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Preface

This book deals with equipment known as “camera traps,” which are used to detect 
wild animals. The inspiration for this book was the 9th International Mammal 
Congress held in Sapporo, Japan, in August 2005. At that time, camera traps had 
become sufficiently popular as a field sampling technique to warrant a separate 
symposium in the Congress. The ten presentations given in Sapporo that focused 
on camera traps encompassed a variety of mammal species, ranging from bats to 
large carnivores, and included surveys and studies from various countries and habi-
tats. The analytical approaches that were used to make inferences about the target 
populations were somewhat limited, however, and that sparked an interest in the 
production of this volume, which focuses primarily on (1) the sampling method-
ologies of using camera traps and (2) the analytical techniques best suited to make 
sound inferences from photographic evidence.

Over the last two decades, the use of various noninvasive techniques for the 
sampling of animal populations has increased significantly. Technological advances 
have allowed practitioners to sample and monitor animal populations without ever 
physically capturing or handling animals, and to feel confident that the equipment 
will operate acceptably under a variety of environmental conditions. A sensitivity 
to animal welfare, reduction of time, effort, and expenses in the collection of scien-
tific data, and the basic motivation to be more efficient have increased our interest 
in noninvasive sampling methodologies. Noninvasive sampling methods are par-
ticularly well suited to animals that are elusive, often occur at low densities, and are 
difficult to capture or detect. Arguably, the most popular noninvasive sampling 
technique among those reviewed by Long et al. (2008) is remote photography using 
camera traps (Kays and Slauson 2008). In short, camera traps are a system or device 
with a trigger or sensor that activates a camera to take a photograph when an animal 
is present. The resulting image of occurrence is then used as a piece of scientific 
information, generating a permanent record of the event. Camera traps are rela-
tively easy to use, and much of their popularity stems from their ability to sample 
animals remotely with no requirement for humans to manually operate the equip-
ment (except for occasional equipment checks and to retrieve images or film). The 
cost of purchasing camera traps is becoming more reasonable all the time as tech-
nology improves and the number of manufacturers continues to increase.
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More than a decade has passed since the publication of the landmark papers by 
Karanth (Karanth 1995; Karanth and Nichols 1998) that discussed estimation of 
tiger abundance and density from camera trap data. On the heels of that work, 
Karanth et al. (2004) explored the potential application of camera traps as scientific 
tools and addressed questions such as why sample, what to sample, and how to 
sample rare or elusive animals in an inferential framework. Karanth et al. (2006) 
later demonstrated how camera trap data can also be used to assess changes in vital 
rates for tigers over long periods of time. We viewed it as a sign of encouragement 
for this technique when Karanth et al. (2004), among others in the volume by 
Thompson (2004), received a favorable review even in a journal devoted to surveys 
of crypto-zoological creatures such as Bigfoot (Arment 2005)!

Given the notable increase in the scientific use of camera traps over the past 
several years, we believed that the time was right for a thorough review that details 
the various aspects of camera trapping, focusing on the estimation techniques that 
are currently available for analyzing the scientific information (i.e., photographs) 
and for making strong inferences. Despite the widespread use of camera traps, 
many of the techniques best suited for data analysis and statistical inference remain 
somewhat of an enigma to many practitioners. All too often, the concepts underly-
ing the approaches to inference are not presented adequately or are scattered 
throughout the scientific literature. In this volume, we provide the conceptual 
frameworks underlying the inference methods themselves, and the manner in which 
these methods can contribute to the larger endeavors of science and management.

As we went to press, the most recent Mammal Congress (10th) in Mendoza, 
Argentina, had just passed into our rearview mirror, having hosted another sympo-
sium on the use of camera traps in animal ecology. Many of the contributing 
authors from this volume participated in the symposium, providing a thorough 
review of what is possible when the modern technology of camera trapping is allied 
with sound estimation techniques. Thus, it is our hope that this volume will serve 
as a solid foundation for designing studies and interpreting the data, and also as a 
flexible springboard for future theoretical and empirical development.

Beltsville, Maryland, USA Allan O’Connell
Laurel, Maryland, USA Jim Nichols
Bangalore, India Ullas Karanth
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1.1  Evolution of Camera Trapping

Cameras (and in a more general sense photography) are a staple of modern society, and 
from an early age we have learned that these devices can document every aspect of our 
lives. From a societal perspective, the use of cameras in science has a long history in 
fields such as astronomy and medicine; amongst varied opinions, photography has 
been suggested as a demystifying force in nature (Marien 2002). It should come as no 
surprise then that advances in photography and cameras would inevitably find their 
way into the conservation arena, and over time, become a  preferred tool for sampling 
animal populations. In recent years, the use of camera traps in the study of wild ani-
mals has undeniably improved our understanding of their ecological relationships and 
more recently, population dynamics. There are now literally hundreds of studies and 
surveys being conducted that involve camera traps, from urban parks to the most 
remote jungles. A search of the published literature in the Web of Science database 
recently pulled up 180 citations for “camera traps” over the past 5 years. In addition, 
the grey literature on this topic probably includes many more hundreds of contribu-
tions, especially when one considers the global interest in documenting biodiversity. 
Camera traps have been used to sample species ranging from the very common [e.g., 
white-tailed deer Odocoileus virginianus, raccoons Procyon lotor] to species that are 
rare, elusive, and often enigmatic [e.g., snow leopards Uncia uncia].

The evolution of the camera trap (i.e., remote trigger) as a scientific tool has 
spanned nearly the entire Twentieth Century (see Chap. 2), but the speed of innova-
tion has varied, depending on societal interests, cultural tendencies, and preference 

A.F. O’Connell (*) 
U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD 20705, USA 
e-mail: aoconnell@usgs.gov
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based on long-held traditions. For example, an increasing interest in animal welfare 
has prompted an interest in non-invasive sampling techniques (Long et al. 2008). 
Technological advances in fields such as electronic engineering have benefitted 
camera traps due to automation of system components, miniaturization, and net-
worked systems, all attributes of modern camera trap systems. These advances have 
enabled practitioners to use camera traps more efficiently and to sample a variety 
of species under vastly different environmental conditions. Finally, as camera trap 
systems have become more efficient and reliable, the costs of purchase, operation, 
and maintenance have decreased significantly, further stimulating interest.

The development and use of powerful analytical techniques to make appropri-
ate inferences from camera trap data has experienced a similar evolution. However, 
despite the advantages of estimation methods and probability sampling, these 
approaches have been slow to become the methods of choice. In contrast, many 
programs that use camera traps continue to rely on judgment or convenience 
sampling and then use the resulting data as indices. Although such programs are 
relatively inexpensive and easy to implement, they typically provide biased para-
meter estimates. Making valid inferences about populations requires addressing 
two important sources of variation: detectability and spatial variability (Lancia 
et al. 1994; Anderson 2001; Pollock et al. 2002). Addressing spatial variability 
requires some consideration of probabilistic sampling, where data from the sam-
pled sites allow for inferences to the larger area of interest (i.e., study area). The 
sampling design must also be efficient (in terms of precision) in estimating the 
parameters of interest, such as rate of change in abundance. Use of indices requires 
strong assumptions about detectability and the relationship between the count and 
the parameter of interest (e.g., abundance, density). However, without information 
about the validity of such assumptions, an index is of little value in making inferences 
to populations (Thompson et al. 1998, Chap. 6).

Factors such as economics or logistics are frequently used as grounds for not 
accounting for detectability or spatial variability. Indeed, these factors represent 
real issues that can limit the scope of most scientific endeavors. However, early 
consideration of study objectives in the context of either advancing science or 
informing management is critical for making inferences about the targeted popula-
tion that are useful to the overall endeavor (Yoccoz et al. 2001; Nichols and 
Williams 2006). In the case of species such as jaguars Panthera onca or tigers 
Panthera tigris, which occur at low densities or have movement patterns that do 
not lend themselves to traditional sampling methods, investigators first need to 
consider an appropriate sampling scheme for the area of interest. Research and 
monitoring of animal populations require an investment in time and effort before 
field work begins to ensure that these programs can generate reasonable estimates 
of relevant parameters.

Throughout this volume we have asked that contributors provide the concep-
tual frameworks that underpin the techniques discussed. We believe that opportu-
nities are lost when biologists rush to set up camera traps without adequate 
critical thought devoted to their sampling design, program objectives, and 
expected outcomes. We implore the users of camera traps to explore the “toolbox” 
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of estimation methods for analyzing these data, and we hope that the contents of 
this volume offer everyone that possibility.

1.2  Book Organization and Chapter Summaries

Camera trapping involves much more than just the analytical approaches discussed 
previously. A variety of considerations are relevant to the successful conduct of 
field research or surveys with camera traps. Knowledge of biology of the study 
species is critical. So too is an understanding of the environmental, social and 
resource availability contexts in which the camera trap study is to be conducted.

This volume does not provide a broad account of the use of camera traps for 
photographing animals in the wild. Instead, we have focused more narrowly on the 
use of camera traps in the conduct of science and management. This focus has led 
us to organize the volume around specific quantities, information, and associated 
methodological and analytical approaches. Our purpose is threefold: (1) to recount 
the story of camera traps, what they were during the early stages of development, 
what they have become, and what lies ahead, (2) to provide information on how 
best to use camera traps in the sampling of animal populations, and (3) to provide 
information on the concepts and technical aspects of the analytical techniques best 
suited to make reliable inferences from camera trap data. To achieve these goals, 
we review the historical aspects of how camera trapping has evolved in modern 
times, starting with the basics of setting up equipment and keeping systems oper-
able. In the early Twentieth Century, maintaining equipment was as much of an 
issue as documenting a target species. We devote a chapter to the various types of 
equipment available, because as camera traps have become increasingly popular as 
tools of scientific study, they are also popular with the sporting public. As a result, 
there is no shortage of systems or manufacturers available. We have tried to mini-
mize the confusion one might encounter when faced with having to decide which 
system is best for a particular use. Following these chapters, the remainder of the 
volume is devoted to synthesizing how camera trap studies can be conducted to 
contribute to science and/or management. Without first having a clear picture of 
study objectives in terms of gaining reliable knowledge (Romesburg 1981), sam-
pling with camera traps, as with most other animal sampling programs, can have a 
predilection to never-ending studies or surveys that provide little in the way of use-
ful information to managers. Use of “targeted” monitoring that is a component of a 
larger program of science or management is presented as a means of maximizing 
the chances for success when conducting camera trap studies (Nichols and Williams 
2006). Details are provided on the use and application of a number of analytic 
techniques, some old and others relatively new, that allow the practitioner to esti-
mate important population parameters such as density and abundance. In some 
cases we start with the basic conceptual framework underlying a technique and then 
provide case studies as examples. In other chapters, due to the diverse scope of 
work, we review a specific topic (e.g., behavior) in terms of investigations that have 
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been conducted with camera traps, hoping to leave the reader with a broad, but 
 in-depth overview.

The uses of camera traps in wildlife ecology can be viewed as falling along a 
continuum from basic inventories, where the objective is to document the occur-
rence of a species (e.g., Gilbert et al. 2008), to the use of photographic images as a 
basis for constructing statistical models designed to assess population status 
(i.e., abundance, density) (Karanth and Nichols 1998) and investigate population 
dynamics (Karanth et al. 2006). Analogous work has been completed with camera 
traps in situations where individuals cannot be identified, but the importance of 
detectability is considered when making inferences about population status and 
change (Zielinski et al. 1997; O’Connell et al. 2006). This volume is focused on the 
portion of the continuum that includes technical topics contributing to science and 
management. We discuss the current state of the art and also try to peer into the 
future. In anticipation of what we have pulled together on the following pages, we 
provide below brief summaries of each chapter. If the reader has interest in only a 
specific topic or technique, this summary information may focus and direct that 
interest to a specific chapter. On the other hand, if one views this volume as a 
primer for scientific and management uses of camera traps, then these summaries 
provide a synthetic picture.

In Chap. 2, Kucera and Barrett review the history of cameras traps, dating back 
more than 100 years to a time when taking pictures of animals was simply referred 
to as “wildlife photography”. They discuss the key individuals who led the transi-
tion from the large bulky cameras and cumbersome flash equipment of the early 
Twentieth Century (and even earlier), to the simple, remote trigger systems of the 
early 1900s, through to the technological advances of the mid 1900s that reduced 
the size of cameras, batteries, and other system components. This chapter also 
includes a review of the various types of studies for which these systems were used 
(e.g., nest predation), the various animal groups studied, and the unique sites where 
practitioners deployed camera traps. The authors take us through the various stages 
of how camera trapping transitioned from photography as an art form used by the 
Zoological Photographic Club in Britain to the cutting-edge science of recent years 
that has now set the stage for camera traps as a scientific technology of the future.

In Chap. 3, Swann, Kawanishi, and Palmer review the modern-day equipment 
used in camera trapping. The popularity of the technique has resulted in a variety 
of manufacturers and no shortage of equipment options. Even for the most experi-
enced field personnel, the myriad of camera traps now available for purchase can 
lead to multiple choices for virtually any system component: sensors, triggers, 
images, and power supplies. In addition, the authors offer some guidance on ideas 
related to different system conditions, types of studies, and target species. The 
chapter also offers the reader a primer on the technology and principles underlying 
the application of remote photography in modern ecological research.

