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Abstract. Job scheduling is a very challenging issue in cloud computing. Tradi-
tional backfill algorithms such as Easy and conservative are extensively used as 
job scheduling algorithms. Backfill algorithms require the shorter job to come 
forward if sufficient resources for the execution of this job are available and run 
in parallel with the currently running jobs provided it does not delay the next 
queued jobs. This technique is highly dependent on runtime estimations of job 
execution. Moreover in real life scenario it has seen that submitted job’s may or 
may not be independent to each other. In this paper we have proposed a tech-
nique that uses dynamic grouping method to consider job dependencies  
and doubling runtime estimation method in cloud metaschedular to improve 
performance of backfill algorithm. Results have shown that doubling runtime 
estimations can significantly improve performance of backfill scheduling algo-
rithms provided that the runtime estimations are correct. 

1   Introduction  

Cloud computing [4] is a future technology that won’t need to compute on local com-
puters, but on centralized facilities operated by third-party compute and storage utili-
ties. Job scheduling is one of the core and challenging issues in a Cloud Computing 
system. In general two schedulers [5] are available in cloud one is global or meta-
schedular and another is local scheduler. Local scheduler determines how the 
processes that reside on a single CPU are allocated and executed. Users submit their 
jobs to Metaschedular, it is metaschedular responsibility to use information about the 
system and allocate processes among the different clusters in cloud. In this paper, it is 
attempted to improve the performance of EASY(the Extensible Argonne Scheduling 
System) backfill Algorithm[2] by doubling runtime estimation method in cloud meta-
schedular to maximize the resource utilization and minimize the resource gap of idle 
resources. We also have taken care that submitted jobs may or may not be indepen-
dent to each other. The evaluation of EASY algorithm before and after doubling run-
time estimations is made. The rest of the paper is organized as follows: the next sec-
tion discusses the related works. Section 3 presents an overview of cloud 
metaschedular architecture where EASY with doubling runtime estimations as well as 
dynamic grouping of jobs is made. Section 4 describes an algorithm which is combi-
nation of dynamic grouping and EASY algorithm with doubling of runtime estima-
tions. Results of the performance and parameter study are reported in section 5.   
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2   Related Work 

Recent years have seen many efforts focused on the efficient utilization of cloud re-
sources by cloud metaschedular that lead satisfaction to both cloud service provider 
and service users. CloudSim [8] allows modeling and simulations of entities in paral-
lel and distributed computing systems. Aneka[9] form enterprise grid and cloud plat-
form provide following services as task scheduler service for the task programming 
model, thread scheduler services, for the thread programming model, storage service 
for file store for applications. Hadoop a popular open-source implementation of the 
Google’s Map Reduce model is primarily developed by Yahoo. The work done by 
[6], [7] considers Hadoop scheduler can cause severe performance degradation in he-
terogeneous environments and provide a new scheduling algorithm, Longest Approx-
imate Time to End (LATE) for concurrent jobs in heterogeneous environments. But 
LATE doesn’t always improve the performance. 

The work related to [1] considers self adaptive backfill policy for parallel systems 
using multi queue. And IBM in paper [3] proves the effectiveness of backfill algo-
rithms for parallel systems. The work done by [10] focuses on optimizing the system 
throughput by maximizing the overall resource utilization and guaranteeing increased 
performance of the applications. Here an optimal solution for cloud job scheduling is 
made only better than the traditional First Come First Serve (FCFS), Round robin and 
failed to fill the resource gap completely. The work related to [2], consider the com-
monly used method of job scheduling FCFS, along with Backfilling method EASY 
and CONSERVATIVE algorithms where small jobs are moved ahead in the schedule 
can fill the resources gap that is generated by FCFS. However it has seen that re-
source gap is not fully covered using given runtime estimations. 

3   Task Scheduling Problem 

In general cloud users submit their jobs to cloud metaschedular. It is the cloud meta-
schedular which make decision to map jobs submitted by cloud users to cloud clus-
ters. Figure1. Shows the scenario. 

 

Fig. 1. Cloud metaschedular 
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The following steps are performed: 

Step1. The cloud users submit their request for job completion to the metaschedular 
Step2. As per the availability of free nodes in cloud cluster decision for scheduling is 
made. It is the metaschedular which is responsible for mapping jobs between cloud 
clusters and cloud users. 
Step3. After the jobs are submitted to cloud cluster these are executed by local sched-
uler. 

