
Uncertainty Quantification for Decision-Making
in Engineered Systems

Sankaran Mahadevan

Abstract This chapter discusses current research and opportunities for uncertainty

quantification in performance prediction and risk assessment of engineered systems.

Model-based simulation becomes attractive for systems that are too large and complex

for full-scale testing. However, model-based simulation involves many approxima-

tions and assumptions, and thus, confidence in the simulation result is an important

consideration in risk-informed decision-making. Sources of uncertainty are both alea-

tory and epistemic, stemming from natural variability, information uncertainty, and

modeling approximations. The chapter draws on illustrative problems in aerospace,

mechanical, civil, and environmental engineering disciplines to discuss (1) recent

research on quantifying various types of errors and uncertainties, particularly focusing

on data uncertainty and model uncertainty (both due to model form assumptions and

solution approximations); (2) framework for integrating information from multiple

sources (models, tests, experts), multiple model development activities (calibration,

verification, validation), and multiple formats; and (3) using uncertainty quanti-

fication in risk-informed decision-making throughout the life cycle of engineered

systems, such as design, operations, health and risk assessment, and riskmanagement.

Keywords Uncertainty quantification • Model based simulation • Surrogate

models

1 Introduction

Uncertainty quantification is important in the assessing and predicting performance

of complex engineering systems, especially given limited experimental or real-

world data. Simulation of complex physical systems involves multiple levels of
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modeling, ranging from the material to component to subsystem to system.

Interacting models and simulation codes from multiple disciplines (multiple physics)

may be required, with iterative analyses between some of the codes. As the models

are integrated across multiple disciplines and levels, the problem becomes more

complex, and assessing the predictive capability of the overall systemmodel becomes

more difficult. Many factors contribute to the uncertainty in the prediction of the

system model including inherent variability in model input parameters, sparse data,

measurement error, modeling errors, assumptions, and approximations.

The various sources of uncertainty in performance prediction can be grouped

into three categories:

• Physical variability

• Data uncertainty

• Model error

1.1 Physical Variability

This type of uncertainty also referred to as aleatory or irreducible uncertainty arises

from natural or inherent random variability of physical processes and variables, due to

many factors such as environmental and operational variations, construction pro-

cesses, and quality control. This type of uncertainty is present both in system

properties (e.g., material strength, porosity, diffusivity, geometry variations, chemical

reaction rates) and external influences and demands on the system (e.g., concentration

of chemicals, temperature, humidity, mechanical loads). As a result, in model-based

prediction of system behavior, there is uncertainty regarding the precise values for

model parameters andmodel inputs, leading to uncertainty about the precise values of

the model output. Such quantities are represented in engineering analysis as random

variables, with statistical parameters, such as mean values, standard deviations, and

distribution types, estimated from observed data or in some cases assumed. Variations

over space or time are modeled as random processes.

1.2 Data Uncertainty

This type of uncertainty falls under the category of epistemic uncertainty (i.e.,

knowledge or information uncertainty) or reducible uncertainty (i.e., the uncer-

tainty is reduced as more information is obtained). Data uncertainty occurs in

different forms. In the case of a quantity treated as a random variable, the accuracy

of the statistical distribution parameters depends on the amount of data available.

If the data is sparse, the distribution parameters themselves are uncertain and may

need to be treated as random variables. Alternatively, information may be imprecise

or qualitative, or as a range of values, based on expert opinion. Both probabil-

istic and non-probabilistic methods have been explored to represent epistemic

uncertainty. Measurement error (either in the laboratory or in the field) is another

important source of data uncertainty.
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1.3 Model Error

This results from approximate mathematical models of the system behavior and

from numerical approximations during the computational process, resulting in

two types of error in general – solution approximation error and model form

error. The performance assessment of a complex system involves the use of several

analysis models, each with its own assumptions and approximations. The errors

from the various analysis components combine in a complicated manner to produce

the overall model error (described by both bias and uncertainty).

The roles of several types of uncertainty in the use of model-based simulation for

performance assessment can be easily seen in the case of reliability analysis.

Consider the probability of an undesirable event denoted by g(X) < k, which can

be computed from Eq. (1):

P gðXÞ<kð Þ ¼
Z

gðXÞ<k

fXðxÞdx (1)

where X is the vector of input random variables, fX(x) is the joint probability

density function of X, g(X) is the model output, and k is the regulatory requirement

in performance assessment. Every term on the right-hand side of Eq. (1) has

uncertainty. There is inherent variability represented by the vector of random

variables X, data uncertainty (due to inadequate data) regarding the distribution

type and distribution parameters of fX(x), and model errors in the computation of

g(X). Thus, it is necessary to systematically identify the various sources of uncer-

tainty and develop the framework for including them in the overall uncertainty

quantification in the performance assessment of engineering systems.

