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Abstract

Both abiotic and biotic stresses adversely affect the plant growth and

productivity including crop plants. The development of stress-tolerant

plants will be greatly advantageous for modern agriculture in areas that

are prone to such stresses. In recent times, several advances have been

made towards identifying potential stress-related genes which are capable

of increasing the tolerance of plants to both abiotic and biotic stresses.

This interaction between biotic and abiotic stresses is controlled by

hormone signaling pathways that may induce or antagonize one another,

in particular that of abscisic acid. Specificity in multiple stress responses

is further controlled by a range of biochemical and molecular mechanisms

that act together in a complex regulatory network. Transcription factors,

kinase cascades, and reactive oxygen species are key components of this

cross talk as are heat shock factors and small RNAs. This review emphasis

on elucidating the proteins associated with abiotic and biotic stresses in

plants.

Introduction

Plants need suitable physiological condition as

well as essential nutrients to grow in the natural

environment. As a consequence of their sessile

growth habit, plants have adapted dynamic

responses to these stresses at the physiological,

biochemical, and molecular levels, thus enabling

them to survive under different environmental

conditions. Most of the crop plants grow in envir-

onments that are suboptimal, which prevents the

plants from attaining their full genetic potential

for growth and reproduction (Bray et al. 2000;

Rockstrom and Falkenmark 2000). Abiotic stress

factors such as heat, cold, drought, salinity, and

nutrient stress have a huge impact on world agri-

culture, and it has been suggested that they

reduce average yields by >50% for most major

crop plants (Wang et al. 2003). Further to this,

plants must defend themselves from attack by a
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vast range of pests and pathogens, including

fungi, bacteria, viruses, nematodes, and herbivo-

rous insects (Hammond-Kosack and Jones 2000).

Each stress elicits a complex cellular and molec-

ular response system implemented by the plant in

order to prevent damage and ensure survival, but

often at the detriment of growth and yield

(Herms and Mattson 1992). Industrial activity

combined with a low conscience of the conse-

quences of environmental pollution during a long

period created a worldwide problem of soil, air,

and water contamination with various pollutants.

Heavy metals are among the most widespread

soil contaminants. Abiotic stresses usually

cause protein dysfunction. The yield and quality

of cereals are severely affected by heat stress in

many countries (Treglia et al. 1999). Heat stress

affects the grain yield and quality. Drought, soil

salinity, and heavy metal significantly affect

plant growth, development, and productivity,

thus posing a severe threat to agriculture

throughout the world. Among abiotic stresses,

osmotic stress is one of the most severe, caused

by drought, high salinity, and cold stresses in

nature. Water is the most wide-ranging difficulty

among abiotic stresses for production of crop in

the world environment. Strategy is to obtain

plants with higher performance under water

stress conditions by identifying and modifying

the molecular mechanisms that take place when

the water availability becomes limiting. Plants,

as sessile organisms, rely on proteomic plasticity

to remodel themselves during periods of devel-

opmental change and to respond to biotic and

abiotic stresses. In the last decade, methodologi-

cal improvements have allowed comparative

proteomic investigations of plants under stress

which have allowed us to analyze biochemical

pathways and the complex response of plants to

environmental stimuli (Qureshi et al. 2007).

More comprehensive approaches that include

quantitative and qualitative analyses of gene

expression products are necessary at the tran-

scriptome, proteome, and metabolome levels.

Abiotic stresses resulted the cellular dehydration,

such as freezing and salt and water stress, often

lead to similar changes in plant gene expression

and metabolism (Cook et al. 2004; Kreps et al.

2002). The phytohormone abscisic acid (ABA) is

produced under abiotic stress such as drought

and high salinity. ABA is a key mediator in

controlling plant response to abiotic stress by

regulating stomatal closure and by triggering

the activation of many stress-related genes,

thereby increasing the tolerance of plants to the

stresses. Many abiotic stress-responsive genes

have been identified in plants, including rice

and Arabidopsis, by using molecular techniques

(Fowler and Thomashow 2002; Rabbani et al.

2003; Yamaguchi-Shinozaki and Shinozaki

2006; Nakashima et al. 2009). Stress-induced

genes not only function to protect cells from

abiotic stress through the production of important

enzymes and metabolic proteins (functional pro-

teins) but they also regulate signal transduction

and gene expression in the stress response (regu-

latory proteins). Functional proteins contain

hydrophilic proteins including dehydrins and

“late embryogenesis abundant” (LEA) proteins

and also enzymes that are required for the syn-

thesis of osmoprotectants such as proline and

sugars. Regulatory proteins that are activated in

response to abiotic stresses, including transcrip-

tion factors (TFs) such as DREBs (dehydration-

responsive element-binding proteins), AREBs

(ABA-responsive element-binding proteins),

and NAC proteins, have been identified in Ara-

bidopsis and rice (Yamaguchi-Shinozaki and

Shinozaki 2006; Nakashima et al. 2009, 2012).

Proteomics also makes an essential bridge

between the transcriptome and metabolome

(Wang et al. 2004; Gray and Heath 2005), com-

plementing genomics research. Only by grouping

all this information together is it possible to

achieve a comprehensive and exhaustive analysis

of the mechanism of plant defense against abiotic

and biotic stresses. Upon several stress responses,

protein, protein–protein interaction, and posttran-

slation modification have been also identified

(Salekdeh et al. 2002b). Plants have evolved to

live in environments where they are often exposed

to different stress factors in combination. Being

sessile, they have developed specific mechanisms

that allow them to detect precise environmental

changes and respond to complex stress conditions,

minimizing damage while conserving valuable
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resources for growth and reproduction. Plants acti-

vate a specific and unique stress response when

subjected to a combination of multiple stresses

(Rizhsky et al. 2002). Keeping in the view of the

above fact, the present review highlighted the

abiotic and biotic stresses in plants in proteomic

approach.

Abiotic Stress in Plants

Abiotic stresses limit the productivity and growth

potential of plants. Phytohormone like abscisic

acid (ABA) is a key mediator in controlling plant

response to abiotic stress by triggering the acti-

vation of many stress-related genes, thereby

increasing the tolerance of plants to the stresses.

Stress-induced genes not only function to protect

cells from abiotic stress through the production

of important enzymes and metabolic proteins

(functional proteins) but they also regulate signal

transduction and gene expression in the stress

response (regulatory proteins). Functional pro-

teins are required for the synthesis of osmopro-

tectants such as proline and sugars. Regulatory

proteins that are activated in response to abiotic

stresses, including transcription factors (TFs)

such as DREBs (dehydration-responsive element-

binding proteins), AREBs (ABA-responsive

element-binding proteins), and NAC proteins,

have been identified in Arabidopsis and rice

(Yamaguchi-Shinozaki and Shinozaki 2006;

Nakashima et al. 2009). Nakashima et al. (2012)

reported that NAC proteins are plant-specific tran-

scription factors and more than 100 NAC genes

have been identified in Arabidopsis and rice to

date. Tran et al. (2010) reported that NAC tran-

scriptional factors which constitute one of the larg-

est families of plant specific and help to enhance

tolerance against various abiotic stresses. The

cDNA encoding a NAC protein was first reported

as the responsive to dehydration 26 (RD26) gene

in Arabidopsis (Yamaguchi-Shinozaki et al.

1992).ManyNACproteins, includingArabidopsis

CUC2, have important functions in plant develop-

ment. Some NAC genes are upregulated during

wounding and bacterial infection (Collinge and

Boller 2001; Mysore et al. 2002; Hegedus et al.

2003), whereas others mediate viral resistance

(Xie et al. 1999). NAC proteins were thought to

be transcriptional activators as the Arabidopsis
ATAF1/2 proteins can activate the CaMV 35S

promoter in yeast cells. The Arabidopsis AtNAM

(NARS2) protein was confirmed by Duval et al.

(2002) to function as a transcriptional activator in a

yeast system. Kikuchi et al. (2000) reported eight

NAC genes in rice (OsNAC1 to OsNAC8) which

encode proteins with a single NAC domain. Each

OsNAC gene has a unique tissue-specific expres-

sion pattern, suggesting this family regulates the

development of rice. Ooka et al. (2003) performed

a comprehensive analysis of NAC family genes in

rice and Arabidopsis. They identified 75 predicted
NAC proteins in full-length cDNA datasets of rice

and 105 predicted genes in the Arabidopsis

genome. Recently, Nuruzzaman et al. (2010) con-

ducted a genome-wide analysis of the NAC tran-

scription factor family in rice and Arabidopsis by

investigating 151 nonredundant NAC genes in rice

and 117 in Arabidopsis. Morishita et al. (2009)

also reported that ANAC078 in the NAC group is

responsive to a combination of high light and heat

stress. They also demonstrated that ANAC078

regulates flavonoid biosynthesis, leading to the

accumulation of anthocyanins under high-light

conditions. Hu et al. (2006) reported that the over-

expression of the stress-responsive SNAC1 gene

increased drought and salt tolerance in rice.

