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Abstract Reliability assessment using first- or second-order methods (FORM or

SORM) demands evaluation of first derivative (i.e., slope) of the limit, which is

often difficult to evaluate for real-life structures due to limited information about

the performance function. To avoid this, present study aims to use stochastic

response surface methodology (SRSM) to evaluate the reliability of the structure.

In this method, uncertainty is modeled using series expansion of standard normal

random variables (i.e., polynomial chaos expansion). The coefficients of the poly-

nomial chaos expansion are obtained by stochastic collocation which demands

limited number of evaluation of the performance function. Once the order of the

polynomial and the coefficients is evaluated, reliability index is obtained by FORM.

Numerical examples are presented to show the applicability of the proposed SRSM-

based reliability analysis.

Keywords Reliability index • Stochastic process • Limit Surface • Polynomial

chaos

1 Introduction

First-order reliability methods have been extensively used for reliability analysis of

structural systems [11, 14] due to its simplicity. For this purpose, Rackwitz–Fiessler

algorithm is often used to find out the optimal distance (i.e., reliability index) of the

limit surface from the origin in standard normal space. This method needs to

evaluate the slopes (i.e., first derivative of the limit surface) to locate the most

probable design point and subsequently the reliability index. However, limit

surfaces are often unknown in the close form (i.e., implicit), and hence, their
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derivatives are difficult to evaluate. In this context, Bucher and Bourgand [2]

developed response surface method (RSM) for reliability analysis. In RSM, the

unknown limit surface is approximated by a multidimensional quadratic polynomial

near the failure region. In the recent past, engineers and researchers have extensively

used this method for various applications like performance evaluation, crash simula-

tion, and reliability-based design optimization [1, 3, 6, 9, 10]. However, as this

polynomial approximation of the original limit state is valid near the failure region,

it often faces difficulty to find out the optimal distance for limit states with multiple

design points. Moreover, as this is a deterministic representation, it fails to capture the

stochastic characteristics of the original limit state.

To avoid this problem, stochastic response surface method (SRSM) was proposed

by Isukapalli [7]. In this method, the stochastic signature of the original limit state is

mapped in the standard normal space using polynomial chaos expansion (PCE).

Wiener [16] first introduced PCE to model the turbulence where infinite orthonormal

functions in standard normal space are used to model the stochastic phenomenon.

Ghanem and Spanos [5] showed that Hermite polynomials form an orthogonal basis

for PCE and is convergent in the mean-square sense. However, this representation

needs to evaluate the coefficients of the Hermite polynomials to model the original

performance function. Tatang [15] developed probabilistic collocation technique

where Gauss quadrature points were used to evaluate the coefficients of the PCE.

Isukapalli [7] used the roots of one order higher than polynomial as the reference

points and evaluated the coefficients by regression analysis. Gavin [4] showed that

SRSM works better for complex structures with low failure probability where Monte

Carlo simulation (MCS) and approximate methods are either computationally inten-

sive or inaccurate. It models the global stochastic nature of the limit surface as

opposed to model the local nature near the failure region in RSM. This property

may be used to identify the local minima where multiple design points exist. Due to

these advantages, SRSM has gained momentum for reliability analysis of civil

engineering structures in the recent past. Li et al. [9] performed reliability analysis

of rock slopes using SRSM with higher order polynomials. Mollon [12] used

collocation-based SRSM to analyze the stability of a circular tunnel driven by a

pressurized shield.

With these in view, present study aims also apply SRSM to analyze the reliability

of a retaining wall against overturning. The results obtained from this method will be

compared with Monte Carlo simulations to check the efficiency and accuracy of the

SRSM.

2 Stochastic Response Surface Methodology

The limit surface divides the probability space into safe and failure zones, which is

symbolically represented as

gðXÞ ¼ 0 (1)
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where X ¼ [x1, x2,. . .xn] and xi are the random variables that describe the failure

plane. In the above equation, g(x) < 0 represents the failure region. The probability

of failure for a limit state described in Eq. (1) can be represented as

pf ¼
Z

. . . . . . ::

Z
gðxÞ<0

fX1;X2......;Xn
ðx1; x2; . . . . . . ; xnÞdx1dx2 . . . . . . :dxn ¼ P½gðXÞ � 0� (2)

However, probability evaluation using above equation demands the complete

description of the joint probability distribution function f which are often unknown.
The problem is more complex where the performance function described in Eq. (1)

is not available in explicit form. To evaluate the reliability for these cases, either

RSM or SRSM is used. However, RSM often faces difficulties for nonsmooth

failure planes with multiple local minima as the polynomial approximation near

the MPP is carried out for this case. Under these situations, SRSM can be a better

alternative as the stochastic nature of the failure plane, irrespective of the presence

of local minima, is modeled using PCE. Reliability evaluation using SRSM

involves the following four major steps:

(a) Functional/polynomial chaos representation of output

(b) Evaluation of unknown coefficients

(c) Representation of input random variables in terms of standard normal variables