The uncertainty analysis methods covered in this chapter are grouped by sections

along the four major groups of analysis activities that are needed for performance

assessment under uncertainty:

1. Input uncertainty quantification

2. Uncertainty propagation analysis (includes model error quantification)

3. Model calibration, verification, validation, and extrapolation

4. Probabilistic performance assessment

A brief summary of the analysis methods covered in the four groups is as follows:

Input uncertainty quantification: Physical variability of parameters can be quantified

through random variables by statistical analysis. Parameters that vary in time or

space are modeled as random processes or random fields with appropriate corre-

lation structure. Data uncertainty that leads to uncertainty in the distribution

parameters and distribution types can be addressed using confidence intervals

and Bayesian statistics. Recent methods to include several sources of data uncer-

tainty, namely, sparse data, interval data, and measurement error, are discussed in

this chapter.
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Uncertainty propagation analysis: Both classical and Bayesian probabilistic

approaches can be investigated to propagate inherent variability and data uncer-

tainty through individual sub-models and the overall system model. To reduce

the computational expense, surrogate models can be constructed using several

different techniques. Methods for sensitivity analyses in the presence of uncer-

tainty are discussed. The uncertainty in the overall model output also includes

model errors and approximations in each step of the analysis; therefore,

approaches to quantify model error are included in the discussion.

Model calibration, verification, validation, and extrapolation: Model calibration is

the process of adjusting model parameters to obtain good agreement between

model predictions and experimental observations. Both classical and Bayesian

statistical methods are discussed for model calibration with available data.

One particular concern is how to properly integrate different types of data,

available at different levels of the model hierarchy. Assessment of the “correct”

implementation of the model is called verification, and assessment of the degree of

agreement of the model response with the available physical observation is called

validation. Model verification and validation activities help to quantify model

error (both model form error and solution approximation error). A Bayesian

network framework is discussed for quantifying the confidence in model predic-

tion based on data, models, and activities at various levels of the system hierarchy.

Such information is available in heterogeneous formats frommultiple sources, and

a consistent framework to integrate such disparate information is important.

Performance assessment: Limit state-based reliability analysis methods are avail-

able to help quantify the assessment results in a probabilistic manner. Monte

Carlo simulation with high-fidelity analyses modules is computationally expen-

sive; hence, surrogate (or abstracted) models are frequently used with Monte

Carlo simulation. In that case, the uncertainty or error introduced by the surro-

gate model also needs to be quantified.

Figure 1 shows the four groups of activities within a conceptual framework

for systematic quantification, propagation, and management of various types of
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Fig. 1 Uncertainty quantification, propagation, and management
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uncertainty. The methods discussed in this chapter address all the four steps shown

in Fig. 1. The different steps of analysis in Fig. 1 are not strictly sequential. While

uncertainty has been dealt with using probabilistic as well as non-probabilistic (e.g.,

fuzzy sets, possibility theory, evidence theory) formats in the literature, this chapter

will only focus on probabilistic analysis.

In Fig. 1, the box “Data” in the input uncertainty quantification step includes

laboratory data, historical field data, literature sources, and expert opinion. The box

“Design changes” may refer to conceptual, preliminary, or detailed design,

depending on the development stage. The boxes “Design changes” and “Risk

management” are outside the scope of this chapter, although they are part of the

overall uncertainty management framework.

2 Input Uncertainty Quantification

2.1 Physical Variability

Examples of model input variables with physical variability (i.e., inherent, natural

variability) include:

(a) Material properties (e.g., mechanical and thermal properties, soil properties,

chemical properties)

(b) Geometrical properties (e.g., Structural dimensions, concrete cover depth)

(c) External conditions (e.g., mechanical loading, boundary conditions, physical

processes such as freeze-thaw, chemical processes such as carbonation, chloride,

or sulfate attack)

Many uncertainty quantification studies have only focused on quantifying and

propagating the inherent variability in the input parameters. Well-established

statistical (both classical and Bayesian) methods are available for this purpose.

In probabilistic analysis, the sample to sample variations (random variables) in

the parameters are addressed by defining them as random variables with probability

density functions (PDFs). Some parameters may vary not only from sample to

sample (as is the case for random variables) but also in spatial or time domain.

Parameter variation over time and space can be modeled as random processes or
random fields.

Some well-known methods for simulating random processes are spectral repre-

sentation (SR) [13], Karhunen-Loeve expansion (KLE) ([10, 18, 30]), and polyno-

mial chaos expansion (PCE) ([18, 30, 37]). The PCE method has been used to

represent the stochastic model output as a function of stochastic inputs.