SNAC1 enhanced drought resistance in transgenic

rice plants at the reproductive stage during growth

in fields under severe drought stresswithout affect-

ing yields (Hu et al. 2006). Nogueira et al. (2005)

reported that the SsNAC23 gene, which is homol-

ogous to the rice OsNAC5, is associated with cold,

herbivory, and water stress in sugarcane. Tran

et al. (2009) identified 31 unigenes containing

complete open reading frames encoding GmNAC

proteins in soybean. Analysis of the C-terminal

regulatory domain using a yeast one-hybrid system

indicated that among the 31 GmNAC proteins, 28

have transcriptional activation activity. Among

them, nine GmNAC genes are induced by dehy-

dration stress with differential induction levels in

both shoots and roots. Sperotto et al. (2009)

reported that OsNAC5 expression is upregulated

by natural (aging) and induced senescence

15 Stress Tolerance in Plants: A Proteomics Approach 361



processes. They suggested that OsNAC5 is a novel

senescence-associatedABA-dependentNAC tran-

scription factor. The stress-responsive NAC pro-

teins, including OsNAC5, might also function

during the process of senescence as well as stress

tolerance mediated through ABA. Yang et al.

(2011) identified a NAC transcription factor

VND INTERACTING2 (VNI2) that mediates sig-

naling cross talk between salt stress response and

the process of leaf aging. VNI2 regulates the cold-

regulated (COR) and responsive to dehydration

(RD) genes by binding directly to their promoters.

Overexpression of COR or RD led to prolonged

leaf longevity, as observed in the VNI2-

overexpressing transgenic plants. Mostafa Kamal

et al. (2010a, b) identified GTP-binding proteins,

which are involved in signal transduction mecha-

nism in plant systems, and these proteins regulate a

flow of kinases that play a vital role in environ-

mental stress signal transduction, and also high

temperature seems to upregulate the synthesis of

GTP-binding proteins resulting in increased kinase

activity (Grover et al. 2001). Some heat-

upregulated proteins showed the similarities to

elongation factors (EF) and eucaryotic translation

initiation factors (eIFs). Heat shock involves

changes in the expression patterns of the eIFs, the

EF 1-beta, EF 1-alpha, EFTu, and eIF (4A, 4B, 4E,

4E-1, 4E-2, 5A-1, 5A-2, SUII), in wheat leaves

(Gallie et al. 1998). Calcium is a universal mole-

cule in both animals and plants, and the transient

increase in Ca2+ level during heat stress is well

documented in plants. Heat shock triggers cyto-

solic Ca2+ bursts, which is transducted by Ca2+

binding proteins(CBP) such as calmodin (CaM),

calcineurin (CBL), and annexin and then upregu-

lates the expression of heat shock proteins (HSPs)

(Liu et al. 2003). Tubulin proteins are coupled to

GTP-binding proteins, which play a role in heat

resistance in plant (Segal and Feldman 1996).

Mostafa Kamal et al. (2010a, b) also identified

serine carboxypeptidase, glucose-1-phosphate,

glucose-6-phosphate, and S-adenosyl-methionine

synthetase proteins. Different abscisic acid-

responsive proteins, LEA protein such as chaper-

onin, cys peroxiredoxin, ethylene response, and

elongation factor TU are responsible for drought

stress (Mostafa Kamal et al. 2010a, b). They also

observed that cyclin-dependent kinase like zinc

finger, transcription factor like MYB, lipid

transfer proteins and WRKY are effective for

drought stress. Cyclophilin, aquaporin, and chiti-

nase play an important role in cold (upregulated)

stress of wheat as reported by Houde et al. (2006).

The effects of dehydration, cold temperature treat-

ment, and osmotic and salt stress on the expression

of an abscisic acid-responsive protein kinase

mRNA (PKABA1) were determined in wheat

seedlings (Holappa and Simmons 1995). Mitogen

has three protein kinases, MAPK (mitogen-

activated protein kinase) and a ribosomal kinase

homologue, increased markedly and simulta-

neously when plants were treated with low tem-

perature (Zhang et al. 2006). GLPs (glucagon-like

peptide) function primarily as superoxide dismu-

tase (SOD) to protect plants from the effects of

oxidative stress (Khuri et al. 2001). ABA is a

central regulator of many plant responses to envi-

ronmental stresses, particularly osmotic stresses

(Chinnusamy et al. 2008; Cramer 2010; Hubbard

et al. 2010; Kim et al. 2010). The essential compo-

nents of ABA signaling include receptors (PYR/

PYL/RCAR), protein phosphatases (PP2C), and

protein kinases (SnRK2/OST1) (Ma et al. 2009;

Park et al. 2009). The PYR/PYL/RCAR proteins

were identified as soluble ABA receptors by two

independent groups as reported by Park et al.

(2009). Leung and Giraudat (1998) identified 2C-

type protein phosphatases (PP2C) including ABI1

and ABI2 from the ABA-insensitive Arabidopsis

mutants abi1-1 and abi2-1, and they act as global

negative regulators of ABA signaling. In yeast,

the well-documented central regulators of pro-

tein synthesis and energy are SnRK1 (Snf1/

MAPK) (mitogen-activated protein kinase),

TOR1, and GCN2 (Zaborske et al. 2010;

Staschke et al. 2010; Smeekens et al. 2010).

These proteins are largely controlled by the

phosphorylation of enzymes; all three are pro-

tein kinases acting as key hubs in the coordina-

tion of metabolism during stressful conditions

(Hey et al. 2010). In plants, target of rapamycin

(TOR) activity is inhibited by osmotic stress and

ABA (Deprost et al. 2007), and GCN2 activity is

stimulated by UV light, amino acid starvation,

ethylene, and cold stress (Lageix et al. 2008).
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Water Stress

Drought is one of the major limiting factors of

plant production worldwide. Plant adaptation to

drought is the result of many different physiolog-

ical and molecular mechanisms. Several studies

have shown that physiological adaptations to

water stress were associated with drought-

induced proteins (Bray 1997). Proteomics has

proved to be a powerful tool for the identification

of proteins and mechanisms involved in drought

response and tolerance (Riccardi et al. 1998;

Kawasaki et al. 2000; Salekdeh et al. 2002a, b;

Hajheidari et al. 2005). Out of 78 responsive

proteins, 16 were identified, including proteins

involved in the water stress response, the basic

metabolic pathway, and lignification. Studies on

mild drought stress in rice leaves showed that

drought-induced changes in about 42 proteins

were reversed completely within 10 days of rewa-

tering. Molecular analyses of wild species such as

drought-tolerant grasses would provide a better

insight into genes and mechanisms by which

plants may adapt to prolonged drought. Tolerant

plants are able to maintain tissue water content, or

survive a reduction in tissue water content, or

recover more completely after rewatering (Cabus-

lay et al. 1999). The level of proline increased up

to 20-fold in response to severe drought condi-

tions as reported earlier (Pedrol et al. 2000; Clif-

ford et al. 1998). Proline is considered as a

compatible solute (Samaras et al. 1995) and an

osmoprotectant (Serrano and Gaxiola 1994;

Okuma et al. 2000). Proline may confer a protec-

tive effect by protecting or inducing stress-

protective proteins (Khedr et al. 2003). They

reported that severe salt stress caused an inhibi-

tion of the antioxidative enzymes catalase and

peroxidase in Pancratium maritimum L., but the

activity of these enzymes was also maintained

significantly higher in the presence of proline.

Therefore, plant cells require two different

mechanisms which will enable the detoxification

of excess ROS and fine modulation of ROS for

signaling purposes. SOD acts as a first line of

defense converting superoxide to the less toxic

hydrogen peroxide molecules. The abundance of

the cytosolic Cu-Zn SOD of Elymus elongatum
increased up to twofold in response to drought.

Cytosolic Cu-Zn SOD was shown to be upregu-

lated in rice (Salekdeh et al. 2002b) and sugar

beet (Hajheidari et al. 2005). The upregulation of

this enzyme in plants grown under progressive

stress reveals its important role in response to

drought. The detoxification of H2O2 is accom-

plished with ascorbate peroxidase, glutathione

peroxidase, catalase, and 2-Cys peroxiredoxin.

Ascorbate peroxidase reduces H2O2 to water,

with the concomitant generation of monodehy-

droascorbate (MDHA). MDHA is a radical with

a short lifetime that disproportionates to ascorbate

and dehydroascorbate (DHA). DHA is reduced to

ascorbate by the action of DHA reductase, using

glutathione as the reducing substrate. The most

upregulated protein (4.8-fold) was identified as

dehydroascorbate reductase suggesting its strong

role in the detoxification of H2O2. Hydrogen

peroxide (H2O2) is a key regulatory molecule in

the response to stresses (Mittler 2002), and its

ability to selectively induce a subset of defense

genes like glutathione S-transferases and glutathi-

one peroxidases without directly inducing other

defense genes. The upregulation of both glutathi-

one S-transferases and glutathione peroxidase

may represent such co-expression mechanisms.

Wehmeyer et al. (1996) suggested that small

heat shock proteins (sHSPs) are among the

several factors required for desiccation tolerance.

