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Abstract. In this paper, we present a new method based on empirical mode
decomposition (EMD) for classification of seizure and seizure-free EEG sig-
nals. The EMD method decomposes the EEG signal into a set of narrow-
band amplitude and frequency modulated (AM-FM) components known as
intrinsic mode functions (IMFs). The method proposes the use of the area
parameter and mean frequency estimation of IMFs in the classification of the
seizure and seizure-free EEG signals. These parameters have been used as
an input in least squares support vector machine (LS-SVM), which provides
classification of seizure EEG signals from seizure-free EEG signals. The clas-
sification accuracy for classification of seizure and seizure-free EEG signals
obtained by using proposed method is 98.33% for second IMF with radial
basis function kernel of LS-SVM.

Keywords: Epileptic seizure EEG signal, Empirical mode decomposition,
Support vector machine, EEG signal classification.

1 Introduction

The electroencephalogram (EEG) is a representative signal containing in-
formation about the condition of the human brain. The disorder in the hu-
man brain creates a lot of physiopathological diseases, especially the epileptic
seizure. The epileptic seizure disorder is characterized by recurrent electri-
cal discharge of the cerebral cortex. The epileptic seizure results in irregular
disturbance of brain function [1]. Detection of epilepsy or epileptic seizure
by visual scanning of EEG signal is a very time consuming and may be in-
accurate, particularly for long recording data set; therefore the parameters
extracted from EEG signals are highly useful in diagnostics.

Most of the methods developed in the literature for EEG signal analysis
and classification are based on time domain, frequency domain, and time-
frequency domain. The spikes detection methods for EEG signal analysis
have been proposed in [2, 3]. The measures namely, dominant frequency,
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average power in the main energy zone, normalized spectral entropy, spike
rhythmicity, and relative spike amplitude together with artificial neural net-
work (ANN) have been used for normal and epileptic EEG signal analysis
[4]. Earlier studies have shown that the EEG signal is a non-stationary signal
[5-9]. The nonlinear measures like correlation dimension, Lyapunov exponent
and fractal dimension quantify the degree of complexity of a EEG signal
[10-13]. The correlation integral measure is sensitive to wide variety of non-
linearity and has been used to characterize the epileptogenic regions of the
brain during the interictal period [14]. The sample entropy has been used
as a feature for the classification of different classes of EEG signals [15].
The entropy measure quantify the irregularity and complexity in time series.
The entropy and Lyapunov exponent together with wavelet transform have
been proposed for seizure detection by analyzing the complexity of some
specific EEG sub-bands [16, 17]. The author has proposed a novel scheme
based on the discrete wavelet transform (DWT) and approximation entropy
for epilepsy detection in [18]. The proposed method for epileptic seizure de-
tection in [19] is based on the multiwavelet transform and approximation
entropy.

Recently, new techniques for analysis of nonlinear and non-stationary EEG
signals have been proposed in [20-22], which are based on the empirical mode
decomposition (EMD) developed especially for nonlinear and non-stationary
signal analysis [23]. The mean frequency (MF) measure of intrinsic mode
functions (IMFs) has been used as a feature in order to identify the differ-
ence between ictal and seizure-free EEG signals [20]. In [21], the weighted
frequency of IMFs has been used as a feature for the classification between
healthy and seizure EEG signals. Moreover, it has been shown that the EMD
method has more classification accuracy and low computational complexity
in comparison to multivariate EMD for EEG signal classification. The area
measured from the trace of the analytic signal representation of IMFs has
been used as a feature in order to discriminate normal (or healthy) EEG
signals from the epileptic seizure EEG signals [22].

The main purpose of this paper is to propose the use of the area parameter
and mean frequency of IMFs for classification of EEG signals. The area of
analytic IMFs and mean frequency of the IMFs have been used as an input
feature set to least squares support vector machine (LS-SVM) for classifica-
tion of seizure and seizure-free EEG signals. The rest of the paper is organized
as follows: In section 2, EEG signal dataset, the EMD method, area and mean
frequency parameters, and LS-SVM classifier are presented. The results and
discussion for the classification of EEG signals based on area and mean fre-
quency features of IMFs are presented in section 3. Finally, the section 4
concludes the paper.
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2 Methodology

2.1 Dataset

An EEG dataset, which is available online in [24] and includes recordings for
both healthy and epileptic subjects, is used. The dataset includes five subsets
(denoted as Z, O, N, F, and S) each containing 100 single-channel EEG sig-
nals, each one having 23.6 second duration. The subsets Z and O have been
recorded extracranially, whereas sets N, F, and S have been recorded intracra-
nially. These subsets are linked with the conditions, recording regions, and
activities of the brain as: subset Z (healthy eyes open), subset O (healthy eyes
closed), subset F (epileptogenic zone), N (hippocampal formation of opposite
hemisphere), and subset S (epileptic seizure). The EEG signals of subsets N
and F were taken from all contacts of the relevant depth electrode [24]. The

