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Abstract The applied stress versus surface settlement (SVS) behavior from in situ

plate load tests (PLTs) is valuable information that can be used for the reliable

design of shallow foundations (SFs). In situ PLTs are commonly conducted on the

soils that are typically in a state of unsaturated condition. However, in most cases,

the influence of matric suction is not taken into account while interpreting the SVS
behavior of PLTs. In addition, the sizes of plates used for load tests are generally

smaller in comparison to real sizes of footings used in practice. Therefore, in situ

PLT results should be interpreted taking account of not only matric suction but also

the scale effects. In the present study, discussions associated with the uncertainties

in interpreting the SVS behavior of PLTs taking account of matric suction and scale

effects are detailed and discussed.
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1 Introduction

Bearing capacity and settlement are two key parameters required in the design of

foundations. There are several techniques available today to determine or estimate

both the bearing capacity and settlement behavior of foundations based on experi-

mental methods, in situ tests, and numerical models including finite element

analysis. In addition, there are different ground improvement methods to increase

the bearing capacity and reduce the settlements. However, in spite of these

advancements, various types of damages still can be caused to the superstructures

placed on shallow foundations (hereafter referred to as SFs) due to the problems
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associated with the settlements leading to cracks, tilts, differential settlements,

or displacements. This is particularly true for coarse-grained soils such as sands in

which foundation settlements occur quickly after construction. Due to this reason, the

settlement behavior is regarded as a governing parameter in the design of SFs in

coarse-grained soils [25, 26, 34]. Foundation design codes suggest restricting the

settlement of SFs placed in coarse-grained soils to 25 mm and also limit their

differential settlements (e.g., [13]). Such design code guidelines suggest that the

rational design of SFs can be achieved by estimating the applied stress versus surface

settlement (hereafter referred to as SVS) behavior of SFs reliably instead of estimating

the bearing capacity and settlement separately.

The most reliable testing method to estimate the SVS behaviors of SFs is in situ

plate load tests (hereafter referred to as PLTs). In situ PLTs are commonly

performed on the soils that are typically in a state of unsaturated condition. This

is particularly true in arid or semiarid regions where the natural groundwater table

is deep. Hence, the stresses associated with the constructed infrastructures such as

SFs are distributed in the zone above the groundwater table, where the pore water

pressures are negative with respect to the atmospheric pressure (i.e., matric suction).

Several researchers showed that the SVS behaviors from model footings [35, 40,

42, 45] or in situ PLTs [16, 39] are significantly influenced by matric suction.

However, in most cases, the in situ PLT results are interpreted without taking account

of the negative pore water pressure above groundwater table. In other words, the

influence of capillary stress or matric suction toward the SVS behavior is ignored in

engineering practice. Moreover, the PLTs are generally conducted with small sizes of

plates (either steel or concrete) in comparison to the real sizes of foundations. Due to

this reason, the scale effect has been a controversial issue in implementing the PLT
results into the design of SFs. These details suggest that the reliability of the design of
SFs based on the PLT results can be improved by taking account of the influence

of not only matric suction but also plate size on the SVS behaviors.

In this present study, two sets of in situ plate and footing load test results in

unsaturated sandy and clayey soils available in the literature are revisited. Based on

the results of these studies, an approach is presented such that the uncertainties

associated with the scale effects are reduced or eliminated. In addition, discussions

on how to interpret the in situ PLT results taking account of matric suction are also

presented and discussed. Moreover, a methodology to estimate the variation of SVS
behavior with respect to matric suction using finite element analysis (hereafter

referred as FEA) is introduced.

2 Plate Load Test

In situ PLTs are generally conducted while designing SFs [3] or pavement

structures [4, 5, 11] to estimate the reliable design parameters (i.e., bearing capacity

and displacement) or to confirm the design assumptions. Figure 1 shows typical

“applied stress” versus “surface settlement” (SVS) behavior from a PLT. The peak
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stress is defined as ultimate bearing capacity, qult, for general failure; however,
in the case where well-defined failure is not observed (i.e., local or punching

failure), the stress corresponding to the 10% of the width of a foundation (ASTM

D1194-94) or the stress corresponding to the intersection of elastic and plastic lines

of the SVS behavior is regarded as qult [16, 42, 48].
The elastic modulus can be estimated based on the modulus of subgrade reac-

tion, k, that is a slope of SVS behavior (i.e., d versus q) using the theory of elasticity
as shown in Eq. (1). The maximum elastic modulus (i.e., initial tangent elastic

modulus, Ei) can be computed using the ki value in the elastic range of SVS behavior
(initial tangent modulus of subgrade reaction):