Hajheidari et al. (2005) reported the upregulation

of two sHSPs under drought stress in sugar beet

grown in the field. These proteins showed

sequence homology with abscisic acid- and

stress-inducible protein (ASR). The upregulation

of this gene has been also reported in response to

drought stress in maize (Riccardi et al. 1998)

and salt stress in a salt-tolerant rice genotype

(Salekdeh et al. 2002a). Iusem et al. (1993) have

reported that characterization of cDNA encodes

ASR protein whose expression was activated by

leaf water deficit and fruit ripening. Silhavy et al.

(1995) identified a nuclear-targeting sequence

motif in this gene isolated from Solanum cha-

coense Bitter which is extremely resistant to

viruses, insects, and drought.
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Phytohormone Stress

A variety of plant hormones, including salicylic

acid (SA), jasmonate (JA), ethylene, and abscisic

acid, have been implicated in mediating

responses to a wide range of biotic and abiotic

stresses (Diaz et al. 2002; Thomma et al. 1998;

Audenaert et al. 2002). The roles of these hor-

mones are dependent upon the particular hos-

t–pathogen interaction (Knoester et al. 1998).

On the basis of the interactions of hormones in

which resistant responses to biotrophs require

SA, whereas responses to necrotrophs require

JA and ethylene (Feys and Parker 2000), in

some instances, these hormones are involved in

determining the level of host basal resistance

(Delaney et al. 1994). In case of tomato, ethyl-

ene, JA, and SA all independently contribute to

its resistance to Botrytis cinerea (Diaz et al.

2002). The host plant actively regulates the

Xanthomonas campestris pv. vesicatoria-induced
disease response via the sequential action of at

least three hormones (JA, ethylene, and SA),

which promote expansive cell death of its own

tissue (O’Donnell et al. 2003). Further, the effect

of phytohormones is also regulated by other fac-

tors. For example, the MAPK kinase, EDR1,

negatively regulates SA-inducible defenses

(Frye et al. 2001), whereas MAPK 4 appears

to differentially regulate SA and JA signals

(Petersen et al. 2000). These findings also sug-

gest that MAPK modulates cross talk between

different plant defense pathways (Hammond-

Kosacky and Parkerz 2003).

Osmotic Stress

Among abiotic stresses, osmotic stress is one of

the most severe, caused by drought, high salinity

and cold stresses in nature. Plants respond to

osmotic stress at the morphological, anatomical,

cellular, and molecular levels. To cope with

osmotic-related stresses, plants have developed

various responses such as production of osmo-

lites for osmotic adjustment, synthesis of Na+/H+

antiporters for ion sequestration, and many other

mechanisms (Bohnert et al. 1995). AtHKT1,

which is a Na+ transporter, mediates osmolality

balance between xylem vessels and xylem paren-

chyma cells (Snarpi et al. 2005). The operation of

these responses usually requires three steps:

osmotic stress recognition, signal transduction,

and production of components for the physiolog-

ical response (Tamura et al. 2003). In plants, a

hybrid-type histidine kinase (AtTHK1) functions

as an osmosensor and transmits the stress signal

to a downstream mitogen-activated protein

kinase (MAPK) cascade (Urao et al. 1999). Lu

and Neumann (1999) reported that when rice

seedlings were exposed to osmotic stress modu-

lated by polyethylene glycol 6000, growth in

emerging first leaves of the intact plant was

inhibited. Early inhibition of leaf growth was

not related to changes in root size, osmotic poten-

tial gradients, or cell wall-yielding characteris-

tics in the leaf expansion zone of stressed

seedlings. Deak and Malamy (2005) demon-

strated that osmotic stress represses the forma-

tion of autonomous lateral roots from lateral root

primordia of Arabidopsis, while lateral root initi-

ation was not greatly affected. Abscisic acid

(ABA) and a newly identified gene, LRD2, are

involved in osmotic repression of lateral root

formation. Further examination revealed that

both ABA and LRD2 control root system archi-

tecture even in the absence of osmotic stress. The

molecular mechanisms that mediated responses

to environmental cues could also be regulators of

intrinsic developmental programs in the root.

Zonia and Mnnik (2004) investigated that

tobacco pollen tube cell volume changes in

response to osmotic perturbation by activation

of the phospholipid signaling pathway. Several

intermediates in the phospholipid signaling path-

way were detected during pollen tube growth.

Hypo-osmotic stress induced a rapid increase in

phosphatidic acid and a decrease in phosphatidy-

linositol phosphate. The fact that these signaling

molecules are present during normal growth and

the mechanism for osmotic response involved

components of the biomechanical networks

driving pollen tube cell elongation. In osmoti-

cally stressed wheat coleoptiles, reduced rates

of phenylalanine ammonia-lyase and tyrosine
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ammonia-lyase activities suppress phenylalanine

biosynthesis, resulting in a reduced level of wall-

bound ferulic acid. This decrease in wall-bound

ferulic acid may lead to reduced levels of diferu-

lic acid, an important contributor to maintaining

cell wall extensibility (Wakabayashi et al. 1997).

The osmotic potential of soil alters the depth of

root systems, the rate of root elongation, and the

number of lateral roots (van der Weel et al.

2000); however, there are only a few reports

about phenotypic changes in rice under osmotic

stress (Lu and Neumann 1999).

Zang and Komatsu (2007) reported that 15

proteins are changed in the basal part of rice

leaf sheaths by mannitol treatment. The basal

section of leaf sheath may undergo more subtle

changes in protein expression than the distal end,

where significant morphological changes are evi-

dent. They reported that 327 proteins were

detected by digital image analysis. Among

these, 15 proteins significantly responded to

osmotic stress by up- or downregulation: 12 pro-

teins increased in amount and 3 proteins

decreased. Ten of the identified proteins are

recognized as important components for stress

response such as two proteasome degradation

system-related proteins, five endoplasmic reticu-

lum (ER)-related proteins, two proteins related to

detoxification, and uroporphyrinogen decarbox-

ylase, which is a cell death-related protein (Mock

and Grimm 1997). Two proteins matched anno-

tated sequences for putative proteins of unknown

function and the three remaining proteins

responding to osmotic stress were not similar to

other proteins in existing databases.

The glyoxalase system is ubiquitous in nature

and consists of two enzymes: glyoxalase I

and glyoxalase II, which act coordinately to

convert 2-oxoaldehydes into 2-hydroxyacids

using reduced glutathione as a cofactor. The

glyoxalase pathway involving glyoxalase I and

glyoxalase II enzymes is required for

glutathione-based detoxification of methyl-

glyoxal. Methylglyoxal is a primary physiological

substrate for glyoxalase I. Besides detoxification

of methylglyoxal, the glyoxalase system could

also play a role in providing tolerance under stress

by recycling glutathione that would be “trapped”

spontaneously by methylglyoxal to form hemi-

thioacetal, thereby maintaining glutathione

homeostasis (Creighyton et al. 1988). Transgenic

plants overexpressing glyoxalase I showed signif-

icant tolerance to methylglyoxal and high salt

(Veena and Sopory 1999; Singla-Pareek et al.

2003).

Heavy Metal Stress

Heavy metals (HMs) are among the most wide-

spread soil contaminants which damage the phys-

iological and metabolic processes. Certain heavy

metals such as Cd, Hg, and Pb affect cell systems

due to the increasing exposure of living organisms

to these metals in the environment (DalCorso

et al. 2008). The physiological and molecular

basis of plant interactions with the environment

has attracted considerable interest in recent years.

Being sessile organisms, plants are constantly

exposed during their life cycle to adverse environ-

mental conditions that negatively affect growth,

development, or productivity. The presence of

toxic compounds, such as heavy metals (HMs),

is one important factor that can cause damage to

plants by altering major plant physiological and

metabolic processes (Hossain et al. 2010; Villiers

et al. 2011). Different metals and metalloids

which are toxic to plants such as copper (Cu),

iron (Fe), manganese (Mn), zinc (Zn), nickel

(Ni), cobalt (Co), cadmium (Cd), and arsenic

(As). Importantly, few HMs and transition metals

such as sodium (Na), potassium (K), calcium

(Ca), magnesium (Mg), Fe, Cu, Zn, Co, or Ni

are essential micronutrients that are critically

involved in the functional activities of large num-

bers of proteins involved in sustaining growth and

development. However, at excess concentrations,

these metal ions can become detrimental to living

organisms, including plants. Although HMs are

natural constituents of soils and occur naturally

in the environment, contamination of soils by

toxic metals and metalloids is of major concern

worldwide (Villiers et al. 2011). Depending on

their oxidation states, HMs can be highly reactive,

resulting in toxicity of plant cells in many ways.