Consider an example of representing a random process using KLE, expressed as

ˆðx; wÞ ¼ ˆðxÞ þ
X1
i¼1

ffiffiffiffi
li

p
xiðwÞf iðxÞ (2)
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whereˆðxÞ is the mean of the random processˆðx; wÞ, li and f iðxÞ are eigenvalues
and eigenfunctions of Cðx1; x2Þ , and xiðwÞ is a set of uncorrelated standard

normal random variables (x is a space or time coordinate, and w is an index

representing different realizations of the random process). Using Eq. (2), reali-

zations of the random process ˆðx; wÞ can be easily simulated by generating

samples of the random variables xiðwÞ , and these realizations of ˆðx; wÞ can be

used in the reliability analysis.

Some boundary conditions (e.g., temperature and moisture content) might

exhibit a recurring pattern over shorter periods and also a trend over longer periods.

Both can be numerically represented by a seasonal model using an autoregres-

sive integrated moving average (ARIMA) method generally used for linear1 non-

stationary2 processes [5]. This method can be used to predict the temperature or

the rainfall magnitudes in the future so that it can be used in the durability analysis

of the structures under future environmental conditions.

It may also be important to quantify the statistical correlations between some of

the input random variables. Many previous studies on uncertainty quantification

simply assume either zero or full correlation, in the absence of adequate data.

A Bayesian approach may be pursued for this purpose, as described in Sect. 2.2.

2.2 Data Uncertainty

This section discusses methods to quantify uncertainty due to limited statistical

data and measurement errors (eexp). Data may also be available in interval format

(e.g., expert opinion). A Bayesian approach, consistent with the framework pro-

posed in Fig. 1, can be used in the presence of data uncertainty. The prior distri-

butions of different physical variables and their distribution parameters can be

based on available data and expert judgment, and these are updated as more data

becomes available through experiments, analysis, or real-world experience.

Data qualification is an important step in the consideration of data uncertainty.

All data points may not have equal weight; a careful investigation of data quality

will help to assign appropriate weights to different data sets.

2.2.1 Sparse Statistical Data

For any random variable that is quantitatively described by a probability density

function, there is always uncertainty in the corresponding distribution parameters

due to small sample size. As testing and data collection activities are performed, the

state of knowledge regarding the uncertainty changes and a Bayesian updating

1 The current observation can be expressed as a linear function of past observations.
2 A process is said to be nonstationary if its probability structure varies with the time or space

coordinate.
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approach can be implemented. The Bayesian approach also applies to joint

distributions of multiple random variables, which also helps to include the uncer-

tainty in correlations between the variables. A prior joint distribution is assumed (or

individual distributions and correlations are assumed) and then updated as data

becomes available.

Instead of assuming a well-known prior distribution form (e.g., uniform, normal)

for sparse data sets, either empirical distribution functions or flexible families

of distributions based on the data can be constructed. A bootstrapping3 technique

can then be used to quantify the uncertainty in the distribution parameters. The

empirical distribution function is constructed by ranking the observations from

lowest to highest value and assigning a probability value to each observation.

Examples of flexible distribution families include the Johnson family, Pearson

family, gamma distribution, and stretched exponential distribution (e.g., [48]).

Recently, Sankararaman and Mahadevan [43] developed a likelihood-based

approach to construct nonparametric probability distributions in the presence of

both sparse and interval data.

Transformations have been proposed from a non-probabilistic to probabilistic

format, through the maximum likelihood approach [25, 40]. Such transformations

have attracted the criticism that information is either added or lost in the process.

Two ways to address the criticism are to (1) construct empirical distribution func-

tions based on interval data collected from multiple experts or experiments [9]

and (2) construct flexible families of distributions with bounds on distribution

parameters based on the interval data, without forcing a distribution assumption

(McDonald et al. 2008). These can then be treated as random variables with

probability distribution functions and combined with other random variables in a

Bayesian framework to quantify the overall system model uncertainty. The use of

families of distributions will result in multiple probability distributions for the

output, representing the contributions of both physical variability and data uncer-

tainty. The nonparametric approach of Sankararaman and Mahadevan [43] also has

the ability to quantify the contributions of aleatory and epistemic uncertainty to the

probabilistic representation of an uncertain variable.

2.2.2 Measurement Error

The measurement error in each input variable in many studies (e.g., [1]) is assumed

to be independent and identically distributed (IID) normal with zero mean and an

assumed variance, i.e., eexp � N 0; s2exp
� �

. Due to the measurement uncertainty,

the distribution parameter sexp cannot be obtained as a deterministic value. Instead,

it is a random variable with a prior density t(sexp). Thus, when new data is available

3 Bootstrapping is a data-based simulation method for statistical inference by resampling from an

existing data set [7].
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after testing, the distribution of sexp can be easily updated using the Bayesian

theorem. Another way to represent measurement error eexp is through an interval

only, and not as a random variable.

3 Uncertainty Propagation Analysis

In this section, methods to quantify the contributions of different sources of

uncertainty and error as they propagate through the system analysis model, includ-

ing the contribution of model error, are discussed, in order to quantify the overall

uncertainty in the system model output.

