
Aswatha Kumar M. et al. (Eds.): Proceedings of ICAdC, AISC 174, pp. 1125–1133.
springerlink.com © Springer India 2013

Component Based Software Development
Using Component Oriented Programming

Ruchi Shukla1 and T. Marwala2

1 Department of Electrical and Electronic Engineering Science,
University of Johannesburg,

Johannesburg,
South Africa

ruchishuklamtech@gmail.com
2 Fac. of Engineering and Built Environment,

University of Johannesburg
tmarwala@uj.ac.za

Abstract. Software industries today are striving for techniques to improve the
software developer’s productivity, software quality and flexibility within the
constraint of minimum time and cost. Component based software development
(CBSD) is proving more suitable for the evolving environment of software in-
dustry. This paper demonstrates a sample application of component-oriented
programming concepts for CBSD. Some of the potential risks and challenges in
CBSD are also presented.

1 Introduction

The rapid growth in software and IT industry is leading to new software development
paradigms, demanding faster delivery of software. Component based software (CBS)
has recently started receiving attention among vendors, developers and IT
organizations. There is a definite shift from structured programming written software
for mainframe systems to object-oriented UML designed Smalltalk/C++ written client
server software, to component based ADL designed C++/Java written N-tier
distributed systems.

Reusability is the key issue today for building software systems quickly and
reliably. The software system should be able to cope with complexity and adaptable
to changing requirements by adding, removing and replacing the software
components. Due to this component oriented programming has become the most
popular programming technique [10]. With the emergence of component based
software engineering (CBSE), component based software development (CBSD) has
become an inevitable paradigm leading to less manpower/cost, increased quality,
productivity and flexibility, reduced time to market, better usability and
standardization.

According to Heineman and Councill: “A software component is a software
element that conforms to a component model and can be independently deployed and

1126 R. Shukla and T. Marwala

composed without modification according to a component standard”. A more widely
accepted definition by Szyperski is: “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. It can
be deployed independently and is subject to composition by third parties” [8].

The interface of a component consists of the specifications of its provided and re-
quired services. To specify these dependencies precisely, it is necessary to match the
required services to the corresponding provided services. Component model defines
how components can be constructed, assembled and deployed [12]. The current state
of component models usage justifying the need for a component model selection
framework was presented in [2]. However, the question arises as to how these CBS
are developed for reusability and what are the metrics taken into consideration. Fur-
ther, the success of CBSD using third-party components mainly depends on the selec-
tion of a suitable component for the intended application [3].

The rest of the paper is structured as follows: Section 2 and 3 present a brief over-
view of the CBSD process and the Component frameworks respectively. Section 4
demonstrates a basic example of CBSD employing component-oriented programming
concept. Section 5 presents some critical risks and key challenges in CBSD while
Section 6 concludes the work.

2 Component Based Software Development Process

The CBSD approach uses various similar components identified in various software
systems from Commercial-off-the-shelf (COTS) components for large-scale software
reuse. CBSD consists of the following major activities [5]:

(1) requirements analysis,
(2) software architecture selection and creation,
(3) component selection,
(4) integration, and
(5) component-based system testing.

The development cycle of a component-based system is different from the traditional
(waterfall, spiral, iterative and prototype based) models. Figure 1 shows a comparison
between the traditional waterfall model and the modern CBD process. The
requirements gathering and design in the waterfall process model corresponds to
finding and selecting components. Similarly, the implementation, test and release in
the waterfall model are equivalent to creating, adapting and deploying the
components, and maintenance corresponds to replacing the components [5].

 Component Based Software Development Using Component Oriented Programming 1127

Fig. 1. Comparison of Waterfall Model Cycle With Component Based Development [5]

Most of the research so far has focused on the development and use of components
within the following two development paradigms

1. Rapid application driven (RAD) paradigm where visual tools are used to create
user interface and associate components with elements identified in interface, suitable
for small to medium sized systems [13].

2. Object-oriented analysis and design (OOAD) paradigm where development
takes place based on a conventional software life cycle and is oriented to the tasks and
relevant objects, including their interactions, generalization and composition.
Here, we represent the OOAD approach from three aspects, i.e. functional, behavioural
and structural, corresponding to use case, communication diagram and class diagram
respectively. A component includes several use cases. A communication diagram is
used to obtain the object usages and depict the dynamic behaviour of each use case. A
set of participated classes are also specified by the communication diagram. We can
extract the structural relationships among the objects from the class diagram. The
relationship between classes and components is shown in Figure 2.