4   Task Scheduling Algorithm 

We are representing our job workflow in the form of a DAG (Directed Acyclic 
Graph) G (V, E). V (Vertices) represents jobs and E (Directed edges) represents de-
pendencies. We are considering a DAG because if there is a cycle present, we will 
stick in a situation of deadlock. Following steps are performed to make dynamic 
grouping. 

4.1   Dynamic Grouping Method Algorithm 

1. First find all the root nodes means jobs which are not dependent on any 
other job. Put these jobs in first group. 

2. Increment group number and check all the nodes which are directly de-
pendent on all or some jobs of the previous group. Put these jobs in this 
new group.  

3. Check if there are any other nodes left, if yes go to step 2 otherwise step 4. 
4. Apply EASY with doubling runtime estimation on each of these groups 

individually. 

 

Fig. 2. Dynamic Grouping Method 

 

Fig. 3. DAG representing job workflow 

Here according to this method we get three groups for DAG shown in Figure2 G1= 
{a,b,c,d}, G2= {e,f,g,h,i}, G3= {j,k,I,m,n} 
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Improved Easy Backfill Algorithm: 

1. Double the given runtime estimation’s of jobs 
2. Find the shadow time and extra nodes 

a) Find when enough nodes will be available for the first queued 
job; this is the shadow time. 

b) If this job does not need all the available nodes, the ones left 
over are the extra nodes. 

3. Find a backfill job 
a) Loop on the list of queued jobs in order of arrival 
b) For each check whether either of these conditions hold 

i. It requires no more than the currently free nodes ,and 
will terminate by the shadow time , or 

ii. It requires no more than the minimum of the currently 
free nodes and extra node 

c) The first such job can be used for backfilling 
 

Fig. 4. EASY with doubling runtime estimations 

Consider a scenario with 5 jobs in some individual group as shown in Fig 5.  Ac-
cording to EASY backfill algorithm with actual runtime estimates the jobs will be ex-
ecuted as shown in Fig 6. The total execution time of all the 5 jobs come here is 950 
units. But if we double the runtime estimates of the jobs total job execution time come 
here is750 units. The corresponding execution sequence is shown in Fig 7-11.These 
Figures are self explanatory. 

 
Jobs Number of Pe’s re-

quired 
Expected Runtime 

J1 5 400 

J2 9 100 

J3 2 200 

J4 4 300 

J5 7 150 

Fig. 5. Jobs with expected runtime 
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Fig. 6. Job execution according to EASY backfill with actual runtimes 

 

Fig. 7. Job execution according to EASY backfill with doubling j1 and j3 starts execution 

 

Fig. 8. Job execution according to EASY backfill with doubling after j3 completed execution 
and j4 and j1 are executing 
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Fig. 9. Job execution according to EASY backfill with doubling after j4 and j1 completed ex-
ecution and j2 is executing 

 

Fig. 10. Job execution according to EASY backfill with doubling after j2 completed execution 
and j5 is executing 

 

Fig. 11. Job execution according to EASY backfill with doubling after all jobs completed  
execution 
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5   Simulation and Results 

In this section, the experimental evaluation for the cloud metaschedular is discussed. 
The Cloudsim toolkit is used to simulate the algorithm with various experimental se-
tups. The default classes in Cloudsim toolkit are extended to implement the proposed 
policy and other parallel job scheduling strategies. The experimental setup include by 
varying jobs runtime, speed of processing elements, size of cloudlets and also poli-
cies. It can be analyzed by experimental results as shown in Figure 12 that job execu-
tion with doubling runtime estimation is faster than backfill algorithms with actual 
runtime estimations. 

 

Fig. 12. Performance Backfill Algorithms before and after doubling 

6   Conclusion  

Doubling approximates an SJF like scheduling by repeatedly preventing the first 
queued job from being started. Thus, doubling trades off fairness for performance and 
should be viewed as a property of the scheduler, not the predictor. We have shown 
doubling technique on EASY Backfill algorithm, but it can be applied to any backfill 
algorithm. 
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