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Abstract The structural reliability analysis in presence of mixed uncertain

variables demands more computation as the entire configuration of fuzzy variables

needs to be explored. Moreover, the existence of multiple design points plays an

important role in the accuracy of results as the optimization algorithms may

converge to a local design point by neglecting the main contribution from the

global design point. Therefore, in this chapter, a novel uncertain analysis method

for estimating the failure probability bounds of structural systems involving

multiple design points in presence of mixed uncertain variables is presented. The

proposed method involves weight function to identify multiple design points,

multicut-high dimensional model representation technique for the limit state func-

tion approximation, transformation technique to obtain the contribution of the fuzzy

variables to the convolution integral, and fast Fourier transform for solving the

convolution integral. The proposed technique estimates the failure probability

accurately with significantly less computational effort compared to the direct

Monte Carlo simulation. The methodology developed is applicable for structural

reliability analysis involving any number of fuzzy and random variables with any

kind of distribution. The numerical examples presented demonstrate the accuracy

and efficiency of the proposed method.
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1 Introduction

Reliability analysis taking into account the uncertainties involved in a structural

system plays an important role in the analysis and design of structures. Due to

the complexity of structural systems, the information about the functioning of

various structural components has different sources, and the failure of systems

is usually governed by various uncertainties, all of which are to be taken into

consideration for reliability estimation. Uncertainties present in a structural

system can be classified as aleatory uncertainty and epistemic uncertainty. Aleatory

uncertainty information can be obtained as a result of statistical experiments and

has a probabilistic or random character. Epistemic uncertainty information can be

obtained by the estimation of the experts and in most cases has an interval or fuzzy

character. When aleatory uncertainty is only present in a structural system, then

the reliability estimation involves determination of the probability that a structural

response exceeds a threshold limit, defined by a limit state function influenced

by several random parameters. Structural reliability can be computed by adopting

probabilistic method involving the evaluation of multidimensional integral [1, 2].

In first- or second-order reliability method (FORM/SORM), the limit state

functions need to be specified explicitly. Alternatively, the simulation-based

methods such as Monte Carlo techniques require more computational effort for

simulating the actual limit state function repeated times. The response surface

concept was adopted to get separable and closed form expression of the implicit

limit state function in order to use fast Fourier transform (FFT) to estimate the

failure probability [3]. The high-dimensional model representation (HDMR)

concepts were applied for the approximation of limit state function at the MPP

and FFT techniques to evaluate the convolution integral for estimation of failure

probability [4]. In this method, efforts are required in evaluating conditional

responses at a selected input determined by sample points, as compared to full-

scale simulation methods.

Further, the main contribution to the reliability integral comes from the

neighborhood of design points. When multiple design points exist, available

optimization algorithms may converge to a local design point and thus errone-

ously neglect the main contribution to the value of the reliability integral from

the global design point(s). Moreover, even if a global design point is obtained,

there are cases for which the contribution from other local or global design points

may be significant [5]. In that case, multipoint FORM/SORM is required for

improving the reliability analysis [6]. In the presence of only epistemic uncer-

tainty in a structural system, possibilistic approaches to evaluate the minimum

and maximum values of the response are available [7, 8].

All the reliability models discussed above are based on only one kind of uncertain

information, either random variables or fuzzy input, but do not accommodate a

combination of both types of variables. However, in some engineering problems

with mixed uncertain parameters, using one kind of reliability model cannot obtain

the best results. To determine the failure probability bounds of a structural system
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involving both random and fuzzy variables, the entire configuration of the fuzzy

variables needs to be explored. Hence, the computational effort involved in

estimating the bounds of the failure probability increases tremendously in the

presence of multiple design points and mixed uncertain variables.

This chapter explores the potential of coupled multicut-HDMR (MHDMR)-FFT

technique in evaluating the reliability of a structural system with multiple design

points, for which some uncertainties can be quantified using fuzzy membership

functions while some are random in nature. Comparisons of numerical results have

been made with direct MCS method to evaluate the accuracy and computational

efficiency of the present method.

2 High Dimensional Model Representation

High dimensional model representation (HDMR) is a general set of quantitative

model assessment and analysis tools for capturing the high dimensional

relationships between sets of input and output model variables [4, 9]. Let the

N-dimensional vector x ¼ fx1; x2; . . . ; xNg represent the input variables of

the model under consideration and the response function as gðxÞ . Since the

influence of the input variables on the response function can be independent

and/or cooperative, HDMR expresses the response gðxÞ as a hierarchical correlated
function expansion in terms of the input variables as

g xð Þ ¼ g0 þ
XN
i¼1

gi xið Þ þ
X

1�i1<i2�N

gi1i2 xi1 ; xi2ð Þ þ . . .