Fig. 2. Relationship Between Classes And Components

1128 R. Shukla and T. Marwala

The process of component identification begins by clustering related objects and
making them reusable. Each clustered object identified from clustering object
approach are relating to their corresponding classes for allocating candidate
components. Finally, in the last phase, we can identify reusable components from
refining the candidate component [7, 9, 14].

3 Component Frameworks

A framework is a set of constraints on components and their interactions. Three stan-
dardized component frameworks are: CORBA, COM/DCOM, JavaBeans/EJB. The
distributed version of COM is the DCOM. In the year 2002 .NET was released, which
presents a platform-independent target for software development. It relies mainly on
software component and the COP paradigm. EJB architecture is another component
based architecture for developing and deploying component objects.

Any component can exhibit varying degree of distribution, modularity and
independence of platform or language. Mapping of components is done on the
following 3-dimensional space [4]:

1. Monolithic systems (0,0,0) – non-distributed, non modular, language dependent
and platform dependent.

2. VB components (0,1,0) - neither distributed, nor language independent.
3. CORBA – distributed and language independent but the underlying components

often remain platform dependent.

Java components are cross platform in scope. Wrapping a platform independent
language such as Java with language independent middleware such as CORBA would
yield a component worthy of (1,1,1) status [4].

4 Component Oriented Programming

Component-oriented programming (COP) enables programs to be constructed from
reusable software components, following certain predefined standards including
interface, versioning, deployment and connections [15]. COP as against OOP includes
Polymorphism + Real late binding + Real and Enforced encapsulation + Interface
inheritance + Binary reuse. COP allows various kinds of reuse including white-box
reuse and black-box reuse. White-box reuse means that the source of a software
component is made available and can be studied, reused, adapted, or modified. Black-
box reuse is based on the principle of information hiding.

Example-1 demonstrates how to write a .NET serviced component that implements
the IMessage interface and displays a message with "Hello Component" in it when the
interface's ShowMessage() method is called [15].

 Component Based Software Development Using Component Oriented Programming 1129

Example-1: A simple .Net component

using System;
using System.EnterpriseServices;
namespace MyNamespace
{
public interface IMessage
{
void ShowMessage();
}
public class MyComponent:ServicedComponent,IMessage
{
public MyComponent() //Default Constructor
{
}
public void ShowMessage()
{
Console.WriteLine("Hello Component! ");
}
}
}

4.1 Registering Assemblies

Before adding the serviced components to a COM+ application, we need to register
their assembly with COM+ [11]. This can be done using the RegSvcs.exe command
line utility. The code then has to be signed with a cryptographic key. Open the As-
semblyInfo.cs file, and at the bottom, insert the full path to the key against the Assem-
blyKeyFile entry [6]. The step is shown below:

C:\MyNamespace\MyNamespace\bin\Debug>regsvcs MyNamespace.dll
Installed Assembly:
Assembly: C:\MyNamespace\MyNamespace\bin\Debug\MyNamespace.dll
Application: MyNamespace
TypeLib: C:\MyNamespace\MyNamespace\bin\Debug\MyNamespace.tlb
C:\MyNamespace\MyNamespace\bin\Debug>

Now, the component is installed. If we open Component Services (Start - Settings -
Control Panel - Administrative Tools - Component Services) and navigate down
through the tree to COM+ Applications, we can see our newly installed application
Figure 3.

1130 R. Shukla and T. Marwala

Fig. 3. Component Services

4.2 The Client Application

After building the serviced component library, we can create a client application.
Then we can write the code to instantiate a new MyClient instance, and invoke the
method ShowMessage () [15]. The client code is shown below:

Example-2: A simple client application

using System;
using System.EnterpriseServices;
using MyNamespace;
namespace MyClientApplication
{
class MyClient
{
static void Main(string[] args)
{
MyComponent mycom = new MyComponent();
mycom.ShowMessage();
Console.ReadLine();
}
}
}

 Component Based Software Development Using Component Oriented Programming 1131

The output is as shown in Figure 4.

Fig. 4. Client Application

5 Risks and Challenges in CBSD

Risks

• Changing nature of modern day software products and robustness in CBD.
• Reusable components are not designed and not coded from scratch.
• Development based on in-house, multi-origin reusable, 3rd party COTS software or

open source software components.
• Few empirical studies that investigate how to use and customize COTS-based

development processes for different project contexts [3].
• Component interfaces are defined by models with less information for functional

testing.
• Instability in CBSD standards.
• Reliability of CBS.
• A usage of web based COTS leads to system security threats.
• Architectural risks of CBS and its agility with respect to software architecture,

quality and maintenance.
• CB risk analysis should adopt similar principles of encapsulation and modularity as

CBD methods (ISO, 2009a, b).
• Generalization of components for future reuse.

