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        Introduction 

 Excessive food intake and reduced physical 
activity associated with modern lifestyle have 
led to the dramatic increase in the prevalence of 
obesity [ 1 – 3 ] which is paralleled by an elevated 
incidence of other metabolic disorders including, 
among others, the metabolic syndrome (MetS), 
type 2 diabetes (T2D), cardiovascular diseases 
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    Abstract 

 The ongoing worldwide obesity epidemic is paralleled by an elevated inci-
dence of the metabolic syndrome, a disorder referred to as a clustering of 
metabolic abnormalities that increase the risk for cardiovascular disease 
and type 2 diabetes. Considered as a multifunctional molecule, the pineal 
gland hormone melatonin is also involved in body fat mass and energy 
metabolism regulation. A large body of evidence supports the benefi cial 
effects of melatonin on the cardiovascular function in normal and patho-
physiological conditions. However, melatonin’s role in cardiovascular risk 
factors such as obesity and other related disorders including the metabolic 
syndrome needs further investigations, particularly in humans. This chap-
ter will address the effects of melatonin on the metabolic syndrome focus-
ing on obesity and insulin- resistant conditions. Since cardiovascular 
disease is the primary outcome of the metabolic syndrome, the effects of 
melatonin on cardiovascular function will be also described focusing on 
normal and pathological conditions. In view of the current knowledge, we 
aim to reveal the potential clinical relevance of melatonin or melatonin 
receptor agonists in the setting of obesity-induced metabolic syndrome.  
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(CVD), and some cancers [ 4 – 7 ]. The concept of 
MetS refers to the clustering of common meta-
bolic alterations that increase the risk for CVD 
and T2D [ 8 ]. The most widely recognized MetS 
components include abdominal obesity, insulin 
resistance, raised blood pressure, atherogenic 
dyslipidemia, glucose intolerance, and a proin-
fl ammatory state [ 8 ]. Apart from an increased risk 
for CVD and T2D, additional numerous comor-
bidities have been observed in MetS including 
nonalcoholic fatty liver disease [ 9 ], reproductive 
disorders [ 10 ], obstructive sleep apnea syndrome 
[ 11 ], chronic kidney disease [ 12 ], osteoarthritis 
[ 13 ], periodontal diseases [ 14 ], some cancers [ 7 ], 
sleep/wake disturbances, as well as other circa-
dian alterations [ 15 ,  16 ]. Furthermore, patients 
with MetS were recently indicated to be at high 
risk for neurological disorders such as depression 
and Alzheimer’s disease [ 17 ]. 

 Epidemiological studies have shown that the 
prevalence of MetS continues to rise in most 
developed and developing countries, comprising 
20–30 % of the adult population. Although not all 
obese people have the syndrome, the major driv-
ing force behind MetS prevalence is the actual 
obesity epidemic [ 4 ]. In 2008, more than 1.46 
billion of the global adult population were over-
weight or obese [body mass index (BMI) ≥25 kg/
m 2 ] with more than 500 million among them 
being identifi ed as obese (BMI ≥30 kg/m 2 ) [ 1 ,  3 ], 
and it is predicted that by 2030 up to 58 % of the 
worldwide adult population (3.3 billion) could be 
either overweight or obese [ 18 ]. This alarming 
prevalence is not only a concern among adults, 
overweight and obesity prevalence is also dra-
matically increasing in children. In 2010, 43 mil-
lion children (35 million in developing countries) 
were estimated to be overweight and obese, while 
92 million were at risk of overweight [ 2 ]. 
Therefore, obesity and related metabolic abnor-
malities present serious socioeconomic chal-
lenges for both government and society [ 19 ]. 

 Clinical approaches to treat or prevent obesity- 
induced MetS are still a challenging task. The 
pathophysiological mechanisms involved in the 
progression of obesity to MetS and other associ-
ated comorbidities are complex and not well 
understood. It is well established that genetic 

background, lifestyle behaviors, age, and gender 
contribute signifi cantly in the development of 
obesity as well as MetS [ 20 ]. Several pathophysi-
ological mechanisms associated with increased 
fat accumulation and insulin resistance have been 
proposed: adipose tissue dysfunction, generation 
of lipid metabolites, infl ammation, and cellular 
stress (oxidative and endoplasmic reticulum 
stress) [ 21 – 23 ]. In this regard, the signifi cance of 
elevated oxidative stress in obesity and its poten-
tial role in the development of insulin resistance 
and MetS have largely been studied by many 
workers [ 24 – 28 ]. 

 Patients with MetS were reported to have a 
low serum antioxidant status with a concomitant 
increased levels of infl ammatory markers com-
pared with those without MetS [ 29 ,  30 ]. 
Interestingly, a higher dietary antioxidant intake 
has been shown to be benefi cial in patients with 
MetS by preventing the body weight and abdom-
inal fat gain during a 3-year follow-up [ 31 ]. 
Therefore, although the overall clinical relevance 
of conventional antioxidants (e.g., vitamins C 
and E, beta-carotene, zinc, and selenium) in met-
abolic diseases is still challenging [ 32 ], it appears 
that along with other substantial interventions 
(e.g., sustained lifestyle modifi cation, calorie 
restriction, physical activity), the potential use of 
nonclassical antioxidants for an effective therapy 
to reduce or prevent obesity-related metabolic 
disorders is attracting many investigators. 

 In this chapter we consider the potential thera-
peutic role of melatonin in MetS. Besides its 
powerful antioxidant activities [ 33 ], melatonin 
has been shown to play an important role in met-
abolic regulation [ 34 ,  35 ]. Membrane melatonin 
receptors (MT1 and MT2) have been identifi ed in 
the central and peripheral organs/tissues involved 
in the regulation of energy metabolism (e.g., 
hypothalamus, adipose tissue, pancreas, liver, 
skeletal muscle, heart, vessels, kidney) [ 36 ,  37 ]. 
It is well known that MetS features (e.g., obesity, 
insulin resistance, dyslipidemia, and hyperten-
sion) are more prevalent in the elderly [ 38 ,  39 ] 
where melatonin production levels decrease [ 40 ]. 
In addition to this, a positive association between 
melatonin suppression, sleep deprivation, and 
circadian rhythms system alteration has recently 
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been described in obesity and MetS [ 15 ]. As con-
sequence, the potential clinical use of either mel-
atonin or its analogs in several pathological 
conditions appears exciting, and it is being used 
in aging and several metabolic diseases [ 41 ,  42 ]. 

 We aim to review the current literature on the 
effects of melatonin and other melatonergic drugs 
in obesity and insulin-resistant conditions and the 
potential mechanisms underlying these effects. 
To better understand the overall activities of mel-
atonin, the recent view of melatonin as a multi-
functional molecule is summarized. Since CVD 
are the primary clinical outcome of the MetS, the 
effects of melatonin on cardiovascular function 
are also addressed. Because of space limitations, 
the description of obesity-associated oxidative 
stress, infl ammation, and eventual antioxidant 
interventions as well as the role of melatonin in 
other features of MetS such as nonalcoholic fatty 
liver disease is not included.  

    Melatonin: A Multifunctional Molecule 

 Melatonin or 5-methoxy-N-acetyltryptamine is 
the neurohormone mainly produced by the pineal 
gland upon the activation of the suprachiasmatic 
nucleus (SNC) of the hypothalamus during the 
night (for details on biosynthesis and metabolism 
of melatonin, see [ 43 ]). It is a highly conserved 
indolamine found in almost all organisms includ-
ing bacteria, algae, plants, fungi, insects, nema-
todes, and vertebrates including mammals [ 44 ]. 
In humans, the normal circulating melatonin lev-
els vary between 1–10 pM and 43–400 pM, dur-
ing the day and the night, respectively [ 45 ,  46 ]. 
The use of high doses of melatonin as frequently 
found in in vitro (1 μM–100 mM) or in vivo 
(1–300 mg/day) studies has been supported as a 
requirement to obtain therapeutic effects in some 
conditions [ 45 ,  47 ,  48 ]. 

