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Abstract The present work aims to evaluate the response of Duffing oscillator

using equivalent linearization. The stiffness and damping forces are proportional

to the cube power of the displacement and velocity, respectively. The oscillator is

excited by stationary process. The method suggested in this work aims to replace

the original nonlinear system with an equivalent linear system by minimizing the

difference in the displacement between the nonlinear system and the equivalent

linear system in a least square sense using different constraints (e.g., restoring force,

potential energy, complementary energy). Numerical results are presented to show

the efficiency of the proposed linearization scheme. For this purpose, instantaneous

mean square values of the displacement are evaluated and compared with simula-

tion. A close agreement between the simulations and the proposed model is

observed which, in turn, shows the efficiency and applicability of the proposed

model. A discussion on the use of different constraint conditions and their relative

importance is also presented.

Keywords Equivalent linearization • Constrained optimization • Duffing oscillator

• Stationary process

1 Introduction

Analytical solutions of stochastic nonlinear systems have remained an open area of

research due to its inherent difficulties. Caughey [2] developed analytical solutions

for linear and nonlinear systems excited by white noise. In this process, they used

Markov process theory, and the response was evaluated by solving the corresponding
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Fokker–Planck–Kolmogorov (FPK) equation. Hammond [9] modeled the response

of stochastic linear oscillator using spectral representation of the nonstationary

processes. However, these closed-form solutions are limited to certain class of

nonlinearities and excitations. Due to these limitations, researchers and engineers

developed various approximate solutions for wide range of nonlinearity and

excitations. Some of these techniques are equivalent linearization, closure

approximations, and perturbation techniques. Among these approximate solutions,

equivalent linearization is very popular among the engineers and the scientists for its

simplicity and computational efficiency. Due to this reason, it has become a standard

tool for stochastic response analysis of nonlinear dynamic systems, wherein the

nonlinear system is replaced by a linear system whose parameters are optimized in

stochastic least square sense.

Caughey [3] developed this technique for weakly nonlinear systems. Bulsara

et al. [1] modeled the response of a cubic nonlinear system driven by Gaussian

white noise. They showed that the results obtained by equivalent linearization had

good agreement with the experimentally obtained responses. Iyengar [10] derived

expression for the second moment of the response of Duffing oscillator excited by

broad-banded signal. In this context, a comprehensive guideline on equivalent

linearization for a wide range of nonlinear systems and excitations processes can

be found in Roberts and Spanos [15]. Wu [17] compared equivalent linearization

and Gaussian closure for different classes of nonlinearities (parametrically excited

nonlinear systems and hysteretic system). In this study, the author showed that both

the techniques provide same response. Similar observations were presented by

Noori and Davoodi [12] while modeling stochastic response of nonlinear systems

using equivalent linearization. Grigoriu [7, 8] and Proppe [13] used equivalent

linearization for different classes of input processes (e.g., Levy white noise, Poisson

process). Mickens [11] used this technique along with first-order averaging to solve

general nonlinear systems where limit cycles exist. Ricciardi [14] used a modified

Gram–Charlier series approximation of the probability density function to develop

a non-Gaussian stochastic linearization method of nonlinear structural systems

under white noise excitation. However, equivalent linearization used in all these

studies used unconstrained stochastic least square optimization. Although the

error between the nonlinear system and the equivalent linear system is minimized

to obtain the parameters of the system, it does not ensure that the equivalent

linear system will have same restoring force and/or other properties of the nonlinear

system. In this context, Elishakoff and Zhang [4] and Elishakoff and Bert [5]

suggested different criteria for stochastic least square optimization. Elishakoff [6]

suggested new approach to evaluate the parameters of the equivalent linear system

using force, potential energy, and complementary energy as the linearization

criteria. Sobiechowski and Socha [16] developed different linearization criteria

and modeled the response of Duffing oscillator under non-Gaussian excitations.

However, all these criteria for stochastic linearization were used independently.

With this in view, the present work develops an equivalent linearization scheme

for Duffing oscillator which minimizes the difference between the response of

nonlinear and the equivalent linear system using constraints on equivalence of
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force, potential energy, and complementary energy. For this purpose, Lagrange

multiplier technique is adopted to evaluate the optimized parameters of the linear

system, which are driven by different stationary excitation processes. The results

obtained using various constraints are compared with the simulations to prove the

accuracy of the proposed linearization scheme. It also helps to identify the relative

impact of different constraints on the global response.