þ
X

1� i1<...< il�N

gi1i2...il xi1 ; xi2 ; . . . ; xilð Þ þ � � � þ g12:::N x1; x2; . . . ; xNð Þ; ð1Þ

where g0 is a constant term representing the zeroth-order component function or the

mean response of gðxÞ. The function gi xið Þ is a first-order term expressing the effect

of variable xi acting alone, although generally nonlinearly, upon the outputgðxÞ. The
function gi1i2 xi1 ; xi2ð Þ is a second-order term which describes the cooperative effects

of the variables xi1 and xi2 upon the output gðxÞ. The higher order terms give the

cooperative effects of increasing numbers of input variables acting together to

influence the output gðxÞ. The last term g12;���;N x1; x2; . . . ; xNð Þ contains any residual
dependence of all the input variables locked together in a cooperative way to

influence the output gðxÞ . The expansion functions are determined by evaluating

the input–output responses of the system relative to the defined reference point

c along associated lines, surfaces, subvolumes, etc., in the input variable space. This

process reduces to the following relationship for the component functions in Eq. (1):

g0 ¼ g cð Þ; (2)
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gi xið Þ ¼ g xi; c
i

� �� g0; (3)

gi1i2 xi1 ; xi2ð Þ ¼ g xi1 ; xi2 ; c
i1i2

� �� gi1 xi1ð Þ � gi2 xi2ð Þ � g0; (4)

where the notation g xi; c
ið Þ ¼ g c1; c2; . . . ; ci�1; xi; ciþ1; . . . ; cNð Þ denotes that all the

input variables are at their reference point values except xi. The g0 term is the output

response of the system evaluated at the reference point c. The higher order terms are

evaluated as cuts in the input variable space through the reference point. Therefore,

each first-order term gi xið Þ is evaluated along its variable axis through the reference
point. Each second-order term gi1i2 xi1 ; xi2ð Þ is evaluated in a plane defined by

the binary set of input variables xi1 and xi2 through the reference point, etc. The

first-order approximation of gðxÞ is as follows:

~g xð Þ � g x1; x2; . . . ; xNð Þ

¼
XN
i¼1

g c1; . . . ; ci�1; xi; ciþ1; . . . ; cNð Þ � N � 1ð Þg cð Þ: (5)

The notion of 0th, 1st, etc., in HDMR expansion should not be confused with

the terminology used either in the Taylor series or in the conventional least-

squares-based regression model. It can be shown that the first-order component

function gi xið Þ is the sum of all the Taylor series terms which contain and only

contain variable xi. Hence, first-order HDMR approximations should not be viewed

as first-order Taylor series expansions nor do they limit the nonlinearity of gðxÞ.

3 Multicut-HDMR

The main limitation of truncated cut-HDMR expansion is that depending on the

order chosen sometimes it is unable to accurately approximate gðxÞ, when multiple

design points exist on the limit state function or when the problem domain is large.

In this section, a new technique based on MHDMR is presented for approximation

of the original implicit limit state function, when multiple design points exist. The

basic principles of cut-HDMR may be extended to more general cases. MHDMR is

one extension where several cut-HDMR expansions at different reference points are

constructed, and the original implicit limit state function gðxÞ is approximately

represented not by one but by all cut-HDMR expansions. In the present work,

weight function is adopted for identification of multiple reference points closer to

the limit surface.

Let d1; d2; . . . ; dmd be the md identified reference points closer to the limit state

function based on the weight function. MHDMR approximation of the original

implicit limit state function is based on the principles of cut-HDMR expansion,
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where individual cut-HDMR expansions are constructed at different reference

points d1; d2; . . . ; dmd by taking one at a time as follows:

gk xð Þ ¼ gk
0
þPN

i¼1

gk
i
xið Þ þ P

1�i1<i2�N

gk
i1 i2

xi1 ; xi2ð Þ þ . . .