E ¼ 1� n2ð Þ
d=qð Þ BIw ¼ k 1� n2

� �
IwB (1)

where E ¼ elastic modulus, n ¼ Poisson’s ratio, d, q ¼ settlement and corres-

ponding stress, B ¼ width (or diameter) of bearing plate, Iw ¼ factor involving

the influence of shape and flexibility of loaded area, and k ¼ modulus of subgrade

reaction.

Ultimate bearing capacity, qult, and elastic modulus, E, estimated based on the

SVS behavior from a PLT are representative of soils within a depth zone which is

approximately 1.5B–2.0B [38]. Agarwal and Rana [1] performed model footing

tests in sands to study the influence of groundwater table on settlement. The results

of the study showed that the settlement behavior of relatively dry sand is similar to

that of sand with a groundwater table at a depth of 1.5B below the model footing.

These results indirectly support that the increment of stress due to the load applied
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Fig. 1 Typical stress versus displacement behavior from plate load test

Uncertainties in Interpreting the Scale Effect of Plate Load Tests. . . 143



on the model footing is predominant in the range of 0–1.5B below model footing.

These observations are also consistent with the modeling studies results by Oh and

Vanapalli [31]. This fact also indicates that the SVS behavior from PLT is

influenced by plate (or footing) size since different plate sizes result in different

sizes of stress bulbs and mean stresses in soils. This phenomenon which is con-

ventionally defined as “scale effect” needs to be investigated more rigorously to

rationally design the shallow foundations.

3 Scale Effect in Plate Load Test

3.1 Scale Effect and Critical State Line

The Terzaghi’s bearing capacity factor, Ng, decreases with an increase in the width

of footings [18]. Various attempts have been made by several researchers to

understand the causes of scale effects. Three main explanations for the scale effect

that generally accepted are as follows:

1. Reduction in the internal friction angle, f0, with increasing footing size (i.e.,

nonlinearity of the Mohr–Coulomb failure envelop) [7, 18, 21]

2. Progressive failure (i.e., different f0 along the slip surfaces below a footing)

[43, 49]

3. Particle size effect (i.e., the ratio of soil particles to footing size) [41, 43]

According to Hettler and Gudehus [21], there is lack of consistent theory to

explain the progressive failure mechanism in the soils below different sizes of

footings. In addition, the particle size effect for the in situ plate (or footing) load test

(hereafter the term “plate” is used to indicate both steel plate and concrete footing)

can be neglected since the ratio of plate size, B to d50 (i.e., grain size corresponding
to 50% finer from the grain size distribution curve), for in situ PLTs are mostly

greater than 50–100 [24]. The focus of the present study is to better understand the

scale effects of PLT results and suggest some guidelines of how they can be used

in practice.

The reduction in f0 with an increasing footing size is attributed to the fact that

the larger footing size contributes to a higher mean stress in the soils. In other

words, the larger footing induces higher mean stress that contributes to lower f0 due
to the nonlinearity of the Mohr–Coulomb failure envelop when tested rigorously

over a large stress range. This phenomenon can be better explained using the

critical state concept ([19]; Fig. 2).

In Fig. 2, the points plotted on the lines a–b, c–d, and e–f simulate the following

scenarios:

1. Line a–b: Different sizes of footings placed at different depths in sand that

have the same initial void ratio value, but the distances to the critical state line

are different.
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2. Line c–d: Same sizes of footings places at the same depth in sand that have

different initial void ratio values, but the distances to the critical state line are

the same.

3. Line e–f: Different sizes of footings placed at different depths in sands that have
different void ratio values, but the distances to the critical state line are the same.

The main concept shown in Fig. 2 is that the behavior of sand below a footing is

governed by a distance from the initial state to the critical state line. In other words,

the initial states plotted on the line e–f will show the same SVS behaviors regardless
of footing size since the distance to the critical state line for each initial state is the

same. On the other hand, the sand below a larger footing (e.g., S1 in Fig. 2) will

have larger displacement at a certain applied stress in comparison to a smaller

footing (e.g., S2 in Fig. 2) due to the greater mean stress (i.e., closer to the critical

state line) even though the initial void ratio is the same.