At the cellular and molecular level, HM toxicity
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results in alterations of different plant physiologi-

cal processes, including inactivation and denatur-

ation of enzymes, proteins, blocking of functional

groups of metabolically important molecules,

displacement/substitution of essential metal ions

from biomolecules and functional cellular units,

conformational modifications and disruption of

membrane integrity (Sharma and Dubey 2007),

which is finally attributed to altered plant

metabolism, inhibition of photosynthesis, res-

piration, and alerted activities of several key

enzymes (Sharma and Dietz 2009; Hossain

et al. 2010, 2012). In addition, HMs are known

to disturb redox homeostasis by stimulating the

formation of free radicals and reactive oxygen

species (ROS) such as singlet oxygen (1O2),

superoxide radicals (O2•�), hydrogen peroxide

(H2O2), and hydroxyl radicals (•OH) (Dubey

2011; Anjum et al. CR00152402012). Recently,

methylglyoxal (MG), a cytotoxic compound,

was also found to increase in response various

stresses including HMs (Yadav et al. 2005a, b).

An increase in MG level in plant cells further

intensifies the production of ROS by interfering

with different plant physiological and metabolic

processes such as inactivation of the antioxidant

defense system (Hoque et al. 2010; Hossain

et al. 2011a, b) and interfering with vital plant

physiological processes such as photosynthesis

(Saito et al. 2011). This increase in ROS and

MG exposes cells to oxidative stress leading to

lipid peroxidation, biological macromolecule

deterioration, membrane dismantling, ion leak-

age, and DNA strand cleavage, and finally death

of plants (Navari-Izzo 1998; Romero-Puertas

et al. 2002; Barconi et al. 2011).

Heavy metals (HMs) are intracellularly che-

lated through the synthesis of amino acids,

organic acids, GSH, or HM-binding ligands

such as metallothioneins (MTs), phytochelatins

(PCs), compartmentation fcc within vacuoles,

and upregulation of the antioxidant defense and

glyoxalase systems to counter the deleterious

effects caused by ROS and methylglyoxal

(Cobbett 2000; Yadav 2010; Hossain et al.

2012). A large number of recent studies in plants

involving sensitive, tolerant, mutant, transgenic,

and hyperaccumulator-adopting strategies in the

fields of physiology, genomics, proteomics, and

metabolomics suggest that GSH by itself and its

related metabolizing enzymes, proteins, and pep-

tides play a pivotal role in HM tolerance by

controlling different plant physiological pro-

cesses, including ROS and MG detoxification,

heavy metal uptake, translocation, chelation,

and detoxification. Yang et al. (2007) reported

that a total of 17 Al-responsive proteins were

identified, with 12 of those being upregulated

and 5 downregulated. Among the upregulated

proteins are copper/zinc superoxide dismutase

(Cu-Zn SOD), GST, and S-adenosylmethionine

synthetase 2, which are the consistently known

Al-induced enzymes previously detected at the

transcriptional level in other plants. More impor-

tantly, a number of other identified proteins

including cysteine synthase (CS), 1-aminocyclo-

propane-1-carboxylate oxidase, G protein b

subunit-like protein, abscisic acid- and stress-

induced protein, putative Avr9/Cf-9 rapidly eli-

cited protein 141, and a 33 kDa secretory protein

are novel Al-induced proteins. Most of these

proteins are functionally associated with signal-

ing transduction, antioxidation, and detoxifica-

tion (Hossain et al. 2012).

Mode of Action of Heavy Metals
in Plant Cells
The toxicity of HMs is manifested in many ways

when plant cells accumulate them at high levels.

HMs are divided into two groups: redox active

(Fe, Cu, Cr, Co) and redox inactive (Cd, Zn, Ni,

Al, etc.). The redox active HMs are directly

involved in the redox reaction in cells and result

in the formation of O2
•� and subsequently in

H2O2 and OH production via the Haber-Weiss

and Fenton reactions (Dietz et al. 1999;

Schutzendubel and Polle 2002). Exposure of

plants to redox inactive HMs also results in oxi-

dative stress through indirect mechanisms such

as interaction with the antioxidant defense sys-

tem, disruption of the electron transport chain, or

induction of lipid peroxidation. The latter can be

due to an HM-induced increase in lipoxygenase

(LOX) activity. Another important mechanism of

HM toxicity is the ability of HMs to bind

strongly to oxygen, nitrogen, and sulfur atoms
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(Nieboer and Richardson 1980). This binding

affinity is related to free enthalpy of the forma-

tion of the product of the HM and ligand with low

solubility of these products. Because of these

features, HMs can inactivate enzymes by binding

to cysteine residues. Many enzymes need cofac-

tors to work properly for both HM ions (such

as Fe2+, Mg2+, Cu2+, Ca2+) and organic mole-

cules (such as heme, biotin, FAD, NAD, or

coenzyme A). The displacement of one HM ion

by another leads to the inhibition or loss of

enzyme activities. Divalent cations such as Co2

+, Ni2+, and Zn2+ displace Mg2+ in ribulose-1,5-

bisphosphate-carboxylase/oxygenase

(RuBisCO) and result in a loss of activity

(Wildner and Henkel 1979; Van Assche and

Clijsters 1986). Displacement of Ca2+ by Cd2+

in calmodulin, an important protein in cellular

signaling, led to the inhibition of calmodulin-

dependent phosphodiesterase activity in radish

(Rivetta et al. 1997). Additionally, HMs cause

membrane damage through various mechanisms,

including the oxidation of and cross-linking with

protein thiols, inhibition of key membrane pro-

tein such as H+-ATPase, or causing changes in

the composition and fluidity of membrane lipids

(Meharg 1993). Accumulation of MG, a cyto-

toxic compound, was found to increase in

response to HM stress in plants due to

impairment of the glyoxalase system that finally

elicits oxidative stress by reducing the GSH con-

tent (Hossain and Fujita 2010; Hossain et al.

2011a, b, 2012).

Metallothioneins (MTs) are low-molecular-

weight (4–8 kDa), Cys-rich, HM-binding, gene-

encoded polypeptides that can bind heavy metals

via the thiol groups of their Cys residues (Hamer

1986).Although the precise physiological function

ofMTs has not yet been fully elucidated, proposed

roles include participation in maintaining the

homeostasis of essential transition HMs, seques-

tration of toxic HMs, and protection against intra-

cellular oxidative damage (Gasic and Korban

2006). Plant MTs are extremely diverse and have

been subdivided into three classes based on the

arrangement of the Cys residue (Zhou et al.

2006). The Cys-Cys, Cys-X-Cys, and Cys-X-X-

Cys motifs (in which X denotes any amino acid)

are characteristic and invariant for MTs. The orga-

nization or distribution of cysteine residues

confers different MT isoforms and their ability to

bind and sequester different HM ions for detoxifi-

cation and homeostasis. The biosynthesis of MTs

is regulated at the transcriptional level and is

induced by several factors, including hormones,

cytotoxic agents, and HMs, such as Cd, Zn, Hg,

Cu, Au, Ag, Co, Ni, and Bi (Kagi 1991). Gene

expression studies were performed to quantify

mRNA levels in different tissues, at different

developmental stages, and under stress conditions

such as HM exposure. MT genes appear to be

differentially regulated in a tissue-specific manner

and in relation to the developmental stage and also

in response to a number of stimuli, including heavy

metals (Castiglione et al. 2007). Ahn et al. (2012)

showed that three Brassica rapa MT genes

(BrMT1, BrMT2, and BrMT3) are differentially

regulated under various HM stresses.

Cold Stress

Plants are frequently facing different environmen-

tal variations. Among these constraints, low tem-

perature is one of the most crucial factors that

impair the distribution, growth, and productivity

of crops or wild plant species. The mechanisms

underlying cold acclimation and tolerance have

been intensively studied over the past years, and

numerous studies on plant response to cold stress

have been reported (Ruelland et al. 2009). Cold

weather can result in pollen sterility in plants at

the reproductive stage of development. Several

studies of plant transcriptomes during cold stress

have been performed in rice (Chen et al. 2002a, b;

Fowler and Thomashow 2002; Kawamura and

Uemura 2003; Amme et al. 2006; Goulas et al.

2006; Cui et al. 2005; Yan et al. 2006; Hashimoto

and Komatsu 2007). Hashimoto and Komatsu

(2007) reported that some proteins are involved

in cold stress, and these are the chilling stress-

responsive proteins. In general, the level of

mRNA does not always correlate well with the

level of protein mainly due to posttranscriptional

regulation (Yan et al. 2006). As a global study of

the proteins comprising the proteome, proteomics

can be playing an increasingly important role

in addressing plant response to environmental
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changes. The proteomes of various plants in

response to different environmental factors

including drought, salt, heat, and heavy metal

have been investigated (Ouerghi et al. 2000;

Hajduch et al. 2001; Salekdeh et al. 2002a; Majoul

et al. 2003). The differentially expressed proteins

have been identified and well-documented stress-

responsive proteins and some novel cold-

responsive proteins. Plants differ in their cold

response and cold-tolerant species may develop

efficient strategies to adapt to chilling environ-

ment. Bressan et al. (2001) reported that the

large-scale transcriptional studies were hindered

by the absence of genome sequence information.

