
Aswatha Kumar M. et al. (Eds.): Proceedings of ICAdC, AISC 174, pp. 621–628.
springerlink.com © Springer India 2013

Doubling Runtime Estimations to Improve Performance
of Backfill Algorithms in Cloud Metaschedular

Considering Job Dependencies

Ankur Jindal and P. Sateesh Kumar

Indian Institute of Technology, Roorkee-247667, India
ankur2.iitr@gmail.com,
drpskfec@iitr.ernet.in

Abstract. Job scheduling is a very challenging issue in cloud computing. Tradi-
tional backfill algorithms such as Easy and conservative are extensively used as
job scheduling algorithms. Backfill algorithms require the shorter job to come
forward if sufficient resources for the execution of this job are available and run
in parallel with the currently running jobs provided it does not delay the next
queued jobs. This technique is highly dependent on runtime estimations of job
execution. Moreover in real life scenario it has seen that submitted job’s may or
may not be independent to each other. In this paper we have proposed a tech-
nique that uses dynamic grouping method to consider job dependencies
and doubling runtime estimation method in cloud metaschedular to improve
performance of backfill algorithm. Results have shown that doubling runtime
estimations can significantly improve performance of backfill scheduling algo-
rithms provided that the runtime estimations are correct.

1 Introduction

Cloud computing [4] is a future technology that won’t need to compute on local com-
puters, but on centralized facilities operated by third-party compute and storage utili-
ties. Job scheduling is one of the core and challenging issues in a Cloud Computing
system. In general two schedulers [5] are available in cloud one is global or meta-
schedular and another is local scheduler. Local scheduler determines how the
processes that reside on a single CPU are allocated and executed. Users submit their
jobs to Metaschedular, it is metaschedular responsibility to use information about the
system and allocate processes among the different clusters in cloud. In this paper, it is
attempted to improve the performance of EASY(the Extensible Argonne Scheduling
System) backfill Algorithm[2] by doubling runtime estimation method in cloud meta-
schedular to maximize the resource utilization and minimize the resource gap of idle
resources. We also have taken care that submitted jobs may or may not be indepen-
dent to each other. The evaluation of EASY algorithm before and after doubling run-
time estimations is made. The rest of the paper is organized as follows: the next sec-
tion discusses the related works. Section 3 presents an overview of cloud
metaschedular architecture where EASY with doubling runtime estimations as well as
dynamic grouping of jobs is made. Section 4 describes an algorithm which is combi-
nation of dynamic grouping and EASY algorithm with doubling of runtime estima-
tions. Results of the performance and parameter study are reported in section 5.

622 A. Jindal and P. Sateesh Kumar

2 Related Work

Recent years have seen many efforts focused on the efficient utilization of cloud re-
sources by cloud metaschedular that lead satisfaction to both cloud service provider
and service users. CloudSim [8] allows modeling and simulations of entities in paral-
lel and distributed computing systems. Aneka[9] form enterprise grid and cloud plat-
form provide following services as task scheduler service for the task programming
model, thread scheduler services, for the thread programming model, storage service
for file store for applications. Hadoop a popular open-source implementation of the
Google’s Map Reduce model is primarily developed by Yahoo. The work done by
[6], [7] considers Hadoop scheduler can cause severe performance degradation in he-
terogeneous environments and provide a new scheduling algorithm, Longest Approx-
imate Time to End (LATE) for concurrent jobs in heterogeneous environments. But
LATE doesn’t always improve the performance.

The work related to [1] considers self adaptive backfill policy for parallel systems
using multi queue. And IBM in paper [3] proves the effectiveness of backfill algo-
rithms for parallel systems. The work done by [10] focuses on optimizing the system
throughput by maximizing the overall resource utilization and guaranteeing increased
performance of the applications. Here an optimal solution for cloud job scheduling is
made only better than the traditional First Come First Serve (FCFS), Round robin and
failed to fill the resource gap completely. The work related to [2], consider the com-
monly used method of job scheduling FCFS, along with Backfilling method EASY
and CONSERVATIVE algorithms where small jobs are moved ahead in the schedule
can fill the resources gap that is generated by FCFS. However it has seen that re-
source gap is not fully covered using given runtime estimations.

3 Task Scheduling Problem

In general cloud users submit their jobs to cloud metaschedular. It is the cloud meta-
schedular which make decision to map jobs submitted by cloud users to cloud clus-
ters. Figure1. Shows the scenario.

Fig. 1. Cloud metaschedular

 Doubling Runtime Estimations to Improve Performance of Backfill Algorithms 623

The following steps are performed:

Step1. The cloud users submit their request for job completion to the metaschedular
Step2. As per the availability of free nodes in cloud cluster decision for scheduling is
made. It is the metaschedular which is responsible for mapping jobs between cloud
clusters and cloud users.
Step3. After the jobs are submitted to cloud cluster these are executed by local sched-
uler.

4 Task Scheduling Algorithm

We are representing our job workflow in the form of a DAG (Directed Acyclic
Graph) G (V, E). V (Vertices) represents jobs and E (Directed edges) represents de-
pendencies. We are considering a DAG because if there is a cycle present, we will
stick in a situation of deadlock. Following steps are performed to make dynamic
grouping.

4.1 Dynamic Grouping Method Algorithm

1. First find all the root nodes means jobs which are not dependent on any
other job. Put these jobs in first group.

2. Increment group number and check all the nodes which are directly de-
pendent on all or some jobs of the previous group. Put these jobs in this
new group.