þ P
1�i1<:::<il�N

gk
i1 i2 :::il

xi1 ; xi2 ; . . . ; xilð Þ þ . . .þ gk
12:::N

x1; x2; . . . ; xNð Þ; k ¼ 1; 2; . . . ;md

:ð6Þ

The original implicit limit state function gðxÞ is approximately represented by

blending all locally constructed md individual cut-HDMR expansions as follows:

g xð Þ ffi
Xmd

k¼1

lk xð Þ gk
0
þ
XN
i¼1

gk
i
ðxiÞ þ . . .þ gk

12���N ðx1; x2; . . . ; xNÞ
" #

: (7)

The coefficients lk xð Þ possess the properties

lk xð Þ ¼ 1 if x is in any cut subvolume of the k - th reference point expansions

0 if x is in any cut subvolume of other reference point expansions

(

(8)

and

Xmd

k¼1

lk xð Þ ¼ 1: (9)

There are a variety of choices to define lk xð Þ. In the present study, the metric

distance ak xð Þ from any sample point to the reference point dk; k ¼ 1; 2; . . . ;md

ak xð Þ ¼
XN
i¼1

xi � dki
� �2" #1

2

; dki � k-th reference point (10)

is used to define

lk xð Þ ¼
�lkðxÞPmd

s¼1

�lsðxÞ
; (11)

where
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�lkðxÞ ¼
Ymd

s¼1;s6¼k

as xð Þ: (12)

The coefficients lk xð Þ determine the contribution of each locally approximated

function to the global function. The properties of the coefficients lk xð Þ imply

that the contribution of all other cut-HDMR expansions vanishes except one when

x is located on any cut line, plane, or higher dimensional (� l) subvolumes through

that reference point, and then the MHDMR expansion reduces to single point cut-

HDMR expansion. As mentioned above, the l-th-order cut-HDMR approximation

does not have error when x is located on these subvolumes. When md cut-HDMR

expansions are used to construct an MHDMR expansion, the error-free region in

input x space is md times that for a single reference point cut-HDMR expansion;

hence, the accuracy will be improved. Therefore, first-order MHDMR approxima-

tions of the original implicit limit state function with md reference points can be

expressed as

~g xð Þ ffi
Xmd

k¼1

lk xð Þ
XN
i¼1

gk dk1; . . . ; d
k
i�1; xi; d

k
iþ1; . . . ; d

k
N

� �� N � 1ð Þgk dk
� �" #

: (13)

4 Weight Function

The most important part of MHDMR approximation of the original implicit limit

state function is identification of multiple reference points closer to the limit state

function. The proposed weight function is similar to that used by Kaymaz and

McMahon [10] for weighted regression analysis. Among the limit state function

responses at all sample points, the most likelihood point is selected based on

closeness to zero value, which indicates that particular sample point is close to

the limit state function.

In this study, two types of procedures are adopted for identification of

reference points closer to the limit state function, namely, (1) first-order method

and (2) second-order method. The procedure for identification of reference

points closer to the limit state function using first-order method proceeds as

follows: (a) n ¼ 3; 5; 7 or 9ð Þ equally spaced sample points mi � n� 1ð Þsi 2= ,

mi � n� 3ð Þsi 2= , . . ., mi , . . ., mi þ n� 3ð Þsi 2= , mi þ n� 1ð Þsi 2= are deployed

along each of the random variable axis xi with mean mi and standard deviation

si , through an initial reference point. Initial reference point is taken as mean

value of the random variables. (b) The limit state function is evaluated at each

sample point. (c) Using the limit state function responses at all sample points,

the weight corresponding to each sample point is evaluated using the following

weight function:
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wI ¼ exp � g c1; . . . ; ci�1; xi; ciþ1; . . . ; cNð Þ � g xð Þjmin

g xð Þjmin

�� ��
 !

: (14)

Second-order method of identification of reference points closer to the limit state

function proceeds as follows: (a) A regular grid is formed by takingn ¼ 3; 5; 7 or 9ð Þ
equally spaced sample points mi1 � n� 1ð Þsi1 2= , mi1 � n� 3ð Þsi1 2= , . . ., mi1 , . . .,
mi1 þ n� 3ð Þsi1 2= , mi1 þ n� 1ð Þsi1 2= along the random variable xi1 axis with mean

mi1 and standard deviation si1 and n ¼ 3; 5; 7 or 9ð Þ equally spaced sample points

mi2 � n� 1ð Þsi2 2= , mi2 � n� 3ð Þsi2 2= , . . ., mi2 , . . ., mi2 þ n� 3ð Þsi2 2= ,

mi2 þ n� 1ð Þsi2 2= along the random variable xi2 axis with mean mi2 and standard

deviation si2 , through an initial reference point. Initial reference point is taken as

mean value of the random variables. (b) The limit state function is evaluated at each

sample point. (c) Using the limit state function responses at all sample points, the

weight corresponding to each sample point is evaluated using the following weight

function:

wII ¼ exp � g c1; . . . ; ci1�1; xi1 ; ci1þ1; . . . ; ci2�1; xi1 ; ci2þ1; . . . ; cNð Þ � g xð Þjmin

g xð Þjmin

�� ��
 !