ROS-Scavenging Mechanisms
in Cold Stress
Cold stress may disturb cellular redox homeosta-

sis and promotes the production of reactive oxy-

gen species (ROS) and reactive aldehydes (as 4-

hydroxy-nonenal and methylglyoxal). Plants

develop ROS-scavenging mechanisms to cope

with the oxidative stress. Because chloroplast is

one of the major sources of ROS, four proteins

involved in chloroplast redox homeostasis,

including 2-cys peroxiredoxin, chloroplast

(BAS1), peroxiredoxin-2E, ferritin-1, and ala-

nine-2-oxoglutarate aminotransferase 1 (GGT1)

(Gao et al. 2009). BAS1 is involved in the detox-

ification of alkyl hydroperoxides and its gene

expression is regulated under the control of the

cellular redox state (Baier and Dietz 1997).

Peroxiredoxin-2E reduces hydrogen peroxide

and alkyl hydroperoxides with reducing equiva-

lents provided through the thioredoxin or glutar-

edoxin system and was a component of

chloroplast thioredoxin system (Bréhélin et al.

2003). Ferritin-1, an iron binding protein, is to

protect plants from oxidative damage induced by

manifold stresses (Deák et al. 1999). GGT1, an

enzyme involved in photorespiration and photo-

respiration, has been suggested to be important

for maintaining electron flow to prevent photo-

inhibition under stress conditions (Wingler et al.

2000). Methionine residues of proteins are a

major target for oxidation by ROS and peptide

methionine sulfoxide reductase plays protective

roles in the cellular response to oxidative stress

(Kwon et al. 2007). Aldo-keto reductases can

detoxify lipid peroxidation products and

glycolysis-derived reactive aldehydes that con-

tribute significantly to cellular damages caused

by abiotic stresses and improve scavenging

capacity of the plant.

Cold stress may impose a great influence

on the protein synthesis apparatus in plant.

A chloroplast EF-G protein appeared in gel

after 2, 5, and 24 days of cold treatment, but

there was no spot at the corresponding position

in gel of the control group. Because chloroplast

EF-G is a housekeeping gene, there must be an

EF-G protein spot elsewhere in gel of control

group (Gao et al. 2009). It is postulated that

posttranslational modification or alternative

splicing may occur on EF-G in T. halophila
under cold stress to maintain the normal opera-

tion of protein synthesis. Although, EF-G was

previously reported to play a role in chloroplast

biogenesis and development in Arabidopsis.

PAB1 was reported to be involved in

ubiquitin-dependent protein catabolic process.

This may indicate that a high protein turnover

rate is needed for plants to eliminate the mis-

folded polypeptides under cold environment

(Amme et al. 2006; Goulas et al. 2006) and

also in rice plant (Cui et al. 2005; Yan et al.

2006; Hashimoto and Komatsu 2007). They

suggested that the cold stress responses in Thel-

lungiella are similar, in general, to other plant

species. Because Thellungiella is a cold-tolerant

relative of Arabidopsis, comparison of the cold-

induced rosette leaf proteome changes in Thel-

lungiella, and Arabidopsis was performed to

advance the understanding of the higher cold

tolerance of Thellungiella. The identification of

cold-responsive proteins in Thellungiella pro-

vides not only new insights into cold stress

responses but also a good starting point for

further investigation of their functions. How-

ever, considering the inability of 2-DE-based

proteomic study to resolve membrane proteins

and low abundant proteins, integrated transcrip-

tomic, proteomic, and metabolomic approaches

should be adopted to gain further insight into

plant response to cold stress.
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Biotic Stress in Plants

Plants responding to biotic stresses produce sev-

eral protective compounds and proteins such as

pathogenesis-related (PR) proteins, directly

disease-related proteins, and other proteins. Biotic

is one of the serious stresses affecting plant growth

and productivity. A clear perceptive of the molec-

ular mechanisms involved in plants response to

biotic stress is of fundamental importance to

plant science (Mostafa Kamal et al. 2010a, b).

The study of PR proteins is also important

for crop production due to the fact that many

plant-derived pathogen-related proteins have

been identified as members of PR protein families

2, 3, 4, 5, 8, 10, and 14 (Hoffmann-Sommergruber

2002). Among these are pathogenesis-related pro-

teins coded by the host plant that accumulate in

response to pathogen infection or other signals

related to plant defense responses. Several PR

proteins have been characterized at the molecular

level and have shown to have antifungal activity

in vitro (Datta andMuthukrishnan 1999) and show

enzymatic activity such as b-1,3-glucanase and

chitinase (PR2 and PR3, respectively), both

involved in the degradation of microbial cell wall

structural polysaccharides (Legrand et al. 1987)

and PR4 and PR9, characterized by ribonuclease

and peroxidase activity, respectively (Caporale

et al. 2004). Proteomic approaches have been suc-

cessfully used in discovering the resistance

mechanisms in maize against kernel rot caused

by Fusarium or Aspergillus (Chen et al. 2004;

Chen and Chen 2002; Sonia et al. 2004). Mostafa

Kamal (2010a,b) reported that methyl jasmonate

(MeJA) and its free acid jasmonic acid (JA) col-

lectively referred to as jasmonates are important

cellular regulators involved in diverse develop-

mental process, such as seed germination, root

growth, fertility, seed ripening, and senescence.

In addition, jasmonate activate plant defense

mechanisms in response to insect-driven wound-

ing and various pathogens (Creelman and Mullet

1997). Carmona et al. (1993) reported that differ-

ent purothionins are active against plant pathogens

both in vitro and in vivo. Gamma-1-purothionin

showed a higher structural analogy with scorpion

toxins and against insect defensins which also

present the cystine-stabilized alpha helical (CSH)

motif (Bruix et al. 1993) and gamma-2-purothio-

nin inhibits protein translation in cell-free systems

resulting in the exhibited plant toxins for pathogen

(Colilla et al. 1990). Mostafa Kamal et al. (2010a)

indicated that the antifungal activity has been

associated with two immunochemically distinct

proteins; the proteins are homologous with thau-

matin- and pathogenesis-related proteins of the

PR5 family. These proteins have intensely sweet

properties of thaumatin; multiple unrelated

defense functions against insect and fungal pests

can now be associated with the family of

thaumatin-homologous proteins (Hejgaard et al.

1991). Antimicrobial proteins (MBP-1) inhibit

spore germination or hyphal elongation of several

plant pathogenic fungi, including two seed patho-

gens of maize (Fusarium moniliforme Sheld. and

Fusarium graminearum (Gibberella zeae (Schw.)

Petsch)) and several bacteria, including a bacterial

pathogen of maize (Clavibacter michiganense ssp.

nebraskense) (Duvick et al. 1992).Wheat calcium-

dependent protein kinase (CDPK) genes were

found to respond to various biotic and abiotic

stimuli, including cold, hydrogen peroxide

(H2O2), salt, drought, powdery mildew (Blumeria
graminis tritici, BGT), as well as phytohormones

abscisic acid (ABA) and gibberellic acid (GA) (Li

et al. 2008). Chitinases are important components

of plant defense in response to attack by pathogens

as F. graminearum (Li et al. 2001). Dilbirligi and

Gill (2003) reported that many RGA sequences in

wheat are identified as disease resistance gene.

Ascorbate peroxidase, peroxidase, and glutathione

(GSH)-dependent dehydroascorbate reductase

accumulate early in grain fill. SGT1, a component

of R-gene-triggered disease resistance, and serpin,

a serine protease inhibitor, are also present and

may protect the developing grain against various

pathogens (Wong et al. 2004). The pathogen resis-

tance proteins such as serpin; chitinase, which

hydrolyzes the structural carbohydrate of fungal

cell walls; barwin/PR-4 protein, which is induced

by fungal pathogens and binds chitin; and xylanase

inhibitor protein, which inhibits a fungal enzyme

that degrades plant cell walls (Hurkman and

Tanaka 2007). Zhang et al. (2008) reported that a
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total of 375 functional ESTs have been identified

by SSH from a cDNA library of resistant soybean

varieties associated with Phytophthora root rot.

They also observed that systemacquired resistance

(SAR) induced by Phytophthora in soybean pri-

marily depended on salicylic acid-mediated sig-

naling pathways, which was different from

resistance mechanisms in Arabidopsis. Neverthe-

less, the functions of differentially expressed pro-

teins induced byPhytophthora are almost the same

in soybean and Arabidopsis, including material

metabolism enzymes and various regulatory fac-

tors; this suggests that the molecular basis of sys-

tem acquired resistance against Phytophthora is

much the same in soybean and Arabidopsis (Sun
et al. 2008). Plant disease resistance genes usually

have conserved motifs such as the nucleotide-

binding site (NBS). Based on the NBS domain,

two putative resistance genes (KR1 andKR4) were

isolated from soybean. Sixteen identified proteins

were potentially involved in protein degradation,

defense signal transfer, oxidative stress, cell wall

reinforcement, and energy andmetabolism regula-

tion (Yang, et al. 2010). In addition, differential

expression was found by SSH in cDNA libraries

from soybean varieties resistant to soybean cyst

nematode (Cheng et al. 2007; Lu and Fang 2003).