In Chap. 4, Nichols, Karanth and O’Connell narrow the discussion to camera 
trapping designed to inform science or management. They propose that the infor-
mation gained from camera trapping is most useful when it is focused on increasing 
the knowledge base for science or assisting managers in making informed decisions 
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about the resources they are charged with managing. The chapter promotes critical 
thinking in terms of constructing and discriminating among hypotheses, collecting 
data, developing models and deducing associated predictions, and using estimation 
methods to make strong inferences about the target resources. The discussion turns 
to the utility of formal decision-making processes (i.e., structured decision-making) 
and the four components of such processes: objectives, management actions, mod-
els and monitoring. Structured decision-making approaches should be useful in 
helping managers to make informed decisions in the face of different types of sys-
tem uncertainty. Monitoring programs serve critical roles in structured decision 
processes, and a clear recognition of these roles is very useful in designing associ-
ated sampling programs, including programs based on camera traps. Whether the 
goal is science or management, this chapter sets the stage for use of the estimation 
methods discussed in most of the chapters that follow.

In Chap. 5, Bridges and Noss review how camera traps have been used to study 
animal behavior or ethology. The authors review various behavioral topics studied 
with camera traps such as nest predation, foraging, circadian rhythms, sociality and 
niche partitioning, reproduction, and habitat use. The chapter provides an  overview 
of each of these topics, a summary of what has been published, and descriptions of 
how camera trap data in behavioral studies can be analyzed. The authors also dis-
cuss the benefits of using remote sampling systems to gain insights to behavior that 
contrast with insights based on more traditional approaches (e.g., radio telemetry). 
The reader can expect to become familiar with the scope of topics in behavioral 
ecology that have been studied using camera traps and to gain some understanding 
as to what will be possible in the future.

In Chap. 6, O’Brien reviews the concepts behind the use of camera trap data to 
estimate abundance, density, and relative abundance of animal populations. The main 
focus of this chapter is on the use of capture–recapture (CR) techniques to provide 
inferences about the abundance of a population for a single species. The chapter 
discusses the fundamental concepts underlying CR estimation, emphasizing the 
importance of spacing (i.e., spatial variability) of camera traps, and differences in the 
designs of studies providing data to be used with closed, open, and mixed time scale 
 models. The reader is taken through the evolution of the various approaches used to 
estimate density and relative abundance, two topics with long and varied histories, 
especially with camera traps. Several different methods that are used to determine 
density from photographic information are reviewed, from less formal approaches 
(e.g., mean maximum distance moved (MMDM), nested grid analysis) to the more 
formal (and recent) spatially explicit CR models based on maximum likelihood and 
Bayesian inference methods. Given the widespread use of camera trap data for devel-
oping indices of relative or indirect abundance, this chapter closes with a brief 
discussion of a topic that will be of interest to many individuals. In summation, this 
chapter is much more than a simple compendium of methods, as O’Brien offers an 
informed opinion about the relative utilities of different approaches.

In Chap. 7, Karanth, Nichols, and Kumar discuss the use of “closed” CR models 
to estimate abundance of tiger populations. The use of closed models involves a 
relatively short sampling period, the assumption being that no changes occur in the 
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target population (e.g., births, deaths, immigration, or emigration) during the  study 
period. The authors provide details on all aspects of conducting a study of tigers 
using camera traps and discuss the various issues confronted when sampling a large, 
rare, wide-ranging species. A thorough review is provided, including recommen-
dations for equipment and field practices, choice of trap sites, survey design and trap 
placement, and data analyses.

In Chap. 8, Maffei, Noss, Silver, and Kelly summarize the camera trap surveys 
used to estimate abundance and density of the jaguar, the largest felid found in the 
Americas and probably the most intensively studied anywhere. Under mounting pres-
sure due to habitat loss and fragmentation, poaching, etc., the jaguar has been the focus 
of >80 individual studies, some of which are still in progress with others planned. The 
authors review the methodological differences among these surveys and the difficul-
ties in developing sampling designs that properly deal with spatial variability. Despite 
great interest in this elusive species, the authors recommend treating these initial 
surveys as “preliminary”, considering the rapid development of analytical techniques 
to address issues of spatial variability and density estimation (see Chap. 10).

In Chap. 9, Karanth, Nichols, Kumar, and Jathanna review the use “open” CR 
models for assessing the population dynamics of tigers. Under these models, vital rates 
can be estimated, as the models can accommodate changes in the sampled populations 
(e.g., birth, deaths, emigration, immigration) across time and space. In addition to cap-
ture probabilities, modeling data from open populations requires survival probability 
parameters. The authors discuss the various analytical requirements for the open model 
approach of Cormack–Jolly–Seber (Leberton et al. 1992) and Pollock’s robust design 
(1982), which combine open and closed population modeling. The various issues sur-
rounding model selection are also presented. Finally, the authors use their 9 year 
camera trap survey of tigers in Nagarahole Park, India, to demonstrate the utility of 
the robust design approach.

In Chap. 10, Royle and Gardner advance the use of spatially explicit CR models 
to estimate the density of a population using camera traps. They develop an exten-
sion of the classical closed CR model by modeling the observation process (i.e., 
encounters of animals with traps) as a function of both trap locations and the spatial 
distribution of animals. Key to this approach is the use of a Bayesian framework 
with data augmentation, a technique originally developed to deal with individual 
covariates in closed CR models (Royle et al. 2009). We believe that this work for-
mally links the encounter information collected in camera trap arrays to the con-
cepts of home range and territory. Spatially explicit CR models represent an 
important new methodological advance, and we expect rapid development of this 
approach in the future.

In Chap. 11, O’Connell and Bailey present the basics of occupancy estimation 
(see also Chaps. 12 and 13), a technique that simultaneously estimates the probabili-
ties of occurrence and detection for a species. Basic approaches are briefly reviewed 
including inferences based on single and multiple seasons of data, single and 
multiple species, use of multiple methods (that include camera traps), and species 
interactions. The relationship of occupancy to abundance/density is also briefly 
discussed, along with the role of camera trapping in large-scale monitoring programs 
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that use occupancy as a state variable. Relatively new models are reviewed for 
which camera traps have potential as a useful sampling technique: habitat occu-
pancy dynamics, multiple states and multiple scales. Study design considerations 
and software options are also provided [e.g., GENPRES (Bailey et al. 2007)].

In Chap. 12, Kéry deals with the difficult issue of estimating size, composition, 
and the dynamics of entire communities (i.e., species richness). In the context of 
this chapter, species replace individuals. The chapter begins with a review of the 
options available for estimating species richness, with a focus on the basic frame-
work of CR and occupancy approaches to community inference. Kéry notes that 
closed CR models designed to estimate the abundance of a population can also be 
used to estimate species richness. In the context of this chapter, species replace 
individuals. The utility of CR models stems from the fact that they accommodate 
imperfect detection as part of the observation process that generates the counts of 
species. Occupancy-based estimation approaches (Chap. 11) are described for use 
with single or multiple sites and with closed or open systems. Model construction 
and options (e.g., robust design, hierarchical frameworks), inferential capabilities, 
and specific instances where model assumptions may not hold are meticulously 
presented. Sampling design considerations are reviewed (i.e., spatial variability), 
and various software options [e.g., COMDYN (Hines et al. 1999)] are provided.

In Chap. 13, O’Brien, Kinnaird, and Wibisono use some of the approaches 
 presented in Chap. 12 for estimating species richness and related parameters. They 
use the same maximum likelihood methods and CR models presented earlier on a 
camera trap survey in Bukit Barisan Selatan National Park in Indonesia. The objec-
tive was to produce estimates of species richness for medium- and large-sized, 
terrestrial and semi-terrestrial mammals, and the four largest species of terrestrial 
birds. The chapter includes a discussion of the influence of rare species on the 
precision of estimates, as well as the pitfalls one encounters with community-level 
inference. In the end, camera trapping was deemed a successful technique for esti-
mating species richness, but require adequate sampling effort and spatial coverage.

In Chap. 14, Nichols, O’Connell, and Karanth look at what the future may hold 
for camera traps. Prospects and updates for equipment and technological advances 
are reviewed, along with development of websites and cooperative databases for the 
sharing of camera trap data. Recommendations are provided on how camera trap 
data might be used in new ways to improve estimates of population parameters 
discussed previously in this volume. The authors discuss the potential for supple-
menting camera trap data with information gained from other techniques such as 
DNA analyses and radio telemetry. The potential for multispecies occupancy modeling 
and additional inference about community dynamics is also discussed.

The counting of biological organisms has a rich history of methods development, 
with many key advances in field sampling and treatment of the resulting data (Elphick 
2008). We believe that camera traps will ultimately be viewed as an important meth-
odological development for counting and detecting animals, and for making infer-
ences about populations and communities and the changes they undergo. Looking 
forward, we hope that this volume contributes in some small way to the evolution and 
development of camera trap methods and analytical options.
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2.1  Introduction

The human desire to observe wild animals without disturbing them goes back at 
least to hunter-gatherers who constructed blinds. Our ability to do so was greatly 
enhanced with the development of photography and other, even more recent, inno-
vations such as small, portable batteries, electric lights, and digital equipment. 
These technologies allow us to make undisturbed observations on a wide variety of 
wildlife, in a wide variety of habitats, at all hours, and under the most challenging 
of conditions. Our early ancestors were motivated by a desire for animal products. 
Today, desires for undisturbed observations of wildlife range from recreation and 
an aesthetic appreciation of nature to increasing our scientific understanding of 
animal populations and their relationship to their environment.

Modern photographic equipment, camera-triggering devices, and compact power 
sources allow us unprecedented, unobtrusive access into wildlife habitats using 
automated camera traps. Even people with no scientific training can now address 
simple questions such as “What animal is in my backyard at night?” Wildlife 
 scientists are using modern remote camera equipment to answer more sophisticated 
questions such as “What animal species occur in a certain area?”, “What are they 
doing?”, and even “How many are there?” Detecting cryptic or rare species, delin-
eating species distributions, documenting predation, monitoring animal behavior, 
and estimating population size and even vital rates are topics that are now being 
addressed by scientists using remote photography. Such pictures can be worth 
much more than words alone. This review will briefly describe the development and 
use of remote photographic equipment up to the refinement of techniques for 
quantitatively assessing the demographics of wildlife. This last topic is treated in 
various chapters in the current volume.
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2.2  Early Developments

Photography was invented and refined in the Nineteenth Century (Newhall 1982). 
Heavy, bulky equipment and slow film and lenses notwithstanding, the new tech-
nique was soon applied to photographing nature. Guggisberg (1977) described one 
of the first successful attempts to photograph wild animals by Professor G. Fritsch, 
a German explorer in South Africa in 1863. In another instance, one of the earliest 
examples of “endangered species” photography, a captive quagga Equus quagga 
was photographed at the London Zoo in the early 1870s; by that time it had already 
become extinct in the wild. In 1870, Charles A. Hewins of Boston produced a photo 
of a white stork Ciconia ciconia on a nest at Strassburg. One of the earliest uses of 
wildlife photography for scientific purposes was during 1872–1876 on an oceano-
graphic voyage by the English vessel HMS Challenger. On this expedition, 
C. Newbold, a corporal with the Royal Engineers, photographed rookeries of rock-
hopper penguins Eudyptes chrysocome and breeding albatrosses Diomedia spp.

Wildlife photography became popular in the late Nineteenth Century. According 
to Guggisberg (1977), by the year 1900 there were four million camera owners in 
Britain; the Zoological Photographic Club was founded in 1899. Technological 
advances resulted in smaller, more portable cameras. The “Bird-land Camera” was a 
type of reflex camera developed by English bird photographer Oliver Pike in the early 
1900s and marketed as “Specially designed for Natural History Photography”. In the 
United States, A. G. Wallihan (1906) published “Camera shots at Big Game,” a col-
lection of photographs of elk Cervus elaphus, mule deer Odocoileus hemionus, 
pronghorn Antilocapra americana, mountain lions Felis concolor, bobcats Lynx 
rufus, and other wildlife taken in the Rocky Mountains; the book’s introduction was 
by Theodore Roosevelt.

These early wildlife photographs were taken by the photographer manually 
releasing a shutter. Technological developments that produced much faster shutter 
speeds allowed Eadweard James Muybridge in 1878 to line up a dozen cameras and 
have them triggered by a horse breaking strings as it galloped past. This not only 
demonstrated that all four feet of a horse are off the ground at certain points in a 
gallop, but was the beginning of a rigorous understanding of animal locomotion, and 
ultimately led to the development of motion pictures (Guggisberg 1977; Newhall 
1982). This was also one of the first examples of an animal taking its own picture.