(d) Evaluation of reliability using FORM/SORM

2.1 Functional/Polynomial Chaos Representation of Output

Polynomial chaos is defined by an orthonormal set of standard normal variables

Zif g1i¼1. Therefore, PC of order p (i.e., Gp) is defined by the set of polynomials of

order p which is orthogonal to all of polynomials of order p � 1. Using these

orthonormal set of standard normal variables, any function f can be represented as

f ¼
X

pr0 n1þn2

X
þ���þnr¼p

X
r1...:;rr

an1...:;nrr1...:;rr
Gpðzr1;...::;zrrÞ (3)

In the above equation, p and r represent the order and the dimension, respec-

tively, and an1;...;nrr1;...;rr
represent the coefficients. In this context, Hermite polynomials

are used to represent fwhich is given by Ghanem and Spanos [5] and Issukapalli[7]:

Gp zi1 ; . . . zirð Þ ¼ e
1
2
ztzð�1Þp @p

@zi1 ; . . . ; zir
e�

1
2
ztz (4)
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where Z is the standard normal random variable. Using the expressions for PCE

given in Eqs. (3) and (4), the limit state given in Eq. (1) can be represented in

standard normal space as

gpðZÞ ¼ 0 (5)

The above expression of performance function is the linear combination of

n-dimensional polynomials involving unknown coefficients an1;...;nrr1;...;rr
which are

evaluated using collocation points.

2.2 Evaluation of Unknown Coefficients

Once the functional representation of the output is known, the next step is to

evaluate the unknown coefficients. For this purpose, regression analysis is

performed using collocation points which are the roots of one dimensional Hermite

polynomial that are one order higher than the order of the polynomials used to

represent the limit surface. Therefore, the number of collocation points available for

n dimensional pth order PCE is (p + 1)n [8]. In this format, it can be shown that

the numbers of collocation points are more than the number of unknowns. Using the

values of the limit state function at these points, the unknown coefficients are

evaluated by stochastic regression analysis.

2.3 Representation of Stochastic Inputs

The regression analysis mentioned in the previous section demands the evaluation

of the performance function represented by Eq. (1) at (p + 1)n collocation points.

However, as the collocation points are in standard normal space, the equivalent

points in the original space are found by one-to-one mapping of cumulative

distribution function (CDF) of the two random variables. For the details of this

transformation, one may refer to Isukapalli [8].

2.4 Evaluation of Reliability

Once the coefficients are evaluated using stochastic least square technique

described in previous section, the performance function in Eq. (1) is transformed

into standard normal space which may be further used for first-order reliability

analysis. For this purpose, the optimal distance from the origin in the standard
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normal space (i.e., reliability index b) can be evaluated using Rackwitz–Fiessler

algorithm [13]. In this iterative procedure, b is obtained as

b ¼ SzirigpðZÞ
rgðZÞ

�� ��
�����
z�

(6)

In the above equation, Z* represents MPP in standard normal space and :k k
represents the Euclidean norm. It can be shown that the probability of failure is

related to b through the following relation:

pf ¼ Fð�bÞ (7)

3 Example Problems

The SRSM method described in the previous section is used to evaluate the

reliability of two different limit states.

Example 1: Nonlinear and Nonsmooth Limit State In the first problem, the follow-

ing performance function is considered:

gðXÞ ¼ �1

25
ðX1 � 1Þ2 � X2

3
þ 3þ sinð5X1Þ

5
(8)

where X1and X2 are the two random variables.

Example 2: Retaining Wall Against Overturning In the second problem, the

reliability of a retaining wall as shown in Fig. 1 against overturning is considered.

The parameters in Fig. 1 and the details of the stabilizing and overturning

moments are given in Appendix A. The limit state describes the failure in this

case is given by

gðXÞ ¼ Mr �Mo (9)

In the above equation, Mr represents the stabilizing moment and Mo represents

the overturning moment. The random variables associated with the limit states are

surcharge load (q), unit weight of concrete (Wc), unit weight of soilWs, soil friction
angle (’), and wall friction angle (d).

4 Numerical Results and Discussion

SRSM discussed in the previous sections is used to solve example cases and

evaluate the reliability. In Example 1, X1 and X2 are the two uncorrelated random

variables with the values of mean and standard deviation are 3.5 and 1, respectively.
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In this case, different combinations of normal and lognormal variables are consid-

ered and the results are compared with Monte Carlo simulations. The unknown

coefficients of the PCE are evaluated using collocation points. For this purpose,

4th-order polynomials are used. The total number of unknowns in Eq. (5) is 15. To

generate the collocation points, roots of the 5th order (i.e., 4 + 1) are used. As the

dimension of the problem is 2, the possible combinations using these roots are 25

(i.e., 32.) Although 32 collocation points are available for the regression analysis,

only 23 (i.e., 1.5 � 15) points are used. It has been observed that the convergence

can be achieved with 1.5n collocation points. In this context, the points that are

close to the origin were given the priority. Figure 2 shows the CDF of the limit

state using PCE and Monte Carlo simulations. It can be observed from this figure

that the 4th-order polynomial estimates CDF satisfactorily. Using this 4th-order

PCE, Hasofer–Lind reliability index is evaluated as described in Eq. (6). Table 1

shows the reliability index and probability of failure for different combinations of

random variables X1 and X2. From this table, it can be concluded that SRSM results

match closely with simulations. In this context, six million samples were used for

simulations.

