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Abstract A novel Galerkin subspace projection scheme for structural dynamic

systems with stochastic parameters is developed in this chapter. The fundamental

idea is to solve the discretised stochastic damped dynamical system in the fre-

quency domain by projecting the solution into a reduced subspace of eigenvectors

of the underlying deterministic operator. The associated complex random coeffi-

cients are obtained as frequency-dependent quantities, termed as spectral functions.

Different orders of spectral functions are proposed depending on the order of the

terms retained in the expression. Subsequently, Galerkin weighting coefficients are

employed to minimise the error induced due to the reduced basis and finite order

spectral functions. The complex response quantity is explicitly expressed in terms

of the spectral functions, eigenvectors and the Galerkin weighting coefficients.

The statistical moments of the solution are evaluated at all frequencies including

the resonance and antiresonance frequencies for a fixed value of damping. Two

examples involving a beam and a plate with stochastic properties subjected to

harmonic excitations are considered. The results are compared to direct Monte

Carlo simulation and polynomial chaos expansion for different correlation lengths

and variability of randomness.

Keywords Stochastic dynamics • Random field • Spectral decomposition

• Karhunen-Loeve Expansion • Stochastic subspace

1 Introduction

The framework of the present work is the parametric uncertainty that is inherent in

the mathematical models laid out to describe the governing equations of physical

systems. These uncertainties may be intrinsic variability of physical quantities or a
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lack of knowledge about the physical behaviours of certain systems. As a result,

though the recent advances in computational hardware has enabled the solution of

very high resolution problems and even the sophisticated techniques of a posteriori
error estimation [3], mesh adaptivity or the modelling error analysis has improved

the confidence on results, yet these are not enough to determine the credibility of

the numerical model.

There has been an increasing amount of research activities over the past three

decades to model the governing partial differential equations within the framework

of stochastic equations. We refer to few recent review papers [1, 8, 9]. After the

discretisation of random fields and displacement fields, the equation of motion can

be expressed by [2, 4, 5] a set of stochastic ordinary differential equations

MðyÞ €u ðy; tÞ þ CðyÞ _u ðy; tÞ þKðyÞ uðy; tÞ ¼ f0ðtÞ (1)

where MðyÞ ¼ M0 þ
Pp1
i¼1

mi yð ÞMi 2 Rn�n is the random mass matrix and K yð Þ
¼ K0 þ

Pp2
i¼1

ni yð ÞKi 2 Rn�n is the random stiffness matrix along with C yð Þ 2 Rn�n

as the random damping matrix. The notation y is used to denote the random

sample space. Here, the mass and stiffness matrices have been expressed in terms

of their deterministic components (M0 and K0) and the corresponding random

contributions (Mi and Ki) obtained from discretising the stochastic field with a

finite number of random variables mi yð Þ and ni yð Þð Þ and their corresponding spatial

basis functions. In the present work proportional damping is considered for which

C yð Þ ¼ B1M yð Þ þ B2K yð Þ , where B1 and B2 are deterministic scalars. For the

harmonic analysis of the structural system considered in Eq. (1), it is represented

in the frequency domain as

�o2MðyÞ þ ioCðyÞ þKðyÞ� �
~uðy; oÞ ¼ ~f0ðoÞ (2)

where ~u y; oð Þ is the complex frequency domain system response amplitude and
~f0ðoÞ is the amplitude of the harmonic force.

Now we group the random variables associated with the mass and damping

matrices of Eq. (1) as

xi yð Þ ¼ mi yð Þ for i ¼ 1; 2; . . . ; p1

and xiþp1
yð Þ ¼ ni yð Þ for i ¼ 1; 2; . . . ; p2

Thus, the total number of random variables used to represent the mass and the

stiffness matrices becomesp ¼ p1 þ p2. Following this, the expression for the linear
structural system in Eq. (2) can be expressed as

A0 oð Þ þ
Xp
i¼1

xi yð ÞAi oð Þ
 !