This section covers two issues: (1) quantification of model output uncertainty,

given input uncertainty (both physical variability and data uncertainty), and

(2) quantification of model error (due to both model form selection and solution

approximations).

Several uncertainty analysis studies, including a study with respect to the

proposed Yucca Mountain high-level waste repository, have recognized the dis-

tinction between physical variability and data uncertainty [16, 17]. As a result, these

methods evaluate the variability in an inner loop calculation and data uncertainty

in an outer loop calculation.

3.1 Propagation of Physical Variability

Various probabilistic methods (e.g., Monte Carlo simulation and first-order or

second-order analytical approximations) have been studied for the propagation of

physical variability in model inputs and model parameters [14] expressed through

random variables and random process or fields. Stochastic finite element methods

(e.g., [10, 15]) have been developed for single discipline problems, in structural,

thermal, and fluid mechanics. An example of such propagation is shown in Fig. 2.

Several types of combinations of system analysis model and statistical analysis

techniques are available:

• Monte Carlo simulation with the deterministic system analysis as a black-box (e.g.,

[39]) to estimate model output statistics or probability of regulatory compliance

• Monte Carlo simulation with a surrogate model to replace the deterministic

system analysis model (e.g., [10, 18, 19, 47]), to estimate model output statistics

or probability of regulatory compliance

• Local sensitivity analysis using finite difference, perturbation, or adjoint

analyses, leading to estimates of the first-order or second-order moments of

the output (e.g., [3])

• Global sensitivity and effects analysis and analysis of variance in the output

(e.g., [4])
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These techniques are generic and can be applied to engineering systems with

multiple component modules and multiple physics. However, most applications of

these techniques have only considered physical variability. The techniques need

to include the contribution of data uncertainty and model error to the overall

model prediction uncertainty. Computational effort is a significant issue in practical

applications, since these techniques involve a number of repeated runs of the

system analysis model. The system analysis may be replaced with an inexpensive

surrogate model in order to achieve computational efficiency; this is discussed in

Sect. 3.3 of this report. Efficient Monte Carlo techniques have also been pursued to

reduce the number of system model runs, including Latin hypercube sampling
(LHS) [8, 32] and importance sampling [28, 50].

When multiple requirements are defined, computation of the overall probability

of satisfying multiple performance criteria requires integration over a multidimen-

sional space defined by unions and intersections of individual events (of satisfaction

or violation of individual criteria).

3.2 Propagation of Data Uncertainty

Three types of data uncertainty were discussed in Sect. 2. Sparse point data results

in uncertainty about the parameters of the probability distributions describing

quantities with physical variability. In that case, uncertainty propagation analysis

takes a nested implementation. In the outer loop, samples of the distribution para-

meters are randomly generated, and for each set of sampled distribution parameter

values, probabilistic propagation analysis is carried out as in Sect. 3.1. This results

in the computation of multiple probability distributions of the output or confidence

intervals for the estimates of probability of failure.

Finite Element AnalysisProbabilistic Input Probabilistic Output

μ

σμ +

μ

σμ +

σμ −

Random process: 
K(xi) = Boundary conditions 
F(xi) = Mechanical vibration  

Random field: 
E(xi) = Material properties 
H(xi) = Thermal loads 
G(xi) = Geometric properties 

- Thermal protection panel subjected to 
dynamic loads 

- Stochastic finite element analysis 
- Account for spatial and temporal 

variability of system properties and 
loads 

- Account for material degradation 

s (xi) = Stress
e (xi)= Strain 
d (xi) = Displacement

m−s

Fig. 2 Example of physical variability propagation
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In the case of measurement error, choice of the uncertainty propagation

technique depends on how the measurement error is represented. If the measure-

ment error is represented as a random variable, it is simply added to the measured

quantity, which is also a random variable due to physical variability. Thus, a sum of

two random variables may be used to include both physical variability and mea-

surement error in a quantity of interest. If the measurement error is represented as

an interval, one way to implement probabilistic analysis is to represent the interval

through families of distributions or upper and lower bounds on probability distri-

butions, as discussed in Sect. 2.2.1. In that case, multiple probabilistic analyses,

using the same nested approach as in the case of sparse data, can be employed to

generate multiple output distributions or confidence intervals for the model output.

The same approach is possible for interval variables that are only available as a

range of values, as in the case of expert opinion.

Propagation of uncertainty is conceptually very simple but computationally

quite expensive to implement, especially when both physical variability and data

uncertainty are to be considered. The presence of both types of uncertainty requires

a nested implementation of uncertainty propagation analysis (simulation of data

uncertainty in the outer loop and simulation of physical variability in the inner

loop). If the system model runs are time-consuming, then uncertainty propagation

analysis could be prohibitively expensive. One way to overcome the computational

hurdle is to use an inexpensive surrogate model to replace the detailed system

model, as discussed next.