3.2 Plate Load Test Results

In this present study, two sets of in situ PLTs in sandy and clayey soils available

in the literature are revisited to discuss scale effect of PLTs.
The Federal Highway Administration (FHWA) has encouraged investigators to

study the performance of SFs by providing research funding. As part of this

research project, several series of in situ footing (i.e., 1, 2, 2.5, and 3 m) load

tests were conducted on sandy soils. These studies were summarized in a sympo-

sium held at the Texas A&M University in 1994 [9] (Fig. 3). Consoli et al. [15]
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Fig. 2 Relationship between the initial states (i.e., void ratio and mean stress) of soils below

footings and critical state line (After Fellenius and Altaee [19])
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conducted in situ PLTs in unsaturated clayey soils using three steel circular plates

(i.e., 0.3, 0.45, and 0.6 m; PLT) and three concrete square footings (i.e., 0.4, 0.7,

and 1.0 m; FLT) (Fig. 4).
As can be seen in Figs. 3 and 4, the bearing capacity increases with decreasing

plate size, and different displacement values are observed under different stresses.

The SVS behaviors clearly show that the SVS behavior is dependent of plate size

(i.e., scale effect). These observations are consistent with the SVS behaviors along

the line a–b shown in Fig. 2. In other words, the soil below a larger footing induces

higher mean stress; therefore, the initial state is closer to the critical state. This

phenomenon makes the soil below a larger footing behave as if it is loose soil

compared to a smaller footing [12].

3.3 Elimination of Scale Effect of Shallow Foundations

Briaud [8] suggested that scale effect (Fig. 3) can be eliminated by plotting the SVS
behaviors as “applied stress” versus “settlement/width of footing” (i.e., d/B) curves
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(i.e., normalized settlement; Eq. (2)). Similar trends of results were reported

by Osterberg [36] and Palmer [37]:

d
B
¼ q 1� n2ð Þ

E
Iw (2)

According to the report published by FHWA [10], this behavior can be explained

using triaxial test analogy (Fig. 5). If triaxial tests are conducted for identical sand

samples under the same confining pressure where the top platens are different

sizes of footings, the stress versus strain behaviors for the samples are unique

regardless of the diameter of the samples (i.e., the same stress for the same strain).

This concept is similar to relationship between q and d/B from PLTs since the term
d/B can be regarded as strain.

Consoli et al. [15] suggested that the scale effect of PLTs (Fig. 4) can be

eliminated when the applied stress and displacement are normalized with uncon-

fined compressive strength, qu, and footing width, B, respectively, as shown

in Eq. (3). They also analyzed PLTs results available in literature [17, 22] and
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showed that the concept in Eq. (3) can be extended to the PLT results in sandy soils

as well:

q

qu

� �
¼ 1

qu

� �
E

1� n2

� �
1

Cs

� �
d
B

� �

¼ Cd

quCs

� �
d
B

� �
(3)

where q ¼ applied stress, qu ¼ unconfined compressive strength at the depth of

embedment, d ¼ surface settlement, B ¼ width of footing, Cs ¼ coefficient

involving shape and stiffness of loaded area (Iw in Eq. 1), and Cd ¼ coefficient of

deformation (¼E/(1 � n2)).
As can be seen in Figs. 6 and 7, the curves (d/B versus q) fall in a narrow range.

From an engineering practice point of view, these curves can be considered to be

unique. Consoli et al. [15] suggested that uniqueness of the normalized curves can

be observed at sites where the soils are homogeneous and isotropic in nature.

4 Scale Effect of Plate Size in Unsaturated Soils

The critical state concept discussed above can be effectively used to explain the

scale effect of SFs in saturated or dry sands. However, this concept may not be

applicable to interpret the scale effect of plate size in unsaturated soils since the SVS
behaviors in unsaturated soils are influenced not only by footing size but also by

matric suction value. The influence of matric suction however is typically ignored

in conventional engineering practice.
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Fig. 5 Triaxial test/shallow foundation analogy [10]
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4.1 Average Matric Suction Value

Matric suction distribution profile is mostly not uniform with depth in fields. In this

case, the concept of “average matric suction” [45] can be used as a representative

matric suction value to interpret mechanical properties of a soil at a certain matric

suction distribution profile. The average matric suction value, C, is defined as a

matric suction value corresponding to the centroid of the suction distribution

diagram from 0 to 1.5B depth (Fig. 8).