~u o; yð Þ ¼ ~f0 oð Þ (3)
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where Ao and Ai 2 Cn�n represent the complex deterministic and stochastic parts,

respectively, of the mass, the stiffness and the damping matrices ensemble. For the

case of proportional damping, the matrices Ao and Ai can be written as

A0ðoÞ ¼ �o2 þ ioB1
� �

M0 þ ioB2 þ 1½ �K0 (4)

and

AiðoÞ ¼ �o2 þ ioB1
� �

Mi for i ¼ 1; 2; :::; p1

Aiþp1ðoÞ ¼ ioB2 þ 1½ �Ki for i ¼ 1; 2; :::; p2 (5)

The chapter has been arranged as follows. The projection theory in the vector

space is developed in Sect. 2. In Sect. 3 an error minimisation approach in the Hilbert

space is proposed. The idea of the reduced orthonormal vector basis is introduced in

Sect. 4. Based on the theoretical results, a simple computational approach is shown

in Sect. 5 where the proposed method of reduced orthonormal basis is applied to the

stochastic mechanics of a Euler-Bernoulli beam. From the theoretical developments

and numerical results, some conclusions are drawn in Sect. 6.

2 Spectral Decomposition in the Vector Space

Following the spectral stochastic finite-element method, or otherwise, an approxi-

mation to the solution stochastic system can be expressed as a linear combination of

functions of random variables and deterministic vectors. Recently Nouy [6, 7]

discussed the possibility of an optimal spectral decomposition. The aim is to use

small number of terms to reduce the computation without losing the accuracy.

We use the eigenvectors fk 2 Rn of the generalised eigenvalue problem

K0fk ¼ lkM0fk; k ¼ 1; 2; :::n (6)

Since the matrices K0 and M0 are symmetric and generally non-negative defi-

nite, the eigenvectors fk for k ¼ 1; 2; :::n form an orthonormal basis. Note that

in principle, any orthonormal basis can be used. This choice is selected due to the

analytical simplicity as will be seen later. For notational convenience, define

the matrix of eigenvalues and eigenvectors

l0 ¼ diag l1; l2; . . . ; ln½ � 2 Rn�n and F ¼ f1;f2; . . . ;fn½ � 2 Rn�n (7)

Eigenvalues are ordered in the ascending order so thatl1 < l2< : : : < ln. SinceF
is an orthonormal matrix, we have F�1 ¼ FT so that the following identities can

easily be established:

FTA0F ¼ FT �o2 þ ioB1
� �

M0 þ ioB2 þ 1½ �K0

� �
F

¼ �o2 þ ioB1
� �

Iþ ioB2 þ 1ð Þl0
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which gives

FTA0F ¼ L0; A0 ¼ F�TL0F�1 and A�1
0 ¼ FL�1

0 F�T (8)

where L0 ¼ �o2 þ ioB1ð ÞIþ ioB2 þ 1ð Þl0 and I is the identity matrix. Hence,

L0 can also be written as

L0 ¼ diag l01 ; l02 ; . . . ; l0n
� � 2 Cn�n (9)

where l0j ¼ �o2 þ ioB1ð Þ þ ioB2 þ 1ð Þlj and lj is defined in Eq. (7). We also

introduce the transformations

~Ai ¼ FTAiF 2 Cn�n; i ¼ 0; 1; 2; . . . ;M (10)

Note that ~Ai ¼ L0 is a diagonal matrix and

~Ai ¼ F�T ~AiF�1 2 Cn�n; i ¼ 0; 1; 2; . . . ;M (11)

Suppose the solution of Eq. (3) is given by

ûðo; yÞ ¼ A0ðoÞ þ
XM
i¼1

xiðyÞAiðoÞ
" #�1

f0ðoÞ (12)