 Viewed as multifunctional molecule [ 49 ], 
melatonin is a small compound able to cross all 
morphological barriers and acts within every 
subcellular compartment due to its highly lipo-
philic and hydrophilic properties [ 47 ]. Since its 
isolation by Lerner et al. [ 50 ], apart from its 
 classical role as a chronobiotic or endogenous 

synchronizer participating in the regulation of 
seasonal as well as circadian rhythm along with 
its sleep-inducing effects [ 43 ], melatonin has 
been shown to play a role in all most physiologi-
cal functions in animals and humans [ 41 ,  49 ]. 
Indeed, melatonin has anti-excitatory, antioxi-
dant, immunomodulatory, anti-infl ammatory, 
oncostatic, and vasomotor properties [ 49 ,  51 , 
 52 ]. However, besides its universal availability 
and, presumably, its presence in our daily food 
consumption [ 53 ], its potential benefi cial effects 
and their underlying mechanisms are still vast 
and not fully explored [ 54 ]. 

 Melatonin has powerful antioxidant properties 
with strong cytoprotective activities [ 33 ,  55 ]. It 
has been proved to be more effective than other 
classical antioxidants [ 56 ,  57 ] due to its multiple 
free radical scavenger cascades and its ability to 
stimulate the natural antioxidant capacity [ 58 ]. In 
addition to this, its metabolites have also free 
radical scavenging activities, and, moreover, 
melatonin does not have a pro-oxidant action [ 33 , 
 59 ]. Recently, the effi cacy of melatonin to 
improve oxidative stress-mediated metabolic dis-
orders via its gene regulation has been shown to 
be linked to epigenetic mechanisms [ 60 ]. 

 Besides its pineal production, melatonin is 
also secreted by wide variety of tissues including 
retina, thymus, spleen, heart, muscle, liver, stom-
ach, intestine, placenta, testis, cerebral cortex, and 
striatum [ 47 ,  61 – 63 ]. Melatonin content in these 
tissues varies and decreases with age to a similar 
extent as the pineal melatonin production [ 61 ,  63 ]. 
Commonly, nocturnal melatonin production as 
shown by its circulating levels as well as its pri-
mary urinary metabolite, 6- sulfatoxymelatonin 
(aMT6s), is lowered in various pathologies char-
acterized by increased oxidative stress such as 
neurological disorders, CVD, and T2D as well 
as obstructive sleep apnea syndrome [ 41 ,  64 ]. 
Importantly, circulating melatonin levels can be 
infl uenced by the diet [ 65 ,  66 ]. Melatonin was 
recently identifi ed in common ingredients of the 
traditional Mediterranean diet [ 67 ] which has been 
reported to be effi cient in improving MetS features 
such as waist circumference, the levels of triglyc-
erides (TGs), high-density lipoprotein (HDL)-
cholesterol (HDL-c), and blood pressure (BP) as 
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well as glucose metabolism [ 68 ]. Interestingly, 
along with resveratrol, the minute amounts of 
melatonin present in red wine protect the heart 
against myocardial ischemia/reperfusion damage 
[ 69 ], indicating its therapeutic potential in CVD.  

    Melatonin and Cardiovascular 
Function 

    The Link Between Cardiovascular 
Function and Melatonin 

 The link between cardiovascular function and 
melatonin as well as the infl uence of endogenous 
melatonin on the cardiovascular function is well 
established [ 70 ]. Diurnal variations can be seen 
in BP, heart rate, cardiac output, and endothelial 
dilatory capacity of peripheral and coronary 
arteries, sympathetic activity, cardiac electrical 
stability, and platelet aggregation [ 70 ,  71 ]. In 
pathological conditions, adverse cardiovascular 
events including myocardial infarction [ 72 ], sud-
den cardiac death [ 73 ], and arrhythmias [ 74 ] 
have also been linked to the circadian rhythm in 
humans, having a higher incidence in the early 
morning hours, where circulating melatonin lev-
els are considerably low [ 75 ]. 

 The most important evidence linking melatonin 
to the cardiovascular function was the identifi ca-
tion of membrane MT1 and MT2 receptors along 
with other intracellular binding sites such as the 
cytosolic quinone reductase 2 enzyme [also called 
the putative melatonin receptor 3 (QR2/MT3) and 
melatonin nuclear receptors (e.g., retinoic acid 
subfamily of orphan receptors (RORx)] in the 
heart and the arteries [ 76 – 78 ]. These receptors 
offer possibilities for melatonin signaling to inter-
act with the cardiovascular function. Melatonin 
may indirectly affect cardiovascular function via 
MT receptors in the SCN which is known to mod-
ulate the cardiovascular function via multisynaptic 
autonomic neurons [ 79 ]. Melatonin may also 
infl uence the cardiovascular physiology via its 
direct actions on the peripheral intrinsic circadian 
clocks identifi ed in both cardiomyocytes [ 78 ,  80 ] 

and vessels [ 81 ]. More surprisingly, melatonin has 
been shown to be also secreted within the heart 
[ 61 ,  63 ]. However, the exact role for this cardiac 
melatonin remains unknown.  

    Effects of Melatonin on the Heart 

 Animal studies showed that prolonged melatonin 
consumption under normal conditions affects car-
diac metabolism, reduces the absolute and relative 
heart weights [ 82 ,  83 ], and increases its glycogen 
content [ 84 ] with no effects on heart function in 
vivo [ 85 ] and ex vivo [ 82 ]. Similarly, in healthy 
male volunteers, administration of 3 mg of mela-
tonin had no effect on their heart rate [ 86 ]. 

 Although raising circulating melatonin con-
centration by administration of exogenous mela-
tonin does not appear to be harmful to the heart, 
the presence of very low circulating concentra-
tions (as occurring during daytime) is essential 
and pinealectomy has profound effects on the 
heart. Surgical removal of pineal gland followed 
by 2 months of stabilization caused increase in 
serum cholesterol and cardiac malondialdehyde 
(MDA) levels as well as the heart weight. Other 
morphological changes such as increased myo-
cardial fi brosis, myxomatous degeneration of the 
valves, and thickening of left atrial endocardium 
were also observed in the hearts isolated from 
these pinealectomized rats [ 87 ]. Importantly, 
despite failure to improve morphological altera-
tions (presumably due to the short treatment 
time), melatonin administration (4 mg/kg/day) 
for 2 days reversed the changes in circulating 
cholesterol and cardiac MDA levels [ 87 ]. 

 In pathological conditions, patients with coro-
nary heart disease have impaired nocturnal mela-
tonin secretion [ 75 ,  88 ] and subjects with 
myocardial infarction were reported to have 
reduced circulating melatonin levels [ 72 ]. 
Concordantly, a signifi cant association between 
single nucleotide polymorphisms (SNPs) 
(rs28383653) of melatonin receptor type 1A 
(MT1A) and coronary artery disease has been 
demonstrated in a recent case–control study [ 89 ]. 
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In a cohort of survivors of acute myocardial 
infarction, reduction of circulating melatonin 
was also associated with greater adverse remod-
eling [ 90 ]. As a consequence, reduced serum 
melatonin concentrations measured at admission 
were considered as an independent predictor of 
left ventricular remodeling [ 90 ]. Importantly, in a 
double-blind randomized clinical trial, melatonin 
supplementation (3 mg/day for 2 months) was 
able to improve left ventricular ejection fraction 
in patients with heart failure [ 91 ].  