As discussed earlier, the stress increment in a soil due to a load or a stress act on

a SF is predominant in the range of 0–1.5B. Hence, when loads are applied on two

different sizes of footings, the sizes of stress bulbs (in the depth zone of 0–1.5B) are
different (Fig. 9). In other words, the stress bulb for the smaller footing (i.e., B1) is

shallower in comparison to that of the larger footing (i.e., B2). These facts indicate

that the SVS behaviors from PLTs are governed by E and n values within the stress

bulb. If a matric suction distribution profile is uniform with depth, the average

matric suction value is the same regardless of footing size. However, if the matric

suction distribution profile is nonuniform, the average matric suction value is

dependent on the footing size. For example, the average matric suction value for
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the smaller plate, B1, (i.e., C1) is greater than that of larger plate, B2, (i.e., C2).

In this case, the concept shown in Eqs. (2) and (3) cannot be used to eliminate the

scale effect of plate since qu [29], Ei [34], and n [30, 32, 33] are not constant but

vary with respect to matric suction. More discussions are summarized in later

sections.
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4.2 Variation of Ei with Respect to Matric Suction
for Coarse-Grained Soils

Oh et al. [34] analyzed three sets of model footing test results in unsaturated sands

[28, 42] and showed that the initial tangent elastic modulus, Ei, is significantly

influenced by matric suction. Based on the analyses, they proposed a semiempirical

model to estimate the variation of Ei with respect to matric suction using the

soil–water characteristic curve (SWCC) and the Ei for saturated condition along

with two fitting parameters, a and b:

EiðunsatÞ ¼ EiðsatÞ 1þ a
ua � uwð Þ
Pa=101:3ð Þ Sb

� �� 	
(4)

where Ei(sat) and Ei(unsat) ¼ initial tangent elastic modulus for saturated and unsat-

urated conditions, respectively, Pa ¼ atmospheric pressure (i.e., 101.3 kPa), and a,
b ¼ fitting parameters.

They suggested that the fitting parameter, b ¼ 1, is required for coarse-grained

soils (i.e., Ip ¼ 0%; NP). The fitting parameter, a, is a function of footing size,

and the values between 1.5 and 2 were recommended for large sizes of footings in

field conditions to reliably estimate Ei (Fig. 10) and elastic settlement (Fig. 11).

Vanapalli and Oh [46] analyzed model footing [47], and in situ PLT [16, 39] results

in unsaturated fine-grained soils and suggested that the fitting parameter, b ¼ 2, is

required for fine-grained soils. The analyses results also showed that the inverse of

a (i.e., 1/a) nonlinearly increases with increasing Ip and the upper and the lower

boundary relationship can be used for low and high matric suction values, respec-

tively, at a certain Ip (Fig. 12).
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4.3 Variation of qu with Respect to Matric Suction
for Fine-Grained Soils

Oh and Vanapalli [29] analyzed six sets of unconfined compression test results and

showed that the qu value is a function of matric suction (Figs. 13 and 14). Based on

the analyses, they proposed a semiempirical model to estimate the variation of

undrained shear strength of unsaturated soils using the SWCC and undrained shear
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strength under saturated condition along with two fitting parameters, n and m
(Eq. 5). Equation (5) is the same in form as Eq. (4):

cuðunsatÞ ¼ cuðsatÞ 1þ ua � uwð Þ
Pa=101:3ð Þ

Snð Þ
m

� 	
(5)

where cu(sat), cu(unsat) ¼ shear strength under saturated and unsaturated condition,

respectively, Pa ¼ atmospheric pressure (i.e., 101.3 kPa) and n, m ¼ fitting

parameters.
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The fitting parameter, n ¼ 2, is required for unsaturated fine-grained soils.