George Shiras in the 1890s was the first to develop a method using a trip wire 
and a flash system in which wild animals photographed themselves. His “flashlight” 
photographs won a gold medal at the 1900 Paris World Exhibition and were pub-
lished in National Geographic Magazine (Guggisberg 1977; Shiras 1906, 1908, 
1913. Shiras recorded numerous wildlife species with trip wires, including American 
mink Mustela vison, raccoons Procyon lotor, white-tailed deer O. virginianus, North 
American porcupines Erithizon dorsatum, muskrats Ondatra zibethicus, snowshoe 
hares Lepus americanus, striped skunks Mephitis mephitis, American beavers 
Castor canadensis, black and turkey vultures Coragyps atratus and Cathartes aura, 
northern bobwhite quail Colinus  virginianus, cardinals Cardinalis cardinalis, Eastern 
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gray squirrels Sciurus carolinensis, Virginia opossums Didelphis virginiana, gopher 
tortoises Gopherus polyphemus, caribou Rangifer tarandus, moose Alces alces, 
grizzly bears Ursus arctos, and elk. Shiras was successful in photographing so many 
wild species in part because of the variety of methods he developed to induce the 
animal to pull the trip wire. For example, he often used bait tied to the trip wire that 
attracted animals and induced them to pull on it, such as cheese for photographing 
raccoons and carrion for vultures. He also placed the wire across likely travel 
routes to photograph elk. Shiras used a particularly clever way to photograph a 
beaver. He tied the trip wire to a dislodged stick in the beaver’s dam; at night, 
when the beaver repaired the dam, it took its own picture.

In the early decades of the Twentieth Century, there were several other success-
ful attempts around the world to have animals to take their own pictures. The 
German sportsman and photographer Carl Georg Schillings adapted Shiras’ meth-
ods to the wildlife of East Africa in 1903 and 1904. Using bait such as a live don-
key, and photographing at waterholes, Schillings (1905, 1907a, b) produced 
spectacular photographs of many wildlife species including African lions Panthera 
leo, leopards P. pardus, spotted hyenas Crocuta crocuta, and jackals Canis sp., all 
taken by the subjects themselves. William Nesbit (1926) published the first detailed 
guide to outdoor photography, and stated that “flashlight trap photography,” where 
a wild animal takes its own picture by tripping a wire, “is a most fascinating sport 
and is deservedly becoming more and more popular” (Nesbit 1926:62). He acknowl-
edged the assistance of and included photos by Frank Chapman, William T. 
Hornaday, and George Shiras, the last of whom he described as “the father of this 
class of animal photography” (Nesbit 1926:303), and included brief biographies 
and literature citations of a “Who’s who in nature photography.” The book provided 
detailed descriptions of camera equipment, baits to attract different animals, high-
speed flash apparatus, and trip wires to release the shutter. Nesbit also published a 
photo of the first wild tiger P. tigris taken with this apparatus, by F. W. Champion 
of the Indian Forest Service. Champion (1928, 1933) subsequently published sev-
eral books describing his experiences and including many photographs of tigers and 
other animals such as leopards P. pardus, leopard cats Felis bengalensis, jungle cats 
F. chaus, fishing cats F. viverrinus, striped hyenas H. hyaena, sloth bears U. ursi-
nus, and ratels Mellivora capensis. In Michigan, Harris and DuCharme (1928) used 
Nesbit’s apparatus, and some they made themselves, to photograph beavers and 
other animals using trails made by beavers.

In a purely scientific context, Frank M. Chapman, Curator of Ornithology at The 
American Museum of Natural History in New York, worked with trip wires and bait 
to document the species present on the then-recently established research island 
of Barro Colorado in Panama. In his “census of the living” (Chapman 1927:332), 
using Nesbit’s apparatus, he successfully photographed mountain lions, ocelots 
Leopardus pardalis, white-lipped peccaries Tayassu pecari, Baird’s tapirs Tapirus 
bairdii, and coatimundis Nasua sp. in the tropical forest. This is likely the first 
explicit attempt to document the species present in an area with remote photogra-
phy. Chapman also discussed distinguishing individual animals in the photographs; 
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based on one animal’s markings, he concluded that he had several photographs of 
the same mountain lion and at least one different individual in another photograph. 
He also made inferences about the animals’ behavior. For example, he noted that 
several of the cats seemed to be aware of the trip wire and attempted to step over 
it; the peccaries showed no such awareness. These themes of recognizing individu-
als and observing animal behavior have been developed greatly in more recent 
years.

Another early developer of the animal-triggered remote camera was Tappan 
Gregory, an attorney from Chicago. Gregory (1927) described taking remote 
photographs of a porcupine and a white-footed mouse Peromyscus leucopus, 
using a trip wire to discharge a flash. He subsequently developed more sophisti-
cated methods with which he successfully recorded photographic images of a 
wide variety of North American wildlife (Gregory 1930), and worked on scien-
tific endeavors with the U. S. Bureau of Biological Survey, Chicago Academy of 
Sciences, Smithsonian Institution, and the National Zoo. On scientific expedi-
tions, using the camera traps he developed, he obtained photographs of wolves 
Canis lupus in Louisiana in 1934 and mountain lions in northern Mexico in 1937. 
Gregory (1939) published detailed plans of his camera traps, and discussed at 
length their operation, including mounting them on a tree, setting up a field dark-
room, and safety issues regarding the use of magnesium flash powder. Stanley P. 
Young (1946) of the Bureau of Biological Survey, who lead the expedition to 
Mexico, used several of the mountain lion photographs in his book, and discussed 
the use of catnip oil to attract the animals to a treadle that, when stepped on, oper-
ated the camera.

2.3  The Modern Era

By the mid-Twentieth Century, smaller photographic equipment and the replace-
ment of the clumsy and dangerous magnesium flash powder with flash bulbs 
allowed further refinement of remote wildlife photography. Several plans for 
remote cameras to record wildlife activity were published during this time. Gysel 
and Davis (1956) described an inexpensive photographic unit powered by a 6-V 
battery that operated when an animal pulled on bait attached to a string. In a some-
what cumbersome sequence of events involving two knife switches, a solenoid, and 
a modified mouse trap, a single photo was taken by a camera with a synchronized-
flash unit. Designed to be housed in a wooden box, this system reportedly per-
formed well in all seasons in Michigan. Gysel and Davis (1956) photographed 
eastern fox squirrels Sciurus niger taking seeds in a study of forest trees, a striped 
skunk taking a dead rabbit from a trap, and red squirrels Tamiasciurus hudsonicus 
and blue jays Cyanocitta cristata taking mourning dove Zenaida macroura eggs in 
a nest predation study. By placing the trip wires across den entrances, they identi-
fied the size of foxes using den sites, and determined which species used  different 
kinds of ground dens.
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Pearson (1959, 1960) designed a photographic system to monitor the activity 
patterns of small mammals, particularly California voles Microtus californicus, in 
runways in California. His system employed a 16-mm movie camera, operated one 
frame at a time so that several hundred exposures could be made without resetting 
the system. Pearson (1959) described two triggering systems for his cameras, nei-
ther of which used a trip wire. In one system, a treadle placed in the runway closed 
an electric switch when a mouse ran across it and caused a photograph to be taken. 
The other used a beam of deep red light that was positioned across the runway such 
that when interrupted by an animal, an exposure was made. He included a clock, 
ruler, thermometer, and hygrometer in the field of view of the camera. By using 
ear-tags and patterns of clipping fur, Pearson (1959) was able to recognize indi-
vidual mice over time. Most photographs were of voles and western harvest mice 
Reithrodontomys megalotis, but he also identified 26 other species of mammals, 
birds, and lizards in his photographs. He was able to go beyond simple species 
identification, however, and described daily and annual activity patterns of the two 
mouse species as well those of brush rabbits Sylvilagus bachmani and shrews Sorex 
spp., and he described effects of temperature and relative humidity on the activity 
of shrews and western fence lizards Sceloporus occidentalis.

Other investigators used equipment based on that described by Pearson (1959). 
Using the treadle placed in runways, Osterberg (1962) studied the activity patterns 
of northern short-tailed shrews Blarina brevicauda and meadow voles M. pennsyl-
vanicus in Michigan, and related them to weather, time of day, and season. Buckner 
(1964) used the design employing the light beam positioned across the runway to 
release the shutter. Working in a tamarack Larix laricina bog in Manitoba, he pho-
tographed nine small mammal species, and contrasted the daily activity patterns of 
snowshoe hare, red squirrel, and red-backed vole Clethrionomys gapperi. He 
adapted the system to operate from a 6-V car battery, increasing its portability, and 
suggested that the system might be of use in “…obtaining seasonal population 
estimates of small mammals” (Buckner 1964:79).

Dodge and Snyder (1960) presented detailed plans for a more portable remote 
camera system that, unlike the one described by Pearson (1959), did not require 
110-V A.C. power but operated off a 6-V car battery and allowed multiple expo-
sures without resetting the apparatus. Their design incorporated a light beam that 
when broken by the body of an animal activated a solenoid connected to the cam-
era’s shutter. They also used a movie camera that advanced one frame each time 
the shutter was activated, thus allowing a series of pictures to be taken. Abbott and 
Dodge (1961) used a similar apparatus in a study of forest seed predation. Abbott 
and Coombs (1964) described an even more portable device that used a 35-mm 
camera with a bulk film magazine that allowed up to 420 exposures, rather than 
the usual 36, and thus could be left in the field longer without changing film. The 
35-mm film produced larger negatives than the 16-mm movie cameras used in the 
earlier designs. Powered by 6-V motorcycle batteries, this unit weighed 22 kg. 
Winkler and Adams (1968) developed a movie camera system to study the activity 
of terrestrial carnivores around bat caves. This system employed an automobile 
battery, four 100-W aircraft landing lamps, and a photoelectric-cell trigger. 
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Winkler and Adams (1968) were able to photograph 31 separate 2-sec movie 
sequences per roll of film, and identified raccoons and striped skunks as they 
entered and exited bat caves.

Although much of this earlier work focused on mammals, remote camera systems 
were also developed for avian research. Cowardin and Ashe (1965) described a 
system to count waterfowl that employed a 35-mm half-frame camera that took 
72 exposures. It was controlled by a timer that took pictures every 15 min. They 
placed the cameras in randomly selected quadrats in different marsh habitats to 
estimate waterfowl use. Temple (1972) developed a time-lapse photographic sys-
tem to observe the nesting behavior of peregrine falcons Falco peregrinus. He used 
an inexpensive Super-8 movie camera attached to an electronic timer. With a capac-
ity of 3,600 frames on a roll of Super-8 film, the camera could be left in place for 
days without changing film. Because this system did not function at night, no flash 
capability was required, and thus battery requirements were minimal. The system 
weighed 4 kg. Diem et al. (1973) described camera systems using either a Super-8 
or 35-mm camera that could withstand the rigors of a Wyoming winter. Although 
more expensive than the Super-8 cameras, the 35-mm cameras allowed the use of 
telephoto and wide-angle lenses. The cameras were attached to an intervalometer 
and took a picture at intervals from 5 to 15 min. They were used in studies of breed-
ing colonies of California gulls Larus californicus and American white pelicans 
Pelecanus erythrorhynchos, as well as big game and livestock grazing and large-
mammal movements across highways. Powered by a 6-V battery, the systems 
weighed between 2.2 and 5.8 kg, and thus were substantially more portable than 
earlier designs, and operated in temperatures as low as −35°C. Goetz (1981) devel-
oped a remote photographic system to study predation on wild turkey Meleagris 
gallopavo nests using a Polaroid camera that had an automatic flash, exposure 
control, and film advance and contained its own power supply in the film pack. He 
modified the camera to be triggered through a microswitch beneath the nest plat-
form, and reported excellent results under all light conditions. An obvious advan-
tage of such a system is that the exposed film is available immediately. The system 
as described was limited to ten pictures using flash. An inherent limitation on using 
Polaroid film is low temperature inhibiting the chemical developing process; it 
would have unlikely been useful in winter temperatures below freezing.

Echoing the work of Chapman (1927) in the Neotropics, Seydack (1984) 
described the operation of a 35-mm camera system to census rainforest mammals 
in South Africa. He connected a trip plate placed on a trail to an autowinding 
 camera and flash; a photo was taken when an animal weighing 2 kg or more stepped 
on the plate. The camera was powered by a 6-V battery and had a flash capacity of 
16 bulbs. He deployed six camera systems systematically along paths within 100-ha 
survey blocks. Seydack (1984) left the cameras out for 1 month, and then moved 
them to the next survey block. He repeated this procedure six times over 3 years. 
He detected 14 species, and made estimates of population density for bushbuck 
Tragelaphus scriptus, identifying at least 61 individuals by coat pattern and, in 
males, horn morphology. He could also recognize individual leopards by their pat-
terns of spots and honey badgers Mellivora capensis by differences in their white 
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lateral stripe. Seydack (1984) grouped the species he detected into: (1) those that 
are individually recognizable and thus for which a density estimate may be calcu-
lated; (2) those not individually recognizable but, like the African porcupine 
Hystrix cristata and large-spotted genet Genetta trigrina, are relatively abundant, 
and (3) those not individually recognizable but are either rare or difficult to detect 
due to a behavioral characteristic. He concluded that there is “…a great potential 
for the photo-recording census technique as a versatile tool of quantitative research 
and general wildlife censusing” (Seydack 1984:14).

Hiby and Jeffery (1987) and Nicholas et al. (1991) used remote photographic 
systems to record the presence of Mediterranean monk seals Monachus monachus 
at haul-out sites in caves on the Greek island of Kefallinia. Because these rare seals 
are particularly sensitive to human disturbance, remote photography seemed appro-
priate to detect seals’ use of caves. They used automatic 35-mm cameras, operated 
by a trip wire made of fishing line, attached to the walls of suspected haul-out 
caves. They identified four individual Mediterranean monk seals using the caves.