    Melatonin and Experimental 
Myocardial Infarction 

 In view of the above, it is expected that melatonin 
treatment could play a clinically relevant role in 
the pharmacotherapy of ischemic heart disease. 
The role of oxidative stress and excessive free 
radical production in the pathogenesis of myocar-
dial infarction as well as experimental ischemia/
reperfusion damage is well established [ 92 ]. The 
ability of melatonin to attenuate ischemia/reper-
fusion damage in rodent hearts has been demon-
strated in isolated hearts (in vitro) [ 69 ,  93 – 96 ], 
isolated cardiomyocytes [ 97 ], as well as in situ 
heart (in vivo) [ 98 – 100 ]. These benefi cial actions 
were undiscovered by the observations that hearts 
from pinealectomized animals exhibited a bigger 
post-ischemic myocardial infarction compared to 
those from non- pinealectomized rats [ 101 ]. 
Melatonin was able to attenuate ventricular fi bril-
lation and reduce infarct size and mortality rate of 
the pinealectomized rats [ 101 ]. Additional inves-
tigations in our own laboratory have shown that 
long-term effects of melatonin evaluated 1 day 
after melatonin administration (2.5 or 5.0 mg/kg, 
i.p.) or after oral administration for 7 days (20 or 
40 μg/ml) were also cardioprotective, and this car-
dioprotection persisted for 2–4 days after with-
drawal of treatment [ 102 ]. Finally, melatonin at 
either physiological or pharmacological doses, 
given before or after ischemia period, was able to 
protect the heart against myocardial ischemia/
reperfusion damage (for review, see [ 103 ]).  

    Mechanism of Melatonin-Induced 
Cardioprotection 

 The mechanism underlying the benefi cial effects 
of melatonin on the ischemic heart is complex 
and not yet fully explored. Several investigations 
agreed that melatonin protects the heart against 
ischemia/reperfusion injury directly via its anti-
oxidant properties and indirectly via its free radi-
cal scavenging actions and stimulatory effects on 
antioxidant capacity activities, respectively [ 85 , 
 104 ]. Other melatonin’s effects such as anti-
adrenergic, anti-infl ammatory, and anti- excitatory 
[ 85 ,  105 ,  106 ] as well as the MT receptors may 
also be involved [ 102 ,  106 ,  107 ]. 

 Although it was reported that patients with 
myocardial infarction have reduced circulating 
melatonin levels [ 72 ], experimental myocardial 
infarction was shown to increase circulating mela-
tonin levels, followed by enhancement of MT 
receptors expression [ 107 ]. The observation that 
luzindole, a melatonin receptor antagonist, was 
able to suppress the cardioprotection induced by 
melatonin [ 102 ] stressed the importance of these 
receptors in cardioprotection. These events may 
affect the probability of the opening of mitochon-
drial permeability transition pore (MPTP): 
Petrosillo and co-workers [ 108 ] reported that mel-
atonin protected the hearts against reperfusion 
injury by inhibiting the opening of the MPTP 
probably via prevention of cardiolipin peroxida-
tion. Downstream signaling events include activa-
tion of the reperfusion injury salvage kinase 
(RISK) pathway (PI-3K, PKB/AKT, ERK1/2) and 
the protective survivor activating factor enhance-
ment (SAFE) pathway (JAK/STAT-3) [ 103 ]. 

 Additional studies have documented the bene-
fi cial effects of exogenous melatonin on the heart 
in physiological conditions such as aging [ 109 ] 
and in other pathophysiological conditions such 
as hyperthyroidism [ 110 ], cadmium-induced oxi-
dative damage [ 111 ], and myocardial hypertrophy 
[ 112 ]. However, more investigations using mela-
tonin agonists are warranted. To the best of our 
knowledge, only one study investigated a melato-
nin agonist on myocardial ischemia/reperfusion 
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injury in mice: the melatonin receptor agonist 
8-methoxy-2- propionamidotetralin which has no 
antioxidant activity was not found to be cardio-
protective [ 113 ].   

    Melatonin and the Blood Vessels 

    Melatonin and Blood Pressure 

 Hypertension is more frequent in overweight or 
obese than in lean subjects [ 114 ,  115 ]. Melatonin’s 
ability to modulate and regulate BP and its poten-
tial therapeutic use in patients with hypertension 
have been a subject of interest for many investi-
gators for several years [ 104 ,  116 – 119 ]. Early 
animal studies showed that pinealectomy caused 
a gradual and sustained elevation in arterial BP 
[ 120 ,  121 ], while chronic melatonin administra-
tion was able to reverse hypertension in the pine-
alectomized animals [ 122 ]. Additional animal 
investigations using spontaneously hypertensive 
rats confi rmed this BP reduction following mela-
tonin supplementation [ 104 ,  119 ]. Furthermore, 
the BP lowering effect of melatonin was demon-
strated in healthy [ 119 ] as well as in hypertensive 
individuals [ 123 ]. A double-blind controlled clin-
ical trial found that the bedtime melatonin (5 mg/
day) ingestion for 4 weeks effectively reduced 
the BP in normotensive young subjects [ 124 ]. 
Acute oral melatonin (1–3 mg) was able to reduce 
BP of healthy male volunteers [ 86 ,  125 ] with a 
concomitant reduction of the aortic pulse wave 
velocity (PWV) which is considered as an impor-
tant indicator of total cardiovascular risk estima-
tion [ 125 ]. The PWV negatively correlated with 
diurnal levels of melatonin in young healthy men 
and women [ 126 ]. Importantly, low nocturnal 
melatonin production was suggested to be an 
independent pathophysiologic risk factor in the 
development of hypertension among young 
women [ 127 ]. A decrease in nocturnal melatonin 
levels indicating impairment of pineal melatonin 
secretion has consistently been observed in non- 
dipper hypertensive patients [ 128 ,  129 ]. 

 In view of the above observations, melatonin 
supplementation is currently considered as a 
potential pharmacological agent in non-dippers or 
individuals with nocturnal hypertension and 
hypertensive heart disease [ 104 ]. Melatonin could 

also be administered in the elderly in order to 
attenuate the development of hypertension [ 130 ]. 
A recent meta-analysis of randomized controlled 
trials by Grossman et al. [ 117 ] indicated that mela-
tonin administration (at 2–3 mg, controlled- release 
preparation, but not 5 mg, fast release) was effec-
tive to reduce nocturnal systolic and diastolic BP 
in patients with nocturnal hypertension. However, 
in patients with coronary artery disease, caution 
must be taken to monitor the circadian BP profi le, 
before and during melatonin treatment, because of 
the danger of induction of arterial hypertension 
during daytime, hereby indicating a contraindica-
tion for melatonin in patients with “high normal” 
BP values [ 118 ]. The role of melatonin in the 
pathogenesis of hypertension has recently been 
demonstrated in MetS subjects [ 48 ,  131 – 133 ]. 
This is described in the section of obesity.  

    Mechanisms of BP Regulation 
by Melatonin 

 Unfortunately, early studies aimed at determining 
the effects of melatonin on vascular reactivity 
yielded controversial results [ 119 ]. In addition, 
involvement of intracellular signaling pathways 
further complicated matters. Melatonin causes a 
receptor-mediated reduction in cAMP and 
phosphatidylinositol- 4,5-biphosphate (PIP2) 
hydrolysis, leading to vasoconstriction [ 134 ,  135 ]. 
However, improved nitric oxide (NO) signaling 
via enhancement of NOS activity and cGMP lev-
els also appears to play an important role in mela-
tonin-induced vasodilation [ 136 ,  137 ]. 

 Other factors independent of NO pathway are 
also involved: for a 6-week treatment, only mela-
tonin (10 mg/kg/day) but not antioxidant 
N-acetylcysteine (1.5 g/kg/day) was able to 
reduce the blood pressure of adult spontaneously 
hypertensive rats [ 138 ]. These results demon-
strated thereby a possible involvement of addi-
tional mechanisms. This was later confi rmed in 
renovascular hypertensive rats where hyperten-
sion caused a signifi cant decrease in tissue anti-
oxidant capacity and Na + , K + -ATPase activities, 
while MDA levels and myeloperoxidase (MPO) 
activity were increased [ 139 ]. In these rats, early 
or late administration of melatonin (10 mg/kg/
day/i.p. for 9 or 6 weeks) not only lowered blood 
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pressure but also improved the left ventricular 
function as well as the hypertensive profi le by 
alleviating oxidative injury and increasing anti-
oxidant capacity [ 139 ]. From these fi ndings, it 
appears that melatonin might exhibit these effects 
presumably via both its direct antioxidant and 
receptor-mediated activities. 