Challenges

• Challenges in component configuration during integration.
• Many complicated CBSD process models have been proposed, but no step-by-step

guidance for implementing them is available [2].
• Limited knowledge about current industrial OTS selection practices.
• Effort estimation and fault identification.
• Relevant or new suite of software metrics and effort estimation and costing models

for component assemblies are still not available.
• Challenges in multi-language component selection and integration.
• Lack of formal component selection methods and non availability of documentation

impacting the component integration.
• Challenges of using semi-formal techniques like UML and formal techniques like

VDM, Z and B in the early stages of component development.
• Challenges to check the presence of virus due to non availability of source code.
• Prediction of system behavior from component behavior.
• The maintenance process of CBS from system to product to component level.

1132 R. Shukla and T. Marwala

Complexities involved in the development of an effort estimation tool for CBSD

• Relatively new concept, hence limited published metrics and available tools [1].
• Information about system artefacts, relationships and dependencies can be obscure,

missing, or incorrect as a result of continued changes to the system.
• Changes must conform or be compatible with an existing architecture, design and

code constraints.
• Multi-language, multi-platform software.
• Real time (dynamic/probabilistic/adaptive) components and cost drivers.

6 Conclusions

This paper demonstrates by means of a simple example, the use of component con-
cepts and COP based software development method. The basic aim was to orient the
programmers towards using an innovative software development approach for real
life projects. This approach is a beginning of seamless support and better integration
of the development tools, runtime, component services, and the component adminis-
tration environment. However, the use of COTS components comes with its own
challenges and risks which need to be analysed before arriving at a decision to use
them for CBSD.

Acknowledgments. The financial support offered to RS by the FEBE of the
University of Johannesburg, Johannesburg is gratefully acknowledged.

References

1. Aris, H., Salim, S.S.: Issues on the application of component oriented software develop-
ment: Formulation of research areas. Inform. Tech. J., 1–7 (2008)

2. Aris, H., Salim, S.: State of component models usage: Justifying the need for a component
model selection framework. I. Arab J. Inform. Tech. 8(3), 310–317 (2011)

3. Ayala, C., Hauge, O., Conradi, R., Francha, X., Li, J.: Selection of third party software in
Off-the-shelf-based software development-An interview study with industrial practitioners.
J. Syst. Softw. 84, 620–637 (2011)

4. Brereton, P., Budgen, D.: Component-based systems: A classification of issues. Com-
put. 33(11), 54–62 (2000)

5. Crnkovic, I.: Component-based software engineering – New challenges in software devel-
opment. In: 25th International Information Technology Interfaces (ITI) Conference, Cav-
tat, Croatia (2003)

6. http://www.codeproject.com/Articles/6736/
A-Very-Simple-Persistent-Cache-in-a-COM-Component
(accessed March 31, 2012)

7. Kim, S.D., Chang, S.H.: A systematic method to identify software components. In: 11th
Asia-Pacific Software Engineering Conference, Seoul, South Korea, pp. 538–545 (2004)

8. Lau, K.K., Wang, Z.: Software component models. Trans. Softw. Engg. 33(10), 709–724
(2007)

 Component Based Software Development Using Component Oriented Programming 1133

9. Lee, S.D., Yang, Y.J., Cho, E.S., Kim, S.D., Rhew, S.Y.: COMO: A UML based compo-
nent development methodology. In: 6th Asia Pacific Software Engineering Conference,
Takamatsu, Japan, pp. 54–61 (1999)

10. Liu, Y., Cunningham, H.C.: BoxScript: A component-oriented language for teaching. In:
43rd ACM Southeast Conference, Kennesaw, USA (2005)

11. Lowy, J.: Component services,
http://ondotnet.com/pub/a/dotnet/excerpt/com_dotnet_ch10/
index.html?page=3 (accessed March 31, 2012)

12. Mahmood, S., Lai, R., Kim, Y.S.: Survey of component-based software development. IET
Softw. 1(2), 57–66 (2007)

13. Panfilis, S.D., Berre, A.J.: Open issues and concerns on Component Based Software Engi-
neering. In: 9th International Workshop on Component-Oriented Programming, Oslo,
Norway (2004)

14. Sook, M., Cho, E.S.: A component identification technique from object-oriented model.
Springer, Heidelberg (2005)

15. Wang, A.J.A., Qian, K.: Component-oriented programming. John Wiley & Sons (2005)

	Component Based Software Development Using Component Oriented Programming
	1 Introduction
	2 Component Based Software Development Process
	3 Component Frameworks
	4 Component Oriented Programming
	4.1 Registering Assemblies
	4.2 The Client Application

	5 Risks and Challenges in CBSD
	6 Conclusions
	References

