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Abstract Uncertainty in soil parameters may play a crucial role in response

variation of foundations and the supporting structures and, consequently, may

control several design decisions. It is, therefore, extremely important to identify

and characterize the relevant parameters. Furthermore, it is also important to

identify the sources and extent of uncertainty of soil and model input parameters,

along with the effect of their uncertainty on the shallow foundation response. This

chapter intends to investigate the effect of soil and model parameter uncertainty on

the response of shallow foundation-structure systems resting on dry dense sand.

In this study, the soil-foundation interface is modeled usingWinkler-based concept,

where the soil-foundation interface is assumed to be an assembly of discrete, nonlin-

ear elements composed of springs, dashpots, and gap elements. The sensitivity of

both soil and model input parameters on various force and displacement demands of

the foundation-structure system is investigated using first-order second-moment

analysis and Latin hypercube technique. It has been observed that the force and

displacement demands of the foundation-structure system are highly sensitive to the

soil and model parameters.

Keywords Soil-structure interaction • Winkler modeling • Parametric uncertainty

• Nonlinear analysis • Sensitivity analysis

1 Introduction

Most soils are naturally formed in many different depositional environments;

therefore, it shows variation in their physical properties from point to point. The

soil properties exhibit variations even within an apparently homogeneous soil
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profile. Basic soil parameters that control the strength and stiffness of the soil-

foundation system are cohesion, friction angle, unit weight, shear modulus, and

Poisson’s ratio of soil. These soil parameters can be delineated using deterministic

or probabilistic models. Deterministic models use a single discrete descriptor for

the parameter of interest, whereas probabilistic models define parameters by using

discrete statistical descriptor or probability distribution (density) function. Uncer-

tainty in soil properties can be formally grouped into aleatory and epistemic

uncertainty [9]. Aleatory uncertainty represents the natural randomness of a prop-

erty and is a function of spatial variability of the soil property. This type of

uncertainty is inherent to the variable and cannot be reduced or eliminated by

additional information. Epistemic uncertainty results from lack of information

and shortcomings in measurements and calculations [9]. Epistemic uncertainty

can usually be reduced by acquisition of more information or improvements in

measuring methods.

In last few decades, significant research has been carried out for proper under-

standing of the behavior of structure due to uncertainty in soil parameters. In an

early work, Lumb [10] showed that the soil parameters can be modeled as random

variables confirming to the Gaussian distribution within the framework of proba-

bility theory. Ronold and Bjerager [11] observed that the model uncertainties are

important in reliability analysis for prediction of stresses, capacities, deformation,

etc., in structure and foundation systems. Chakraborty and Dey [2] studied the

stochastic structural responses considering uncertainty in structural properties, soil

properties, and loadings using Monte Carlo simulation technique. Lutes et al. [21]

evaluated the response of a seismically excited structural system with uncertain soil

and structural properties. Ray Chaudhuri and Gupta [16] investigated the variability

in seismic response of secondary systems due to uncertain soil properties through a

mode acceleration method. Foye et al. [4] described a thorough study for assess-

ment of variable uncertainties by defining the probability density functions for

uncertain design variables in load resistance factor design (LRFD). Na et al. [14]

investigated the effect of uncertainties of geotechnical parameters on gravity-type

quay wall in liquefiable condition using tornado diagram and first-order second-

moment (FOSM) analysis. Raychowdhury [17] studied the effect of soil parameter

uncertainty on seismic demand of low-rise steel building supported by shallow

foundations on dense silty sand with considering a set of 20 ground motions.

Raychowdhury and Hutchinson [18] carried out the sensitivity analysis of shallow

foundation response to uncertain input parameters using simplified FOSM and

tornado diagram methods.

This chapter focuses on studying the effect of uncertainty in soil and model

parameters on the response of shallow foundation-supported [8] shear wall build-

ing. To incorporate the nonlinearity at the soil foundation interface, a beam-on-

nonlinear-Winkler-foundation (BNWF) approach is adopted. The uncertainty anal-

ysis is carried out using simplified first-order second-moment method and Latin

hypercube sampling technique.
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2 Numerical Modeling

In this chapter, a beam-on-nonlinear-Winkler-foundation (BNWF) approach is used

to model the nonlinear soil-structure interaction of shallow foundations subjected to

lateral loads. The BNWF model includes a system of closely spaced independent,

mechanistic, vertical, and lateral elements consisting of nonlinear springs,

dashpots, and gap elements (Fig. 1). The vertical springs (q � z elements) are

intended to capture the axial and rotational behavior of the footing, whereas the

lateral springs, t � x element and p � x element, are intended to capture the sliding

and passive resistance, respectively. The material models were originally developed

by Boulanger et al. [1] and modified by Raychowdhury and Hutchinson [15]. This

model is capable of reasonably capturing the experimentally observed behavior for

various shallow foundation conditions. For more details regarding the BNWF

modeling, one can look into Raychowdhury and Hutchinson [15].