 The overall regulation and modulation of BP is 
a complex mechanism with multifactorial aspects 
involving sympathetic neural mechanisms and 
central and peripheral nonneural factors including 
vasoactive substances and hormones. In this 
regard, while the role of endogenous melatonin on 
the BP is being recognized, the implication of 
neural vasomotor and alteration in renin-angio-
tensin-aldosterone system (RAAS) in the effects 
of melatonin reversing pinealectomy-induced 
hypertension is still hypothetic [ 140 ]. The poten-
tial antagonistic activities of angiotensin and mel-
atonin in cardiovascular and metabolic diseases 
have been recently supported [ 141 ]. 

 Furthermore, exogenous melatonin has been 
shown to differently affect the blood fl ow in 
humans depending on the vascular bed type or 
region [ 116 ]. For example, in healthy men and 
women, melatonin administration (3 mg) caused 
a reduction in renal blood fl ow and an increase in 
forearm blood fl ow with no effect on the cerebral 
blood fl ow [ 116 ,  142 ]. Consistently, this lack of 
effect on hemodynamic parameters (arterial and 
cerebral blood fl ows) was also reported in healthy 
men after acute melatonin premedication 
(0.2 mg/kg), suggesting that melatonin premedi-
cation may be safe under clinical conditions, 
such as postural changes, hemorrhage, and other 
operative stimuli in which arterial pressure 
decreases temporally [ 143 ]. 

 Studies have also shown that these vascular 
effects could also differ depending on the type of 
experimental conditions. For example, in vitro mel-
atonin caused vasoconstriction in porcine isolated 
coronary arteries [ 144 ], while in vivo intracoronary 
infusion of melatonin (70 pg/ml/min of coronary 
blood fl ow) in anesthetized pigs increased coronary 
blood fl ow and cardiac function through the beta-
adrenoreceptors and NO pathways [ 137 ]. Similarly, 
intravenous infusion of melatonin (0.5 μg/kg/min) 
caused vasodilation in the umbilical vascular bed in 
pregnant sheep [ 145 ]. These controversial observa-
tions could be due to differences between the 

expression of MT1 and MT2 receptors in some vas-
cular regions with eventual vasoconstriction for 
MT1 [ 144 ], vasodilation for MT2 [ 137 ], and 
involvement of the autonomic nervous system in in 
vivo experiments [ 137 ]. 

 Although few clinical investigations on small 
number of patients have been done so far [ 123 ] 
and despite the controversies reported in experi-
mental data, melatonin appears to be a suitable 
candidate for effective treatment for CVD and 
hypertension, in particular. It is well known that 
obesity increases the risk for the development of 
cardiovascular disorders [ 114 ]. These have been 
linked to derangement of melatonin’s circadian 
rhythm [ 70 – 75 ,  140 ]. As a consequence, the 
eventual role of melatonin in obesity and other 
cardiovascular risk factors is currently receiving 
much attention.   

    Melatonin and Obesity 

    Obesity, Circadian Rhythm, 
and Melatonin 

 Convincing evidence supports a link between the 
development of obesity (increased body fat accu-
mulation) and a disrupted circadian system [ 15 , 
 16 ,  146 ,  147 ]. Epidemiological and experimental 
studies have shown that the alteration of the cir-
cadian rhythm in obesity as shown by the 
decrease of the amplitude of daily pineal melato-
nin rhythm in shift workers [ 148 ], T2D patients 
[ 149 ], as well as in rats fed with a high-fat diet 
[ 150 ] is accompanied by alterations of other cir-
culating metabolic factors including, among oth-
ers, glucose, insulin, leptin, corticosterone, 
thyroid-stimulating hormone, prolactin, luteiniz-
ing hormone, and testosterone [ 148 ,  150 ]. 
Although the causal relationship between chro-
nodisruption and obesity can be somehow con-
sidered as bidirectional [ 146 ], the supplementation 
of melatonin as well as melatonin agonists has 
been benefi cial in resetting the circadian rhythm 
[ 43 ] and improving the obesity-related abnormal-
ities [ 41 ,  151 – 153 ]. In addition to this, obesity 
was found to be associated with various comor-
bidities including sleep disorders, and melatonin 
or melatonergic drugs have been proved to be 
effective in treating sleep disorders [ 151 ].  
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    Animal Studies 

    Body Weight and Fat Mass Regulation 
 Melatonin may play an important role in body 
weight regulation and energy metabolism. The 
involvement of melatonin in the regulation of 
body fat mass and energy metabolism was fi rst 
observed in seasonal animals [ 154 ] and attributed 
to its role as regulator of seasonal and circadian 
rhythms [ 155 ]. In these seasonal animals, any 
increase in circulating melatonin levels due to 
photoperiodic changes or exogenous melatonin 
administration, depending on the animal species, 
was eventually associated with a reduction or an 
increase in body fat mass [ 154 ,  156 ]. Interestingly, 
nonseasonal animals like the obese Zucker rats 
exposed to long photoperiod conditions (charac-
terized by a low nocturnal melatonin production) 
had an increased body mass gain compared to 
those exposed to short photoperiods [ 157 ]. In line 
with this, surgical removal of the pineal gland 
caused a reduction in circulating melatonin levels 
and an increase in body weight after 3 weeks in 
obese but not in normal rats [ 158 ]. When the 

postoperative period was extended to 2 months, 
the normal rats had also increased their body and 
heart weight [ 159 ]. These pinealectomy-induced 
changes could be prevented by melatonin (30 mg/
kg/day, i.p. at 1 h before lights-out) for 3 weeks 
[ 158 ]. The same workers also showed that mela-
tonin administered in the same manner was able 
to reduce high-fat-diet-induced body weight gain 
without affecting the total food intake [ 158 ]. In 
young normal rats a decrease in body weight and 
visceral fat mass was also noticed following 3 or 
6 months of prolonged melatonin consumption in 
drinking water (4 μg/ml) [ 84 ,  160 ]. Similar 
effects have also been reported in normal middle- 
aged rats [ 161 ,  162 ] without altering food con-
sumption [ 163 ]. These metabolic effects were 
independent of gonadal function [ 164 ]. 

 Several animal investigations have consis-
tently demonstrated the effi cacy for melatonin to 
prevent the development of obesity or reduce 
obesity-related metabolic features [ 46 ,  82 ,  152 , 
 158 ,  165 – 168 ] (see Fig.  6.1a ), and the potential 
therapeutic value of melatonin treatment in obe-
sity and MetS has recently been summarized 