3. Check if there are any other nodes left, if yes go to step 2 otherwise step 4.
4. Apply EASY with doubling runtime estimation on each of these groups

individually.

Fig. 2. Dynamic Grouping Method

Fig. 3. DAG representing job workflow

Here according to this method we get three groups for DAG shown in Figure2 G1=
{a,b,c,d}, G2= {e,f,g,h,i}, G3= {j,k,I,m,n}

624 A. Jindal and P. Sateesh Kumar

Improved Easy Backfill Algorithm:

1. Double the given runtime estimation’s of jobs
2. Find the shadow time and extra nodes

a) Find when enough nodes will be available for the first queued
job; this is the shadow time.

b) If this job does not need all the available nodes, the ones left
over are the extra nodes.

3. Find a backfill job
a) Loop on the list of queued jobs in order of arrival
b) For each check whether either of these conditions hold

i. It requires no more than the currently free nodes ,and
will terminate by the shadow time , or

ii. It requires no more than the minimum of the currently
free nodes and extra node

c) The first such job can be used for backfilling

Fig. 4. EASY with doubling runtime estimations

Consider a scenario with 5 jobs in some individual group as shown in Fig 5. Ac-
cording to EASY backfill algorithm with actual runtime estimates the jobs will be ex-
ecuted as shown in Fig 6. The total execution time of all the 5 jobs come here is 950
units. But if we double the runtime estimates of the jobs total job execution time come
here is750 units. The corresponding execution sequence is shown in Fig 7-11.These
Figures are self explanatory.

Jobs Number of Pe’s re-

quired
Expected Runtime

J1 5 400

J2 9 100

J3 2 200

J4 4 300

J5 7 150

Fig. 5. Jobs with expected runtime

 Doubling Runtime Estimations to Improve Performance of Backfill Algorithms 625

Fig. 6. Job execution according to EASY backfill with actual runtimes

Fig. 7. Job execution according to EASY backfill with doubling j1 and j3 starts execution

Fig. 8. Job execution according to EASY backfill with doubling after j3 completed execution
and j4 and j1 are executing

626 A. Jindal and P. Sateesh Kumar

Fig. 9. Job execution according to EASY backfill with doubling after j4 and j1 completed ex-
ecution and j2 is executing

Fig. 10. Job execution according to EASY backfill with doubling after j2 completed execution
and j5 is executing

Fig. 11. Job execution according to EASY backfill with doubling after all jobs completed
execution

 Doubling Runtime Estimations to Improve Performance of Backfill Algorithms 627

5 Simulation and Results

In this section, the experimental evaluation for the cloud metaschedular is discussed.
The Cloudsim toolkit is used to simulate the algorithm with various experimental se-
tups. The default classes in Cloudsim toolkit are extended to implement the proposed
policy and other parallel job scheduling strategies. The experimental setup include by
varying jobs runtime, speed of processing elements, size of cloudlets and also poli-
cies. It can be analyzed by experimental results as shown in Figure 12 that job execu-
tion with doubling runtime estimation is faster than backfill algorithms with actual
runtime estimations.

Fig. 12. Performance Backfill Algorithms before and after doubling

6 Conclusion

Doubling approximates an SJF like scheduling by repeatedly preventing the first
queued job from being started. Thus, doubling trades off fairness for performance and
should be viewed as a property of the scheduler, not the predictor. We have shown
doubling technique on EASY Backfill algorithm, but it can be applied to any backfill
algorithm.

References

1. Lawson, B.G., Smirni, E., Puiu, D.: Self-adapting backfilling scheduling for parallel sys-
tems

2. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM SP2 with
backfilling. In: Proceedings of the First Merged International and Symposium on Parallel
and Distributed Processing, Parallel Processing Symposium, IPPS/SPDP 1998, pp. 542–546
(1998)

3. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions ra-
ther than user runtime estimates. IEEE Transactions on Parallel and Distributed Sys-
tems 18(6), 789–803 (2007)

628 A. Jindal and P. Sateesh Kumar

4. Foster, I., et al.: Cloud Computing and Grid Computing 360-Degree Compared. In: Grid
Computing Environments Workshop, pp. 1–10 (2008)

5. Peixoto, M.L.M., et al.: A Metascheduler architecture to provide QoS on the cloud compu-
ting. In: 2010 IEEE 17th International Conference on Telecommunications (ICT), pp. 650–
657 (2010)

6. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving map reduce per-
formance in heterogenous environment. In: OSDI (2008)

7. Isard, M., et al.: Quincy: fair scheduling for distributed comptuing clusters. Microsoft Re-
search, SOSP (2008)

8. Buyya, R., et al.: Modeling and simulation of scalable Cloud computing environments and
the CloudSim toolkit: Challenges and opportunities. In: International Conference on High
Performance Computing & Simulation, HPCS 2009, pp. 1–11 (2009)

9. Buyya, R.: Aneka next generation. net grid/cloud computing company (2009)
10. Sadhasivam, S., Jeya Rani, R., Nagaveni, N., Vasanth Ram, R.: Design and implementation

of two level scheduler for cloud computing environment. In: International Conference on
Advance in Recent Technologies in Communication and Computing (2009)

	Doubling Runtime Estimations to Improve Performance of Backfill Algorithms in Cloud Metaschedular Considering Job Dependencies
	1 Introduction
	2 Related Work
	3 Task Scheduling Problem
	4 Task Scheduling Algorithm
	4.1 Dynamic Grouping Method Algorithm

	5 Simulation and Results
	6 Conclusion
	References