Interaction with Insect and Pest
with Stress

Trichoderma spp. have been known as biocontrol
agents for the control of plant diseases (Harman

et al. 2004). In many cases, the beneficial fungi

may induce systemic resistance that is mediated

by alterations in plant gene expression (Alfano

et al. 2007; Shoresh et al. 2010). They also

reported that the plant in association with Tricho-
derma strains enhanced plant growth, but the

effects, as with other plant growth-promoting

microbes (Gamalero et al. 2009), are greater

when plants are under suboptimal conditions

or biotic, abiotic, or physiological stresses

(Yildirim et al. 2006). Several recent reports

indicate that the fungi enhances tolerance to

abiotic stresses during plant growth, in part

due to improved root growth, improvement in

water-holding capacity of plants (Harman 2000;

Bae et al. 2009), or enhancement in nutrient

uptake; whereas, in the absence of stress, plant

growth may or may not be enhanced. Although

molecular studies indicate greater expression of

gene families involved in plant protection against

abiotic stresses or oxidative damage in Tricho-

derma spp.-treated plants, no experimental evi-

dence has been presented correlating enhanced

tolerance of plants colonized with biocontrol

fungi to these changes in molecular level. These

fungi are frequently applied as seed treatments,

where they may improve plant stands and induce

long-term improvements in plant quality (Har-

man 2000, 2006).

Effects of Abiotic Stress on Plants:
A Systems Biology

Recent advances in biotechnology have dramati-

cally changed our capabilities for gene discovery

and functional genomics. For the first time, we

can now obtain a holistic “snapshot” of a cell

with transcript, protein, and metabolite profiling

(Umezawa 2011). Such a “systems biology”

approach allows for a deeper understanding of

physiologically complex processes and cellular

function (Kitano 2002). Understanding the func-

tion of genes is a major challenge of the post-

genomic era. While many of the functions of

individual parts are unknown, their function can

sometimes be inferred through association with

other known parts, providing a better understand-

ing of the biological system as a whole. High-

throughput -omics technologies are facilitating

the identification of new genes and gene func-

tion. In addition, network reconstructions at the

genome scale are key to quantifying and charac-

terizing the genotype to phenotype relationships

(Feist and Palsson 2008).

Fundamentally, plants require energy (light),

water, carbon, and mineral nutrients for growth.

Abiotic stress reduces growth and yield below

the optimum levels. Plant responses to abiotic

stresses are dynamic and complex system

(Skirycz and Inze 2010; Cramer 2010); they are

both elastic (reversible) and plastic (irreversible).
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The plant responses to stress are dependent on

the tissue or organ affected by the stress. Tran-

scriptional responses to stress are tissue or cell

specific in roots and are quite different depending

on the stress involved (Dinneny et al. 2008). In

addition, the level and duration of stress (acute

vs. chronic) can have a significant effect on the

complexity of the response (Tattersall et al.

2007). Water deficit inhibits plant growth by

reducing water uptake into the expanding cells

and alters enzymatically the rheological proper-

ties of the cell wall, for example, by the activity

of ROS (reactive oxygen species) on cell wall

enzymes (Skirycz and Inze 2010). In addition,

water deficit alters the cell wall nonenzymati-

cally, for example, by the interaction of pectate

and calcium (Boyer 2009). Furthermore, water

conductance to the expanding cells is affected by

aquaporin activity and xylem embolism (Parent

et al. 2009; Boursiac et al. 2008). With long-term

stress, photosynthesis declines due to stomatal

limitations for CO2 uptake and increased photo-

inhibition from difficulties in dissipating excess

light energy (Pinheiro and Chaves 2011). One of

the earliest metabolic responses to abiotic stres-

ses and the inhibition of growth is the inhibition

of protein synthesis (Good and Zaplachinski

1994; Vincent et al. 2007) and an increase in

protein folding and processing (Liu and Howell

2010). Energy metabolism is affected as the

stress becomes more severe (e.g., sugars, lipids,

and photosynthesis) (Cramer et al. 2007; Kilian

et al. 2007). Thus, there are gradual and complex

changes in metabolism in response to stress.

Regulatory Mechanism

The plant molecular responses to abiotic stresses

involve interactions and cross-link with many

molecular pathways (Takahashi et al. 2004).

Reaction oxygen species (ROS) signaling in

response to abiotic stresses and its interactions

with hormones has been thoroughly reviewed

(Mittler et al. 2010). ROS and RNS (reactive

nitrogen species) form a coordinated network

that regulates many plant responses to the envi-

ronment. There are a large number of studies on

the oxidative effects of ROS on plant responses to

abiotic stress, but only a few studies documenting

the nitrosative effects of RNS (Molassiotis and

Fotopoulos 2011). Hormones are also important

regulators of plant responses to abiotic stress. The

two most important hormones are abscisic acid

(ABA) and ethylene. ABA is a central regulator

of many plant responses to environmental stres-

ses, particularly osmotic stresses (Cramer 2010;

Kim et al. 2010; Chinnusamy et al. 2008). There

are slower responses to ABA involving transcrip-

tional responses that regulate growth, germina-

tion, and protective mechanisms. Recently, the

essential components of ABA signaling have

been identified, and their mode of action was

elaborated (Umezawa et al. 2010). The current

model of ABA signaling includes three core com-

ponents, receptors (PYR/PYL/RCAR), protein

phosphatases (PP2C), and protein kinases

(SnRK2/OST1). The PYR/PYL/RCAR proteins

were identified as soluble ABA receptors by two

independent groups (Ma et al. 2009; Park et al.

2009). The 2C-type protein phosphatases (PP2C)

including ABI1 and ABI2 were first identified

from the ABA-insensitive Arabidopsis mutants

abi1-1 and abi2-1, and they act as global negative

regulators of ABA signaling (Leung and Giraudat

1998). Yamaguchi-Shinozaki and Shinozaki

(2006) reported that the transcriptional regulation

of dehydration and salinity stresses have revealed

both ABA-dependent and ABA-independent

pathways. Cellular dehydration under water-

limited conditions induces an increase in endoge-

nous ABA levels that trigger downstream target

genes encoding signaling factors, transcription

factors, metabolic enzymes, and others. In the

post-genomic era, comprehensive analyses using

three systematic approaches have increased our

understanding of the complex molecular regu-

latory networks associated with stress adaptation

and tolerance. The first one is “transcriptomics”

for the analysis of coding and noncoding RNAs

and their expression profiles. The second one is

“metabolomics” that is a powerful tool to analyze

15 Stress Tolerance in Plants: A Proteomics Approach 371



a large number of metabolites. The third one is

“proteomics” in which protein and protein modifi-

cation profiles offer an unprecedented understand-

ing of regulatory networks. Protein complexes

involved in signaling have been analyzed by a

proteomics approach (Kaufmann et al. 2011).

Hirai et al. (2004, 2007) identifiedMYB transcrip-

tion factors regulating glucosinolate biosynthesis

in Arabidopsis in response to S and N deficiency

using an integrated transcriptomics and metabolo-

mics approach. Genes and metabolites in glucosi-

nolate metabolism were found to be coordinately

regulated (Hirai et al. 2004). Co-expression analy-

sis was used to identify two MYB transcription

factors that positively regulate glucosinolate

metabolism (Hirai et al. 2007). Mao et al. (2009)

performed a gene co-expression network analysis

of 1,094 microarrays of Arabidopsis using a non-

targeted approach. They identified 382 modules in

this network. The top three modules with the most

nodes were photosynthesis, response to oxidative

stress, and protein synthesis. Many of the modules

also involved responses to environmental stresses.

They constructed a cold-induced gene network

from a subset of microarrays. Weston et al.

(2008) used weighted co-expression analysis to

define six modules for Arabidopsis responses to

abiotic stress. Two hubs in the common response

module were an ankyrin-repeat protein and genes

involved in Ca signaling. They created a compen-

dium of genomic signatures and linked them to

their co-expression analysis.

Proteomics Approach in Biotic Stress

High temperature and drought, which often occur

together during the growing season and likely con-

tribute to poor kernel development, have been

reported to increase growth of the fungus and

toxin production (Payne 1998). Jones et al.

(1981) reported that irrigating corn fields to reduce

drought stress also reduced fungal infection and

aflatoxin contamination. Irrigation not only

relieved drought stress but also reduced soil tem-

perature. Lower soil temperature was found to

reduce aflatoxin contamination in peanut (Hill

et al. 1983). Increased aflatoxin contamination

was observed in drought-treated peanuts with

increased soil temperatures (Cole et al. 1985).

Dorner et al. (1989) also reported that a higher

soil temperature favors Aspergillus flavus growth

and aflatoxin production. A study on the effect

of drought on peanut resistance to A. flavus by

Wotton and Strange (1987) found that fungal col-

onization was inversely related to water supply as

was aflatoxin production. Payne et al. (1986) also

concluded that water stress appears to be a major

factor affecting aflatoxin contamination. Studies

of aflatoxin and fumonisin contamination of corn

grown under high or moderate heat stress (Abbas

et al. 2002; Chen et al. 2004) demonstrate that heat

stress also plays an important role in the suscepti-

bility of corn to both aflatoxin and fumonisin con-

tamination. Tubajika and Damann (2001)

compared ear rot and aflatoxin production between

nine drought-tolerant and two aflatoxin-resistant

corn lines under field and laboratory conditions.