  Fig. 6.1    ( a ) Obesity   -induced metabolic abnormalities 
without melatonin treatment and ( b ) potential metabolic 
effects of melatonin in obesity and insulin resistance. 
Obesity induces systemic metabolic abnormalities associ-
ated with adipose tissue dysfunction and insulin resis-
tance. Melatonin treatment reduces body weight and 
visceral fat gain of obese subjects. The overall melato-
nin’s effect in obesity is a combination of direct effects in 
peripheral organs involved in metabolism and indirect 
effects via systemic regulation. Melatonin reduces dyslip-
idemia, hyperglycemia, hyperinsulinemia, hyperlepti-
nemia, oxidative stress, and infl ammatory markers and 
increases adiponectinemia and antioxidants status. It 
increases insulin sensitivity in peripheral organs including 
liver, skeletal muscle, heart, vessels, and adipose tissue. 
Melatonin may affect indirectly the cardiovascular func-
tion (heart and vessels) via its effects on central nervous 
system reducing sympathetic activities. Melatonin may 
also affect indirectly the adipose tissue function and plas-
ticity via sympathetic effects. The adipose tissue in turn 

may infl uence other peripheral organs via its secreted hor-
mones (adipokines) such as adiponectin which has cardio-
vascular protective activities behind its insulin sensitizing 
properties. The overall effects will lead to body weight 
reduction and insulin sensitivity in peripheral organs and 
the improvement of cardiovascular functions. ?, no avail-
able data in obesity/MetS; ↓ or ↑, decrease or increase; 
solid lines ( arrow ), indirect systemic effects (from adi-
pose tissue and other secretory organs, e.g., liver, pan-
creas); square dots ( arrow) , indirect sympathetic effects; 
 BW  body weight,  MEL  melatonin,  IR  insulin resistance, 
 FFA  free fatty acids,  FA  fatty acids,  TG  triglycerides, 
 LDL-c  low-density lipoprotein cholesterol,  HDL-c  high-
density lipoprotein cholesterol,  VLDL  very low- density 
lipoprotein,  TNF-α  tumor necrosis factor alpha,  IL-6  
interleukin-6,  NO  nitric oxide,  MI  myocardial infarction, 
 CHD  coronary heart disease,  ApoA-I,A-II  apolipoprotein 
A-I and A-II,  CRP  C-reactive protein,  HbA1c  hemoglobin 
A1c,  LPO  lipid peroxidation,  TBARS  thiobarbituric acid 
reactive substances       
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[ 169 ]. It was shown that long-term melatonin 
administration signifi cantly reduced body weight 
and visceral fat mass as well as circulating glu-
cose, insulin, leptin, TG, free fatty acid (FFA), 
and total cholesterol levels in young Zucker dia-
betic fatty (ZDF) rats [ 165 ,  170 ], in middle-aged 
rats fed with a high-fat diet [ 166 ,  171 ], in young 
rats with high-fat/high-sucrose diet [ 152 ], as well 
as rats drinking 10 % fructose solution [ 48 ]. In 
these studies, daily melatonin was administered 
in drinking water at 0.2–4 μg/ml [ 172 ] and 25 μg/
ml [ 48 ,  166 ] or via intraperitoneal injection at 
4 mg/kg [ 152 ] for a period of 8–12 weeks and did 
not affect the total food intake. A study in rabbits 
fed with a high-fat diet has however reported a 
reduction in food intake after 4 weeks of melato-
nin treatment (1 mg/kg/day subcutaneously at 
2–3 h before lights-off) [ 167 ]. This weight-loss-
inducing effect of melatonin was also confi rmed 
in other animal models of obesity, for example, a 
rat model of ovariectomized- induced obesity 
[ 172 ,  173 ] and female rats treated with olanzap-
ine [ 174 ].

       Obesity-Induced Dyslipidemia 
 Melatonin has been shown to improve obesity- 
induced dyslipidemia. This was fi rst documented 
in nonobese hypercholesterolemic rats [ 175 ,  176 ] 
and thereafter confi rmed in various rat models of 
obesity [ 82 ,  158 ,  165 ,  169 ,  177 ]. For example, 
oral melatonin (4–10 mg/kg/day for 6–12 weeks) 
raised the HDL-c in both obese and lean Zucker 
rats [ 165 ] or in high-fat-/high-sucrose-diet- 
induced obese rats [ 152 ]. This has also been con-
fi rmed in obese rabbits [ 167 ], associated with a 
concomitant reduction in circulating TGs, FFA, 
and low-density lipoprotein cholesterol (LDL-
c) with [ 152 ,  167 ] or without [ 165 ,  166 ] effect 
on total cholesterol levels. Similar results were 
recently confi rmed in ApoE knockout C57BL/6 J 
male mice fed with a high-fat diet [ 177 ] and in rats 
fed with a high-fructose diet for 4 weeks [ 178 ]. 
Although the latter model did not gain weight, 
2 weeks of coadministration of oral melatonin 
(10 mg/kg/day) reduced the intra- abdominal fat 
mass and circulating FFA levels as well as hepatic 
TG and cholesterol contents [ 178 ]. These studies 
strongly support the  suggestion that  melatonin 

supplement may ameliorate overweight and lipid 
metabolism in humans.  

    Obesity-Induced Low 
Antioxidant Status 
 Obesity is associated with elevated oxidative stress 
and low antioxidant status [ 179 ,  180 ]. The antioxi-
dant as well as anti-infl ammatory activities of 
melatonin have been well established [ 33 ,  60 ]. 
Daily melatonin administration to obese rabbits 
(1 mg/kg subcutaneously for 4 weeks) [ 167 ] or 
rats (4 mg/kg i.p. for 8 weeks) [ 152 ] increased the 
HDL-c levels, glutathione peroxidase (GSH-Px), 
and superoxide dismutase (SOD) activities and 
reduced oxidative stress as indicated by low 
plasma MDA levels. Furthermore, in young obese 
ZDF rats, chronic oral melatonin administration 
(10 mg/kg/day) for 6 weeks attenuated circulating 
biomarkers of systemic oxidative stress (basal 
plasma lipid peroxidation and Fe2+/H 2 O 2 -induced 
lipid oxidation) and low- grade infl ammation 
[plasma interleukin 6 (IL-6), tumor necrosis 
factor-α (TNF-α), and C-reactive protein (CRP) 
values] without affecting their profi le in non-obese 
animals [ 181 ]. It is well established that low-grade 
chronic infl ammation contributes to the pathogen-
esis of insulin resistance and diabetes as well as 
cardiovascular complications [ 182 ]. The antioxi-
dant properties of melatonin have been reported 
along with the improvement of metabolic profi le 
in diabetes [ 165 ,  181 ,  183 ] and diet-induced obe-
sity [ 152 ,  167 ]. However, whether the improve-
ment of insulin resistance by melatonin precedes 
or follows its suppressive effects on oxidative 
stress and infl ammation is still not yet known.  

    Cardiovascular Effects 
of Melatonin in Obesity 
 Melatonin supplementation was able to improve 
cardiovascular function in obesity. A decrease in 
melatonin secretion was associated with hyper-
tension in fructose-fed rats [ 131 ]. Administration 
of melatonin to these fructose-induced MetS rats 
reduced the BP rise and other metabolic abnor-
malities [ 48 ,  131 ]. Similarly, in animals receiving 
a high-fat diet, intake of melatonin was associ-
ated with a lowering of BP, heart rate, and sciatic 
nerve activity [ 167 ]. Melatonin prevented the 
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appearance of fatty streaks produced by a mass of 
foam cells covered by the endothelium and a thin 
layer of mononucleated cells in the carotid artery 
intima of hypercholesterolemic rats [ 184 ]. It was 
also able to prevent deposition of fat in the liver 
and subintimal lipid in the blood vessels, kidney, 
and heart [ 167 ], indicating melatonin’s potential 
anti-atherosclerotic activities. In spontaneously 
hypertensive Wistar-Kyoto male rats, chronic 
(but not acute) administration of the selective 
melatonin receptor agonist, ramelteon, in drink-
ing water (8 mg/kg/day, from 4 to 12 weeks of 
age) attenuated the age-associated increase of 
systolic BP by 45 % [ 153 ]. 

 We recently showed that long-term oral mela-
tonin consumption (4 mg/kg/day for 16 weeks) 
starting before the establishment of obesity pre-
vented the increase in the heart weight and pro-
tected the hearts against obesity-induced 
increased susceptibility to myocardial ischemia/
reperfusion damage [ 82 ]. We also found that mel-
atonin treatment prevented the development of 
obesity-induced metabolic alterations (elevated 
visceral fat, serum insulin, leptin, and TG and 
reduced HDL-c) [ 82 ]. This fi nding was of par-
ticular signifi cance since to date there is no effec-
tive cardioprotective strategy available in obesity, 
diabetes, as well as aging conditions [ 185 – 187 ]. 
However, how melatonin protected the heart in 
obesity remains unknown. We hypothesized that 
the direct effects of melatonin to the heart via its 
receptor-mediated effects may be involved, but 
this requires further investigation. 