Carthew and Slater (1991) described an automatic photographic system that 
employed a pulsed infrared beam as a triggering device. When the beam is inter-
cepted by an animal, the infrared sensor sends a signal to a modified automatic, 
35-mm camera with a dedicated flash, automatic exposure control, and a quartz 
data-back to record date and time on each frame. They used this system to observe 
animals passing along trails or the tops of logs, and to identify diurnal and noctur-
nal pollinators visiting flowering plants in Australia. Griffiths and Van Schaik 
(1993a) noted the utility of remote cameras in studying rainforest animals. They 
used remote photography to document the changed activity patterns and avoidance 
of areas used by humans by a variety of larger mammals in Sumatra (Griffiths and 
Van Schaik 1993b).

Mace et al. (1994) devised a remote photographic system for use in a systematic 
survey of grizzly bears in Montana. They adapted an automatic, 35-mm camera to 
be activated by a microwave motion and a passive infrared heat sensor. Using blood 
as an attractant at systematically deployed survey stations over 817 km2, they 
 photographed grizzly and black bears U. americana as well as 21 other species of 
wildlife, documented grizzly bear distribution, and ultimately were able to generate 
estimates of the abundance of grizzly bears in their study area.

2.4  Forest Carnivores

In the early 1990s there was an increasing awareness among wildlife managers in 
the United States that the conservation status of a suite of small and mid-sized 
carnivores, including the American marten Martes americana, fisher M. pennanti, 
wolverine, and lynx, was of concern. An ad hoc group of federal and state agency 
biologists and university researchers formed the Western Forest Carnivore 
Committee to gather what information existed on these species and to develop 
 reliable, non-lethal methods to detect their presence. One issue that immediately 
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presented itself was assessing the distribution of these shy, low density species. 
Because trapping them had been illegal for decades in most states, there was no 
recent reliable information on their occurrence throughout most of their historic 
range. During this period, Fowler and Golightly (1993) and Jones and Raphael 
(1993) developed and deployed inexpensive, 110-size cameras for field surveys of 
forest carnivores. Reminiscent of the system deployed by Shiras and Champion 
nearly a century earlier, these cameras operated when an animal pulled on bait 
attached by a line to the camera’s shutter release. They allow only one photograph 
to be taken without resetting the camera, and their utility is limited by severe 
weather and snow. Kucera and Barrett (1993) described the use of the commercially 
available Trailmaster® remote camera systems for detecting wildlife. With features 
similar to those described by Carthew and Slater (1991), the Trailmaster® com-
prises an automatic, 35-mm camera triggered when a pulsed infrared beam 
deployed over bait or across a trail is broken (see Swann et al., Chap. 3). Kucera 
and Barrett (1993) and Kucera (1993) used these systems to document the contem-
porary distribution of rare and shy carnivores in remote areas of California. Data 
from these remote camera stations combined with those from sooted-track-plate 
surveys formed the basis for describing the first contemporary distribution of fish-
ers (Zielinski et al. 1995) and American martens (Kucera et al. 1995) in California 
since the work of Grinnell et al. (1937).

Remote photographic techniques also played a large part in describing  non-lethal 
methods to generate reliable distribution data on a variety of rare carnivores, which 
was developed from efforts of the Western Forest Carnivore Committee (Zielinski 
and Kucera 1995) These authors also discussed the strategy behind designing sur-
veys for rare carnivores at both relatively small and larger regional levels, and 
provided guidelines for conducting such surveys and detailed instructions for using 
the equipment. This document provided general guidance for developing survey 
protocols for carnivore surveys throughout western North America and served as a 
guide for practitioners everywhere attempting to use cameras in the study of wild-
life populations.

2.5  Expanding Applications

Several investigators since Goetz (1981) have employed remote photography to 
investigate avian nest predation. Laurance and Grant (1994) and Major and Gowing 
(1994) identified nest predators of birds in Australia using different designs of 
remote cameras built specifically for them. Laurance and Grant (1994) identified 
nine species, including mammals, birds, and reptiles, visiting the artificial ground 
nests, and concluded that white-tailed rats Uromys caudimaculatus were the most 
common predator. Major and Gowing (1994), using a somewhat different apparatus 
to study predation on the nests of a tree-nesting passerine, identified the most 
important predator as the black rat Rattus rattus. Leimgruber et al. (1994) studied 
nest predation with infrared-triggered cameras at artificial nests in forests blocks of 
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different size in Virginia. They found 13 species preying on nests, and related 
 predation rates more to vegetation structure than to the size of the block of forest. 
They also suggested that simply removing a few larger predators such as striped 
skunks and raccoons from a diverse predator community would have little effect on 
nest predation. Danielson et al. (1996) described another design for a remote cam-
era to photograph nest predation events. They constructed a system in which an egg 
was placed on a microswitch; a photograph was taken when the egg was moved.

Through the 1990s, remote photography was being used in an increasing variety 
of studies. Sadighi et al. (1995) used the Trailmaster® system to monitor timber 
rattlesnakes Crotalis horridis in Massachusetts. They were able to recognize one 
individual through a scar on its head, and to count rattle segments as an indication 
of age on another. They used black and white film, but noted that by using color 
film, more individuals could probably be recognized by unique coloration and pat-
terning. They also noted that the cameras documented the presence of a snake with 
much less human effort involved than did an active search effort. Browder et al. 
(1995) presented a design for an automatic, 35-mm camera; they used it in an inves-
tigation of the scavengers of carcasses of migratory fishes, identifying mammal, 
bird, and reptile scavengers. Pei (1995) used remote photography to study activity 
patterns of the spinous country rat Niviventer coxingi in Taiwan. Foster and 
Humphrey (1995) employed automatic camera units to document wildlife use of 
highway underpasses in southern Florida. They documented mountain lion, bobcat, 
white-tailed deer, raccoons, alligators Alligator mississipiensis, and black bears 
using the underpasses, and based on their data discussed implications for planning 
and designing such structures to reduce collisions with vehicles while allowing 
animal movement. Jacobson et al. (1997) used an infrared-triggered remote camera 
to census white-tailed deer at bait stations. They identified individual male deer by 
antler and other morphological characteristics and estimated population size over 
several years.

Karanth (1995) used automated camera traps to individually identify tigers in 
Nagarahole, India, and then estimate their numbers using photographic captures 
under a formal capture–recapture (CR) modeling. His work was subsequently 
extended to several sites across India to estimate tiger densities (Karanth and 
Nichols 1998; Karanth et al. 2004). Densities of tigers (O’Brien et al. 2003; 
Kawanishi and Sunquist 2004), jaguars P. onca (Silver et al. 2004; Silver 2004; 
Soisalo and Cavalcanti 2006), leopards (Henschel and Ray 2003) and ocelots  
(Trolle and Kéry 2005) have been estimated using similar methods by other 
workers. More recently, application of CR models to camera trap data was further 
extended by a 9-year study that estimated survival, recruitment, temporary emigra-
tion, transience, and rates of population change in a tiger population in Nagarahole 
(Karanth et al. 2006).

In their review of the primary literature, Cutler and Swan (1999) reported that 
the topics of published research using remote photography in wildlife ecology most 
frequently comprised nest predation, feeding ecology, nesting behavior, and evalu-
ation of photographic equipment. Activity patterns, population parameters, and 
species detections were less common themes. Although researchers continue to 
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investigate these topics with remote photography, the pattern may have changed. 
The more recent literature reveals a widening array of topics being investigated 
using camera traps in a truly impressive variety of habitats and locations. Fedriani 
et al. (2000) employed camera trapping and leg-hold trapping to assess habitat rela-
tions and relative abundance of coyotes C. latrans, gray foxes Urocyon cinereoar-
genteus, and bobcats in southern California. Somewhat similarly, Jacamo et al. 
(2004) studied niche relations among the maned wolf Chrysocyon brachyurus, 
crab-eating fox Dusicyon thous, and hoary fox D. vetulus in central Brazil using 
camera traps to assess habitat and activity patterns. McCullough et al. (2000) used 
camera traps along with radiotelemetry to investigate the ecology of the small, forest-
dwelling Reeves’ muntjac Muntiacus reevesi in Taiwan. They also produced popula-
tion estimates based on CR models. By placing remote cameras in fig trees, Otani 
(2001) quantified the foraging frequency of Japanese macaques Macaca fuscata on 
figs and discussed the implications for seed dispersal in the forest. Beck and Terborg 
(2002) studied seed predation on palm Astrocaryum murumuru var. macrocalyx 
seeds under solitary trees versus dense groves in eastern Peru, and photographically 
identified several unexpected predators on the seeds. Kitamura et al. (2004) used 
remote photography to study seed dispersal and seed predation in forests in Thailand.

DeVault and Rhodes (2002) and DeVault et al. (2004) identified 17 species of 
vertebrates, including mammals, birds, and reptiles, scavenging on carcasses of 
small mammals in the eastern U.S. and suggested that scavenging may provide a 
larger component of the diet of some species than was previously thought. Main 
and Richardson (2002) assessed wildlife response to prescribed burning of forests in 
southwest Florida using camera traps distributed within forests before and after burn-
ing. Sequin et al. (2003) found that social and territorial status greatly affected the 
likelihood that a coyote would be captured by a remote camera. The dominant terri-
tory holders were most wary and rarely photographed; lower-status individuals and 
transients were detected on film much more often. Bridges et al. (2004) used remote 
cameras to monitor the denning behavior of black bears. Such cameras produced 
minimal disturbance to the animals, and provided insights into den emergence, 
behavior around the dens, and ages of cubs when they emerged (see Bridges and 
Noss, Chap. 5).

A particularly dramatic and valuable recent use of remote photography has been 
to document the presence of rare or presumed-extinct animals. For example, 
Surridge et al. (1999) documented a previously undescribed species of striped rab-
bit Nesolagus timminsi on the Southeast Asian mainland some 1,500 km north of 
the known range of the critically endangered Sumatran striped rabbit N. netscheri 
on the Island of Sumatra. Jeganathan et al. (2002) documented the presence of 
Jerdon’s coursers Rhinoptilus bitorquatus, a critically endangered, poorly known, 
nocturnal, cursorial bird inhabiting scrub jungle in India, using both camera traps 
and track surveys . They recommend that relatively inexpensive and rapid track 
surveys be conducted for the bird, and that camera traps be used to confirm any 
suspected tracks. Holden et al. (2003) documented the presence and distribution of 
the endangered Asian tapir T. indicus in a national park in Sumatra, in an area 
where neither they nor park rangers ever saw the animals. Using camera traps, these 
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investigators not only documented a surprisingly widespread distribution of the 
tapirs in the park, but discovered that they often occurred in pairs, and were found 
in a variety of habitat types in addition to primary forest. Lee et al. (2003) docu-
mented an expanded range of the Sulawesi palm civet Macrogalidia musschenbroekii, 
a little-known and endemic viverid, with the use of camera traps. Gonzalez-Esteban 
et al. (2004) documented the distribution of the European mink Mustela lutreola in 
northern Spain with remote photography, and recommended this method over live-
trapping on the bases of cost and effort. In the Atlantic Forest of eastern Brazil, 
Kierulff et al. (2004) documented the distribution of the highly endangered buff-
headed capuchin monkey Cebus xanthosternos in 13 forest fragments using camera 
traps baited with bananas. They also documented the presence of four other primate 
species, and gathered data such as the minimum number of individuals present, and 
number of infants. Recently, during an effort using camera traps to assess changes in 
the distribution of American martens over time in a study area in California’s Sierra 
Nevada, Moriarty et al. (2009) produced photographs of a wolverine, the first docu-
mented in California since 1922. Subsequent genetic studies indicated that it was 
probably a dispersing male from the northern Rocky Mountains.

Mammals are not the only targets of detection using remote cameras. Lok et al. 
(2005) used camera traps to supplement other survey techniques to document the 
avifauna of Bawangling Nature Reserve, on the tropical island of Hainan in the 
South China Sea. Some of the bird species captured on film were classified as 
Vulnerable or Near Threatened, several considered very rare, and some had never 
before been captured on film.

The results of other remote camera surveys have been less encouraging from a 
conservation standpoint. Tilson et al. (2004) surveyed an area of southern China 
comprising eight reserves in five provinces for the presence of the south China tiger 
P. t. amoyensis. They found no evidence of tigers and little potential prey. The 
absence of photographic detections mirrored the absence of reported livestock dep-
redations, and the authors conclude that it is likely that no tigers remain in this area. 
Numata et al. (2005) detected 18 species of mammals with camera traps with in and 
adjacent to a forest reserve in peninsular Malaysia, but these did not include the 
Asian elephant Elephas maximus, tiger, or sun bear Helarctos malayanus, and the 
authors concluded they are locally extinct. Among the species detected were 
domestic dogs used for poaching and hunting, and domestic cattle. Numata et al. 
(2005) did, however, confirm the presence of the Asian tapir in primary forest on 
the reserve; there is little published information on the current status and distribu-
tion of this species. In a forest reserve on Malaysian Borneo, Wong et al. (2005) 
used remote photography to monitor the physical condition, and document the 
starvation, of radiocollared sun bears and bearded pigs Sus barbatus. This occurred 
during a period of famine resulting from a fruit scarcity in the lowland tropical 
rainforest during a periodic, intermast interval.