3.3 Surrogate Models

Surrogate models (also known as response surface models) are frequently used to

replace the expensive system model and used for multiple simulations to quantify

the uncertainty in the output. Many types of surrogate modeling methods are

available, such as linear and nonlinear regression, polynomial chaos expansion,

Gaussian process modeling (e.g., Kriging model), splines, moving least squares,

support vector regression, relevance vector regression, neural nets, or even simple

lookup tables. For example, Goktepe et al. [12] used neural network and polyno-

mial regression models to simulate expansion of concrete specimens under sulfate

attack. All surrogate models require training or fitting data, collected by running the

full-scale system model repeatedly for different sets of input variable values.

Selecting the sets of input values is referred to as statistical design of experiments,

and there is extensive literature on this subject. Two types of surrogate modeling

methods are discussed below that might achieve computational efficiency while

maintaining high accuracy in output uncertainty quantification. The first method

expresses the model output in terms of a series expansion of special polynomials

such as Hermite polynomials and is referred to as a stochastic response surface

method (SRSM). The second method expresses the model output through a Gaussian

process and is referred to as Gaussian process modeling.
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3.3.1 Stochastic Response Surface Method (SRSM)

The common approach for building a surrogate or response surface model is to

use least squares fitting based on polynomials or other mathematical forms based

on physical considerations. In SRSM, the response surface is constructed by

approximating both the input and output random variables and fields through series

expansions of standard random variables (e.g., [18, 19, 47]). This approach has

been shown to be efficient, stable, and convergent in several structural, thermal,

and fluid flow problems. A general procedure for SRSM is as follows:

(a) Representation of random inputs (either random variables or random processes)

in terms of Standard Random Variables (SRVs) by K-L expansion, as in Eq. (2).

(b) Expression of model outputs in chaos series expansion. Once the inputs are

expressed as functions of the selected SRVs, the output quantities can also be

represented as functions of the same set of SRVs. If the SRVs are Gaussian,

the output can be expressed a Hermite polynomial chaos series expansion in

terms of Gaussian variables. If the SRVs are non-Gaussian, the output can be

expressed by a general Askey chaos expansion in terms of non-Gaussian

variables [10].

(c) Estimation of the unknown coefficients in the series expansion. The improved

probabilistic collocation method [19] is used to minimize the residual in the

random dimension by requiring the residual at the collocation points equal to

zero. The model outputs are computed at a set of collocation points and used to

estimate the coefficients. These collocation points are the roots of the Hermite

polynomial of a higher order. This way of selecting collocation points would

capture points from regions of high probability [45].

(d) Calculation of the statistics of the output that has been cast as a response surface

in terms of a chaos expansion. The statistics of the response can be estimated

with the response surface using either Monte Carlo simulation or analytical

approximation.

3.3.2 Kriging or Gaussian Process Models

Gaussian process (GP) models have several features that make them attractive

for use as surrogate models. The primary feature of interest is the ability of the

model to “account for its own uncertainty.” That is, each prediction obtained from

a Gaussian process model also has an associated variance or uncertainty. This

prediction variance primarily depends on the closeness of the prediction location

to the training data, but it is also related to the functional form of the response. For

example, see Fig. 3, which depicts a one-dimensional Gaussian process model.

Note how the uncertainty bounds are related to both the closeness to the training

points, as well as the shape of the curve.

The basic idea of the GP model is that the output quantities are modeled as a

group of multivariate normal random variables. A parametric covariance function is
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then constructed as a function of the inputs. The covariance function is based on the

idea that when the inputs are close together, the correlation between the outputs will

be high. As a result, the uncertainty associated with the model prediction is small

for input values that are close to the training points and large for input values

that are not close to the training points. In addition, the GP model may incorporate

a systematic trend function, such as a linear or quadratic regression of the inputs

(in the notation of Gaussian process models, this is called the mean function, while

in Kriging, it is often called a trend function). The effect of the mean function on

predictions which interpolate the training data is small, but when the model is used

for extrapolation, the predictions will follow the mean function very closely.

Within the GP modeling technique, it is also possible to adaptively select the

design of experiments to achieve very high accuracy. The method begins with an

initial GP model built from a very small number of samples, and then one intelli-

gently chooses where to generate subsequent samples to ensure the model is

accurate in the vicinity of the region of interest. Since the GP model provides the

expected value and variance of the output quantity, the next sample may be chosen

in the region of highest variance, if the objective is to minimize the prediction

variance. The method has been shown to be both accurate and computationally

efficient for arbitrarily shaped functions [2].