The backbone curves are thus characterized by a linear elastic region, then an

increasingly growing nonlinear region (Fig. 2). For q � zmaterial, ultimate vertical

capacity qult is calculated based on general bearing capacity equation given by

Terzaghi [20]:

qult ¼ cNcFcsFcdFci þ gDfNqFqsFqdFqi þ 0:5gBNgFgsFgdFgi (1)

where qult is the ultimate vertical bearing capacity per unit area of footing, c the

cohesion, g the unit weight of soil, Df is the depth of embedment, B the width of

Fig. 1 Schematic diagram of structure with BNWF model for shallow foundations
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footing, and Nc, Nq, Ng are bearing capacity factors calculated after Mayerhof [13].

For the p � x material, the passive resistance pult is calculated as

pult ¼ 0:5gKpDf
2 (2)

where pult is the passive earth pressure per unit length of footing and Kp the passive

earth pressure coefficient. For the t � x material, the sliding resistance tult is
determined using classical Mohr-Coulomb failure criteria

tult ¼ Wg tandþ cAf (3)

where tult is the frictional resistance per unit area of foundation, Wg the weight on

the foundation from the structure, d the angle of friction between foundation and

soil, which typically varies from 1/3 to 2/3 f, and Af the surface area of the

foundation.

The vertical and lateral stiffness, Kv and Kh, are calculated using expressions

given by Gazetas [5] as follows:

kv ¼ GL

1� n
0:73þ 1:54

B

L

� �0:75
" #

(4)

kh ¼ GL

2� n
2þ 2:5

B

L

� �0:85
" #

(5)

In order to investigate the effect of uncertain input parameters on the shallow

foundation response, a single shear wall structure supported by strip footing resting

on dense dry sand of relative density 80% is considered for this study. The

dimensions of footing are 1.0 m wide and 0.25 m in height, and depth of embedment

is 0.5 m. Shear wall dimensions are 0.5 m in length and 0.2 m in width, and the

height of wall is 5.0 m. A monotonic loading is applied at the top of the structure,

and responses are evaluated in terms of maximum absolute values of moment,

shear, rotation, and settlement demands.
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Fig. 2 Behavior of material models: (a) q � z element, (b) p � x element, and (c) t � x element
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It is evident from the above discussion that the strength and stiffness of the

spring elements of a particular size of footing are functions of basic soil properties

such as friction angle, shear modulus, Poisson’s ratio, and unit weight. Therefore,

these soil properties are expected to influence the response of the footing-

structure system. However, in addition to these soil properties, few model

parameters such as spring spacing and ratio of spring stiffness along the length

(as shown in Fig. 3) may also alter the foundation responses.

3 Selection of Uncertain Parameters

Based on the discussion provided in the previous section, the parameters shown in

Table 1 are chosen for the uncertainty analysis. The parameters are selected for

dense dry sand of relative density 80%. These values are based on EPRI [3] and

Harden et al. [6]. It is assumed that all uncertain input parameters are random

variables with a Gaussian distribution, having no negative values. The upper and

lower limits of the random variables are assumed to be in 95th and 5th percentile

of its probability distribution. The corresponding mean (m) and standard deviation
(s) can be calculated as

m ¼ LL þ LU
2

and s ¼ LL þ LU
2k

where LL and LU are the lower and upper limits, respectively, and k depends on the

probability level (e.g., k ¼ 1.645 for a probability of exceedance ¼ 5%). The

assumed correlations among the uncertain parameters are provided in Table 2.

Fig. 3 Vertical spring distribution along the footing length
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4 Uncertainty Analysis

In order to perform uncertainty analysis, two different techniques are adopted: first-

order second-moment (FOSM) method and Latin hypercube method. Below is a

brief description of both methods.

4.1 First-Order Second-Moment (FOSM) Method

The FOSM method is used to perform simplified sensitivity analysis to evaluate the

effect of variability of input variables on each response variable. This method uses a

Taylor series expansion of the function to be evaluated, and expansion is truncated

after the linear first-order term. It is assumed that the relationship between the

response variables and the uncertain input parameters is assumed to be linear or

low-to-moderately nonlinear.