 The melatonin-induced improvement of the 
cardiovascular function in MetS could also be 
linked to the body weight loss and improvement 
of dyslipidemia with eventual reduction of oxida-
tive stress, infl ammation, insulin resistance, and 
hyperglycemia [ 48 ,  82 ,  153 ,  167 ]. These two lat-
ter states are reviewed in the section of insulin 
resistance.   

    Human Studies 

 The overall circulating melatonin levels in obese 
humans are not consistent. For example, the 
mean nocturnal serum melatonin levels were 

reported to be reduced in patients with severe 
obesity [ 188 ] as well as with T2D [ 149 ], auto-
nomic neuropathy [ 189 ], retinopathy [ 190 ], and 
coronary heart disease [ 191 ] as well as obese cra-
niopharyngioma [ 192 ]. Surprisingly, despite a 
lack of difference in BMI or waist circumference 
between the obese nondiabetic and T2D subjects, 
nocturnal plasma melatonin levels were signifi -
cantly higher in obese nondiabetic subjects com-
pared to weight-matched T2D subjects [ 193 ] 
who failed to produce any detectable melatonin 
[ 193 ]. However, in young male and female obese 
MetS patients [ 194 ,  195 ] and in obese girls [ 196 ], 
circulating melatonin or urinary 
6- sulfatoxymelatonin levels were not different 
from controls subjects, confi rming the early 
observation that obesity had no effect on melato-
nin secretion and excretion [ 197 ]. Furthermore, it 
has been noticed that in MetS patients, the levels 
of melatonin per se are not as important as the 
melatonin/insulin ratio which correlates nega-
tively with the lipid profi le [ 194 ]. 

 The reasons for these inconsistencies in 
 melatonin secretion in obese subjects remain 
complex and not well understood. It is possible 
that the increased sympathetic tone in obesity 
and a consecutive alteration in sympathetic inner-
vation of the pineal gland increased melatonin 
concentration in obese nondiabetic subjects 
[ 193 ]. Furthermore, low circulating melatonin 
levels have been linked to many factors including 
elevated oxidative stress and infl ammation [ 198 ], 
but not by low testosterone levels in young men 
with MetS [ 195 ]. It appears therefore that mela-
tonin circulating levels could vary depending on 
age of patients and severity of obesity [ 188 ]. 

 Few clinical investigations on melatonin or 
melatonergic drugs have considered body weight 
change and adiposity mass in their aims. 
However, as discussed above, these parameters 
are affected by the long-term melatonin treat-
ment [ 82 ]. A pilot study investigating the role of 
melatonin in obese craniopharyngioma survivors 
reported that low nocturnal and early morning 
melatonin levels were associated with increased 
daytime sleepiness and BMI, suggesting poten-
tial involvement of hypothalamic lesions [ 199 ]. 
Melatonin substitution (6 mg/day) in these 
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 subjects increased circulating melatonin and 
improved the sleep rhythms with no clear effect 
on BMI due probably to small sample size [ 199 ]. 
Interestingly, melatonin treatment (5 mg/day, 2 h 
before bedtime) in MetS patients signifi cantly 
reduced their BMI, systolic BP, and plasma 
fi brinogen as well as lipid peroxidation levels 
after 1 month [ 132 ]. After 2 months, these 
patients had a further amelioration of BP and 
improved antioxidative capacity (e.g., catalase 
activity) and lipid profi le (reduced LDL-c) [ 132 ].   

    Mechanism of Actions 
of Melatonin in Obesity 

 The mechanism of action of melatonin in obesity 
is complex and not well understood. As men-
tioned above, melatonin is a small pleiotropic 
molecule able to cross each membrane layer and 
enter each cellular compartment to exert its vari-
ous activities with and/or without receptor- 
mediated pathways [ 47 ,  49 ]. Melatonin receptors 
as well as adipose tissue function and plasticity 
may be involved. 

    Melatonin Receptors 

 Involvement of the melatonin receptors in body 
fat mass regulation has been known for many 
years [ 200 ]. Administration of a melatonin recep-
tor agonist or antagonist to seasonal animals 
(before night) affected the body weight and adi-
posity mass regulation as well as the onset of sea-
sonal obesity: a melatonin agonist and the short 
day (6 h light/18 h dark) had a same effect, 
whereas an antagonist and the long day (18 h 
light/6 h dark) had also similar effects [ 200 ]. This 
involvement of MT receptors in the body weight 
and fat mass regulation was recently demon-
strated in spontaneously hypertensive rats, using 
ramelteon, a potent selective MT1/MT2 recep-
tors agonist [ 153 ], and in obese rats, using the 
melatonin agonist NEU-P11 [ 152 ]. 

 MT receptors have been identifi ed in the major 
organs involved in metabolism regulation: liver, 
pancreas, and skeletal muscle [ 201 ] as well as 

adipose tissue [ 202 ]. They have been involved in 
the regulation of insulin secretion and may play 
an active role in the glucose regulation [ 201 ]. 
Recently, it was reported that variation in 
MTNR1B, the gene encoding for MT2, was asso-
ciated with increased risk of T2D, increased fast-
ing plasma glucose, and impaired insulin 
secretion in populations of European ancestry 
[ 203 ,  204 ]. Similar observations were also made 
in Chinese [ 205 ] as well as in Japanese [ 206 ] 
populations. Thus, the overall effects of melato-
nin in obesity appear to be partly mediated 
through these receptors in addition to activation 
of the sympathetic nervous system via hypotha-
lamic receptors and subsequent effects on lipoly-
sis and adipose tissue plasticity [ 156 ,  207 ].  

    Adipose Tissue 

 The exact mechanisms whereby melatonin 
reduces body fat mass and the role of adipose tis-
sue are complex and not clear. In vivo melatonin 
treatment prevents the increase in circulating TG 
and eventually body fat accumulation and weight 
gain in overweight and obese subjects [ 82 ,  170 ]. 
In vitro melatonin treatment of adipocytes inhib-
its differentiation and limits adipose tissue hyper-
trophy [ 208 ] by inhibiting fatty acid-induced TG 
accumulation in cells exposed to physiological 
levels of oleic acid [ 209 ]. The reduction in body 
weight gain might be due to a signifi cant decrease 
in fat content as opposed to lean body mass [ 163 ] 
and could be related to melatonin-induced 
improvements in the compromised insulin and 
leptin signaling associated with obesity [ 210 ] 
accompanied by modulation of plasma levels of 
insulin, glucose, TG, cholesterol, and leptin [ 166 ] 
(see following section on “ Leptin Resistance ”). 

 The involvement of brown adipose tissue has 
also been suggested [ 35 ]. While white adipose 
tissue is specialized for energy storage, brown 
adipose tissue has a high concentration of mito-
chondria and uniquely expresses uncoupling pro-
tein 1(UCP-1), enabling it to be specialized for 
energy expenditure and thermogenesis [ 211 ]. 
Brown adipose tissue has been suggested to be 
the factor whereby animals lose weight in 
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response to melatonin administration (and gain 
weight when there is a defi ciency of melatonin) 
independently of food intake [ 35 ]. The exploita-
tion of the functional role of brown adipose tissue 
could be of great interest in obesity management. 
Clearly, more research is required to elucidate the 
role of melatonin in weight loss.  