2 Problem Formulation

Figure 1 shows the Duffing oscillator used in this study whose governing equation

of motion is given by

€xþ gðx; _xÞ ¼ f ðtÞ (1)

where gðx; _xÞ is the nonlinear function that describes the energy dissipation and the

force associated with the spring and is given by

gðx; _xÞ ¼ b _xþ o2
nxþ l1b _x3 þ l2o2

nx
3 (2)

Parametersl1 andl2 control the extent of nonlinearity, while parametersbandon

are the damping and the natural frequency of the corresponding linear system when

l1 and l2 are zero. The nonlinear single degree of freedom system shown in Fig. 1 is

replaced by a linear system whose governing equation is given by

€xþ beq _xþ o2
eqx ¼ f ðtÞ (3)

In the above equation, beq and oeq are the damping and the natural frequency of

the equivalent linear system, which are evaluated by minimizing the error between

Eqs. 1 and 3 in stochastic least square sense.

Fig. 1 Duffing oscillator
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On squaring the error and taking expectation on both sides, one gets

E½e2� ¼ E gðx; _xÞ � beq _x� o2
eqx

� �2
� �

(4)

Equation 4 is minimized with respect to the unknowns the parametersbeq andoeq

The optimum values of these parameters are evaluated by solving the two equations

formed by
@E½e2�
@beq

¼ 0 and
@E½e2�
@o2

eq
¼ 0. By solving these two equations, one can show

that

beq ¼ b 1þ 3l1 s2_x
� �

o2
eq ¼ o2

n 1þ 3l2 s2x
� �

)
(5)

where s2_x and s
2
x are the unknown variance of x and _x, respectively. In absence of the

stochastic response of the nonlinear system, these variances are approximately

evaluated using the closed-form solution of the equivalent linear system excited

by the stationary input. Using this approximation, the variances of displacement

and velocity of the equivalent linear system can be evaluated as

s2x ¼
Z 1

�1
jHðoÞj2 Sff ðoÞdo

s2_x ¼
Z 1

�1
o2jHðoÞj2 Sff ðoÞdo

9>>=
>>; (6)

In the above equation, HðoÞ represents the frequency response function of the

equivalent linear system which is given by

HðoÞ ¼ 1

o2
eq � o2 þ iobeq

(7)

The stationary excitation f ðtÞ is represented by its power spectral density Sff ðoÞ.
In the present study, two different types of stationary excitations are considered for

numerical analysis. The first one is the white noise process whose intensity is given

by Sff ðoÞ ¼ So and the second one is the filtered white noise process as modeled in

Kanai–Tajimi spectrum.

Sff ðoÞ ¼ So
1þ 4�2g

o
og

� �2

1� o
og

� �2
� �2

þ 4�2g
o
og

� �2

2
6664

3
7775 (8)

In the above equation, �g and og represent the parameters of the second-order

linear filter. Using Eq. 6 in Eq. 5, one can solve the parameters of the equivalent
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system for different types of excitations. For the details of this solution procedure,

one may refer to Roberts and Spanos [15]. However, this linearization scheme

provides the optimal values of the parameters without guaranteeing the equivalence

of the spring or damping force, potential energy stored in the two systems, and/or

complementary energy in the two systems. With this in view, present study aims to

modify the optimization technique by incorporating different constraints. It also

aims to study the relative importance of these constraints on the overall perfor-

mance of the linearization technique.

3 Statistical Linearization Using Constraints

As outlined earlier, Lagrange multiplier technique is adopted to optimize the

objective function F along with constraints. The total Lagrangian is given by

L ¼ Fþ g1G (9)

where g1 is the Lagrange multiplier. For this purpose, the objective function F is

modeled as

F ¼ e21 þ e22 (10)

where e1 and e2 are the errors in estimating damping and natural frequency as given

in Eq. 5 and are given by

e1 ¼ beq � b 1þ 3l1s2_x
� �

e2 ¼ o2
eq � o2

n 1þ 3l2s2x
� �

)
(11)

To evaluate the optimized parameters, the total Lagrangian in Eq. 9 is

differentiated with respect to the unknowns and equated to zero which leads to

simultaneous equations involving beq, o
2
eq and g1 which are given by

@L

@o2
eq

¼ @F

@o2
eq

þ g1
@G

@o2
eq

¼ 0

@L

@beq
¼ @F

@ beq
þ g1

@G

@beq
¼ 0

@L

@g1
¼ G ¼ 0

9>>>>>>>=
>>>>>>>;

(12)
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In the present study, three different constraints are chosen for optimization.