:

(15)

Sample points d1; d2; . . . ; dmd with maximum weight are selected as reference

points closer to the limit state function for construction ofmd individual cut-HDMR

approximations of the original implicit limit state function locally. In this study,

two types of sampling schemes, namely, FF and SF, are adopted. Figure 1a shows

FF sampling scheme involving first-order method of identification of reference

points and blending of locally constructed individual first-order HDMR

approximations at different identified reference points using the coefficients lk xð Þ
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Fig. 1 MHDMR approximation of original limit state function, with (a) FF sampling scheme and

(b) SF sampling scheme
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to form MHDMR approximation ~g xð Þ . Figure 1b shows SF sampling scheme

involving second-order method of identification of reference points and blending

of locally constructed individual first-order HDMR approximations to form

MHDMR approximation.

5 Failure Probability Bounds

Let the N-dimensional input variables vector x ¼ fx1; x2; . . . ; xNg, which comprises

of r number of random variables and f number of fuzzy variables, be divided as

x ¼ fx1; x2; . . . ; xr; xrþ1; xrþ2; . . . ; xrþf g where the subvectors fx1; x2; . . . ; xrg and

fxrþ1; xrþ2; . . . ; xrþf g , respectively, group the random variables and the fuzzy

variables, with N ¼ r þ f . Then, the first-order approximation of ~gðxÞ can be

divided into three parts: the first part with only the random variables, the second

part with only the fuzzy variables, and the third part is a constant which is the output

response of the system evaluated at the reference point c as follows:

~g xð Þ ¼
Xr
i¼1

g xi; c
i

� �þ XN
i¼rþ1

g xi; c
i

� �� N � 1ð Þg cð Þ: (16)

The joint membership function of the fuzzy variables part is obtained using

suitable transformation of the variables fxrþ1; xrþ2; . . . ; xNg and interval arithmetic

algorithm. Using this approach, the minimum and maximum values of the fuzzy

variables part are obtained at each a-cut. Using the bounds of the fuzzy variables

part at each a-cut along with the constant part and the random variables part in

Eq. (16), the joint density functions are obtained by performing the convolution

using FFT in the rotated Gaussian space at the MPP, which upon integration yields

the bounds of the failure probability.

5.1 Transformation of Fuzzy Variables

Optimization techniques are required to obtain the minimum and maximum values

of a nonlinear response within the bounds of the interval variables. This procedure

is computationally expensive for problems with implicit limit state functions, as

optimization requires the function value and gradient information at several points

in the iterative process. But, if the function is expressed as a linear combination of

interval variables, then the bounds of the response can be expressed as the summa-

tion of the bounds of the individual variables. Therefore, fuzzy variables part of the

nonlinear limit state function in Eq. (16) is expressed as a linear combination of

intervening variables by the use of first-order HDMR approximation in order to

apply an interval arithmetic algorithm as follows:
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XN
i¼rþ1

g xi; c
i

� � ¼ z1 þ z2 þ . . .þ zf ; (17)

where zi ¼ bixi þ gið Þk is the relation between the intervening and the original

variables with k being order of approximation taking values k ¼ 1 for linear

approximation, k ¼ 2 for quadratic approximation, k ¼ 3 for cubic approximation,

and so on. The bounds of the intervening variables can be determined using

transformations [11]. If the membership functions of the intervening variables are

available, then at each a-cut, interval arithmetic techniques can be used to estimate

the response bounds at that level.