Silveira et al. (2003) concluded that, despite relatively high initial costs, camera 
trapping was preferred over track surveys and direct counts in conducting rapid 
faunal assessments of mammals for conservation purposes. Similarly, Srbek-Araujo 
and Chiarello (2005) concluded that camera traps were an efficient way to inventory 
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medium- and large-sized mammals in neotropical forests. Trolle (2003) used camera 
trapping and other methods to survey mammals in the Rio Japuri region of Brazil, 
and detected 13 of 41 mammal species using both baited and unbaited camera traps. 
In northern Mexico, Lorenzana-Pina et al. (2004) used camera traps to inventory 
medium and large mammals. They detected 18 wild mammal species, an estimated 
80% of the medium- and large-sized mammals in their study area. Yasuda (2004) 
conducted a camera trap study of mammal diversity and abundance in central Japan, 
and developed guidelines for a minimum trapping effort to detect several species. 
Hirakawa (2005) developed a novel camera trap technique to detect bats. Knowing 
that insectivorous bats are attracted to any moving object of an appropriate size, he 
attached a pencil eraser to a line connected to a camera; when bats attacked the eraser, 
apparently mistaking it for insect prey, a photograph was taken. Research also con-
firms that remote photography is not the best tool for every job. In comparing survey 
methods for bobcats, Harrison (2006) found that detector dogs produced many more 
detections than did remote cameras, hair snares, or scent stations.

Conservation organizations now routinely incorporate the use of remote photo-
graphy in their efforts to document and preserve biodiversity around the world 
(Henschel and Ray 2003; Sanderson and Trolle 2005). The Wildlife Conservation 
Society produced the first-ever photograph of the rare servaline genet G. servalina 
in Tanzania (Brink et al. 2002; Anonymous 2002). Sanderson and Trolle (2005) of 
Conservation International presented a photograph of the Siamese crocodile Crocodylus 
siamensis in Cambodia, previously thought to have been extirpated throughout much 
of its range. Staff of the World Wildlife Fund recently documented a rhino ceros on 
the island of Borneo, one of the last of a subspecies of the critically endangered 
Sumatran rhino Dicerorhinus sumatrensis (Anonymous 2006). The World Wildlife 
Fund has an online posting (http://worldwildlife.org/cameratrap/) of photographs 
taken at camera traps from remote places around the world.

Other novel uses of remote photography continue to be reported. In Australia, 
Glen and Dickman (2003a) used remote cameras to evaluate the possibility that 
poisoned baits set out to kill European red foxes Vulpes vulpes and wild dogs as 
part of a program to protect the spotted-tailed quoll Dasyurus maculatus, an endan-
gered marsupial carnivore, would be taken by native, non-target species. As part of 
this research, Glen and Dickman (2003b) compared animal identifications from 
tracks left near baits to those from photographs taken of animals visiting the baits 
and found the track identifications inaccurate and unreliable, especially in unfavor-
able weather conditions. Following this, Claridge et al. (2004) investigated the 
behavior of the spotted-tailed quoll with the use of a remote, digital camera, allevi-
ating the need to process film and getting results immediately in the field. Hegglin 
et al. (2004) used camera traps to document the uptake of bait laced with a rabies 
vaccine by red foxes in Zurich, Switzerland. With the data they gathered, they were 
able to recommend designs of bait stations to facilitate vaccination efficiency and 
reduce loss of such baits to non-target species. Using remote cameras in addition to 
other sampling techniques, Mazurek and Zielinski (2004) investigated the value to 
wildlife of legacy trees, those old trees left in an otherwise commercially harvested 
redwood Sequoia sempervirens forest in northwestern California. Using the cameras, 
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they detected 13 species not detected by other survey methods. Rao et al. (2005) 
used camera traps to document the effect of hunting on the  distribution and relative 
abundance of wildlife near a National Park in Myanmar. O’Connell et al. (2006) 
developed models of site occupancy to be used in large-scale monitoring programs 
for medium-sized and large mammals from detection data generated at an array of 
sampling techniques that included camera traps.

Other important topics of wildlife conservation have been studied using camera 
traps. Staller et al. (2005) used remote video photography to document predation 
on northern bobwhite Colinus virginianus nests. Nest predation was attributed to 
many more predator species than anticipated, and included nine-banded armadillos 
Dasypus novemcinctus and bobcats. This work also verified the inaccuracy of using 
of only nest remains to make identifications of nest predators. The use of remote 
photography for fixed-place monitoring, notably in studies of highways and wild-
life, is common. Ng et al. (2004) documented the use of highway undercrossings 
by wildlife in southern California using remote photography. Goosem (2005) incor-
porated remote photography into a multifaceted scheme of monitoring wildlife use 
of crossing structures designed for a highway in Brisbane, Australia.

From the early work of Muybridge, Shiras, Nesbit, and Chapman, remote wild-
life photography has developed into a modern, high-tech field, and is being used to 
address an increasing variety of scientific and conservation issues. Combining 
human curiosity and ingenuity, these remote camera techniques have allowed pre-
viously unimaginable access into the lives of many wildlife species. Developments 
have been driven by advances in technology such as the electronic flash, smaller 
batteries, and, most recently, digital and web-based photography. Yasuda and 
Kawakame (2002) described an “online” remote video system that streamed video 
images from a digital camera through a server to a computer. This provided real-
time monitoring of wildlife and automatic storage of the digital images on the 
computer. Locke et al. (2005) described a web-based digital photographic system 
that could be used in remote areas. Triggered by a motion and heat sensor and with 
batteries that are continuously recharged with solar panels, the system can monitor 
wildlife at a remote site indefinitely, providing essentially real-time photographs 
without visits by humans to change film or batteries. Photographic results from this 
system can be seen at http://www.video-monitoring.com/wtek/.

A variety of commercially produced models are now available through outdoor 
and equipment suppliers and their internet outlets (e.g., www.cabelas.com). For 
example we have used RECONYX™ camera traps at all the water sources on a 
research station in central California to monitor wildlife on the 10 km2 property. 
We have obtained nearly two million photos of terrestrial vertebrates ranging from 
western toads Bufo boreas to rattlesnakes to mountain lions to California condors 
Gymnogis californianus. These systems can be left in the field for up to 4 months 
at a time, during which as many as 20,000 photos are collected, documenting the 
presence of wildlife every second an animal is within range. We have even “cap-
tured” poachers. In another ongoing project we deploy the same camera systems 
on a rotating basis every square kilometer over a 300 km2 region of the southern 
Sierra Nevada. The sites are baited for carnivores and checked weekly. Results are 
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 collected on site by reading compact flash cards with card readers. These major 
advances in  technology now allow monitoring of wilderness wildlife at a very 
 reasonable cost.

More than 100 years ago, the pioneering remote photographer Carl Georg 
Schillings recognized the effect of the modern world on its wild inhabitants. In pas-
sages that seem prescient, Schillings bemoaned the destruction of native fauna and 
flora, and observed that “Civilized man will destroy all that appears to him harmful 
or valueless, and will try to preserve only those animals and plants which he deems 
useful or ornamental” (Schillings 1905:2). He placed his photography and specimen 
collecting in the explicit context of increasing “…the pleasure and education of 
young and old” (Schillings 1905:10). We are confident that technological advances in 
remote photography will continue, at least in part as a spinoff from security concerns. 
We hope that developments in the field of remote wildlife photography continue to 
satisfy and pique human curiosity, increase scientific understanding, and promote the 
conservation of wild species and their habitats.
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3.1 Introduction

Methods for capturing animals on film when researchers are not present have been 
used in ecological research for decades, but use of “remote photography,” also called 
camera trapping, dramatically increased with the advent of commercial wildlife 
camera traps in the early 1990s (Kucera and Barrett 1993). Researchers planning to 
use camera traps now face an exciting but bewildering array of commercial choices, 
as well as many options for designing or customizing their own camera traps.

Choosing among different camera traps is complicated by the fact that they 
are designed for use in many different applications, under many field conditions, 
and for a wide range of target species. In addition to applications in hunting and 
wildlife viewing, research applications include studies of nest ecology, detection of 
rare species, estimation of population size and species richness, as well as research 
on habitat use and occupation of human-built structures (see review in Cutler 
and Swann 1999; see other chapters in this volume). These different applications 
may have very different requirements. For example, a trap to detect rare species in 
a remote area needs to be rugged, reliable, and capable of taking photographs for 
several weeks after it is set, while a trap used to observe feeding behavior of 
hatchling birds in a nest must be quiet, unobtrusive, and capable of taking a large 
number of images in succession.

Differences in field conditions and target species may also influence choice of 
camera traps. Weather conditions are a prime example: high humidity at a tropical 
field site creates completely different technological challenges for camera 
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equipment than cold and snow. Ecological work in an urban environment where 
vandalism is an issue requires different armoring/camouflage of equipment than is 
needed in a wilderness setting. Similarly, traps used to study passerine birds require 
different trigger systems, lighting sources, and focal length, than traps used to study 
large mammals, reptiles, or other taxonomic groups.

Camera traps have received wide coverage in both the scientific and popular 
literature because they provide opportunities to gather large amounts of data where 
little information was previously available and because the photos generated can be 
used in wildlife education. Nevertheless, stories of equipment failures in the field 
are legion among ecologists who use camera traps. Under worst-case scenarios in 
remote field settings, they have been known to fail to gather enough data for studies 
to be successful. Many of these problems can be alleviated with extensive pre-
planning, including review of the literature, consultation with experts, and practice, 
but we are not aware of published studies that assist researchers in choosing camera 
traps or making pre-planning more efficient.

The purpose of this chapter is to aid ecologists who are considering use of cam-
era traps in deciding which types of systems and features are most appropriate for 
their particular study design, field conditions, and target species. We present an 
overview of the basic technology of camera traps, including new and developing 
technology, and summarize advantages and disadvantages of different trigger types, 
housing, software options, cameras, and features, currently available for commer-
cial camera traps. In addition we review the literature on problems frequently 
encountered in the field and different ways these problems have been addressed. 
Our goal is not to recommend specific brands but to provide a framework that will 
allow researchers to more fully evaluate their needs and options in order to more 
efficiently and successfully use this technology.

3.2  Benefits and Problems with Camera Traps in the Field:  
A Review

The major ecological uses of wildlife camera traps have been to study nest ecology 
(Major and Gowing 1994; Liemgruber et al. 1994; Picman and Schriml 1994; 
Savidge and Seibert 1988; Laurance and Grant 1994) and record activity patterns 
of vertebrates (Carthew and Slater 1991; Griffiths and van Schaik 1993; van Schaik 
and Griffiths 1996; Bridges et al. 2004b; Jacomo et al. 2004; Rivero et al. 2005; 
see Cutler and Swann 1999 for a review). In recent years they have received 
increase use in documenting presence of rare species (Surridge et al. 1999; 
Delgado et al. 2004), rare events (Hirakawa and Sayama 2005), rare or melanistic 
individual animals (Martyr 1997; Azlan and Sharma 2002) species richness (see 
O’Brien et al., Chap. 13), and in estimating population parameters such as 
occupancy (O’Connell et al. 2006; Nichols et al. 2008); abundance or density 
(Mace et al. 1994; Karanth and Nichols 1998; O’Brien et al. 2003; Trolle and Kéry 
2003; Wallace et al. 2003; Kawanishi and Sunquist 2004; Maffei et al. 2004, 2005; 



293 Evaluating Types and Features of Camera Traps in Ecological Studies

Silver et al. 2004; Jackson et al. 2005; Soisalo and Cavalcanti 2006; see Karanth 
et al., Chap. 9), and survivorship and recruitment (Karanth et al. 2006). The great 
advantage of wildlife camera traps in comparison with other sampling methods 
such as direct observation, trapping, or tracking is that they can record very accurate 
data without the animal being captured or the researcher being present. In some 
ways these data are superior to human observations because, unlike data produced 
by live-trapping or observations, they can be reviewed by other researchers.

The benefits of using camera trap systems in ecological research are well-represented 
in the scientific literature. The problems with using them in the field have received 
less attention, but are well-known to experienced researchers. Primary among the 
issues is loss of data due to equipment failure. In response to a laudatory article on 
the Trailmaster® system in the Wildlife Society Bulletin (Kucera and Barrett 1993), 
Rice (1995) wrote about his experiences with chronic mechanical problems while 
using the same system in a tropical setting. Subsequent papers have also expressed 
similar concerns about camera traps in both tropical (Kawanishi 2002; Henschel 
and Ray 2003) and non-tropical settings (Khorozyan 2004; Roberts et al. 2006). 
Specific problems include both the failure of trigger mechanisms to activate the 
camera (and thus not record an animal event) or multiple photographs that contain 
no animals. Camera failure can be a nightmare for biologists using camera traps in 
remote locations because of the time it can take to realize the failure. For example, 
if visits to camera trap sites for exchange of films and batteries occur monthly and 
if prints or digital photos cannot be viewed in the field, two months of data may be 
lost before trouble-shooting can even begin.