The response of the foundation is considered as a random variable Q, which has

been expressed as a function of the input random variables, Pi (for i ¼ 1,. . .,N)
denoting uncertain parameters and Q given by

Q ¼ hðP1;P2; :::;PNÞ (6)

Pi has been characterized by its mean mp and variance sp
2. Now, Q can be

expanded using a Taylor series as follows:

Table 1 Uncertain parameters considered in this study

Parameters Symbol Range Mean(m) Coeff. of. variation (Cv) (%)

Friction angle (deg) f0 38–42 40 3

Poisson’s ratio v 0.3–0.5 0.4 16

Shear modulus (MPa) Gs 12–20 16 15

End length ratio Re 1–17 9 54

Stiffness intensity ratio Rk 1–9 5 48

Spring spacing (%) Ss 1.0–3.0 2 30

Table 2 Correlation matrix

of the parameters
f0 v Gs Re Rk Ss

f’ 1 0.1 0.6 0 0 0

v 1 0.2 0 0 0

Gs 1 0 0 0

Re 1 0.3 0.1

Rk 1 �0.1

Ss 1

1122 P. Raychowdhury and S. Jindal



Q ¼ hðmP1; mP2; :::; mPNÞ þ 1

1!

XN
i¼1

ðPi � mPiÞ
dh
dPi

þ 1

2!

�
XN
j¼1

XN
i¼1

ðPi � mPiÞðPj � mPj
Þ d2h
dPidPj

þ ::: (7)

Considering only the first-order terms of Eq. (7) and ignoring higher-order

terms, Q can be approximated as taking expectation of both sides of Eq. (6), the

mean of Q can be expressed as

Q � hðmp1; mp2; :::; m2;NÞ þ
XN
i¼1

ðPi� mÞ dh
dPi

(8)

mQ ¼ hðmP 1
; mP 2

; mPN
Þ (9)

Utilizing the second-order moment of Q as expressed in Eq. (7), the variance of

Q can be derived as

s2Q �
XN
i¼1

XN
j¼1

covarianceðPi;PjÞ dhðP1;P2; . . . ;PNÞ
@Pi

dhðP1;P2; . . . ;PNÞ
@Pj

�
XN
i¼1

s2Pi

dhðP1;P2; . . . ;PNÞ
dPi

� �2

þ
XN
i�1

XN
jþ1

rPi;Pj

dhðP1;P2; . . . ;PNÞ
dPi

dhðP1;P2; . . . ;PNÞ
dPj

ð10Þ

where rPi,Pj denotes correlation coefficient for random variables Pi and Pj. The

partial derivative of h(P1, P2,..,PN) with respect to Pi has been calculated numeri-

cally using the finite difference method (central) as follows:

dhðP1;P2; . . . ;PNÞ
dPi

¼ h p1; p2; . . . ; mi þ Dpi;pN
� �� h p1; p2; . . . ; mi � Dpi;pN

� �
2DPi

(11)

4.2 Latin Hypercube Method

For probabilistic analysis of engineering structures having uncertain input

variables, Monte Carlo simulation (MCS) technique is considered as a reliable
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and accurate method. However, this method requires a large number of equally likely

random realizations and consequent computational effort. In order to decrease the

number of realizations required to provide reliable results in MCS, Latin hypercube

sampling (LHS) approach [12] is widely used in uncertainty analysis. LHS is a type

of stratified MCS which provides a very efficient way of sampling variables from

their multivariate distributions for estimating mean and standard deviations of

response variables [7]. It follows a general idea of a Latin square, in which there is

only one sample in each row and each column. In Latin hypercube sampling, to

generate a sample of size K from N variables, the probability distribution of each

variable is divided into segments with equal probability. The samples are then chosen

randomly in such a way that each interval contains one sample. During the iteration

process, the value of each parameter is combined with the other parameter in such a

way that all possible combinations of the segments are sampled. Finally, there areM
samples, where the samples cover N intervals for all variables. In this study, to

evaluate the response variability due to the uncertainty in the input parameters,

samples are generated using Stein’s approach [19]. This method is based on the

rank correlations among the input variables defined by Iman and Conove [7], which

follows Cholesky decomposition of the covariance matrix.

In this study, the covariance matrix is calculated by using standard deviation

(Table 1) and correlation coefficient (Table 2) between any two input parameters.

The previously mentioned shear wall structure is considered for this analysis. The

response of this soil-foundation structure system is dependent on the six independent

input and normally distributed variables defined in Tables 1 and 2. In order to find out

the correct sample size, pushover analysis is carried out using 10, 20,. . ., 100, 200,
and 300 number of samples. Figure 4 shows the plot sample size versus the mean

responses normalized by value corresponding to a sample size of 300. From Fig. 4, it

can be observed that the mean of the responses tends to converge as the sample size

increases. At the sample size of 100, the response of the system has almost con-

verged. Therefore, for six independent and normally distributed variables, a sample

size of 100 is used.
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Fig. 4 Convergence test for Latin hypercube sampling method
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5 Results and Discussion