These are nonlinear force, potential energy, and complementary energy.

3.1 Constraint 1: Nonlinear Force

The nonlinear forcing function in the Duffing oscillator as shown in Fig. 1 can be

modeled as

’ðxÞ ¼ o2
nðxþ l2x3Þ

cð _xÞ ¼ bð _xþ l1 _x3Þ

)
(13)

In the above equation, ’ðxÞ and cð _xÞ are nonlinear forces associated with the

stiffness and the energy dissipation. Using Eq. 6, the variance of the nonlinear force

can be evaluated. In the first example, the variance of the nonlinear forcing function

is used as the constraint condition, which is given by

Gf ¼ E½’2ðxÞ þ c2ð _xÞ� � E o2
eqx

� �2

þ ðbeq _xÞ2
� �

(14)

In this context, it may be noticed that the constraint condition described in the

above equation has the nonlinear force as a function of x and _x which are the

displacement and velocity of the Duffing oscillator, respectively. As these

responses are unknown at the beginning, they are approximated with the displace-

ment and velocity response of the equivalent linear system. Using Eq. 12, one can

develop simultaneous equations involving three unknowns beq , o
2
eq and g1 which

are given by

2o2
eq 1� 3o2

nl2aþ g1s
2
x þ g1o

2
eqa

� �
þ beq �6bl1cþ g1beqc

� 	� g1 o4
na

� ð1þ 45 l2s2x
� 	2

þ 12l2s2xÞþb2c 1þ 45 l1s2_x
� 	2 þ 12l1s2_x

� ��
� 2 o2

n 1þ 3l2s2x
� 	

1� 3o2
nl2a

� 	�
þ bð1þ 3l1s2_xÞð�3bl1cÞÞ ¼ 0

(15a)

o2
eq �6o2

nl2bþ g1o
2
eqb

� �
þ 2beq 1� 3bl1d þ g1s

2
_x þ g1beqd

� 	� g1 o4
nb ð1þ 45 l2s2x

� 	2�
þ12l2s2xÞ þ b2d 1þ 45 l1s2_x

� 	2 þ 12l1s2_x
� ��

� 2 o2
n 1þ 3l2s2x
� 	 �3o2

nl2b
� 	�

þ bð1þ 3l1s2_xÞð1� 3bl1dÞ
	 ¼ 0

(15b)
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Gf ¼ o4
eqs

2
x þ b2eqs

2
_x � o4

ns
2
x 1þ 15 l2s2x

� 	2 þ 6l2s2x
� �

� b2s2_x 1þ 15 l1s2_x
� 	2 þ 6l1s2_x

� �
¼ 0 (15c)

In the above equations, a, b, c, and d are the derivatives of s2_x and s2x with

respect to o2
eq and beq. Using Eqs. 15a and 15b, one can remove g1 and develop an

equation with unknown parameters beq and o2
eq. Using this equation along with

Eq. 15c, one can solve the optimized unknown parameters in the light of con-

straint on the nonlinear force. It can be noticed from Eqs. 15a, 15b, and 15c that

the reduced equations for beq , and o2
eq are polynomial function. In the present

study, these are solved in Symbolic Math Toolbox in MATLAB.

3.2 Constraint 2: Potential Energy

The potential energy of the Duffing oscillator considered in Fig. 1 is

PðxÞ ¼
Z x

0

o2
nðxþ l2x3Þdx (16)

It can be shown that the energy dissipated by this system is be given by

Dð _xÞ ¼
Z x

0

b2ð _xþ l1 _x3Þd _x (17)

The variance of the potential energies of the nonlinear system is used as the

constraint condition, which is given by

Gpe ¼ E½P2ðxÞ þ D2ð _xÞ� � E o2
eq

x2

2


 �2

þ beq
_x2

2


 �2
" #

(18)

Substitution of expressions of PðxÞ andDð _xÞ in Eq. 18 and further simplification

lead to a constraint equation for equivalence of potential energy. The numerical

procedure outlined for evaluation of optimal parameters using Constraint 1 may be

adopted here to obtain beq and o2
eq.