5.2 Estimation of Failure Probability Using FFT

Concept of FFT can be applied to the problem if the limit state function is in the

form of a linear combination of independent variables and when either the marginal

density or the characteristic function of each basic random variable is known. In the

present study, HDMR concepts are used to express the random variables part along

with the values of the constant part and the fuzzy variables part at each a-cut as a
linear combination of lower order component functions. The steps involved in the

proposed method for failure probability estimation as follows:

1. If u ¼ u1; u2; . . . ; urf gT 2 <r is the standard Gaussian variable, let

uk� ¼ uk�1 ; uk�2 ; . . . ; uk�r
� �T

be the MPP or design point, determined by a stan-

dard nonlinear constrained optimization. The MPP has a distance bHL, which
is commonly referred to as the Hasofer–Lind reliability index. Construct

an orthogonal matrix R 2 <r�r whose r-th column is ak� ¼ uk� bHL= , that is,

R ¼ R1jak�
� �

, where R1 2 <r�r�1 satisfies ak�TR1 ¼ 0 2 <1�r�1. The matrix

R can be obtained, for example, by Gram–Schmidt orthogonalization. For

an orthogonal transformation, u¼Rv.
2. Let v ¼ v1; v2; . . . ; vrf gT 2 <r be the rotated Gaussian space with the

associated MPP vk� ¼ vk�1 ; vk�2 ; . . . ; vk�r
� �T

. Note that in the rotated Gaussian

space, the MPP is v� ¼ 0; 0; . . . ; bHLf gT. The transformed limit state function

gðvÞ therefore maps the random variables along with the values of the

constant part and the fuzzy variables part at each a-cut into rotated Gaussian

space v. First-order HDMR approximation of gðvÞ in rotated Gaussian space

v with vk� ¼ vk�1 ; vk�2 ; . . . ; vk�r
� �T

as reference point can be represented as

follows:

~gk vð Þ � gk v1; v2; . . . ; vrð Þ

¼
Xr
i¼1

gk vk�1 ; . . . ; vk�i�1; vi; v
k�
iþ1; . . . ; v

k�
r

� �� r � 1ð Þg vk�
� �

: (18)
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3. In addition to the MPP as the chosen reference point, the accuracy of first-order

HDMR approximation in Eq. (18) may depend on the orientation of the

first r � 1 axes. In the present work, the orientation is defined by the matrix

R. In Eq. (18), the terms gk vk�1 ; . . . ; vk�i�1; vi; v
k�
iþ1; . . . ; v

k�
r

� �
are the individual

component functions and are independent of each other. Equation (18) can

be rewritten as

~gk vð Þ ¼ ak þ
Xr
i¼1

gk vi; v
k�i

	 

; (19)

where ak ¼ � r � 1ð Þg vk�
� �

.

4. New intermediate variables are defined as

yki ¼ gk vi; v
k�i

	 

: (20)

The purpose of these new variables is to transform the approximate function

into the following form:

~gk vð Þ ¼ ak þ yk1 þ yk2 þ � � � þ ykr : (21)

5. Due to rotational transformation in v-space, component functions yki in Eq. (21)
are expected to be linear or weakly nonlinear function of random variables

vi. In this work, both linear and quadratic approximations of yki are considered.

6. Let yki ¼ bi þ ci vi and yki ¼ bi þ ci vi þ ei v
2
i be the linear and quadratic

approximations, where coefficients bi 2 < , ci 2 < , and ei 2 < (nonzero)

are obtained by least-squares approximation from exact or numerically

simulated conditional responses gk v1i ; v
k�i

	 

; gk v2i ; v

k�i
	 


; � � � ; gk vni ; v
k�i

	 
n oT

at n sample points along the variable axis vi. Then, Eq. (21) results in

~gk vð Þ � ak þ yk1 þ yk2 þ � � � þ ykr ¼ ak þ
Xr
i¼1

bi þ ci við Þ (22)

and

~gk vð Þ � ak þ yk1 þ yk2 þ � � � þ ykr ¼ ak þ
Xr
i¼1

bi þ ci vi þ ei v
2
i

� �
: (23)

7. The global approximation is formed by blending of locally constructed indi-

vidual first-order HDMR approximations in the rotated Gaussian space at

different identified reference points using the coefficients lk:

~gðvÞ ¼
Xmd

k¼1

lk~gkðvÞ: (24)
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8. Since vi follows standard Gaussian distribution, marginal density of the inter-

mediate variables yi can be easily obtained by simple transformation (using

chain rule):

pYi
yið Þ ¼ pVi

við Þ dvi
dyi

����
����: (25)

9. Now, the approximation is a linear combination of the intermediate variables yi.
Therefore, the joint density of ~g vð Þ, which is the convolution of the individual

marginal density of the intervening variables yi, can be expressed as follows:

p ~G ~gð Þ ¼ pY1
y1ð Þ � pY2

y2ð Þ � . . . � pYr
yrð Þ; (26)

wherep ~G ~gð Þ represents joint density of the transformed limit state function ~g vð Þ.
10. Applying FFT on both sides of Eq. (26) leads to

FFT p ~G ~gð Þ� � ¼ FFT pY1
y1ð Þ� �

FFT pY2
y2ð Þ� �

. . .FFT pYr
yrð Þ� �

: (27)

11. By applying inverse FFT on both side of Eq. (27), joint density of ~gðvÞ is

obtained.