     Leptin Resistance 

 Leptin is one of adipose tissue-secreted hor-
mones that plays a central role in modulation of 
food intake, body weight, and energy expenditure 
[ 212 ]. Leptin resistance is an essential feature of 
human obesity and refers to the inability of ele-
vated circulating leptin levels to reduce common 
obesity [ 213 ]. It is associated with insulin resis-
tance and an increased proinfl ammatory state 
[ 214 ]. Pinealectomy increases circulating leptin 
[ 215 ], while exogenous melatonin decreases 
serum leptin levels in both pinealectomized [ 216 ] 
and intact rat models of diet-induced obesity [ 163 ] 
before decreasing plasma insulin levels [ 171 ]. 
These observations suggest a secondary modu-
latory effect of leptin on insulin in body weight 
reduction [ 217 ]. However, increased leptin lev-
els have also been observed following melatonin 
administration to normal and pinealectomized rats 
(3 mg/kg/day i.p. for 6 months) [ 218 ] and male 
C57BL/6 adult mice (10 μg/ml in drinking water 
for 1 month) [ 219 ]. In this regard, surprisingly, 
Baltaci and Mogulkoc [ 218 ] reported that pinealec-
tomy decreased body weight gain and leptin lev-
els. To further complicate matters, it has also been 
observed that melatonin had no effect on leptin 
levels in ovariectomized rats [ 172 ], obese horse 
[ 220 ], and menopausal women [ 221 ]. However, 
as expected, in a rat model of high-fructose-diet-
induced MetS [ 178 ] and in young ZDF rats [ 165 ], 
melatonin administration reduced serum leptin 
levels. Apart from differences in experimental 
protocols and animal models, the causes of these 
controversial results remain unclear. 

 At a molecular level, the mechanism of leptin 
resistance and impaired leptin signaling has been 
associated with increased activity of suppressor 
of cytokine signaling 3 (SOCS3) [ 222 ,  223 ], 

which is a member of a family of proteins which 
inhibits the JAK/STAT signaling cascade [ 224 ]. 
It has been found that melatonin, leptin, and insu-
lin activated the same intracellular signaling 
pathways, namely, PI-3K and STAT-3 [ 225 – 227 ]. 
Therefore, melatonin may attenuate or reverse 
the insulin resistance in obesity by mimicking the 
actions of insulin and leptin signaling via cross 
talk between these pathways. In this regard, insu-
lin has been shown to modulate leptin-induced 
STAT3 activation in rat hypothalamus [ 225 ]. 
Thus, melatonin may act initially on hypotha-
lamic insulin and leptin receptor sensitivity (as 
these hormones do under normal conditions) and 
eventually relay information about peripheral fat 
stores to central effectors in the hypothalamus to 
modify food intake and energy expenditure [ 207 , 
 212 ]. It appears that an intricate relationship 
exists between leptin, melatonin, and insulin, 
synchronized in circadian fashion with profound 
effects on metabolism. However, this has not yet 
been studied in diet-induced obesity setting.   

    Melatonin and Insulin Resistance 

 Insulin resistance is the most important patho-
physiological feature in the development of the 
MetS as well as T2D [ 228 ] and is referred to as a 
decrease or inhibition of cellular sensitivity to 
the effect of normal circulating insulin on glu-
cose uptake, metabolism, and storage in periph-
eral tissues [ 21 ,  228 ]. Insulin resistance results 
in increased postprandial and fasting circulating 
insulin levels in order to normalize glycemia in 
prediabetic subjects and is closely associated 
with dyslipidemia and other metabolic abnor-
malities [ 228 ,  229 ]. It has recently been shown 
to be the best predictor of the metabolic syn-
drome in subjects with a fi rst-degree relative 
with T2D [ 230 ]. Although not all forms of obe-
sity result in insulin resistance [ 231 ], obesity 
(particularly abdominal obesity) is currently 
accepted as the major factor in the incidence and 
etiology of insulin resistance [ 21 ,  232 ], a condi-
tion which is generally considered as the com-
mon links between obesity and its vascular 
complications [ 229 ]. 
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    Effects of Melatonin on Insulin 
Resistance 

 Melatonin has been shown to play a role in the 
regulation of insulin secretion and glucose/lipid 
metabolism [ 183 ,  233 ,  234 ]. Studies have shown 
that in normal rats, pinealectomy-induced insulin 
resistance and glucose intolerance [ 235 ,  236 ] and 
increased serum cholesterol [ 87 ]. To demonstrate 
the role of endogenous melatonin on insulin 
secretion, the study done by Nishida et al. [ 237 ] 
using T2D rats found that after 21 weeks of pine-
alectomy, there was a signifi cant increase in 
plasma insulin and accumulation of TG. The 
same study found also that when the post- 
pinealectomy period was extended to 35 weeks, 
circulating insulin levels were signifi cantly 
decreased. This decrease is a clear indicator of 
impairment of insulin release from pancreatic 
β-cells as seen in patients at an advanced stage of 
T2D [ 238 ]. Additionally, it was found that pineal 
gland melatonin synthesis is decreased in T2D 
Goto-Kakizaki (GK) rats [ 239 ]. 

 Since insulin resistance precedes the estab-
lishment of T2D, the possibility that melatonin 
replacement could reverse insulin resistance has 
been a subject of numerous investigators in the 
fi eld of obesity and diabetes as well as MetS. In 
this regard, it was found that long-term melatonin 
consumption (2.5 mg/kg/day for 9 weeks) 
increased plasma melatonin levels with a con-
comitant reduction in insulin levels in T2D GK 
rats [ 240 ].    In mice fed with a high-fat diet, 
8-week oral melatonin (100 mg/kg/day) mark-
edly improved insulin sensitivity and glucose tol-
erance [ 210 ]. Using the same model, 2 weeks of 
melatonin administration (10 mg/kg/day i.p), 
attenuated insulin resistance, and glucose intoler-
ance associated with an increase in hepatic gly-
cogen and improvement in liver steatosis [ 168 ]. 
Furthermore, in high-fat-/high-sucrose-fed rats, 
8-week treatment with melatonin or its agonist 
NEU-P11 increased insulin sensitivity [ 152 ]. In 
rats with T2D, 30 weeks of melatonin treatment 
(1.1 mg/kg/day, subcutaneously via implanted 
melatonin-releasing pellets) reduced circulating 
insulin, leptin, and TG levels [ 241 ]. These fi nd-
ings were also confi rmed by additional studies in 

young ZDF rats [ 165 ,  170 ] and fructose-fed rats 
[ 48 ,  178 ]. In the latter model, administration of 
melatonin (1 or 10 mg/kg/day for 2 weeks) 
improved the abnormal serum insulin response 
curve in oral glucose tolerance test [ 178 ], indicat-
ing potential insulin sensitizing effects of 
melatonin.  

    Mechanism of Actions of Melatonin 
in Insulin Resistance 

 The mechanism of actions of melatonin on 
obesity- induced insulin-resistant state is complex 
and not fully explored. The reduction of circulat-
ing insulin levels in these obese animals may be 
linked to a reduced body weight and improved 
lipid metabolism as it was recently demonstrated 
in young ZDF rats [ 165 ] or rats drinking 10 % 
fructose solution [ 48 ]. In these rat models, the 
amelioration of insulin resistance was also char-
acterized by improvement in glucose tolerance 
[ 48 ,  170 ]. In addition, in young ZDF rats melato-
nin treatment reduced fasting blood glucose, 
plasma insulin, hemoglobin A1c (HbA1c), 
HOMA-IR, and FFA levels and increased index 
of beta-cell function [ 170 ]. 