Figure 15 shows the relationship between the fitting parameter, m, and plasticity

index, Ip, on semilogarithmic scale for the soils used for the analysis. The fitting

parameter, m, was found to be constant with a value of “9” for the soils that have Ip
values in the range of 8 and 15.5%. The value of m however increases linearly on

semilogarithmic scale with increasing Ip.
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4.4 Variation of n with Respect to Matric Suction

The Poisson’s ratio, n, is typically considered to be a constant value in the elastic

settlement analysis of soils. This section briefly highlights how n varies with matric

suction by revisiting published data from the literature. Mendoza et al. [27] and

Alramahi et al. [2] conducted bender element tests to investigate the variation of

small-strain elastic and shear modulus with respect to degree of saturation for

kaolinite and mixture of glass beads and kaolin clay, respectively. Oh and Vanapalli

[33] reanalyzed the results and back calculated the Poisson’s ratio, n, with respect

to degree of saturation. The analyses of the results show that n is not constant but
varies with the degree of saturation as shown in Fig. 16.

5 Reanalysis of Footing Load Test Results in Briaud

and Gibbens [9]

The site selected for the in situ footing load tests was predominantly sand (mostly

medium dense silty sand) from 0 to 11 m overlain by hard clay layer (Fig. 17).

The groundwater table was observed at a depth of 4.9 m, and the soil above the

groundwater table was in a state of unsaturated condition. In this case, different
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footing sizes may result in different average matric suction values. In other words,

scale effect cannot be eliminated with normalized settlement since the soils at the

site are not “homogenous and isotropic.” Despite this fact, as can be seen in Fig. 6,

the SVS behaviors from different sizes of footing fall in a narrow range. This

behavior can be explained by investigating the variation of matric suction with

depth at the site as follows.

Figure 18 shows the grain size distribution curves for the soil samples collected

from three different depths (i.e., 1.4–1.8 m, 3.5–4.0 m, and 4.6–5.0 m). The grain

size distribution curve the Sollerod sand shown in Fig. 18 is similar to the sand

sample collected at the depth of 1.4–1.8 m. The reasons associated with showing the

GSD curve of Sollerod sand will be discussed later in this chapter. The soil

properties used in the analysis are summarized in Table 1.

As shown in Table 1, the water content at the depths of 0.6 and 3.0 m is 5%. This

implies that the matric suction value can be assumed to be constant up to the depth

of approximately 3.0 m. The field matric suction distribution profile is consistent

with the typical matric suction distribution profile above groundwater table for the

coarse-grained soils. In other words, matric suction increases gradually (which is

close to hydrostatic conditions) up to residual matric suction value and thereafter
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Fig. 18 Grain size distribution curves for the soil samples collected from three different depths [9]

and Sollerod sand [42]

Table 1 Summary of the soil properties (From Briaud and Gibbens [9])

Property Sand (0.6 m) Sand (3.0 m)

Specific gravity, Gs 2.64 2.66

Water content, w (%) 5.0 5.0

Void ratio, e 0.78 0.75

Effective cohesion, c0 (kPa) 0 0

Effective internal friction angle, f0 (�) 35.5 34.2
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remains close to constant conditions (i.e., matric suction distribution (1) in Fig. 19).

This matric suction distribution profile resulted in the same average matric suction

value regardless of footing size (for this study). However, it also should be noted

that the average matric suction value for each footing can be different if a nonuni-

form matric suction distribution profile is available below the footings (i.e., matric

suction distribution (2) in Fig. 19).

6 Variation of SVS Behaviors with Respect to Matric Suction

After construction of SFs, the soils below them typically experience wetting–drying

cycles due to the reasons mostly associated with the climate (i.e., rain infiltration or

evaporation). Hence, it is also important to estimate the variation of SVS behaviors

with respect to matric suction.

Oh and Vanapalli [32, 33] conducted finite element analysis (FEA) using the

commercial finite element software SIGMA/W (Geo-Slope 2007; [23]) to simulate

SVS behavior of in situ footing (B � L ¼ 1 m � 1 m) load test results ([9]; Fig. 3)

on unsaturated sandy soils. The FEA was performed using elastic–perfectly plastic

model [14] extending the approach proposed by Oh and Vanapalli [30]. The square

footing was modeled as a circular footing with an equivalent area (i.e., 1.13 m in

diameter, axisymmetric problem).
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bulb
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GWT1

Stress
bulb
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B1 B2

Ψ1

Ψ2

Matric suction
distribution (2)