3.4 Sensitivity Analysis

Sensitivity analysis serves several important functions: (1) identification of domi-

nant variables or sub-models, thus helping to focus data collection resources

efficiently; (2) identification of insignificant variables or sub-models of limited

Fig. 3 Gaussian process model with uncertainty bounds
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significance, helping to reduce the size of the problem and computational effort;

and (3) quantification of the contribution of solution approximation error. Both

local and global sensitivity analysis techniques are available to investigate the

quantitative effect of different sources of variation (physical parameters, models,

and measured data) on the variation of the model output. The primary benefit of

sensitivity analysis to uncertainty analysis is to enable the identification of which

physical parameters have the greatest influence on the output [6, 42]).

Sensitivity analysis can be local or global. Local sensitivity analysis utilizes

first-order derivatives of system output quantities with respect to the parameters.

It is usually performed for a nominal set of parameter values. Global sensitivity

analysis typically uses statistical sampling methods, such as Latin Hypercube

Sampling, to determine the total uncertainty in the system output over the entire

range of the input uncertainty and to apportion that uncertainty among the various

parameters.

3.5 Model Error Quantification

Model errors may relate to governing equations, boundary and initial condition

assumptions, loading description, and approximations or errors in solution algori-

thms (e.g., truncation of higher order terms, finite element discretization, curve-

fitting models for material damage such as S-N curve). Overall model error may be

quantified by comparing model prediction and experimental observation, properly

accounting for uncertainties in both. This overall error measure combines both

model form and solution approximation errors, so it needs to be considered in two

parts. Numerical errors in the model prediction can be quantified first, using

sensitivity analysis, uncertainty propagation analysis, discretization error quantifi-

cation, and truncation (residual) error quantification. The measurement error in the

input variables can be propagated to the prediction of the output. The error in

the prediction of the output due to the measurement error in the input variables is

approximated by using a first-order sensitivity analysis [36]. Then the model form

error can be quantified based on all the above errors, following the approach

illustrated for a heat transfer problem by Rebba et al. [36].

3.5.1 Solution Approximation Error

Several components of prediction error, such as discretization error (denoted by ed)
and uncertainty propagation analysis error (es) can be considered. Several methods

to quantify the discretization error in finite element analysis are available in the

literature. However, most of these methods do not quantify the actual error; instead,

they only quantify some indicator measures to facilitate adaptive mesh refinement.

The Richardson extrapolation (RE) method comes closest to quantifying the actual

Uncertainty Quantification for Decision-Making in Engineered Systems 109



discretization error [38]. (In some applications, the model is run with different

levels of resolution, until an acceptable level of accuracy is achieved; formal error

quantification may not be required).

Errors in uncertainty propagation analysis (es) are method-dependent, i.e., sam-

pling error occurs in Monte Carlo methods and truncation error occurs in response

surface methods (either conventional or polynomial chaos-based). For example,

sampling error could be assumed to be a Gaussian random variable with zero mean

and variance given by s2/N where N is the number of Monte Carlo runs and s2 is
the original variance of the model output [41]. The truncation error is simply the

residual error in the response surface.

Rebba et al. [36] and Liang and Mahadevan [26] used the above concept to

construct a surrogate model for finite element discretization error in structural

analysis, using the stochastic response surface method (SRSM). Gaussian process

models may also be employed for this purpose. Both options are helpful in

quantifying the solution approximation error.

3.5.2 Model form Error

The overall prediction error is a combination of errors resulting from numerical

solution approximations and model form selection. A simple way is to express the

total observed error (difference between prediction and observation) as the sum of

the following error sources:

eobs ¼ enum þ emodel � eexp (3)

where enum, emodel, and eexp represent numerical solution error, model form

error, and output measurement error, respectively. However, solution approxima-

tion error results from multiple sources and is probably a nonlinear combination

of various errors such as discretization error, round-off and truncation errors,

and stochastic analysis errors. One option is to construct a regression model

consisting of the individual error components [36]. The residual of such a regres-

sion analysis will include the model form error (after subtracting the experimental

error effects). By denoting eobs as the difference between the data and prediction,

i.e., eobs ¼ yexp � ypred, we can construct the following relation by considering a

few sources of numerical solution error [36]:

eobs ¼ f ðeh; ed; esÞ þ emodel � eexp (4)

where eh, ed, and es represent output error due to input parameter measurement

error, finite element discretization error, and uncertainty propagation analysis error,

respectively, all of which contribute to numerical solution error. Rebba et al. [36]

illustrated the estimation of model form error using the above concept for a one-

dimensional heat conduction problem, using a polynomial chaos expansion for the
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input-output model as well as numerical solution error. Kennedy and O’Hagan [24]

calibrated Gaussian process surrogate models for both the input-output model and

the model form error (which is also referred to as model discrepancy or model

inadequacy term). Both approaches incorporate the dependence of model error on

input values.