Using Eqs. (7), (8), (9), (10), and (11) and the orthonormality of F, one has

ûðo; yÞ ¼ F�TL0ðoÞF�1 þ
XM
i¼1

xi yð ÞF�T ~AiF�1

" #�1

f0ðoÞ

¼ FC o; x yð Þð ÞF�Tf0ðoÞ ð13Þ

where

C o; xðyÞð Þ ¼ L0ðoÞ þ
XM
i¼1

xiðyÞ~AiðoÞ
" #�1

(14)

and the M-dimensional random vector

x yð Þ ¼ x 1ðyÞ; x2 yð Þ; . . . ; xM yð Þf gT (15)

Now we separate the diagonal and off-diagonal terms of the ~Ai matrices as

~Ai ¼ Li þ Di; i ¼ 1; 2; . . . ;M (16)
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Here, the diagonal matrix

Li ¼ diag ~Ai

� � ¼ diag li1 ; li2 ; . . . ; lin
� � 2 Cn�n (17)

and the matrix containing only the off-diagonal elements Di ¼ ~Ai � Li is such that

Trace Dið Þ ¼ 0. Using these, from Eq. (14) one has

C o; xðyÞð Þ ¼ L0ðoÞ þ
XM
i¼1

x i yð ÞLiðoÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L o; jðyÞð Þ

þ
XM
i¼1

x i yð ÞDiðoÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
D o; jðyÞð Þ

266664
377775
�1

(18)

where L o; jðyÞð Þ 2 Cn�n is a diagonal matrix and D o; jðyÞð Þ is an off-diagonal

only matrix. In the subsequent expressions, we choose to omit the inclusion of

frequency dependence of the individual matrices for the sake of notational simplic-

ity, so that C o; jðyÞð Þ � C jðyÞð Þ and so on. Hence, we rewrite Eq. (18) as

C jðyÞð Þ ¼ L jðyÞð Þ In þ L�1 jðyÞð ÞD jðyÞð Þ� �� ��1
(19)

The above expression can be represented using a Neumann type of matrix

series [10] as

C jðyÞð Þ ¼
X1
s¼0

ð�1Þs L�1 jðyÞð ÞD jðyÞð Þ� �s
L�1 jðyÞð Þ (20)

Taking an arbitrary r-th element of ûðyÞ, Eq. (13) can be rearranged to have

ûrðyÞ ¼
Xn
k¼1

Frk

Xn
j¼1

Ckj jðyÞð Þ fT
j f0

� � !
(21)

Defining

Gk xðyÞð Þ ¼
Xn
j¼1

Ckj jðyÞð Þ fT
j f0

� �
(22)

and collecting all the elements in Eq. (21) for r ¼ 1,2,� � �,n, one has

ûðyÞ ¼
Xn
k¼1

Gk jðyÞð Þfk (23)

This shows that the solution vectorûðyÞcan be projected in the space spanned byf k.
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3 Error Minimisation Using the Galerkin Approach

In Sec. 2 we derived the spectral functions such that a projection in an orthonormal

basis converges to the exact solution in probability 1. The spectral functions are

expressed in terms of a convergent infinite series. First, second- and higher-order

spectral functions obtained by truncating the infinite series have been derived. We

have also showed that they have the same functional form as the exact solution of

Eq. (3). This motivates us to use these functions as ‘trial functions’ to construct the

solution. The idea is to minimise the error arising due to the truncation. A Galerkin

approach is proposed where the error is made orthogonal to the spectral functions.

We express the solution vector by the series representation

û yð Þ ¼
Xn
k¼1

ckbGk jðyÞð Þfk (24)

Here, the functions bG
k
: CM ! C are the spectral functions, and the constants

ck 2 Cneed to be obtained using the Galerkin approach. The functionscGk x yð Þð Þ can
be the first-order, second-order or any higher-order spectral function (depending on

the order of the expansion s in Eq. (20)) and are the complex frequency adaptive

weighting coefficient of the eigenvectors introduced earlier in Eq. (6). Substituting

the expansion of û yð Þ in the linear system equation (3), the error vector can be

obtained as

e yð Þ ¼
XM
i¼0

Aixi yð Þ
 ! Xn

k¼1

ckcGk jðyÞð Þfk

 !
� f0 2 Cn (25)

where x0 ¼ 1 is used to simplify the first summation expression. The expression

(24) is viewed as a projection where cGk j yð Þð Þfk

n o
2 Cn are the basis functions and

ck are the unknown constants to be determined. We wish to obtain the coefficients ck
using the Galerkin approach so that the error is made orthogonal to the basis

functions, that is, mathematically

e yð Þ? bGj j yð Þð Þfj

� �
or bGj j yð Þð Þfj; e yð Þ

D E
¼ 0 8 j ¼ 1; 2; . . . ; n (26)