Table 1. Summary of the EEG dataset

SF class (N, F) S class (S)

Number of epileptic subjects Five Five

Electrode type Intercranial Intercranial

Electrode placement Epileptogenic zone Epileptogenic zone

Subject’s state Seizure-free (Intericatal) Seizure (Ictal)

Number of EEG signals 200 100

Signal duration 23.6 second 23.6 second

Fig. 1. An example of EEG signals from each of the five subsets (Z, O, N, F,
and S).
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strip electrodes were implanted onto the lateral and basal regions (middle
and bottom) of the neocortex. The EEG signals of the subset S were taken
from contacts of all electrodes (depth and strip). Sampling frequency of the
data is 173.61 Hz. Typical EEG signals (one from each subset) are shown in
Figure 1. In this paper, the subsets N and F are combined to form seizure-free
(SF) class and subset S forms the seizure (S) class. The summary of the EEG
signals in these two classes are shown in Table 1.

2.2 Empirical Mode Decomposition

The empirical mode decomposition method is an adaptive and data-dependent
method. The EMD method does not require any condition about the station-
arity and linearity of the signal. The aim of the EMD method is to decom-
pose the nonlinear and nonstationary signal x(t) into a sum of intrinsic mode
functions (IMFs). Each IMF satisfies two basic conditions: (I) the number of
extrema and the number of zero crossings must be the same or differ at most
by one, (II) at any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

The EMD algorithm for the signal x(t) can be summarized as follows [25]:

(a) Detect the extrema (both maxima and minima) of the data set x(t).
(b) Generate the upper and lower envelopes emax(t) and emin(t), respectively
by connecting the maxima and minima separately with cubic spline interpo-
lation.
(c) Determine the local mean as a(t) = [emax(t)+emin(t)]

2 .
(d) Extract the detail h1(t) = x(t)− a(t).
(e) Decide whether h1(t) is an IMF or not by checking the two basic condi-
tions as described above.
(f) Repeat steps (a) to (e) and end when an IMF h1(t) is obtained.

Once the first IMF is derived, define c1(t) = h1(t), which is the smallest
temporal scale in x(t). To find the rest of the IMFs, generate the residue
r1(t) of the data by subtracting c1(t) from the signal as r1(t) = x(t)− c1(t).
The above illustrated sifting process will be continued until the final residue
is a constant, a monotonic function, or a function from which no more IMFs
can be derived. At the end of the decomposition the original signal x(t) is
represented as:

x(t) =

M∑

m=1

cm(t) + rM (t) (1)

Where M is the number of IMFs, cm(t) is the mth IMF, and rM (t) is the
final residue. Each IMF in the equation (1) is assumed to yield a meaningful
local frequency, and different IMFs do not exhibit the same frequency at the
same time. Then, the equation (1) can be written as:
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x(t) ≈
M∑

m=1

Am(t) cos[φm(t)] (2)

Matlab codes are available at http://perso.ens-lyon.fr/patrick.flandrin/emd.
html. The IMFs generated by EMD method on the 23.6 second seizure-free
EEG signal and seizure EEG signal are shown in Fig. 2 and Fig. 3 respectively.

Fig. 2. Empirical mode decomposition of the 23.6 second seizure-free EEG signal.

2.3 Area Computation of Analytic Intrinsic Mode
Functions

The analytic signal z(t) of a signal c(t) can be defined as [23]:

z(t) = c(t) + jĉ(t) (3)

Where c(t) is a real signal and the Hilbert transform of c(t) is given by:
ĉ(t) = c(t) ∗ 1

πt
The equation (3) can be written as:

z(t) = A(t)ejφ(t) (4)

The analytic signal amplitude A(t) and instantaneous phase φ(t) can be
defined as follows:

A(t) =
√
c2(t) + ĉ2(t), φ(t) = arctan

[
ĉ(t)

c(t)

]
(5)
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The analytic signal representation for mth IMF, cm(t) = Am(t)cos[φm(t)] in
equation (2), is given by:

zm(t) = Am(t)ejφm(t) (6)