4 Model Calibration, Validation and Extrapolation

After quantifying and propagating the physical variability, data uncertainty, and

model error for individual components of the overall system model, the probability

of meeting performance requirements (and our confidence in the model prediction)

needs to be assessed based on extrapolating the model to field conditions (which

are uncertain as well), where sometimes very limited or no experimental data is

available. Rigorous verification, validation, and calibration methods are needed to

establish credibility in the modeling and simulation. Both classical and Bayesian

statistical methodologies have been investigated during recent years. The methods

have the capability to consider multiple output quantities or a single model output

at different spatial and temporal points.

This section discusses methods for (1) calibration of model parameters, based on

observation data; (2) validation assessment of the model, based on observation data;

and (3) estimation of confidence in the extrapolation of model prediction from

laboratory conditions to field conditions.

4.1 Model Calibration

Two types of statistical techniques may be pursued for model calibration uncer-

tainty, the least squares approach and the Bayesian approach. The least squares

approach estimates the values of the calibration parameters that minimize the

discrepancy between model prediction and experimental observation. This approach

can also be used to calibrate surrogate models or low-fidelity models, based on high-

fidelity runs, by treating the high-fidelity results similar to experimental data.

The second approach is Bayesian calibration [24] using Gaussian process surro-

gate models. This approach is flexible and allows different forms for including the

model errors during calibration of model parameters [31]. Recently, Sankararaman

and Mahadevan [43] extended least squares, likelihood and Bayesian calibration

approaches to include imprecise and unpaired input-output data sets, a commonly

occurring situation when using historical data or data from the literature, where all

the inputs to the model may not be reported.

Markov Chain Monte Carlo (MCMC) simulation is used for numerical imple-

mentation of the Bayesian updating analysis. Several efficient sampling techniques

are available for MCMC, such as Gibbs sampling, the Metropolis algorithm, and

the Metropolis-Hastings algorithm [11].
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4.2 Model Validation

Model validation involves comparing prediction with observation data (either

historical or experimental) when both have uncertainty. Since there is uncertainty

in both model prediction and experimental observation, it is necessary to pursue

rigorous statistical techniques to perform model validation assessment rather than

simple graphical comparisons, provided data is even available for such compari-

sons. Statistical hypothesis testing is one approach to quantitative model validation

under uncertainty, and both classic and Bayesian statistics have been explored.

Classical hypothesis testing is a well-developed statistical method for accepting

or rejecting a model based on an error statistic (see e.g., [46]). Validation metrics

have been investigated in recent years based on Bayesian hypothesis testing [29, 33,

34, 49], reliability-based methods [35], and risk-based decision analysis [22, 23].

Ling and Mahadevan [27] provide detailed discussion of the interpretations of

various metrics, their mathematical relationships, and implementation issues,

with the example of a MEMS device reliability prediction problem and validation

data.

In Bayesian hypothesis testing, we assign prior probabilities for the null and

alternative hypotheses; let these be denoted as P(H0) and P(Ha) such that P(H0) +

P(Ha) ¼ 1. Here, H0: model error < allowable limit, and Ha: model error >
allowable limit. When data D is obtained, the probabilities are updated as P(H0 | D)
and P(Ha | D) using the Bayesian theorem. Then, a Bayesian factor [20] B is defined

as the ratio of likelihoods of observing D under H0 and Ha; i.e., the first term in the

square brackets on the right-hand side of Eq. (5):

P H0jDð Þ
P HajDð Þ ¼

P DjH0ð Þ
P DjHað Þ

� �
P H0ð Þ
P Hað Þ (5)

If B > 1, the data gives more support to H0 than Ha. Also, the confidence in H0,

based on the data, comes from the posterior null probability P(H0 |D), which can be
rearranged from the above equation as

P H0ð ÞB
P H0ð ÞBþ1�P H0ð Þ . Typically, in the absence

of prior knowledge, we may assign equal probabilities to each hypothesis, and thus,

P(H0) ¼ P(Ha) ¼ 0.5. In that case, the posterior null probability can be further

simplified to B/(B + 1). Thus, a B value of 1.0 represents 50 % confidence in the

null hypothesis being true.

The Bayesian hypothesis testing is also able to account for uncertainty in the

distribution parameters (mentioned in Sect. 2). For such problems, the validation

metric (Bayesian factor) itself becomes a random variable. In that case, the proba-

bility of the Bayesian factor exceeding a specified value can be used as the decision

criterion for model acceptance/rejection.

Notice that model validation only refers to the situation when controlled, target

experiments are performed to evaluate model prediction, and both the model runs

and experiments are done under the same set of input and boundary conditions. The

validation is done only by comparing the outputs of the model and the experiment.
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Once the model is calibrated, verified, and validated, it may be investigated for

confidence in extrapolating to field conditions different from laboratory conditions.

This is discussed in the next section.