12. The probability of failure is given by the following equation:

PF ¼
Z0
�1

p ~G ~gð Þd~g: (28)

13. The membership function of failure probability can be obtained by repeating

the above procedure at all confidence levels of the fuzzy variables part.

6 Numerical Examples

To evaluate the accuracy and the efficiency of the present method, comparisons of

the estimated failure probability bounds, both by performing the convolution using

FFT in conjunction with linear and quadratic approximations and MCS on the

global approximation, have been made with that obtained using direct MCS. When

comparing computational efforts by various methods in evaluating the failure

probability, the number of original limit state function evaluations is chosen as

the primary comparison tool in this chapter. This is because of the fact that number

of function evaluations indirectly indicates the CPU time usage. For direct MCS,

number of original function evaluations is same as the sampling size. While

evaluating the failure probability through direct MCS, CPU time is more because

it involves number of repeated actual finite-element analysis.

Failure Probability Bounds Using Multicut-High-Dimensional Model Representation 337



6.1 Parabolic Performance Function

The limit state function considered is a parabola of the form

g xð Þ ¼ �x21 � x2 þ x3; (29)

where x1 and x2 are assumed to be independent standard normal variables.

The variable x3 is assumed to be fuzzy with triangular membership function having

the triplet [5.0, 7.0, 9.0].

The initial reference point c is taken as, respectively, the mean values and

nominal values of the random and fuzzy variables. The first-order HDMR approxi-

mation, which is constructed over the initial reference point, is divided into two

parts: one with only the random variables and the other with the fuzzy variables.

The joint membership function of the fuzzy part of limit state function is obtained

using suitable transformation of the fuzzy variables. In this example, the joint

membership function is same as the membership function of the fuzzy variable x3.
As shown in Fig. 2, the limit state function given by Eq. (28) is symmetric about x2

-4 -2 0 2 4
0

2

4

6

8

x1

x2

Fig. 2 Limit state function

Table 1 Identification of multiple design points with FF sampling

Sample points gðxÞ gðxÞjmin wI

x1 x2 a ¼ 0ðLÞ a ¼ 1 a ¼ 0ðRÞ a ¼ 0ðLÞ a ¼ 1 a ¼ 0ðRÞ a ¼ 0ðLÞ a ¼ 1 a ¼ 0ðRÞ

�2.0 0.0 1.00 3.00 5.00 1.0 3.0 5.0 1.000 1.000 1.000

�1.0 0.0 4.00 6.00 8.00 0.050 0.368 0.549

0.0 0.0 5.00 7.00 9.00 0.018 0.264 0.449

1.0 0.0 4.00 6.00 8.00 0.050 0.368 0.549

2.0 0.0 1.00 3.00 5.00 1.000 1.000 1.000

0.0 �2.0 7.00 9.00 11.00 0.002 0.135 0.301

0.0 �1.0 6.00 8.00 10.00 0.001 0.189 0.368

0.0 0.0 5.00 7.00 9.00 0.018 0.264 0.449

0.0 1.0 4.00 6.00 8.00 0.050 0.368 0.549

0.0 2.0 3.00 5.00 7.00 0.135 0.513 0.670
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for given value of x3 (say the nominal value of x3 ¼ 7 at a ¼ 1) and has two design

points. The two actual design points of the limit state function shown in Fig. 2,

obtained using recursive quadratic programming (RQP) algorithm, are (2.54, 0.49)

and (�2.54, 0.49) with reliability indices b1 ¼ b2 ¼ 2:588.
Table 1 illustrates computational details and identification of reference points

d1; d2 using FF sampling scheme with five equally spaced sample points (n ¼ 5)

along each of the variable axis. In Table 1, the values corresponding to a ¼ 0ðLÞ and
a ¼ 0ðRÞ , respectively, indicate the extreme left and right values of the limit state