In the analytic signal representation of the discrete-time signal z[n], the imag-
inary part of the signal z[n] is plotted against the real part of the signal z[n].
The nonlinear and non-stationary signal does not have direction of rotation
with unique center in the complex plane. The analytic signal representation
of IMFs provides the direction of rotation and unique center of the plot, and
also make possible to compute surface area of analytic IMFs in the complex
plane [22]. It should be noted that the EMD method is such a method which
represents the nonlinear and non-stationary signal by a sum of proper ro-
tations. This makes possible to compute surface area in the complex plane.
The central tendency measure (CTM) is an automatic method for summarize
the visual information in the plot. The CTM has been used to measure the
degree of variability from a second-order difference plot of biomedical signals
[26]. We have used modified CTM to determine the radius of the analytic
signal representation of IMFs in the complex plane [22]. The CTM is com-
puted by selecting a circular region of radius r, around the origin, counting
the number of points that fall within the radius, and dividing by the total
number of points. Let N be the total number of points and r the radius of
the central area. Then, the modified CTM for analytic signal z[n] is given by
the following expression:

CTM =

N∑

n=1

δ(dn)

N
(7)

δ(dn) =

{
1 if

(
[�{z[n]}]2 + [�{z[n]}]2)0.5 < r

0 otherwise
(8)

The radius (rCTM ) corresponding to 95% CTM has been used to compute
the area of analytic IMF in complex plane. The area (A) is computed by
using the following equation:

A = πr2CTM (9)

For radius (rCTM ), the CTM provides the 95% points of the total data points
lie in the circle corresponding to rCTM .

2.4 Mean Frequency Computation of Intrinsic Mode
Functions

The zero-order Fourier-Bessel (FB) series expansion of a signal y(t) consid-
ered over some arbitrary interval (0, a) is expressed as [27]:
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y(t) =

P∑

p=1

DpJ0

(
λp

a
t

)
(10)

Where J0(.) are zero-order Bessel functions, and {λp; p = 1, 2, 3, ..., P} are the
ascending order positive roots of J0(λ) =0. The sequence of Bessel functions{
J0

(
λp

a t
)}

forms an orthogonal set on the interval 0 ≤ t ≤ a with respect

to the weight t, that is,
∫ a

0

tJ0

(
λp

a
t

)
J0

(
λq

a
t

)
dt = 0 for p �= q (11)

Using the orthogonality of the set
{
J0

(
λp

a t
)}

, the FB coefficient Dp are

computed by using the following equation:

Dp =

2

∫ a

0

ty(t)J0

(
λp

a
t

)
dt

a2[J1(λp)]2
(12)

with 1 ≤ p ≤ P , Where P is the order of the FB expansion, and J1(λp) are the
first-order Bessel functions. It should be noted that the FB series coefficients
Dp are unique for a given signal, similarly as the Fourier series coefficients
are unique for a given signal. However, unlike the sinusoidal basis functions
in the Fourier series, the Bessel functions decay over time. This feature of the
Bessel functions makes the FB series expansion suitable for non-stationary
signals [28-30]. The mean frequency of signal y(t) can be computed by the
following equation [20]:

fmean =

P∑

p=1

fpEp

P∑

p=1

Ep

(13)

Where

Ep = D2
p

a2

2
[J1(λp)]

2 = (energy at order p) (14)

fp =
λp

2πa
= (frequency at order p) (15)

Mean frequency represents the centroid of the spectrum, and thus character-
izes the frequency components of the intrinsic mode functions of the EEG
signal.

2.5 Least-Squares Support Vector Machine

The effectiveness of the parameters (area and mean frequency of IMFs) in
classifying the seizure and seizure-free EEG signals is evaluated using a least
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Fig. 3. Empirical mode decomposition of the 23.6 second seizure EEG signal.

squares support vector machine (LS-SVM). For two-class support vector ma-
chine, we consider the following decision function [31, 32]:

f(x) = sign
[
wT g(x) + b

]
(16)

where w is the l dimensional weight vector and b is a bias, and g(x) is a
mapping function that maps x into the l dimensional space. In order to
obtain w and b, the optimization problem can be formulated in the following
way:

Minimize J(w, b, e) =
1

2
wTw +

γ

2

N∑

i=1

e2i (17)

subject to equality constraints

yi[w
T g(xi) + b] = 1− ei, i = 1, 2, ..., N (18)

where {xi, yi}Ni=1 areN training input-output pairs, yi=1 or -1 if xi belongs to
class 1 or 2, respectively and e = (e1, e2, ..., eN )T . The Lagrangian multipliers
αi can be defined for equation (17) as:

L(w, b, e;α) = J(w, b, e)−
N∑

i=1

αi{yi[wT g(xi) + b]− 1 + ei} (19)

where αi are Lagrange multipliers and α = (α1, α2, ..., αN )T . After solving
equation (19), the LS-SVM classifier is obtained as:

f(x) = sign

[
N∑

i=1

αiyiK(x, xi) + b

]
(20)
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where K(x, xi) is a kernel function. In this work following kernel functions
were used:

(1) Linear kernel: The linear kernel can be defined as [33],

K(x, xi) = xTxi (21)

(2) Polynomial kernel: The polynomial kernel can be defined as [33],

K(x, xi) = (xTxi + 1)d (22)

where d is the degree of polynomial.
(3) Radial basis function (RBF) kernel: The RBF kernel can be defined as
[33],

K(x, xi) = e
−||x−xi||2

2σ2 (23)

where σ controls the width of RBF kernel. The choice of value for kernel pa-
rameter influences the classification outcome. Please refer to [32] for detailed
information about the LS-SVM.