They found that drought-tolerant lines all had sig-

nificantly lower levels of ear rot and aflatoxin

contamination compared to the aflatoxin-resistant

controls, when grown under drought conditions

(Tubajika and Damann 2001). A proteomics

approach was recently employed to identify pro-

teins whose level of expression associated with

kernel resistance against A. flavus infection and

aflatoxin production (Chen et al. 2002a, b). They

found over a dozen proteins, either unique or five-

fold upregulated in resistant lines, have been

identified and sequenced (Chen et al. 2002a,

b, 2004). These proteins can be grouped into

three categories based on their peptide sequence

homology, that is, storage proteins, such as globu-

lin 1, globulin 2, and late embryogenesis abundant

proteins (LEA3, LEA14); stress-related proteins,

such as an aldose reductase (ALD), a peroxire-

doxin antioxidant (PER1), a cold-regulated

protein, a water stress-inducible protein, an

anionic peroxidase, a glyoxalase I protein

(GLX I), and several small heat shock proteins

(HSP); and antifungal proteins, which include a

trypsin inhibitor and a pathogenesis-related

protein. The majority of protein identified was

stress-related proteins and highly hydrophilic stor-

age proteins. These data suggest that kernel resis-

tance may require not only the presence of high
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levels of antifungal proteins but also that of high

levels of stress-related proteins and highly hydro-

philic storage proteins. Storage proteins have been

reported to play an important role in stress toler-

ance. Chen et al. (2002a, b) reported that the

members of the LEA genes family have been

associated with plant responses to many different

stresses including drought, salt, cold, heat, and

wounding (Thomann et al. 1992). Transgenic

expression of an LEA protein from barley demon-

strated increased tolerance to water and salt stress

in rice (Xu et al. 1996). Some stress-related pro-

teins have been reported to not only confer stress

tolerance but also enhance disease resistance. The

expression of heat shock proteins, especially the

small HSPs under stress, has been widely studied

(Vierling 1991) and shown to possess molecular

chaperone activity (Jacob et al. 1993). Aside from

heat stress, HSPs are also induced by other stresses

such as cold, drought, or salinity (Sabehat et al.

1998). The role of glyoxalase in stress tolerance is

also highlighted in a recent study using transgenic

tobacco plants overexpressing a Brassica juncea

glyoxalase I (Veena et al. 1999). Park et al. (2001)

and Shin et al. (2002) also found that transgenic

expression of the tobacco stress-inducible gene 1

(Tsi1) induced expression of several pathogenesis-

related genes under normal conditions, resulting in

improved tolerance to salt and pathogens. The

mechanisms plants use to adapt to abiotic and

biotic stresses have been widely studied in a num-

ber of plants.

Production of ROS in Plants

Current research effort has focused on the isola-

tion of stress-responsive genes and their regula-

tion as a means to understand the molecular events

underlying the adaptation process. An increasing

body of evidence suggests that a subset of plant

responses to biotic and abiotic stress is shared,

such as the generation of reactive oxygen species

(ROS), the activation of mitogen-activated protein

kinases (MAPKs), and hormone modulations

(Mittler 2002) (Fig. 15.1). Organelles such as

chloroplasts, mitochondria, and microbodies are

a major source of ROS production in plant cells.

Together with an extensive battery of oxidases,

the plant cell is well armed for bountiful yet

flexible ROS production. In chloroplasts, the pri-

mary sources of ROS production are the Mehler

reaction and the antenna pigments (Asada and

Takahashi 1987). Production of ROS by these

sources is enhanced in plants by conditions limit-

ing CO2 fixation, such as drought, salt, and tem-

perature stress, as well as by the combination of

these conditions with high-light stress. In C3

plants, limiting CO2 conditions can also activate

the photorespiratory pathway (Foyer 2002). As

part of this pathway, H2O2 is generated in peroxi-

somes by the enzymatic activity of glycolate oxi-

dase. Production of H2O2 in microbodies can also

occur during lipid catabolism as a side product of

fatty acid oxidation. In mitochondria, over-

reduction of the electron transport chain is the

main source of O2� production under specific

stress conditions (Møller 2001). ROS in plant

cells include the detoxifying reactions catalyzed

by cytochromes in both the cytoplasm and the

endoplasmic reticulum. They are thought to play

a key role in ROS signaling and contain a multi-

meric flavocytochrome that forms an electron

transport chain capable of reducing O2 to O2�.
Chemical inhibitors of mammalian NADPH oxi-

dase (such as diphenyleneiodonium) have been

shown to block or impair ROS production during

biotic or abiotic stresses in plants (Allan and Fluhr

1997). In addition to NADPH oxidases, pH-

dependent cell wall peroxidases, germin-like oxa-

late oxidases, and amine oxidases have been pro-

posed to generate ROS at the apoplast (Bolwell

and Wojtaszek 1997; Walters 2003). Although

much attention has been given to NADPH oxi-

dases and their possible role in cell signaling,

other ROS-producing mechanisms in the mito-

chondria, apoplast, and peroxisome are likely to

play a role in ROS signaling in response to differ-

ent stimuli or developmental signals.

Modulation of ROS Signaling

ROS production is recognized as a common

event in plant response to biotic and abiotic

stresses (Mittler et al. 2010; Lamb and Dixon
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1997). The hypersensitive response (localized

plant cell death at the infection site) to halt path-

ogen invasion during an incompatible hos-

t–pathogen interaction has also been reported to

involve the production of ROS. Mittler et al.

(2004) reported that calcium signaling is pre-

dominantly controlled in plants by storage and

release; ROS signaling is controlled by produc-

tion and scavenging. Different developmental or

environmental signals feed into the ROS signal-

ing network and perturb ROS homeostasis in a

compartment-specific or even cell-specific man-

ner. Perturbed ROS levels are perceived by dif-

ferent proteins, enzymes, or receptors and

modulate different developmental, metabolic,

and defense pathways. ROS can be generated

by various enzymatic activities, of which the

best studied are NADPH oxidases, and removed

by an array of ROS-scavenging enzymes. The

intensity, duration, and localization of the

different ROS signals are determined by inter-

play between the ROS-producing and ROS-

scavenging pathways of the cell. This process

requires a tight mode of regulation and might

involve amplification and/or feedback inhibition

loops. In addition to regulating the intensity and

duration of the different ROS signals, the ROS-

scavenging pathways are also responsible for

maintaining a low steady-state baseline of ROS

on which the different signals can be registered.

The reactive oxygen gene network therefore

modulates the steady-state level of ROS in the

different cellular compartments for signaling

purposes as well as for protection against oxida-

tive damage. It is possible that the use of ROS as

versatile signaling molecules originated from

their proposed use to sense stress. Most forms

of biotic or abiotic stress disrupt the metabolic

balance of cells, resulting in enhanced produc-

tion of ROS. Simple organisms, such as bacteria
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Fig. 15.1 Modulation of reactive oxygen species (ROS) signaling by the reactive oxygen gene network of plants

(Published by Mittler et al. 2004)
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or yeast, sense the enhanced production of ROS

using redox-sensitive transcription factors and

other molecular sensors, activate different ROS

defense pathways, and regulate their metabolic

pathways to lower the production rate of ROS

(Costa and Moradas-Ferreira 2001; Georgiou

2002). The signal transduction pathway was

demonstrated by Mittler et al. (2004) (Fig. 15.2).

Stress and Transcription Factors

Studies of transcriptional activation of some stress-

responsive genes have also led to the identification

of cis-acting elements ABRE (ABA-responsive

element) and DRE (dehydration-responsive ele-

ment)/CRT (C-repeat) that function in ABA-

dependent and ABA-independent gene expression

in response to stress, respectively (Seki et al. 2003).

Transcription factors belonging to the ethylene-

responsive element-binding factor family that

bind to DRE/CRT were also isolated (Liu et al.

1998). The genes encoding these transcription fac-

tors are induced early and transiently in response to

cold, and these transcription factors, in turn, acti-

vate the expression of target genes. Liu et al. (1998)

reported that the transcription factors (DREB2A

and DREB2B) are also induced by dehydration

and promote the expression of various genes

involved in drought stress tolerance. The expres-

sion of a new DNA-binding protein DBF1 that

specifically interact with the DRE2 cis-element of

a corn rab17 gene promoter is induced by ABA,

dehydration, and high salinity (Kizis and Pages

2002). Another example of a transcription factor

is calcium-dependent protein kinases (CDPKs).

CDPKs are implicated as important sensors of

Ca2+ flux in plants in response to stress (Ludwig

et al. 2004). CDPKs are encoded by multigene

families, and expression levels of these genes are

spatially and temporally controlled throughout

development. In addition, subsets of CDPKs are

involved in signal transduction during stress

including cold, salt, and drought or pathogen infec-

tion. A new transcription factor, BOS1 (Botrytis
susceptible 1), was found to be required for both

biotic and abiotic stress responses in Arabidopsis

as reported byMengiste et al. (2003). This complex

network of interactions allows plants to respond in

a highly specific fashion to the exact combination

of environmental stresses encountered.