Many factors influence the performance of camera traps. Poor performance is 
usually caused by a combination of weather, user experience, user skill, unique field 
conditions such as damage by animals, and poorly engineered equipment. In addi-
tion, there are great differences among types of camera traps in terms of their sensi-
tivity, zones of detection, and performance under different environmental conditions 
(Swann et al. 2004). Some of these factors can be alleviated, whereas others (such 
as weather) are beyond a researcher’s immediate control. It is therefore important to 
know the problems of potential equipment and select traps suitable for local applica-
tion. In the following sections we review the basic technology of camera traps and 
the different types and features of systems currently used in ecological studies.

3.3 Types of Camera Traps

Camera traps can be categorized in various ways, but the major difference is 
between non-triggered and triggered systems (Cutler and Swann 1999). Non-
triggered systems include cameras that are programmed to record images either 
continuously or at regular, pre-set time intervals. In contrast, triggered camera traps 
are inactive until they are triggered by an event of some kind, usually the arrival 
of an animal. The trigger may be mechanical, such as the animal stepping on a 
pressure plate that fires the camera, but more typically the trigger is an infrared light 
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source. Some commercial camera traps can be programmed both for non-triggered 
time-lapse and infrared-triggered operation (Table 3.1).

The differences among triggered and non-triggered camera traps are significant, 
and it is important to think carefully before choosing one instead of the other. 
In general, non-triggered camera traps are most appropriate when the event of 
interest occurs frequently (such as feeding behavior), or when a continuous record 
is required. Triggered camera traps are more appropriate when the event of interest 
is infrequent or discontinuous, such as when it is important to record the presence 
of a species or individual at a site. Also, non-triggered camera traps tend to require 
more power, which makes them less useful for remote situations. Bird studies often 

Table 3.1 Different types of camera trap systems and where they are most and least applicable 
in ecological studies

System Most applicable Least applicable

Non-triggered When animals are resident, 
occur in the open, or have 
high visitation rates, or when 
continuous data (e.g., to 
establish absence) is important

For rare species or infrequent events 
(power requirements can be 
large and photo analysis can be 
time-consuming)

Triggered – general When camera traps must be left in 
the field for a long period of 
time, but events are infrequent

When events of interest are frequent 
or continuous (triggered systems 
may be more complicated and 
less reliable than non-triggered 
systems for recording continuous 
or frequent events)

Triggered – 
mechanical

When activity of interest requires 
an animal to physically step in 
a specific location or pull on a 
bait or object of interest

When activity of interest may not be 
recorded by a physical trigger

Triggered – infrared  
– general

When activity of interest does not 
require animal to physically 
step in a specific location 
or pull on an object; when 
animal is too light or fast for a 
mechanical trigger

When the activity of interest 
involves a physical activity by 
animals (triggered traps may 
be more complicated and less 
reliable than mechanical ones)

Triggered – infrared  
– active

When it is important that non-
target species (e.g., those below 
certain height) do not trigger 
the trap, especially if film or 
digital images are limited. 
In general, when activity of 
interest is in a precise location 
but would not be detected by a 
mechanical trigger

In areas where vegetation growth 
is so fast that it will obscure 
the beam between maintenance 
visits. In areas where wind, rain, 
or snow frequently breaks the 
light trigger or blows vegetation 
or other objects across it

Triggered –infrared  
– passive

When a larger zone of detection 
of target species is desirable. 
In areas where wind, rain, and 
snow are common

In hot environments where 
equipment may fail to detect the 
differential temperature of target 
species
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use non-triggered systems, while nearly all large mammal studies use triggered 
traps, although this difference may be partially cultural among biologists.

3.3.1 Non-triggered Camera Systems

Non-triggered (time-lapse or continuous recording) camera traps vary greatly, but 
usually consist of a camera unit (a still camera with a time lapse timer, or a digital 
video camera), a power source, and a wire or wireless connection between them. 
Recent advances have made this technology much smaller and less expensive than in 
the past, and commercial systems are available for less than US $200. However, high-
end systems with remotely-controlled cameras, satellite connections, and solar panels 
for continuous power are also receiving use, particularly for monitoring animals that 
occur as groups in the open, such as sea birds, seals, and grazing animals.

Non-triggered camera traps are most commonly used for animal behavior and nest 
ecology (Cutler and Swann 1999). Continuous recording can also be advantageous 
over a trigger when it is important to know that an animal is absent from a location 
during a given time interval, as sometimes a rare animal may appear, but fail to trigger 
the camera trap. Non-triggered cameras may also fail less frequently in the field than 
triggered camera traps because there are fewer parts. Prior to the widespread use of 
commercial triggered camera traps, time-lapse cameras were used in studies of use 
of specific locations, such as wildlife water catchments (e.g., Bleich et al. 1997).

The great disadvantage of non-triggered camera traps is that many of them require 
larger amounts of power for continuous operation (however, some time-lapse systems 
require less power). This is often not a limiting problem in studies of nesting birds, 
where a long cord can connect to a direct power source, but makes use of these 
traps in remote field locations difficult unless solar power is used. A further 
disadvantage, for many studies, is the large amount of time required to review 
images to find target animals or events for analysis.

Use of non-triggered camera traps have become very popular as web cams 
operating in real time for educational use. Internet sites where viewers can view 
wild animals ranging from grizzly bears to bats to barn owls have proliferated in 
recent years (e.g., http://www.animalcameras.com). From a research point of view, 
the wide availability of this technology and the ease with which it can be distributed 
has created the potential for large-scale studies of nest ecology using citizen 
scientists who operate nest-box cameras in their backyards (Proudfoot 1996; Hudson 
and Bird 2006; Huebner and Hurteau 2007).

3.3.2 Triggered Camera Traps

Mechanical camera traps use either pressure pads (Griffiths and van Schaik 1993; 
Mudappa 1998; Fedriani et al. 2000; York et al. 2001; Moruzzi et al. 2002) or bait 
lines in which a line connects the trigger of a camera and the bait, decoy, or egg 

http://www.animalcameras.com
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(Picman and Schriml 1994; Cresswell et al. 2003; Glen and Dickman 2003; 
González-Esteban et al. 2004). A modification of the bait line works in a similar 
way as the pressure pad does whereby a micro-switch triggers a camera when bait 
is removed from a platform and completes the circuit (DeVault et al. 2004). 
Mechanically triggered camera traps have become less common in recent years due 
to improvements in light-triggered technology, but are appropriate for studies 
where an animal might closely inspect a small area or move an object of interest; 
they are often used in nest predation studies.

Light-triggered camera traps use a light beam (typically, an infrared beam) as a 
trigger and can be either “active” or “passive.” Active infrared-triggered traps emit a 
continuous beam from a transmitter to a receiver that is like an invisible string; when 
the beam is broken, a message is sent to the camera to record an image. Passive 
camera traps, which are far more common than active systems, consist of two separate 
sensors placed side by side that read a background temperature signature; when an 
animal passes in front of the sensors, both the movement detected by the two sensors 
and temperature change due to the animal’s different temperature signature trigger 
the camera trap to record an image (Swann et al. 2004). Active traps (e.g., the 
Trailmaster® 1500 unit) consist of a separate receiver and transmitter, as well as a 
camera and a connection (usually a cord) between the camera and the receiver, while 
passive camera traps usually bundle all of these components into a single box.

In general, active infrared camera traps work best for target animals of an 
identifiable height and allow for precise linear detection of the animal. However, 
active infrared traps tend to have a much higher rate of false triggers than passive 
traps, as events can be triggered whenever objects that are not animals (including 
not only blowing or growing vegetation, but even rain or snow) move through the 
infrared beam (Kawanishi 2002; Henschel and Ray 2003). Passive infrared traps 
have a wider “zone” of detection than active units, which allows detection of a 
greater range in animal sizes. However, detection zone sizes vary among passive 
units (Swann et al. 2004). Passive units are usually not as prone to being triggered 
by non-animals, but false triggers do occur, particularly when the zone of detection 
is very large. Most commercial passive infrared units come in a single unit and 
are easier to set up in the field than active traps, and as a result, the number of 
commercial passive camera traps has proliferated in recent years.

The greatest disadvantage of triggered camera traps in comparison to non-triggered 
traps, in addition to false triggers, is that sensors sometimes fail due to environmental 
conditions or operator error. However, their great advantage for wildlife studies, 
particularly studies of rare animals, is that they use little power and can be easily 
utilized for long periods in remote settings.

3.4 Camera Trap Features and Trade-offs Among Them

Most commercial triggered and non-triggered camera traps have special features that 
can greatly influence the number and quality of photographic images produced. As with 
all technologies, trade-offs exist among the different features that are available. 
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For example, because power is required for camera traps but direct current is not 
usually available in the field, commercial traps include many battery options. 
Batteries may be large or small; large batteries provide power for much longer periods, 
but are heavier to carry in the field. Rechargeable batteries are more expensive to 
purchase but will save money in the long run; however, rechargeable batteries do 
not last as long as alkaline batteries of the same weight.

Of course, one of the most important trade-offs is between the number of features 
available and their cost. Because camera traps range in price from less than $100 to 
thousands of dollars, it is fair to say that there is one that is available for nearly any 
project budget. Below is a summary of different features of camera traps and the 
trade-offs associated with them.

3.4.1 System Components

Non-triggered camera traps generally have at least two components (the camera 
and a power source), but triggered traps contain several components that either 
operate independently, or are bundled within a single unit. For most traps these 
components are the infrared sensor, the camera, and connective cords, but other 
components may include supplemental lighting or power sources. When the com-
ponents are set up separately, the advantage is flexibility that may lead to greater 
photograph quality. For example, if the camera is separate from the sensor it may 
be set a greater distance from, or at an angle to, the sensor, and background lighting 
may be more effectively utilized. Increasingly, non-triggered systems in particular 
can be customized to allow researchers to remotely control video cameras by tilting 
the camera and zooming or panning to animal subjects (e.g., robotic camera systems 
from See More Wildlife Systems; http://www.seemorewildlife.com).

The major disadvantage of multiple parts is that if any of the parts fail, the entire 
system may fail. Several studies have documented that single unit camera traps are 
less likely to fail in the field than multiple-unit systems. Cord failure resulting from 
chewing or pulling by animals is often cited as a major problem (Sequin et al. 
2003), but other examples include animal damage, misalignment, or battery failure 
of the sensor or camera (Main and Richardson 2002; Bridges et al. 2004a). In general, 
single units that contain all the components are also easier to transport, set up, and 
armor, and are usually recommended for research with multiple camera units in 
more remote field settings (Kawanishi 2002; Henschel and Ray 2003). However, 
some commercial systems with multiple components now provide wireless connec-
tions as an option (e.g., Faunatech, available from http://www.faunatech.com).

3.4.2 Housing

Housing for camera traps varies by color, weight, size, shape, weather-proofing, 
and durability (Table 3.2). Different color options, such as camouflage, may 
be desirable if reduced visibility of the trap to wildlife or humans is desired. 

http://www.seemorewildlife.com
http://www.faunatech.com
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The most durable traps are made of sturdy metal and are larger and heavier, but if 
the units need to be carried for long distances it may be desirable to use traps that 
are smaller and are made of a lighter material such as plastic.

Weather-proof housing is essential in areas of extreme weather, and it is impor-
tant to carefully check manufacturer’s specifications for different field situations. 
Tropical field conditions require units that are water-proof, with components that 
can all be kept dry during periods of high heat and humidity – which is often every 
day. A pack of fresh silica gel kept inside the unit can determine the air-tightness 
of the unit. If the color changes from blue to pink, the unit is not airtight. Camera 
traps in tropical areas must be equipped with rubber seals and any holes, such as 
for sensors and screws, must be sealed to prevent moisture from seeping in. 
Moisture damages computer components, causes sensors to malfunction, oxidizes 
metal parts, and causes film to stick inside the camera. In addition, ants and termites 
nest in housing that is not air-tight; termites eat interior parts, and ants can be 
hazardous to operators. Lastly, moisture from human perspiration can easily 
build up in non-waterproofed camera traps when being transported in a backpack. 
The extreme humidity is the biggest challenge to electronic equipment in tropical 
environments (Kawanishi 2002). Some camera traps are now manufactured specifically 
to work in these conditions.

Units that are advertised as effective to 100°F will be unsuitable in many desert 
areas. In general, due to the inherent qualities of infrared sensors, most passive 
infrared camera traps do not perform as well in extreme heat (Swann et al. 2004).

Vandal-proof housing and locks may not be necessary in some areas, but are 
absolutely critical in others. However, housing to protect camera traps from animals 
is very important in most field situations, although the animal problems may vary 
greatly depending on the species involved. Cables and cords that are chewed by small 
animals, such as rodents, may be reinforced by the manufacturer, or reinforced in the 
field with tinfoil or covered with a toxic substance. Many large mammals such as bears 
and elephants will destroy cameras when they encounter them, and armored systems 

Table 3.2 Housing and external hardware options available for camera traps

Feature Purpose

Camouflage color Lowers visibility of traps to animals and people
Water proofing Essential in rainy or humid environments to prevent equipment 

malfunction
Tree cables and locks Reduces risk of vandalism and theft
Compact unit size Smaller camera traps designed for nest boxes where little 

room is available
Noiseless housing Reduces noise produced by unit, such as by camera shutter 

click, so that animals are not alarmed
Sound recording Allows recording of sound of animal with images
Armoring of housing Reduces risk of damage by animals, vandalism and theft
Armoring of connective cables Reduces risk of damage by animals
Extra-length connective cables 

(for non-triggered systems)
Allows >100 m connectivity of cameras with other hardware 

for viewing, power, or transmission
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have been developed for popular commercial units such as the Camtrakker® 
(Grassman et al. 2005) and Trailmaster® (Karanth and Nichols 2002).