 The improvement in lipid and glucose regula-
tion could be also linked to amelioration of the 
proinfl ammatory state and oxidative stress [ 181 ]. 
It is well established that oxidative stress and 
proinfl ammatory states are important pathologi-
cal features that underlie the development of 
insulin resistance, MetS, diabetes, and CVD. 
Therefore, in insulin-resistant condition, the 
reduction of oxidative stress and proinfl amma-
tory state may lead to the avoidance of lipid per-
oxidation resulting from free radical generation 
due to the continuous hyperglycemia and hyper-
lipidemia. As expected, melatonin administration 
for 2 or 6 weeks (1 or 10 mg/kg/day) attenuated 
the levels of circulating IL-6 and TNF-α [ 178 , 
 181 ] accompanied by a reduction in serum and 
hepatic lipid peroxidation concentrations and 
increase in hepatic GSH concentration [ 178 ]. 
Interestingly, melatonin treatment was associated 
with increase in serum adiponectin levels and 
reduction in leptin levels with [ 170 ] or without 
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[ 178 ] effects on body weight. Adiponectin (which 
is reduced in MetS subjects) has been shown to 
have insulin sensitizing actions in the liver and 
peripheral tissues and other benefi cial properties 
associated with cardiovascular protection (anti-
apoptotic, anti-infl ammatory, and antiatherogenic 
properties) [ 242 ]. Therefore, increased circulat-
ing adiponectin levels may play important role in 
melatonin’s effects. 

 On a molecular level, insulin resistance is 
associated with abnormal or compromised intra-
cellular insulin signaling cascade in peripheral 
tissues/organs that are more involved in the glu-
cose metabolism regulation (skeletal muscle, 
liver, and adipose tissue). This cascade princi-
pally includes binding of insulin to insulin recep-
tor (IR), tyrosine phosphorylation of insulin 
receptor substrate (IRS) proteins, and activation 
of phosphotidylinositol-3-kinase (PI-3K), pro-
tein kinase B (PKB/Akt), and protein kinase C 
(PKC) isoforms (for details see [ 228 ]). Melatonin 
(1nM) treatment has been shown to stimulate 
glucose transport in skeletal muscle via the phos-
phorylation and activation of IRS-1 and PI-3K, 
respectively [ 243 ]. It was further demonstrated 
that melatonin improves glucose homeostasis by 
restoring the vascular actions of insulin which 
were characterized by increased phosphorylation 
of Akt and endothelial nitric oxide synthase 
(eNOS) in aortic tissue [ 210 ]. In addition to the 
phosphorylation of Akt and PKC-ζ, melatonin 
(1 nM) stimulated glycogen synthesis and 
increased the phosphorylation of glycogen syn-
thase kinase 3 β (GSK3-β) in hepatic cells [ 168 ]. 
More interestingly, these effects of melatonin 
could be blocked by using the nonselective MT1/
MT2 antagonist, luzindole, or the MT2 selective 
antagonist, 4-phenyl-2-propionamidotetralin 
(4P-PDOT) [ 168 ,  243 ], suggesting possible MT 
receptor involvement. However, it is not clear 
how activation of the high affi nity MT receptors 
which are G-protein linked leads to stimulation 
of the IRS-1/PI-3K pathway and the role of 
PKC-ζ in this regard. In addition, the role of 
PKB/Akt is not clear in view of the different 
results that have been reported showing its acti-
vation in skeletal muscle cells [ 243 ] as opposed 
to its inactivation in hepatic cells [ 168 ]. 

 Melatonin treatment (100 ng/ml and 500 pg/
ml) enhanced the insulin-stimulated glucose 
uptake of adipocytes obtained from female fruit 
bat ( Cynopterus sphinx ) [ 244 ]. There was how-
ever no correlation between glucose uptake and 
the protein expression of glucose transporter 4 
(GLUT-4) in these cells [ 244 ]. In this regard, 
investigation of GLUT4-translocation could give 
more insight in the results obtained. Pinealectomy 
was shown to reduce the expression of GLUT-4 
protein translocation in adipose tissue [ 235 ,  236 ]. 
Although a decrease in GLUT-4 gene expression 
was reported following melatonin treatment 
(1 μM for 14 days) in human brown adipocyte 
cell lines (PAZ6) [ 202 ], Zanquetta et al. [ 235 ] 
found that 30 days of calorie restriction or mela-
tonin replacement (50 μg/100 g/day i.p.) to pine-
alectomized rats was accompanied by 
improvement of insulin resistance and increased 
plasma membrane GLUT-4 protein content in 
white adipose tissue. Importantly, in the hyper-
thyroid rat heart, melatonin administration was 
able to protect the heart against oxidative damage 
and restored expression of GLUT-4 gene, estab-
lishing the ability of antioxidants to reverse oxi-
dative stress-mediated metabolic alterations 
[ 110 ]. However, whether melatonin affects glu-
cose regulation in the normal or obese heart is 
still not yet explored. 

 Melatonin receptors may play an important 
role in regulation of glucose metabolism. An 
important support for the role of melatonin in the 
regulation of energy metabolism came from the 
fi nding that removal of the MT1 receptor signifi -
cantly impairs the ability of mice to metabolize 
glucose and probably induces insulin resistance in 
these animals [ 245 ]. Epidemiological studies 
have also revealed that variants near/in the 
MTNR1B (or MT2) receptor are associated with 
impaired pancreatic beta-cell function as shown 
by impaired early insulin secretion and concomi-
tant elevated plasma fasting glucose levels [ 246 , 
 247 ]. Indeed, MT1/MT2 receptors are expressed 
in pancreatic islets [ 248 ] and as insulin levels 
exhibit a nocturnal drop, its production has been 
suggested to be controlled, at least in part, by mel-
atonin [ 249 ]. Melatonin reduced the fasting insu-
lin levels [ 152 ,  171 ] probably via its inhibitory 
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effects on insulin secretion in rat pancreatic islets 
[ 233 ,  250 ]. Catecholamines have been indicated 
as a key feature to understand the biological rele-
vance of insulin-melatonin antagonisms in type 1 
and T2D [ 251 ]. It was found that catecholamines 
(noradrenaline and adrenaline) and melatonin lev-
els were reduced in T2D GK rats (characterized 
by high insulin levels) and elevated in T1D rats 
(associated with reduced insulin levels) [ 251 ], 
assuming that elevated catecholamines decrease 
insulin secretion via stimulation of melatonin 
synthesis [ 251 ].  

    Clinical Implications 

 The exploitation of melatonin’s inhibitory effect 
on insulin secretion by phototherapy as a poten-
tial therapy to increase insulin secretion has been 
effective in treating an insulin-dependent diabe-
tes mellitus (IDDM) patient [ 252 ]. However, in 
the case of T2D, the exploitation of melatonin- 
insulin interaction as a potential therapy to reduce 
hyperinsulinemia is not currently suggested [ 234 ] 
before further large clinical studies.   

    Conclusions 

 The effects of melatonin in obesity and the 
MetS have been largely studied in experimen-
tal animals, particularly in rodents. Few clinical 
studies have considered the role of melatonin 
in obesity and MetS. However, available data 
show that melatonin treatment may infl uence 
and improve all metabolic abnormalities found 
in MetS patients (Fig.  6.1b ). Similar effects 
have also been found following administration 
of melatonin agonists (ramelteon, NEU-P1). 
Behind its antioxidant properties, the overall 
metabolic action of melatonin is a combined 
result from its various pleiotropic activities 
associated with multiple signaling in areas of 
the central nervous system and in peripheral 
organs [ 49 ]. The current fi ndings suggested 
melatonin treatment as a suitable candidate for 
effective therapy of CVD at both preventive 
and curative levels especially when circulating 
melatonin levels are decreased. In this regard, 
a randomized controlled trial of melatonin 

supplementation in men and women with the 
MetS has been recently designed to determine 
the feasibility, effi cacy, and safety of melatonin 
supplementation in humans [ 253 ]. The use of 
high doses of melatonin compared to the phys-
iological concentration has been explained as 
a requirement to obtain therapeutic effects in 
some conditions [ 45 ,  47 ,  48 ]. Melatonin is an 
affordable molecule having exceptional ben-
efi cial effects without toxicity [ 45 ].     
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