Here, u yð Þ; v yð Þh i ¼ R
�
P dyu yð Þv yð Þð Þdefines the inner product norm. Imposing

this condition and using the expression of eðyÞ from Eq. (25), one has

E bGj j yð Þð Þfj

� �T XM
i¼0

Aixi yð Þ
 ! Xn

k¼1

ckcGk j yð Þð Þfk

 !
� bGj j yð Þð Þfj

� �T
f0

" #
¼ 0

(27)

Interchanging the E [•] and summation operations, this can be simplified to
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Xn
k¼1

XM
i¼0

fT
j Aifk

� �
E xi yð ÞbGT

j j yð Þð ÞbG
k
j yð Þð Þ

h i !
ck ¼ E bGT

j j yð Þð Þ
h i

fT
j fo

� �
(28)

or

Xn
k¼1

XM
i¼0

eAijk Dijk

 !
ck ¼ bj (29)

Defining the vector c ¼ c1; c2; . . . ; cnf gT, these equations can be expressed in a

matrix form as

S c ¼ b (30)

with

Sjk ¼
XM
i¼0

eAijkDijk; 8 j; k ¼ 1; 2; . . . ; n (31)

where

eAijk ¼ fT
j Aifk; (32)

Dijk ¼ E xi yð ÞbGT
j j yð Þð ÞbGk j yð Þð Þ

h i
(33)

and

bj ¼ E bGT
j j yð Þð Þ

h i
fT
j fo

� �
(34)

Higher-order spectral functions can be used to improve the accuracy and con-

vergence of the series (24). This will be demonstrated in the numerical examples

later in the chapter.

4 Model Reduction Using a Reduced Number of Basis

The Galerkin approach proposed in the previous section requires the solution of

n � n algebraic equations. Although in general this is smaller compared to the

polynomial chaos approach, the computational cost can still be high for large n as

the coefficient matrix is in general a dense matrix. The aim of this section is to

reduce it further so that, in addition to large number of random variables, problems

with large degrees of freedom can also be solved efficiently.
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Suppose the eigenvalues of A0 are arranged in an increasing order such that

l01 < l02 < . . . < l0n (35)

From the expression of the spectral functions, observe that the eigenvalues

appear in the denominator:

bGð1Þ
k j yð Þð Þ ¼ fT

k f0

l0k þ
PM

i¼1 xi yð Þlik
(36)

The numerator fT
k f0

� �
is the projection of the force on the deformation

mode. Since the eigenvalues are arranged in an increasing order, the denominator

of Gð1Þ
kþr j yð Þð Þ

			 			 is larger than the denominator of Gð1Þ
k j yð Þð Þ

			 			 according a suitable

measure. The numerator fT
k f0

� �
depends on the nature of forcing and the

eigenvectors. Although this quantity is deterministic, in general an ordering cannot

be easily established for different values of k. Because all the eigenvectors are

normalised to unity, it is reasonable to consider that fT
k f 0

� �
does not vary

significantly for different values of k. Using the ordering of the eigenvalues, one

can select a small number E such that l1=lq < E for some value of q, where lj is
the eigenvalue of the generalised eigenvalue problem defined in Eq. (6). Based on

this, we can approximate the solution using a truncated series as

û yð Þ �
Xq
k¼1

ckcGk
j yð Þð Þfk (37)

where ck, bGk
j yð Þð Þ and are obtained following the procedure described in the

previous section by letting the indices j, k only up to q in Eqs. (31) and (32). The

accuracy of the series (37) can be improved in two ways, namely, (a) by increasing

the number of terms q or (b) by increasing the order of the spectral functionscGk j yð Þð Þ . Once the samples of u ¼ yð Þ are generated, the statistics can be

obtained using standard procedures.