3.4.3 Software and Programming

Most commercial camera traps now contain software that can assist in system 
operation and increase functionality, many of which are very helpful for ecological 
studies (Table 3.3). Typical software features include options set by the user to 
record additional data (such as date and time of triggered events), to only record 
images at pre-determined times (such as at night) so as to save power or film or to 
pause the camera during events so that multiple images of the same individual are 
not recorded. The latter two options are useful if film is being used and needs to be 
conserved, but is less important for digital cameras. Recording of additional data 
such as time and date, or even temperature, may be important for many studies. 
Many camera traps also come with power options that reduce battery use and increase 
battery longevity, which is essential in remote field situations. Increasingly, camera 
trap features can be programmed directly from a laptop or personal computer.

Probably the most important issue that researchers planning a field project 
should recognize is that field biologists and their technicians vary in their technological 
ability and interest, and that more complicated camera traps are not suitable for all 
projects. As with system components, the greater flexibility that comes with more 
options may be offset by the greater chance than an important feature may be improp-
erly set or may fail under extreme field conditions. Many camera traps are equipped 
with default software options that are relatively easy to use, with additional 
features available for users who desire to use them.

Table 3.3 Software options available for camera traps. The most important trade-off with software 
features is the ability for researchers and field technicians to use them effectively

Feature Purpose

Event data recording To record time and date of event as data that can be downloaded
Event recording options To record events 24 h per day, or only at specific intervals to record 

events in order to reduce battery and film use
Image recording options Camera delay; to prevent capture of too many images, which may 

use up film and power
Speed options To reduce time between triggering of animal event and recording of 

photographic images
Power options Sleep mode, used to reduce battery use and increase battery longevity
Sensitivity settings Allow sensitivity to be set to detect target species; more sensitive 

settings will detect smaller, lighter species such as birds
Password protection Software theft devices, to prevent theft of data
Audio devices for target 

animals
Features such as “whistle stop,” to cause target species to stop in 

front of camera for better photograph
Data loggers To record environmental variables, such as temperature, while 

camera is operating
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3.4.4 Power

Electrical power for camera traps is often a limiting factor for their use in ecological 
studies, although great strides have been made in recent years to diminish power 
needs. Power can be provided by alternating current (AC), as from a cord plugged 
into a standard electrical outlet, or by direct current (DC) in the form of batteries or 
solar energy (Table 3.4). Most commercial triggered traps run on batteries, while 
most non-triggered systems run on AC. When it is possible to study animals near 
sources of AC, this power source has great advantages, but electrical outlets seldom 
exist in remote field settings.

Batteries used in camera traps may be alkaline, lithium-ion, or rechargeable, and 
commercial systems often provide the option to use any of these. Alkaline or lithium 
batteries are preferred by most researchers because they are reliable, give uniform 
power, and require no maintenance, as they are disposed of after use. Lithium-ion 
batteries are also reliable and have a longer life than alkaline, but are more expensive.

Where portability and longevity are important, careful choice of batteries is 
essential. Manufacturers often provide a range of performance indicators for their 
alkaline batteries, but the most reliable comparison can be achieved by researching 
(on the internet) the average watt-hours delivered by the battery. For example, an 
array of three D-cell pro batteries has approximately the same watt-hour rating as 
an external lithium battery pack. Typically, batteries for professional photography 
have the highest watt-hour rating. External battery packs are an option in many 
commercial camera traps, and may be constructed or armored to provide protection 
against animals and the elements.

Table 3.4 Power options for camera traps and their advantages and disadvantages

Feature Advantages and disadvantages

Alternating current (AC) Direct current is inexpensive and easy to use, but not realistic for 
remote field studies

Solar direct current (DC) Solar power provides continuous power so that fewer field visits are 
required but is expensive and heavy to transport. May be ideal for 
camera traps set for long periods in one location

Alkaline batteries Very dependable and provide uniform power expectancy. More 
expensive over time than rechargeable batteries and have a 
shorter battery life than lithium-ion

Lithium-ion batteries Very dependable and provide uniform power expectancy. Longer 
life than alkaline and as reliable, but are more expensive. More 
expensive than rechargeable over time

Rechargeable batteries Initial cost high but economical over time. Battery life is shorter 
than fresh alkaline and declines over time. More labor needed 
for batter management. May not work as well in humid areas if 
camera traps are not water-proofed

Fuel cells Volume and power-size ratios competitive with lithium-ion batteries. 
More “environmentally friendly.” Technology is still immature 
and not yet available in commercial camera traps
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Rechargeable batteries, which have a higher initial cost but can be economical 
in the long run, do not tend to last as long in the field as alkaline or lithium batteries. 
In part because they need to be recharged at an electrical source and require greater 
maintenance on the part of the researcher, they tend to be less reliable. Solar-
powered fuel cells have great potential for remote systems, and are available for 
some commercial applications; however, this technology remains too expensive for 
use in most ecological studies.

3.4.5 Camera Types

All camera traps, triggered or non-triggered, can utilize any type of camera once 
the trap begins to record images. Different traps use still and video cameras, as well 
as film and digital cameras, and the current options can be bewildering in their 
scope. Currently, film cameras used in many commercial units provide better quality 
images than digital cameras due to faster shutter speeds and the inherent trade-offs 
between power, speed, and image quality. However, digital technology is rapidly 
improving and digital cameras are rapidly replacing film cameras in commercial 
camera traps.

The obvious advantages of digital over film are that many more images can be 
captured on digital than on film cameras. Images can be stored, easily downloaded, 
and viewed on the computer and then selectively printed and distributed. Most digital 
camera traps are currently able to work for 30 continuous days, taking >20 pictures 
per day, using three D-cell, 15 watt-hour batteries. Shutter speeds of digital cameras 
are continuing to increase.

Use of video cameras, standard in most non-triggered camera systems, is an 
option for some triggered camera traps as well, but requires a larger power source. 
The great advantage of digital is that it provides continuous footage, which is 
particularly useful for capturing animal behavior (see Bridges and Noss, Chap. 5) 
or rare events, or where animals are in the open and can be viewed easily for long 
periods. The disadvantage of video is that has greater power needs, so that it is most 
commonly used where AC power sources are nearby or solar is available.

3.4.6 Camera and Lighting Options

Nearly all commercial camera traps include as standard features automatic focus 
and automatic flash as well as image time and date stamps (Table 3.5). Both film 
and digital cameras vary in their features as well as cost. Higher resolution digital 
photos provide better quality, but larger images take up more disk space.

During the night or in dark environments, lighting can make a significant difference 
in photo quality. Conventional commercial camera traps include a film or digital 
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instamatic camera that is modified to work with an infrared sensor; during low-light 
situations additional lighting is provided by an instant flash attached to the camera. 
This is sufficient for most field studies, but may be inadequate where animals are 
dark-colored and the background is very deep, or if photographs with greater clarity 
are needed. Supplemental lighting (Table 3.5) can be added in a number of ways, 
either as an additional commercial option, or by researcher invention. One method 
is to install “slave” flashes that respond instantly to the flash of the camera, and 
another is to increase flash capacity directly. Improved camera flashes, such as 
strobe flashes, can also increase image quality. Both supplemental lighting and 
strobe flashes require greater power than regular flashes. Some video-type cameras 
also deploy thermal imaging, which does not disturb animals but is a more expensive 
technology.

A few studies have looked at the negative response of animals to camera traps, 
and researchers have long been concerned that this might bias the results of ecologi-
cal studies (Wegge et al. 2004), especially of behavioral studies (Major 1991; Major 
and Gowing 1994; Laurance and Grant 1994; Liemgruber et al. 1994; Sequin et al. 
2003; Hegglin et al. 2004; Ball et al. 2005). However, one nest predation study 
(Thompson and Burhans 2003) found little evidence that camera presence affected 
predation. Besides olfactory and acoustic cues, camera flash may scare animals so 
that they avoid (or even destroy) camera traps. The major alternative light source is 
infrared, which is not usually detectable by mammals or birds. Infrared light can be 
provided as a flash source (Claridge et al. 2004), or can be operated continuously 
during pre-programmed hours of operation. Continuous infrared is often a standard 
feature in commercial nest-box cameras. The disadvantage of infrared light is that 
it does not provide as high quality images as other light sources.

Table 3.5 Camera features and lighting options for camera traps

Feature Purpose, advantages and disadvantages

Time and date recording Records time and date directly on image
Auto-focus Auto-focus to allow images to be focused when animals are at 

different distances from camera
High resolution camera Higher resolution for better quality images; lower resolution allows 

more images to be stored
In-field camera display View pictures in the field with camera display
Miniature camera size Can be inserted into nest boxes and other small spaces
Auto-flash Auto-flash allows night images (but consumes more power)
Flash focus Allows larger flash range
Infrared flash Decreases risk of target animals being alarmed by flash (but image 

quality is not as good as with regular flash)
Supplemental lights Better image quality than regular flash (but drains power and may 

alter animal behavior)
Strobe flash Better image quality (but drains power and may alter animal 

behavior)
Thermal imagery Allows lighting of animals at night with no disturbance (but poor 

image quality)
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3.5 Discussion

3.5.1 Working with Camera Traps in the Field

Choosing a trap to work with in the field is a difficult task because of the growing 
number of commercial camera traps and the complexity of features. We hope that 
this chapter can provide a framework for making decisions about different features 
of camera traps as the technology continues to improve.

The ubiquitous use of commercial camera traps in the field during the past 
decade has produced experts who have learned a great deal from their mistakes. 
Swann et al. (2004) review specific commercial infrared-triggered camera traps 
and discuss common field errors based on technical aspects of different traps. 
They conclude that researchers should choose camera traps based on the size of 
the target species and target area, and offer suggestions related to aspects of setting 
camera traps such as height and distance from target, anchoring, vegetation 
removal, and other factors that can be controlled by researchers. Because many 
problems in the field are related to inexperience of researchers, their strongest 
recommendation is that new researchers carefully read the instructions provided 
with new equipment and to practice using new equipment extensively before 
beginning fieldwork. As with any new skill or technology, there is no substitute for 
asking questions or working in the field with experienced practitioners before 
embarking on a research project.

3.5.2 Emerging Technology

Recent improvements in camera trap technology are many, and include the 
development of single-unit infrared traps and improvements in digital technology 
that allow many images to be stored between equipment checks, as well as 
non-triggered robotic cameras operated at very remote sites to view bird and sea 
mammal colonies. Most importantly, as with most developing technologies, nearly 
all traps have become smaller and less expensive, and as competition in this market 
increases we believe that there will likely be a decrease in the number of commercial 
traps available in the future.

An immediate future improvement in camera traps is likely to be the improved 
image quality of digital cameras. Much of the recent success of digital cameras lies 
in the use of CMOS (complementary metal–oxide–semiconductor) chips. Both 
CMOS and CCD (charge-coupled device) chips were invented during the 1960s, 
but it was only in the 1990s, with improvements in lithographic techniques, did 
CMOS become a viable technology for digital cameras. Compared to CCD, CMOS 
chips consume less power and have lower fabrication costs. After the release of 
the first mass production multi-megapixel CMOS sensor camera (the Canon© 
EOS-D30), wider adoption of CMOS by camera trap producers such as Bushnell® 
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and Cuddeback® occurred in approximately 5 years. It appears to be only a  
matter of time before production modules of camera traps attain the <50 ms 
shutter lag achieved by many leading digital single lens reflex cameras using CMOS 
technology.

Less immediately, researchers should expect some improvements in power 
options. No matter how much technology reduces the power consumption of camera 
traps, there will always be a demand to increase the power available to remote, hard 
to reach camera traps. Fuel cells provide the most promising solution, with the 
potential increased longevity and ease of refueling, not to mention the hope for 
environmental benefits. Canon’s© 2005 release of a digital camera with a fuel cell 
with the same volume energy density as current lithium-ion batteries, suggests we 
are still a number of years from fuel cell technology being able to widely benefit 
the camera trapping community.

Other contributions to this volume describe how camera traps are allowing 
ecologists to answer questions that have been previously difficult to answer. This 
trend will continue as camera trap power and performance issues are resolved and 
they become even less expensive and easier to deploy in the field. For example, 
multiple cameras set at a single site can improve the ability to identify individuals, 
which will improve precision of population estimates. Other researchers are 
currently developing plans for remote, continuous monitoring of a landscape using 
multiple camera traps. One promising trend is to couple infrared camera trap 
technology with wireless networks of camera traps in remote settings that can 
communicate with each other and with researchers back at the office via satellite 
(C. Bray, pers. commun., Fig. 3.1). Just as it took many years after the development 
of commercial camera traps for many of the current ecological applications to be 
fully developed, it is probably only fair to state that we are probably only beginning 
to realize the potential uses of these new technologies for addressing complex 
ecological questions.