function gðxÞ at zero confidence level (i.e., a ¼ 0). Table 1 shows two reference

points d1 ¼ 2; 0ð Þ and d2 ¼ �2; 0ð Þ closer to the function. After identification of

the two reference points (2, 0) and (�2, 0), local individual first-order HDMR

approximations of the original limit state function are constructed at the two

reference points by deploying n ¼ 5 sample points along each of the variable

axis. Local approximations of the original limit state function are blended together

to form global approximation. The bounds of the failure probability are obtained

both by performing the convolution using FFT in conjunction with linear and

quadratic approximations and MCS on the global approximation.

Figure 3 shows the membership function of the failure probability PF estimated

both by performing the convolution using FFT and MCS on the global approxima-

tion, as well as that obtained using direct MCS.

In addition, effect of SF sampling scheme on the estimated membership

function of the failure probability is studied. After identifying two reference

points d1 ¼ ð�2; 2Þ and d2 ¼ ð2; 2Þ closer to the function producing maximum

weight, the bounds of the failure probability are obtained. Figure 3 also shows the

membership function of the failure probability obtained by the proposed method

based on SF sampling scheme. The effect of number of sample points is studied by

varying n from 3 to 9. It is observed that n ¼ 7 provides the optimum number

of function calls with acceptable accuracy in evaluating the failure probability

with the present method.

Fig. 3 Membership function

of failure probability for

parabolic performance

function
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6.2 Cantilever Steel Beam

A cantilever steel beam of 1.0 mwith cross-sectional dimensions of (0.1m � 0.01m)

is considered, as shown in Fig. 4, to examine the accuracy and efficiency of the

proposed method for the membership function of failure probability estimation.

The beam is subjected to an in-plane moment at the free end and a concentrated

load at 0.4 m from the free end. The structure is assumed to have failed if the square

of the vonMises stress at the support (at A in Fig. 4) exceeds specified thresholdVmax.

Therefore, the limit state function is defined as

gðxÞ ¼ Vmax � VðxÞ; (30)

where VðxÞ is the square of the von Mises stress, expressed as a quadratic operator

on the stress vector.

In this example, loads x1 and x2 , modulus of elasticity of the beam E, and
threshold quantity Vmax are taken as uncertain variables. The variations of E and

Vmax are expressed as E ¼ E0 1þ e x3ð Þ and Vmax ¼ Vmax0 1þ ex4ð Þ. Here, e is small

deterministic quantity representing the coefficient of variation of the random

variables and are taken to equal to 0.05, E0 ¼ 2� 105 N/m2 denotes the deter-

ministic component of modulus of elasticity, and Vmax0 ¼ 6:15� 109 N/m2

denotes the deterministic component of threshold quantity. All variables are

assumed to be independent. The mean values of random variables x1 and x2 are

1 and 0, respectively, with the standard deviation of 1. The variables x3 and x4
are triangular fuzzy numbers with [0.0 2.0 4.0] and [0.0, 0.1, 0.2], respectively.

The limit state function given in Eq. (30) is approximated using first-order

HDMR by deploying n ¼ 5 sample points along each of the variable axis and

taking, respectively, the mean values and nominal values of the random and fuzzy

variables as initial reference point (1.0, 0.0, 2.0, 0.1). The approximated limit state

function is divided into two parts, one with only the random variables along with

the value of the constant part and the other with the fuzzy variables. The joint

membership function of the fuzzy part of approximated limit state function is

obtained using suitable transformation of the fuzzy variables. Using FF sampling

scheme, the sample point d ¼ 1;�2ð Þ is identified as reference point closer to the

limit state function producing maximum weight. In this case, since only one

reference point is identified, local approximation is same as the global

A

x1

x2

x2
1 2 3 4 5 6 7 8 9 10

Fig. 4 Cantilever steel beam
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approximation. The bounds of the failure probability are obtained both by

performing the convolution using FFT in conjunction with linear and quadratic

approximations and MCS on the global approximation. Figure 5 shows the mem-

bership function of the failure probability estimated both by performing the convo-

lution using FFT in conjunction with linear and quadratic approximations and MCS

on the global approximation, as well as that obtained using direct MCS.