Matric suction
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Ψ1

Ψ2

Ψ: average matric suction for the footing B11

Ψ2 : average matric suction for the footing B2

Fig. 19 Average matric suction for different sizes of footing under uniform and nonuniform

matric suction distribution
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The soil–water characteristic curve (SWCC) can be used as a tool to estimate the

variation of total cohesion, c, (Eq. 6; [44]) and initial tangent elastic modulus, Ei,

(Eq. 4) with respect to matric suction:

c ¼ c0 þ ua � uwð Þ Skð Þ tanf0 (6)

where c ¼ total cohesion, c0 and f0 ¼ effective cohesion and internal friction angle

for saturated condition, respectively, (ua � uw) ¼ matric suction, S ¼ degree of

saturation, and k ¼ fitting parameter (k ¼ 1 for sandy soils (i.e. Ip ¼ 0%); [20]).

Information on the SWCC was not available in the literature for the site where

the in situ footing load test was carried out. Hence, the SWCC for the Sollerod sand

(Fig. 20) used for the analysis as an alternative based on the following justifications.

Among the grain size distribution (hereafter referred as GSD) curves shown in

Fig. 18, the grain size distribution curve for the range of depth 1.4–1.8 m can be

chosen as a representative GSD curve since the stress below the footing 1 m � 1 m

is predominant in the range of 0–1.5 m (i.e., 1.5B) below the footing. This GSD
curve is similar to that of Sollerod sand (see Fig. 18) used by Steensen-Bach et al.

[42] to conduct model footing tests in a sand to understand influence of matric

suction on the load carrying capacity. In addition, the shear strength parameters for

the Sollerod sand (c0 ¼ 0.8 kPa and f0 ¼ 35.8�) are also similar to those of the sand

where the in situ footing load tests were conducted (see Table 1). The influence of

wetting–drying cycles (i.e., hysteresis) and external stresses on the SWCC is not

taken into account in the analysis due to the limited information.

The variation of SVS behavior with respect to matric suction from the FEA is

shown in Fig. 21. Figure 22a, b shows the variation of settlement under the same

stress of 344 kPa and the variation of stress that can cause 25-mm settlement for

different matric suction values, respectively. The stress 344 kPa is chosen since the
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settlement for saturated condition at this stress is 25 mm. The settlement at the

matric suction of 10 kPa (i.e., field condition) is approximately 4 mm and then

increases up to 25 mm (i.e., permissible settlement) as the soil approaches saturated

conditions under the constant stress (i.e., 344 kPa). The permissible settlement,
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25 mm, can be induced at 2.7 times less stress as the soil approaches saturated

conditions (i.e., from 10 to 0 kPa). The results imply that settlements can increase

due to decrease in matric suction. It is also of interest to note that such a problem

can be alleviated if the matric suction of the soil is maintained at 2-kPa value.

7 Summary and Conclusions

Plate load test (PLT) is regarded as the most reliable testing method to estimate the

applied stress versus surface settlement (SVS) behavior of shallow foundations.

However, there are uncertainties in interpreting the PLT results for soils that are in a

state of unsaturated condition. This is mainly attributed to the fact that the SVS
behavior from the PLTs is significantly influenced by both footing size and the

capillary stresses (i.e., matric suction). Previous studies showed that the scale effect

can be eliminated by normalizing settlement with footing size. This methodology is

applicable to the soils that are homogeneous and isotropic with depth in nature such

as saturated or dry soils. In case of unsaturated soils, matric suction distribution

profile with depth should be taken into account to judge whether or not this

methodology is applicable. This is because if the matric suction distribution profile

is nonuniform with depth, different plate sizes lead to different average matric

suction values. In other words, the soil below the plates cannot be regarded as

homogeneous and isotropic since strength, initial tangent elastic modulus, and the

Poisson’s ratio are function of matric suction. These facts indicate that the reliable

deign of shallow foundations based on the PLT results can be obtained only when

the results are interpreted taking account of the matric suction distribution profile

with depth and influence of average matric suction value on the SVS behavior.

In case of the shallow foundations resting on unsaturated sandy soils, it is also

important to estimate the variation of SVS behavior with respect to matric suction.

This can be achieved by conducting finite element analysis using the methodology

presented in this chapter. According to the finite element analysis for the in situ

footing (1 m � 1 m) load test results discussed in this chapter [9], unexpected

problems associated with settlement are likely due to decrease in matric suction.

Such a problem can be alleviated if the matric suction of the soil is maintained at a

low of 2 kPa.
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