3.3 Constraint 3: Complementary Energy

The third constraint equation is obtained from complementary energy criterion. The

complementary energy of the nonlinear spring and damper is given by
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CðxÞ ¼ x’ðxÞ � PðxÞ
Mð _xÞ ¼ _xcð _xÞ � Dð _xÞ

)
(19)

The difference in the square of the expected values of the complementary

energies of the two systems gives the following expression for the third constraint:

Gce ¼ E½C2ðxÞ þM2ð _xÞ� � E o2
eq

x2

2


 �2

þ beq
_x

2


 �2
" #

(20)

After obtaining the constraint condition, the optimal parameters can be obtained

by following the procedure mentioned for Constraint 1.

4 Numerical Results

Using the constrained linearization model outlined in the previous section for

different cases, numerical analysis is carried out to study the performance of the

proposed technique. For this purpose, the parameters of the nonlinear system b, l1
and l2 are considered to be 5%, 0.1, and 0.1, respectively. As mentioned in the

problem formulation, two different stationary processes are considered here. These

are white noises with intensity So ¼ 50 cm2=s3 and Kanai–Tajimi spectrum with

parameters So, �g and og equal to 50 cm2/s3, 0.4, and 10 rad/s, respectively. Using

these parameters, numerical study is carried out to find out the optimal parameters

of the equivalent linear system which are then used to evaluate the mean square

value of the displacement response. Figure 2 shows the mean square value of x for
different values of on when the system is subjected to white noise excitations.

In this context C1, C2, and C3 represent Constraints 1, 2 and 3, respectively. It may

be noticed that the mean square value corresponding to C1 and C2 closely match

with the simulation results (i.e., Sim). The mean square response corresponding to

C3 has a constant mismatch over the entire domain ofon. Figure 3 shows the mean

square values of nonlinear force (F), potential energy (PE), and complementary

energy (CE) for the optimal solution ofbeq andoeq over different values ofon. From

this figure, it can be noticed that the nonlinear forces obtained from different

constraint conditions closely match with the simulation result. Also it may be

noticed that the potential energy corresponding to higher on closely matches with

the simulation result. The mismatch in potential energy in case of higher time period

may be due to the assumption of replacing the stochastic response of the nonlinear

system with that of the linear system as described in Eq. 20. The complementary

energy obtained from three constraint conditions again shows a mismatch with the

simulation result which indicates that Lagrange multiplier technique with this

constraint does not provide the best feasible solution.
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Fig. 2 Mean square value of x for different on for white noise excitation

Fig. 3 Mean square value force, PE, and CE for different on for white noise excitation



The mean square value of the response for various natural frequencies on for

Kanai–Tajimi excitations is shown in Fig. 4. It can be observed that mean square

values pertaining to constraints C1 and C2 match closely with the simulation results

over the entire range. Further, for lower time period the mean square values

corresponding to all the constraints match with simulation. Figure 5 shows the

mean square values of force (F), potential energy (PE), and complementary energy

(CE) corresponding to C1, C2, and C3. Similar to white noise excitation, for filtered

white noise also the nonlinear force matches closely with the simulation over the

entire range of natural frequencies. In case of filtered white noise, the mean square

value of potential energy also matches closely with the simulation result. One may

notice a slight deviation from the simulation results around 10 rad/s which may be

attributed to resonance.

Figures 6a and 7a show the phase plots of the response of the nonlinear system,

while Figs. 6b and 7b show the phase plots of the equivalent linear system for

on ¼ 25 rad=s. For brevity, phase plots are compared for Constraint 2 only. In

both the figures, good similarity in results is observed between simulation and the

equivalent linear system which shows that the equivalent linear system is able to

emulate the random response of the nonlinear system.

Fig. 4 Mean square value of x for different on for Kanai–Tajimi excitation
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Fig. 5 Force mean square value force, PE, and CE for different on for Kanai–Tajimi excitation

Fig. 6 Phase plot at on ¼ 25 rad/s for broad-banded excitation. (a) The nonlinear system.

(b) The equivalent linear system
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5 Conclusion

In this chapter, statistical linearization of Duffing oscillator is developed to study

the impact of different constraint on the global response. For this purpose, three

different constraints are used which are nonlinear force, potential energy, and

complementary energy. The mean square value of the response for a wide range

of frequencies and different stationary inputs are presented here. From these results,

it may be concluded that the constraints on nonlinear force and potential energy

closely match with the simulation result which prove their accuracy and efficiency.

In this context, it may be mentioned that constraints associated with complementary

energy do not provide satisfactory result over a wide range of frequencies. With this

in view, it may be concluded that the proposed Gaussian linearization technique for

stationary excitation using constraints associated with nonlinear force and potential

energy may be adopted for the stochastic response analysis of Duffing oscillator.
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