3 Results and Discussion

The analytic signal representation of EEG signals in the complex plane do not
have a specific geometry, makes it difficult to define the circle that encloses
95% data points of the total data points. The EMD process makes possible
to cover more than 95% points of the total data points that lie within the
circle due to having circular form of analytic IMFs in the complex plane. The
value of estimated area is large in seizure EEG signals when compared with
that seizure-free EEG signals. The increased surface area observed from the
seizure EEG signals possibly due to greater amplitude of the high frequency
IMFs of EEG signals for seizure EEG signal class.

The EMD method decomposes a signal into narrow-band AM-FM com-
ponents (IMFs), which facilitates computation of mean frequency of IMFs.
Mean frequency estimation was performed using the Fourier-Bessel expansion
method. The coefficients of the FB expansion have been used to compute the
mean frequency of the IMFs. The class discrimination ability of area and
mean frequency parameters of IMFs is quantified using Kruskal-Wallis sta-
tistical test. The results are shown in Fig. 4 and Fig. 5. As it can be easily
observed, although the area and mean frequency features of first four IMFs
are statistically significant (small p-values), the EEG signals may not be clas-
sified correctly by simple threshold method. This motivates us to use area and
mean frequency parameters of IMFs as input features in the LS-SVM classi-
fier in order to obtain more accurate classification of seizure and seizure-free
EEG signals. We have randomly selected 60% of the features of the dataset
for training and the remaining used for testing.
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The classification test performance of the LS-SVM classifier can be de-
termined by the computation of sensitivity, specificity, and accuracy. The
sensitivity (SEN), specificity (SPE), and accuracy (Acc) are defined as:

SEN =
TP

TP + FN
× 100 (24)

SPE =
TN

TN + FP
× 100 (25)

Acc =
TP + TN

TP + TN + FP + FN
× 100 (26)

Where TP and TN represent the total number of correctly detected true
positive events and true negative events respectively. FP and FN represent
the total number of erroneously positive events and erroneously negative
events respectively. Table 2 shows the classification performance [sensitivity
(SEN), specificity (SPE), and accuracy (Acc)] of the LS-SVM classifier using
different kernels for first four IMFs of EEG signals. The classification accuracy
for classification of seizure and seizure-free EEG signals obtained by proposed
method is 98.33% for second IMF with RBF kernel of the LS-SVM classifier.

Fig. 4. Comparison of area parameter for seizure and seizure-free EEG signals for
first four IMFs.

Fig. 5. Comparison of mean frequency estimation for seizure and seizure-free EEG
signals for first four IMFs.
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Table 2. Sensitivity, specificity, and accuracy of IMFs with different kernels of
LS-SVM classifier for classification between seizure-free (SF) and seizure (S) EEG
signals

Kernel Kernel Statistical IMF1 IMF2 IMF3 IMF4

function parameter parameter

SEN 82.93 82.76 94.12 72.22

Linear - SPE 92.41 82.42 76.70 73.53

Acc 89.16 82.50 79.16 73.33

SEN 90.48 86.83 90.32 80.95

Polynomial d=3 SPE 97.44 91.46 86.52 76.77

Acc 95.00 90.00 87.50 77.50

SEN 90.48 100.00 88.57 80.00

RBF σ=5 SPE 97.44 97.56 89.41 78.95

Acc 95.00 98.33 89.16 79.1

4 Conclusion

The empirical mode decomposition process is a useful and powerful method
to decompose EEG signal into a set of IMFs. The parameters (area and mean
frequency) extracted from the IMFs of EEG signals have been found useful
in discrimination of seizure and seizure-free EEG signals. Finally, we con-
clude that the area and mean frequency parameters of IMFs are effective
for classification of seizure and seizure-free EEG signals. The classification
results indicated that the RBF kernel of LS-SVM had provided 98.33% accu-
racy in classification of seizure and seizure-free EEG signals. Future direction
of research may include application of area and mean frequency parameters
of IMFs to identify different behavioral/psychological states from EEG sig-
nals. In addition, the problem of automatic kernel selection for EEG signal
classification in different brain conditions is needed to research further.
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