype. Metabolomics has a great 
and largely untapped potential in the fi eld of 
oncology, and the analysis of the cancer metabo-
lome to identify biofl uid markers and novel drug-
gable targets can now be undertaken in many 
research laboratories 

 The cancer metabolome has been used to 
identify and begin to evaluate potential biomark-
ers and therapeutic targets in a variety of malig-
nancies, including breast, prostate, and kidney 
cancer. We discuss the several standard tech-
niques for metabolite separation, identifi cation, 
and usefulness in breast cancer, with their poten-
tial problems and drawbacks. Validation of bio-
markers and targets may entail intensive use of 
labor and technology and generally requires a 

   Table 10.5    Smaller numbers of metabolites provided 
improved models   

 Metabolites 

 Within and 
post vs. NED 
 p -value 

 Pre-recurrence 
vs. NED 
 p -value 

 1. Formate  0.0022  0.2 
 2. Histidine  0.000041  0.18 
 3. Proline  0.018  0.9 
 4. Choline  0.000022  0.77 
 5. Tyrosine  0.25  0.1 
 6. 3-hydroxybutyrate  0.86  0.96 
 7. Lactate  0.96  0.54 
 8. Glutamic acid  0.000018  0.74 
 9. N-acetylglycine  0.01  0.96 
 10. 3-hydroxy-2- 
methyl-butanoic acid 

 0.00004  0.35 

 11. Nonanedioic acid  0.4  0.089 

   p    -values for 11 markers, 7 NMR (numbers 1–7) and 4 
GCxGC-MS markers (numbers 8–11) for different groups 
using all samples; within and post-recurrence vs. NED, 
pre-recurrence vs. NED as determined from the univariate 
Student’s  t -test 
  NED  no evidence of disease,  Within  within recurrence, 
 Post  post-recurrence  
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large number of study participants as well as lab-
oratory validation studies. The fi eld of pharmaco-
metabolomics, in which specifi c therapies are 
chosen on the basis of a patient’s metabolomic 
profi le, has shown some promise in the transla-
tion of metabolomics into the arena of personal-
ized medicine. 

 The relatively new approach to using metab-
olomics has just begun to enter the mainstream 
of cancer diagnostics and therapeutics. As 
this fi eld advances, metabolomics will take its 
 well- deserved place next to genomics, transcrip-
tomics, and proteomics in both clinical and basic 
research in oncology.     
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