4.3 Overall Uncertainty Quantification

While individual methods for calibration, verification, and validation have been

developed as mentioned above, it is necessary to integrate the results from these

activities for the purpose of overall uncertainty quantification in the model predic-

tion. This is not trivial because of several reasons. First, the solution approximation

errors calculated as a result of the verification process need to be accounted for

during calibration, validation, and prediction. Second, the result of validation may

lead to a binary result, i.e., the model is accepted or rejected; however, even when

the model is accepted, it is not completely correct. Hence, it is necessary to account

for the degree of correctness of the model in the prediction. Third, calibration and

validation are performed using independent data sets, and it is not straightforward

to compute their combined effect on the overall uncertainty in the response.

The issue gets further complicated when system-level behavior is predicted

based on a hierarchy of models. As the complexity of the system under study

increases, there may be several components and subsystems at multiple levels of

hierarchy, which integrate to form the overall multilevel system. Each of these

components and subsystems is represented using component-level and subsystem-

level models which are mathematically connected to represent the overall system

model which is used to study the underlying system. In each level, there is a

computational model with inputs, parameters, outputs, experimental data (hope-

fully available for calibration and validation separately), and several sources of

uncertainty – physical variability, data uncertainty (sparse or imprecise data, measure-

ment errors, expert opinion), and model uncertainty (parameter uncertainty, solution

approximation errors, and model form error).

Recent studies by the author and coworkers have demonstrated that the Bayesian

network methodology provides an efficient and powerful tool to integrate multiple

levels of models, associated sources of uncertainty and error, and available data at

multiple levels and in multiple formats. While the Bayesian approach can be used

to perform calibration and validation individually for each model in the multi-

level system, it is not straightforward to integrate the information from these

activities in order to compute the overall uncertainty in the system-level prediction.

Sankararaman and Mahadevan [44] extend the Bayesian approach to integrate

and propagate information from verification, calibration, and validation activities

in order to quantify the margins and uncertainties in the overall system-level

prediction.

Bayesian networks [21] are directed acyclic graphical representations with nodes

to represent the random variables and arcs to show the conditional dependencies

among the nodes. Data in any one node can be used to update the statistics of all
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other nodes. This property makes the Bayesian network a powerful tool to integrate

information generated from multiple activities and to quantify the uncertainty in

prediction under actual usage conditions [29].

Figure 4 shows an illustrative Bayesian network for confidence extrapolation.

An ellipse represents a random variable, and a rectangle represents observed data.

A solid line arrow represents a conditional probability link, and a dashed line arrow

represents the link of a variable to its observed data if available. The probability

densities of the variables V, z, and y are updated using the validated data Y.
The updated statistics of V, z, and y are then used to estimate the updated statistics

of the decision variable d (i.e., assessment metric). In addition, both model predic-

tion and predictive experiments are related to input variables X via physical

parameters F. Note that there is no observed data available for d; yet we are able

to calculate the confidence in the prediction of d, by making use of observed data

in several other nodes and propagation of posterior statistics through the Bayesian

network.

The Bayesian network thus links the various simulation codes and corresponding

experimental observations to facilitate two objectives: (1) uncertainty quantifica-

tion and propagation and (2) confidence assessment in system behavior prediction in

the application domain, based on data from the laboratory domain, expert opinion,

and various computational models at different levels of the system hierarchy.

5 Conclusion

Uncertainty quantification in performance assessment involves consideration of three

sources of uncertainty – inherent variability, information uncertainty, and model

errors. This chapter surveyed probabilistic methods to quantify the uncertainty in

model-based prediction due to each of these sources and addressed them in four

stages – input characterization based on data; propagation of uncertainties and errors

through the system model; model calibration, validation, and extrapolation; and

performance assessment. Flexible distribution families as well as a nonparametric

Bayesian approach were discussed to handle sparse data and interval data. Methods to

quantify model errors resulting from both model form selection and solution approx-

imation were discussed. Bayesian methods were discussed for model calibration,

z

d

Ω
y

Z
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Fig. 4 Bayes network
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validation, and extrapolation. An important issue is computational expense, when

iterative analysis between multiple codes is necessary. Uncertainty quantification

multiplies the computational effort of deterministic analysis by an order of magni-

tude. Therefore, the use of surrogate models, sensitivity and screening analyses, and

first-order approximations of overall output uncertainty are available to reduce the

computational expense.

Many of the methods described in the chapter have been applied to mechanical

systems that are small in size or time-independent, and the uncertainties considered

were not very large. None of these simplifications are available in the case of long-

term performance assessment of civil infrastructure systems, and real-world data to

validate long-term model predictions are not available. Thus, the extrapolations are

based on laboratory data or limited term observations and come with large uncer-

tainty. The application of the methods described in this chapter to such complex

systems needs to be investigated. However, it should be recognized that the benefit

of uncertainty quantification is not so much in predicting the actual failure proba-

bility or similar measures but in facilitating engineering decision-making, such as

comparing different design and analysis options, performing sensitivity analyses,

and allocating resources for uncertainty reduction through further data collection

and/or model refinement.
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