In addition, the membership function of the failure probability obtained by the

proposed method based on SF sampling scheme is also shown in Fig. 5. The effect

of number of sample points is studied by varying n from 3 to 9. It is observed that

n ¼ 7 provides the optimum number of function calls with acceptable accuracy in

evaluating the failure probability with the present method.

6.3 80-Bar 3D Truss Structure

A 3D truss, shown in Fig. 6, is considered in this example to examine the accuracy

and efficiency of the proposed method for the membership function of failure

probability estimation. The loads at various levels are considered to be random,

while the cross-sectional areas of the angle sections at various levels are assumed to

be fuzzy as shown in Table 2.

The maximum horizontal displacement at the top of the tower is considered to

be the failure criterion, as given below:

g xð Þ ¼ Dlim � D xð Þ: (31)

The limiting deflection Dlim is assumed to be 0.15 m. The limit state function is

approximated using first-order HDMR by deployingn ¼ 5sample points along each

of the variable axis and taking, respectively, the mean values and nominal values of

the random and fuzzy variables as initial reference point.

Fig. 5 Membership function

of failure probability for

cantilever steel beam
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The approximated limit state function is divided into two parts, one with only the

random variables along with the value of the constant part and the other with the

fuzzy variables. The joint membership function of the fuzzy part of approximated

limit state function is obtained using suitable transformation of the fuzzy variables.

The two reference points closer to the function producing maximum weights,

Table 2 Properties of the

uncertain variables
Uncertain variable

Random

FuzzyMean COV Type

P1 (N) 1,000 0.1 Normal

P2 (N) 2,000 0.1 Normal

P3 (N) 3,000 0.1 Normal

P4 (N) 4,000 0.1 Normal

P5 (N) 5,000 0.1 Normal

A1 (mm2) [6867 7630 8393]

A2 (mm2) [5571 6190 6809]

A3 (mm2) [3870 4300 4730]

A4 (mm2) [2088 2320 2552]

A5 (mm2) [1539 1710 1881]

Fig. 6 3D truss structure

with 80 bars
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1.0 and 0.977, are identified. After identification of two reference points, local first-

order HDMR approximations are constructed at the reference points. The bounds of

the failure probability are obtained both by performing the convolution using FFT

in conjunction with linear and quadratic approximations and MCS on the global

approximation. Figure 7 shows the membership function of the failure probability

estimated both by performing the convolution using FFT and MCS on the global

approximation, as well as that obtained using direct MCS.

In addition, effects of SF sampling scheme and the number of sample points on

the estimated membership function of the failure probability are studied. Figure 7

also shows the membership function of the failure probability estimate obtained by

the proposed method based on SF sampling scheme.

7 Summary and Conclusions

This chapter presented a novel uncertain analysis method for estimating the

membership function of the reliability of structural systems involving multiple

design points in the presence of mixed uncertain variables. The method involves

MHDMR technique for the limit state function approximation, transformation

technique to obtain the contribution of the fuzzy variables to the convolution

integral and fast Fourier transform for solving the convolution integral at all

confidence levels of the fuzzy variables. Weight function is adopted for identifi-

cation of multiple reference points closer to the limit surface. Using the bounds

of the fuzzy variables part at each confidence level along with the constant part

and the random variables part, the joint density functions are obtained by (1)

identifying the reference points closer to the limit state function and (2) blending

of locally constructed individual first-order HDMR approximations in the rotated

Gaussian space at different identified reference points to form global approxima-

tion and (3) performing the convolution using FFT, which upon integration yields

the bounds of the failure probability. As an alternative, the bounds of the failure

Fig. 7 Membership function

of failure probability for truss

structure
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probability are estimated by performing MCS on the global approximation in the

original space, obtained by blending of locally constructed individual first-order

HDMR approximations of the original limit state function at different identified

reference points.

The results of the numerical examples involving explicit hypothetical

mathematical function and structural/solid-mechanics problems indicate that

the proposed method provides accurate and computationally efficient estimates of

the membership function of the failure probability. The results obtained from the

proposed method are compared with those obtained by direct MCS. The numerical

results show that the present method is efficient for structural reliability estimation

involving any number of fuzzy and random variables with any kind of distribution.

Two types of sampling schemes, namely, FF and SF, are adopted in this study

for MHDMR approximation of the original limit state function construction.

A parametric study is conducted with respect to the number of sample points

n used in FF and SF sampling-based MHDMR approximation, and its effect on

the estimated failure probability is investigated. An optimum number of sample

points n must be chosen in approximation of the original limit state function.
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