5 Illustrative Application: The Stochastic Mechanics

of a Euler-Bernoulli Beam

In this section we apply the computational method to a cantilever beam with

stochastic bending modulus. We assume that the bending modulus is a homoge-

neous stationary Gaussian random field of the form

EI x; yð Þ ¼ EI0 1þ a x; yð Þð Þ (38)
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where x is the coordinate along the length of the beam, EI0 is the estimate of the

mean bending modulus and a(x,y) is a zero mean stationary Gaussian random field.

The autocorrelation function of this random field is assumed to be

Ca x1; x2ð Þ ¼ s2ae
� x1�x2j jð Þ

ma (39)

where ma is the correlation length and sa is the standard deviation. We use the

baseline parameters as the length L ¼ 1 m, cross section (b � h) 39 � 5.93 mm2

and Young’s modulus E ¼ 2 � 1011 Pa.

In study we consider deflection of the tip of the beam under harmonic loads of

amplitude ~f 0 ¼ 1:0N. The correlation length considered in this numerical study is

ma ¼ L=2 . The number of terms retained (M) in the Karhunen-Loeve expansion

is selected such that nM=n1 ¼ 0:01 in order to retain 90% of the variability. For this

correlation length, the number of terms M comes to 18. For the finite element

discretisation, the beam is divided into 40 elements. Standard four degrees of

freedom Euler-Bernoulli beam model is used [11]. After applying the fixed bound-

ary condition at one edge, we obtain the number of degrees of freedom of the model

to be n ¼ 80.

5.1 Results

The proposed method has been compared with a direct Monte Carlo simulation

(MCS), where both have been performed with 10,000 samples. For the direct MCS,

Eq. (12) is solved for each sample, and the mean and standard deviation is derived

by assembling the responses. The calculations have been performed for all the four

values of sa to simulate increasing uncertainty. This is done to check the accuracy

of the proposed method against the direct MCS results for varying degrees of

uncertainty.

Figure 1a presents the ratio of the eigenvalues of the generalised eigenvalue

problem (6) for which the ratio of the eigenvalues is taken with the first eigenvalue.

We choose the reduced basis of the problem based on l1=lq < 2, where e ¼ 0.01,

and they are highlighted in the figure. Figure 1b shows the frequency domain

response of the deterministic system for both damped and undamped conditions.

We have applied a constant modal damping matrix with the damping coefficient

a ¼ 0.02 (which comes to 1% damping). It is also to be noted that the mass

and damping matrices are assumed to be deterministic in nature, while it has to

be emphasised that the approach is equally valid for random mass, stiffness and

damping matrices. The frequency range of interest for the present study is 0–600 Hz

with an interval of 2 Hz. In Fig. 1b, the tip deflection is shown on a log scale for

a unit amplitude harmonic force input. The resonance peak amplitudes of the

response of the undamped system definitely depend on the frequency resolution

of the plot.

Stochastic Structural Dynamics Using Frequency Adaptive Basis Functions 201



The frequency response of the mean deflection of the tip of the beam is shown in

Fig. 2 for the cases of sa ¼ 0:05; 0:10; 0:15; 0:20f g. The figures show a compari-

son of the direct MCS simulation results with different orders of the solution

following Eq. (20), where the orders s ¼ 2, 3, 4. A very good agreement between

the MCS simulation and the proposed spectral approach can be observed in the

figures. All the results have been compared with the response of the deterministic

system which shows that the uncertainty has an added damping effect at the

resonance peaks. This can be explained by the fact that the parametric variation
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ness matrices given in Eq. (6). For e ¼ 0.01, the number of reduced eigenvectors q ¼ 7 such

that l1=lj< 2. (a) Ratio of eigenvalues of the generalised eigenvalue problem. (b) Frequency
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of the beam results in its peak response for the different samples to get distributed

around the resonance frequency zones instead of being concentrated at a particular

frequency, and when the subsequent averaging is applied, it smoothes out the

response peaks to a fair degree. The same explanation holds for the antiresonance

frequencies. It can also be observed that increased variability of the parametric

uncertainties (as is represented by the increasing value of sa) results in an increase

of this added damping effect which is consistent with the previous explanation.