In order to evaluate the effect of soil and model parameter uncertainty on the

response of the shallow foundation, four response parameters are chosen: absolute

maximum moment |Mmax|, absolute maximum shear |Vmax|, absolute maximum

rotation |ymax|, and absolute maximum settlement |Smax|. A monotonic loading is

applied at the top of the structure, and responses and forces and displacements are

obtained. The analysis is done using finite element software OpenSees (Open

System for Earthquake Engineering Simulation). Figure 5 shows the comparison

results for the centrifuge experiment conducted in the University of California,

Davis. The results are for two extreme values of friction angle. The results include

moment-rotation, settlement-rotation, and shear-rotation behaviors with the BNWF

simulation shown in black and experimental results shown in gray scale. These

comparisons indicate that the BNWFmodel is able to capture the hysteretic features

such as shape of the loop, peaks, and unloading and reloading stiffness reasonably

well. It can also be observed from Fig. 5 that with increasing the friction angle from

38� to 42�, peak moment and peak shear demands increase, whereas peak settle-

ment demand decreases. It can also be noted that the variation of friction angle from

38� to 42� has the most significant effect on settlement prediction (more than

100%). However, the moment, shear, and rotation demands are moderately affected

by this parameter. This indicates that the uncertainty in one parameter may have

significantly different influence on the prediction of different responses, pointing

out toward the importance of proper characterization of each parameter and

conducting the sensitivity analysis.

Similarly, the analysis is carried out for varying each parameter at a time while

keeping other parameters fixed at their mean values, and FOSM analysis is carried

out to find out the sensitivity of each parameter on the responses. Figures 6, 7, 8, and

9 show the results of FOSM analysis for moment, shear, rotation, and settlement,

respectively. It can be observed that for moment and shear, friction angle is the

most important parameter (60% relative variance). Poisson’s ratio and shear modu-

lus are moderately important (about 23 and 16%, respectively), and model

parameters have negligible effect (less than 5%). However, model parameter

stiffness intensity ratio, Rk, seems to have great effect on the rotational demand

(~67%). Settlement is observed to be affected by all three soil parameters (friction

angle, shear modulus, and Poisson’s ratio), almost equally (~30%) for each param-

eter. Model parameters do not affect this response much.

Table 3 shows the result obtained from Latin hypercube method. The response is

presented in terms of the mean and coefficient of variation (Cv) of each demand

parameters. It can be observed from this table that with 3, 16, 15, 54, 48, and 30%

Cv of friction angle, Poisson’s ratio, shear modulus, end length ratio, stiffness

intensity ratio, and spring spacing input parameters, respectively, can result in

moderate variation in demand parameters with Cv as 16, 16, 22, and 24% for the
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absolute maximum moment, shear, rotation, and settlement demands, respectively.

Note that all responses are more sensitive to the soil parameters than the model

parameters. Friction angle is the most sensitive among all input parameter, as with a

3% Cv results in significant variation in the response variables.

Fig. 5 Response of shear wall-footing system
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Fig. 6 Results of FOSM analysis: relative variance for moment
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Fig. 7 Results of FOSM analysis: relative variance for shear

Table 3 Variability of response parameters using Latin hypercube method

Moment |Mmax| Shear |Vmax| Rotation |ymax| Settlement |Smax|

Mean (m) 78.09 kN-m 15.62 kN 0.14 rad 39.11 mm

Coeff. of variation (Cv) 16% 16% 22% 24%
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6 Conclusions

The effect of uncertainty in soil and model parameters on the soil-foundation

system response has been studied in this chapter. The soil-foundation system has

been modeled using BNWF concept, and the uncertainty analyses are carried out

using FOSM and Latin hypercube method. It has been observed that for moment

and shear, friction angle is the most important parameter (60% relative variance),

0.002

0.021

0.110

0.296

0.307

0.264

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative variance of settlement

P
ar

am
et

er
s

φ' (deg)

v

Gs (Mpa)

Re (%)

Rk

Ss (%)

Fig. 9 Results of FOSM analysis: relative variance for settlement
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Fig. 8 Results of FOSM analysis: relative variance for rotation
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Poisson’s ratio and shear modulus are moderately important (about 23 and 16%,

respectively), and model parameters have negligible effect (less than 5%). The

rotational demand (~67%) is largely dependent on stiffness intensity ratio. The

settlement demand is almost equally sensitive to friction angle, shear modulus, and

Poisson’s ratio (~30% variance for each parameter). The results from Latin hyper-

cube method indicate that a coefficient of variation of 3% in friction angle results in

16, 16, 22, and 24% for the absolute maximum moment, shear, rotation, and

settlement demands, respectively, indicating that these parameters have great effect

on each response variables. It can finally be concluded that soil parameters such as

friction angle, shear modulus, and Poisson’s ratio may have significant effect on the

response of foundation. Therefore, selection of these parameters should be consid-

ered critically when designing a structure with significant soil-structure interaction

effect.
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