Identification of the Differentially
Expressed Proteins

Many cold stress-responsive proteins have been

identified (Gao et al. 2009). These proteins inclu-

deputative 2,3-bisphosphoglycerate-independent

phosphoglycerate mutase, glycine-rich RNA-

binding protein 7 (GRP7), ferritin-1, EF-G, phos-

phoglycerate kinase, ATP synthase CF1 beta

chain, UDP-glucose pyrophosphorylase, cysteine

proteinase inhibitor, RuBisCO small chain, car-

bonic anhydrase, and SAL1 phosphatase. New

proteins such as isopropylmalate synthase, cyto-

chrome b6–f complex iron–sulfur subunit, and

SNF2 domain-containing protein/helicase domain-

containing protein/zinc finger (C3HC4 type RING

finger) family protein have been identified in

response to cold stress. These novel cold-

responsive proteins may play important roles in

cold tolerance of Thellungiella halophila. The

stress related proteins are involved in RNA meta-

bolism and energy pathway, protein synthesis, fold-

ing and degradation as well as cell wall and

cytoskeleton, metabolisms of nitrogen and sulfur,

and signal transduction (Emanuelsson et al. 2000).

The cold stress-responsive proteins linked to RNA

metabolism, defense response, protein synthesis,

and folding and degradation were all upregulated

markedly during cold treatment. It suggests that

these cellular processes were enhanced by exposure

to cold stress. The identified protein involved in

photosynthesis and energy pathway displayed

diverse change patterns. T. halophila is a valuable

model system for investigating the mechanisms

involved in plant cold stress tolerance. Proteomic

analysis of cold stress response in T. halophila can

help to identify key regulators of cold tolerance in

plants. Regulation of chloroplast functions under

cold stress. The expression regulation of chloroplast

proteins is of central importance in cold adaptation

(Foyer et al. 1997), and a substantial portion (46%,

23/50) of the identified proteins were predicted to

be localized in chloroplast. Eighteen of these have
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been identified to reside in the chloroplast by previ-

ous proteomic studies according to the Plant Prote-

ome Database (PPDB, http://ppdb.tc.cornell.edu/)

(Sun et al. 2009). These chloroplast-located cold

stress-responsive proteins are associated with vari-

ous aspects of chloroplast, including Calvin cycle

and electron transport (discussed below), chloro-

plast RNA processing (putative RNA-binding pro-

tein cp29), and chloroplast protein synthesis and

folding (EF-G and heat-shock protein 70), as well

as chloroplast redox homeostasis (BAS1,

Peroxiredoxin-2E and Ferritin- 1). At the same

time, a chloroplast-localized carbonic anhydrase,

which facilitates CO2 move across the chloroplast

envelope, was found to decrease in abundance after

5 and 24 days of cold treatment. The changes in

Calvin cycle enzymes observed in this study might

be associated with decrease in photosynthetic CO2

assimilation, possibly resulting in decreased growth

rate in the long term. Enhanced RNA metabolism,

including RNA processing, transporting from

nucleus to cytoplasm, and mRNA secondary struc-

ture stability may be impaired under cold stress,

especially for the cold stress-induced defense-

related transcripts (Zhu et al. 2007). Several RNA-

binding proteins and helicase-like proteins were all

found to be upregulated by cold stress in the present

study, including GRP7, glycine-rich RNA-binding

protein GRP1A (GRP1A), putative RNA-binding

protein cp29, and SNF2 domain-containing protein/

helicase domain-containing protein/zinc finger

(C3HC4-type RINGfinger) family proteins indicat-

ing enhanced RNAmetabolismmay play an impor-

tant role in cold tolerance of T. halophila. Among

these cold-responsive nucleic acid-binding proteins,

GRPs are suggested to play an important role in

posttranscriptional regulation of gene expression in

plants under various stress conditions (Mousavi and

Hotta 2005). GRP7 has been demonstrated to play a

role in the export ofmRNAs from the nucleus to the

cytoplasmunder cold stress conditions inArabidop-

sis (Kimet al. 2008). RNA-binding protein cp29 is a

subunit of the photosystem II and its phosphoryla-

tion was reported to relate with the cold tolerance in

maize (Mauro et al. 1997). A RNA-binding protein

cp29 was proved to be induced by cold stress in

Arabidopsis (Amme et al. 2006). The increase in

two chloroplast RNA-binding proteins may help to
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Fig. 15.2 Model of the reactive oxygen species (ROS)

signal transduction pathway. ROS can be detected by at
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factor, PDK phosphoinositide-dependent kinase, TF tran-

scription factor (Published by Mittler et al. 2004)
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enhance or maintain the chloroplast RNA synthesis

under cold conditions. In addition, GRPs and chlo-

roplast RNA-binding proteins are suggested to be

part of the plant innate immunity system and

increase in their abundance may promote the

expression of immunity-related mRNA (Fu et al.

2007).

Conclusion

In conclusion, the proteomic analysis is a very

useful tool for providing complex information

about differences in the plant proteome during

abiotic and biotic stresses. It is almost necessary

to clarify the differential function of the individ-

ual stress-responsive NAC genes for the control

of abiotic stress tolerance and the other

biological processes including biotic stress toler-

ance and growth regulation in order to fully uti-

lize the potential of NAC transcription factors.

Large-scale transcriptome analyses coupled with

microarray, proteomic, and metabolomic analy-

sis of plants perturbed at the levels of individual

or multiple components of the ROS network will

be essential for future studies. In the future, a

combination of reverse genetics, genomics, and

proteomic approaches in various developmental

stages and stress conditions will provide us with

critical information to elucidate the functional

differences of the stress-responsive NAC factors

and their relationship in transcriptional control. It

is a challenge for plant scientists/environmental-

ists/biotechnologists in the twenty-first century

to develop stable multiple stress tolerance traits

in agronomically important crop plants, thus

improving yields particularly in areas with

adverse environmental conditions and contribut-

ing to food security.
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Vass I, Barna B, Király Z, Dudits D (1999) Plants

ectopically expressing the iron binding protein, ferri-

tin, are tolerant to oxidative damage and pathogens.

Nat Biotechnol 17:192–196

Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann

K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H,

Ward E (1994) A central role of salicylic acid in plant

disease resistance. Science 266:1247–1250

Deprost D, Yao L, Sormani R, Moreau M, Leterreux G,

Nicolai M, Bedu M, Robaglia C, Meye C (2007) The

Arabidopsis TOR kinase links plant growth, yield,

stress resistance and mRNA translation. EMBO Rep

8(9):864–870

Diaz J, ten Have A, van Kan JA (2002) The role of

ethylene and wound signaling in resistance of tomato

to Botrytis cinerea. Plant Physiol 129:1341–1351
Dietz KJ, Bair M, Kramer U (1999) Free radical and

reactive oxygen species as mediators of heavy metal

toxicity in plants. In: Prasad MNV, Hagemeyer J

(eds) Heavy metal stress in plants from molecules

to ecosystems. Springer, Berlin, pp 73–79

Dilbirligi M, Gill KS (2003) Identification and analysis of

expressed resistance gene sequences in wheat. Plant

Mol Biol 53:771–787

Dinneny JR, Long TA, Wang JY, Jung JW, Mace D,

Pointer S, Barron C, Brady SM, Schiefelbein J, Ben-

fey PN (2008) Cell identity mediates the response of

Arabidopsis roots to abiotic stress. Science 320

(5878):942–945

Dorner JW, Cole RJ, Sanders TH, Blankenship PD (1989)

Interrelationship of kernel water activity, soil tempera-

ture, maturity, and phytoalexin production in preharvest

aflatoxin contamination of drought-stressed peanuts.

Mycopathologia 105:117–128

Dubey RS (2011) Metal toxicity, oxidative stress and

antioxidative defense system in plants. In: Gupta SD

(ed) Reactive oxygen species and antioxidants in

higher plants. CRC Press, Boca Raton, USA, pp

177–203

Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molec-

ular characterization of AtNAM: a member of the

Arabidopsis NAC domain superfamily, Plant Mol.

Biol 50:237–248

Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purifi-

cation and characterization of a novel antimicrobial

peptide from maize (Zea mays L.) kernels. J Biol

Chem 267:18814–18820

Emanuelsson O, Nielsen H, Brunak S, von Heijne G

(2000) Predicting subcellular localization of proteins

based on their N-terminal amino acid sequence. J Mol

Biol 300:1005–1016

Feist AM, Palsson BO (2008) The growing scope of

applications of genome-scale metabolic reconstruc-

tions using Escherichia coli. Nat Biotechnol 26

(6):659–667

Feys BJ, Parker JE (2000) Interplay of signaling path-

ways in plant disease resistance. Trends Genet 16:

449–455

Fowler S, Thomashow MF (2002) Arabidopsis transcrip-

tome profiling indicates that multiple regulatory path-

ways are activated during cold acclimation in addition

to the CBF cold response pathway. Plant Cell

14:1675–1690

Foyer CH (2002) The contribution of photosynthetic oxy-

gen metabolism to oxidative stress in plants. In: Inzé
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