The standard deviation of the frequency domain response of the tip deflection for

different spectral order of solution of the reduced basis approach is compared with

the direct MCS and is shown in Fig. 3, for different values of sa. We find that the

standard deviation is maximum at the resonance frequencies, which is expected due

to the differences in the resonance peak of each sample. It is again observed that

the direct MCS solution and the reduced-order approach give almost identical

results, which demonstrate the effectiveness of the proposed approach.

The probability density function of the deflection of the tip of the cantilever

beam for different degrees of variability of the random field is shown in Fig. 4.

The probability density functions have been calculated at the frequency of 412 Hz,

which is a resonance frequency of the beam. The results indicate that with the

increase in the degree of uncertainty (variance) of the random system, we have

long-tailed the density functions which is consistent with the standard deviation

curve shown in Fig. 3 and the mean deflection of the stochastic system with the

deterministic response in Fig. 2. This shows that the increase in the variability of the

stochastic system has a damping effect on the response.
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Fig. 3 The standard deviation of the tip deflection of the Euler-Bernoulli beam under unit

amplitude harmonic point load at the free end. The response is obtained with 10,000 sample

MCS and for sa ¼ {0.05, 0.10, 0.15, 0.20}. (a) Standard deviation for the reference sa¼0.05.

(b) Standard deviation for the reference sa ¼ 0.2
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6 Conclusions

Here, we have considered the discretised stochastic partial differential equation for

structural systems with generally non-Gaussian random fields. In the classical

spectral stochastic finite element approach, the solution is projected into an infinite

dimensional orthonormal basis functions, and the associated constant vectors

are obtained using the Galerkin type of error minimisation approach. Here an

alternative approach is proposed. The solution is projected into a finite dimen-

sional reduced vector basis, and the associated coefficient functions are obtained.

The coefficient functions, called as the spectral functions, are expressed in terms of

the spectral properties of the matrices appearing in the discretised governing

equation. It is shown that then the resulting series converge to the exact solution

in probability 1. This is a stronger convergence compared to the classical polyno-

mial chaos which converges in the mean-square sense in the Hilbert space. Using an

analytical approach, it is shown that the proposed spectral decomposition has the

same functional form as the exact solution, which is not a polynomial, but a ratio of

polynomials where the denominator has a higher degree than the numerator.

The computational efficiency of the proposed reduced spectral approach has

been demonstrated for large linear systems with non-Gaussian random variables.

It may be possible to extend the underlying idea to the class of non-linear problems.

For example, the proposed spectral approach can be used for every linearisation

step or every time step. Further research is necessary in this direction.

Acknowledgement A. Kundu acknowledges the financial support from the Swansea University

through the award for Zienkiewicz scholarship. S. Adhikari acknowledges the financial support

from the Royal Society of London through the Wolfson Research Merit Award.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10−5

0

1

2

3

4

5

6

7

8

9
x 105

Deflection (m)

P
ro

ba
bi

lit
y 

de
ns

it
y 

fu
nc

ti
on

MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10−5

0

1

2

3

4

5

6

7

8

9
x 105

Deflection (m)

P
ro

ba
bi

lit
y 

de
ns

it
y 

fu
nc

ti
on

MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin

a b

Fig. 4 The probability density function (PDF) of the tip deflection of the Euler-Bernoulli beam

at 210 Hz under unit amplitude harmonic point load at the free end. The response is obtained

with 10,000 samples and for sa ¼ {0.05, 0.10, 0.15, 0.20}. (a) PDF of the response 210 Hz for

sa ¼ 0.05. (b) PDF of the response 210 Hz for sa ¼ 0.2
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