The SRSM-based technique is further used to evaluate the reliability of the

retaining wall. Table 2 shows the distributions and the parameters of the random

variables used in this model. It can be observed that the dimension of this problem is

5. In this case also, a 4th-order PCE is used to model the limit state in the standard

normal space. Total number of unknowns for this 5th dimensional and 4th-order

PCE representation is 126. To evaluate these unknown coefficients, roots of the

Fig. 1 Retaining wall
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5th-order polynomial are again used as the collocation points. As described in

previous section, total numbers of collocation points available in this case are

3,125 (i.e., 54+1). However, 183 collocation points (i.e., 1.5 � 126) which are

closer to the origin are used for regression analysis. Using these collocation points,

CDF of the limit state is obtained and is shown in Fig. 3. In this case also, one can

Fig. 2 CDF of the limit state in Example 1

Table 1 Reliability index

and probability of failure in

Example 1 X1 X2

b pf

Monte Carlo SRSM Monte Carlo SRSM

N N 3.3692 3.4325 0.00037 0.00029

N LN 2.8977 2.8094 0.00187 0.00248

LN N 2.7879 2.8019 0.00265 0.00254

LN LN 2.6461 2.8058 0.00407 0.00250

N normal, LN lognormal

Table 2 Variables of

retaining wall problem
Variable Distribution

Statistics

m Cov(%)

q LN 20 10

wc N 24 7

ws N 18 7

’ LN 30 7

d LN 10 7
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Fig. 3 CDF of the limit state in Example 2

Fig. 4 Change of b with height of the wall
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Fig. 5 Change of b with base width

Fig. 6 Variation of Pf for different height and base width
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notice a close match between the PCE and simulations. Figures 4 and 5 show the

reliability index for different values of height and base width of the retaining wall.

From these figures, one can conclude that the reliability index obtained by SRSM

closely matches with the simulations. Figure 6 shows the probability of failure for

different values of height and base width. From this figure, one can easily evaluate

the reliability (1 � pf) for a given combination of height and base width.

5 Conclusions

In this chapter, stochastic response surface method is used to evaluate the reliability

for different limit state functions. In this method, the random nature of the limit

state is modeled by multidimensional polynomial chaos expansion whose

coefficients are evaluated by regression analysis. For this purpose, the roots of

the polynomial of dimension one order higher than the original one are used to

generate the collocation points. Once the coefficients are evaluated, the optimal

distance in standard normal space (i.e., reliability index) is evaluated using

Rackwitz–Fiessler algorithm. The example cases shown in this chapter prove the

accuracy and efficiency of the SRSM-based reliability analysis.

Appendix A

Figure 1 shows the retaining wall used in Example 2. In this figure, H, B, Bs, ts, and
tb are the height of wall, length of base, distance of centerline of stem to heel,

thickness of stem, and thickness of base slab, respectively. The thickness of the

stem and the base is taken to be 0.45 m. Further, q and d represent the surcharge and
the wall friction angle, while pa represents the active earth pressure which has

horizontal and vertical components as pah and pav, respectively.M1,M2,M3, andM4

are the moments due to self weights of different components of the wall–soil

combination marked 1, 2, 3, and 4, respectively, which are given by

M1 ¼ ws

Bs � ts
2

� �2
2

ðH � tbÞ (A1.a)

M2 ¼ wctsðH � tbÞBs (A1.b)

M3 ¼ wctb
B2

2
(A1.c)

M4 ¼ q

2
Bs � ts

2

� �2

(A1.d)
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The total downward force due to the weights of different components (i.e., soil

mass, stem of the wall, base of the wall, and surcharge) is given by

W ¼ ws Bs � ts
2

� �
ðH � tbÞ þ wctsðH � tbÞ þ wctbBþ q Bs � ts

2

� �
(A2)

The point of action of the total weight W can be obtained as

xw ¼ Mw

W
(A3)

Using Eqs. (A2) and (A3), the total resisting moment about the toe of the wall

can be expressed as

Mr ¼ WðB� xwÞ (A4)

Thus, the active earth pressure acting on the wall due to the soil mass is given by

Pa ¼ 1

2
KawsH

2 þ Ka qH (A5)

where the active earth pressure coefficient ka is defined as

Ka ¼ cos2ð’� aÞ
cos2ðaÞ cosðaþ dÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinð’þdÞ sinð’þgÞ
cosðaþdÞ cosðg�aÞ

qh i2 (A6)

In the above equation, ’, a, and g are the soil friction angle, the angle of the wall,
and the inclination of the backfill, respectively. Using Eqs. (A5) and (A6), one can

estimate the total overturning moment acting on the wall as

Mo ¼ 1

2
Kaws

H3

3
þ Kaq

H2

2

	 

cosðdÞ (A7)
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