Fig. 3.1 Prototype satellite linked, wireless camera trap network (C. Bray, pers. commun.; http://
scoff.ee.unsw.edu.au/posters/posters2006/Satellite%20Linked,%20Wireless%20Camera%20
Trap%20Network.pdf)

http://scoff.ee.unsw.edu.au/posters/posters2006/Satellite%20Linked,%20Wireless%20Camera%20Trap%20Network.pdf
http://scoff.ee.unsw.edu.au/posters/posters2006/Satellite%20Linked,%20Wireless%20Camera%20Trap%20Network.pdf
http://scoff.ee.unsw.edu.au/posters/posters2006/Satellite%20Linked,%20Wireless%20Camera%20Trap%20Network.pdf
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4.1 Introduction

Biologists commonly perceive camera traps as a new tool that enables them to enter 
the hitherto secret world of wild animals. Camera traps are being used in a wide 
range of studies dealing with animal ecology, behavior, and conservation. Our 
intention in this volume is not to simply present the various uses of camera traps, 
but to focus on their use in the conduct of science and conservation. In this chapter, 
we provide an overview of these two broad classes of endeavor and sketch the man-
ner in which camera traps are likely to be able to contribute to them. Our main point 
here is that neither photographs of individual animals, nor detection history data, 
nor parameter estimates generated from detection histories are the ultimate objec-
tive of a camera trap study directed at either science or management. Instead, the 
ultimate objectives are best viewed as either gaining an understanding of how eco-
logical systems work (science) or trying to make wise decisions that move systems 
from less desirable to more desirable states (conservation, management). Therefore, 
we briefly describe here basic approaches to science and management, emphasizing 
the role of field data and associated analyses in these processes. We provide exam-
ples of ways in which camera trap data can inform science and management.
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4.2 Science

4.2.1 Approaches to Science

Rather than attempt a review of the various approaches to the conduct of science, 
we will focus on what are widely viewed as key steps in the process. Most discus-
sions of science begin with hypotheses, “plausible stories” about how a studied 
system “works.” Science can then be viewed as a process of sifting through these 
hypotheses and trying to identify one or two that provide fair approximations to 
reality, in the sense that they permit explanation of past events and prediction of 
future ones. Some approaches to science focus on one favorite hypothesis at a time, 
with a sequence of pair-wise comparisons leading to an eventual winner, whereas 
other approaches consider multiple plausible hypotheses simultaneously, with sup-
port accumulating for the best one or two among them (e.g., Platt 1964; Hilborn 
and Mangel 1997; Nichols 2001; Burnham and Anderson 2002; Williams et al. 
2002; Stephens et al. 2005). Here we present brief sketches of these two approaches 
to science, emphasizing the critical step involving confrontation of predictions 
based on the different hypotheses with relevant data.

Single-hypothesis approaches to science typically compare the hypothesis of 
interest against a competing hypothesis, one at a time. In many cases the competing 
hypothesis is an omnibus hypothesis that is intended to represent anything other 
than the hypothesis of primary interest. For example, a hypothesis about a positive 
relationship between prey densities and tiger Panthera tigris numbers might be 
tested against a hypothesis that simply states the relationship does not exist. Such a 
test is based on a confrontation between the different predictions emerging from 
these two hypotheses and relevant data. The predictions typically come from quan-
titative models, which are simply mathematical representations of the hypotheses, 
or at least of the key relationships in those hypotheses (Levins 1966; Hilborn and 
Mangel 1997; Nichols 2001; Williams et al. 2002). For example, we could hypoth-
esize a linear model relating tiger abundance to prey density, with a positive slope 
(perhaps of a specified value) corresponding to our focal hypothesis and any other 
slope (e.g., £0) corresponding to the competing hypothesis. Neither the hypotheses, 
nor the associated models used to produce specific predictions, are viewed as 
attempts to describe reality. Rather, we recognize that we are incapable of perceiv-
ing reality in all its complexity, so our hypotheses and their associated models are 
viewed as simplified approximations of natural processes.

We distinguish between the two hypotheses by comparing their respective pre-
dictions against data collected in the field. The hypothesis test then requires that we 
assess whether the data correspond more closely to one hypothesis than the other. 
If the data are found to be equally likely to have been generated by either hypoth-
esis, then we conclude that they provide little support for the focal hypothesis. This 
conclusion may lead us to test the focal hypothesis again, or to modify it or develop 
a new hypothesis. On the other hand, if the data correspond substantially more 
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closely to the focal hypothesis, then we conclude that the competing hypothesis can 
be rejected and that the data support the focal hypothesis. Such a conclusion might 
lead to additional testing, with the idea that we develop more and more faith in the 
hypothesis as it withstands more tests.

A multiple-hypothesis approach to science (Chamberlin 1897) begins with a set 
of plausible hypotheses about the system of interest, and the process of science is 
used to discriminate among them and to select one (or perhaps two) that provides 
the best approximation to reality. As under the single hypothesis approach, models 
(typically quantitative) are developed for each hypothesis as a means of generating 
specific predictions. The study system is manipulated or simply observed, and the 
resulting data are compared against the model-based predictions of the different 
hypotheses. Faith is increased in models that predict well (small distance between 
prediction and observation) and decreased for models that predict poorly (e.g., 
Hilborn and Mangel 1997; Nichols 2001; Williams et al. 2002). Define Pr(data
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According to expression (4.1), our relative faith in the considered hypotheses, 
and thus in the members of the model set, evolves through time based on new infor-
mation (data

t
) and on the faith accumulated up until that time, p

i,t
. If the considered 

hypotheses include one that is a good approximation to reality, then we would 
expect its model weight to become large ( , 1i tp → ) and the weights for the other 
models to become small. If model weights fluctuate and do not accumulate for one 
or two models, then we may conclude that our set of competing hypotheses does 
not include a good approximation to reality, leading us to consider the development 
of new hypotheses.

Under both single- and multiple-hypothesis approaches to science, the confron-
tation of model-based predictions with observed data is the critical step. Hypothesis 
discrimination is accomplished using a sequence of paired comparisons under the 
single-hypothesis approach, whereas the multiple-hypothesis approach instead 
considers all hypotheses simultaneously at each comparison. But in both cases, the 
comparisons themselves ask how closely the data correspond to model-based pre-
dictions. The relevance of this sketch of approaches to the conduct of science to this 
volume is to provide a focus for the use of camera traps.
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4.2.2 Science and Camera Traps

The primary utility of data and estimates resulting from camera trap studies will 
thus be to provide the observations that are used to discriminate among competing 
hypotheses. For example, investigations of animal behavior using camera trap data 
might focus on a priori hypotheses about activity patterns of animals (e.g., nocturnal 
vs. diurnal). Temporal distributions of photographs of active animals (e.g., Dillon 
and Kelly 2007) would then be compared against predictions of competing models 
about activity patterns.

Camera trap data are increasingly being used to address questions about spatial 
and temporal dynamics of animal populations. Capture-recapture (CR) approaches 
(e.g., Otis et al. 1978; Williams et al. 2002; Amstrup et al. 2005) can be used to 
estimate abundance and density for animals that can be individually identified from 
photographs (e.g., Karanth 1995; Karanth and Nichols 1998). Karanth et al. (2004b) 
used empirical information on the proportions of prey populations typically taken by 
tigers and on the kill rates of individual tigers to develop a simple model predicting 
tiger density as a function of prey density. They obtained camera trap estimates of 
tiger densities and distance-sampling estimates of prey densities from 11 sites 
throughout India. These data represented a wide range of variation in tiger and prey 
density and were consistent with the mechanistic model (Karanth et al. 2004b). The 
field effort involved in this macroecological investigation was substantial but 
resulted in corroboration of an important hypothesis about the determinants of tiger 
density. Questions about temporal dynamics can be addressed by sampling the same 
areas at multiple points in time. For example, Karanth et al. (2006) used camera traps 
to sample tigers at Nagarahole Park periodically from 1991 to 2000. This work 
resulted in estimates of annual survival probability and of population growth rate 
that were used to draw inferences about population viability and stability.

When animals are not individually identifiable, camera trap data have been used 
to develop indices to relative abundance (e.g., Carbone et al. 2001). The difficulty 
in using such indices to discriminate among competing hypotheses is the inability 
to know whether observed variation in camera trap count statistics is attributable to 
animal abundance/density or detection probabilities or both (Jenelle et al. 2002). 
New approaches to abundance estimation based on occupancy modeling (Royle and 
Nichols 2003) or repeated counts (Royle 2004) permit valid inference about abun-
dance in some cases where animals are not individually identifiable.

Camera trap surveys at relatively large geographic scales can be used to estimate 
occurrence of a species across the landscape using occupancy models (Nichols and 
Karanth 2002; MacKenzie et al. 2006) that do not require individual identification. 
For example, MacKenzie et al. (2005) used data of Kawanishi on gaur (Bos frontalis) 
at different study areas in Malaysia to test hypotheses about area-specific varia-
tion in probabilities of occupancy. O’Connell et al. (2006) used occupancy model-
ing in conjunction with camera trapping (and two other sampling methods) to select 
from a variety of hypotheses about the influence of habitat on occupancy of several 
species of medium- and large-sized mammals on Cape Cod, Massachusetts, USA. 
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Information from this study was subsequently used to draw inferences about 
occupancy at two different geographic scales for the same species throughout New 
England (Nichols et al. 2008). Indeed, most camera trap studies that have used 
occupancy modeling have focused on spatial variation and habitat characteristics 
associated with such variation. However, if the same sites are surveyed with cam-
era traps over time (e.g., every year), then the resulting data can be used to draw 
inferences about occupancy dynamics and the rate parameters (probabilities of 
local extinction and colonization) that govern these dynamics.

Camera trap studies can also be used to test hypotheses of community ecol-
ogy (Tobler et al. 2008; O’Brien et al., Chap. 13). Species list data can be 
obtained for species photographed in different locations, and resulting data can 
be used to draw inferences about species richness using CR (e.g., Burnham and 
Overton 1979; Nichols and Conroy 1996; Boulinier et al. 1998) or occupancy 
(Dorazio and Royle 2005; MacKenzie et al. 2006; Royle and Dorazio 2008) 
approaches to modeling. Both modeling approaches lead directly to approaches 
for drawing inference about variation over time and space as well (Nichols  
et al. 1998a,b; Williams et al. 2002; Dorazio and Royle 2005; Royle and 
Dorazio 2008).

4.3 Management/Conservation

4.3.1 Structured Decision-Making: Introduction

Management and conservation can be viewed as decision processes by which 
humans attempt to move systems to desirable states (or maintain them there) and 
keep them away from undesirable states. At defined decision points through time, 
the manager decides what action to take, and the aim is to select the action that is 
most likely to achieve stated objectives. As an interesting comment on educational 
systems worldwide, we note that although management and conservation are pro-
cesses that entail decisions and actions, in many universities it is possible to obtain 
undergraduate and graduate degrees in wildlife management and conservation biol-
ogy without ever taking a course in decision-making. We believe that serious 
thought about decision-making has the potential to greatly improve our effective-
ness in wildlife management and conservation.

“Structured decision-making” is a general descriptor for a process that involves 
breaking decisions into component parts and initially focusing on each part sepa-
rately. Such decomposition appears to reduce confusion and lead to a useful clarity 
of thought. The components are then integrated to develop the full decision pro-
cess, leading to inferences about which actions are recommended. Informed 
decision-making in general, and structured decision-making in particular, require 
four basic components: objectives, management actions, models, and monitoring 
(Williams et al. 2002).
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4.3.2 Structured Decision-Making: Components

Objectives are simply clear statements of what managers hope to achieve with their 
systems. Conservation objectives might focus on minimizing a probability of 
extinction or maintaining a population above some specified threshold level. If the 
management problem includes multiple objectives and corresponding trade-offs, 
then it is sometimes possible to develop a common currency by which different 
consequences for the different state variables (variables that characterize system 
status; e.g., population size) can be evaluated. It is also possible to deal with mul-
tiple objectives via use of constraints. For example, one might seek to maximize 
timber harvest on an area subject to the constraint that population size of a focal 
species is expected to remain above some specified level. In order to use tools such 
as optimization for management decisions, objectives must be translated into for-
mal statements known as objective functions. It is important to note that objectives 
reflect human values and should thus be constructed with input from all relevant 
stakeholders. Such stakeholders include, but are not restricted to, scientists and 
managers.

Management actions are specified during the development of the decision pro-
cess, and the management decision then entails selection of one of these actions at 
each decision point. We prefer that the actions be discrete (as opposed to continu-
ous variables) and relatively small in number, as this approach offers advantages for 
learning and optimization. For example, North American waterfowl harvest man-
agement considers four discrete “packages” of hunting regulations ranging from 
very restrictive (expected to produce small harvest rates) to liberal (high harvest 
rates) (Nichols et al. 1995). Even when actions involve a continuous variable such 
as proportion of an area on which timber harvest is permitted, it is possible to 
simply discretize (e.g., proportion area subject to harvest may be 0, 0.05, and 0.10) 
in order to produce a small set of potential actions. As with objectives, potential 
management actions should reflect human values and should be developed with 
input from all stakeholders. For example, predator control is a potentially effective 
management action that managers may choose not to consider because of political 
or societal values.

Models provide a basis for predicting the consequences of management actions 
and are thus an essential component of any sort of informed management (Kendall 
2001; Nichols 2001; Williams et al. 2002). Such models might live only in the 
minds of experienced managers, but there are substantial advantages to making 
them more explicit and mathematical. These advantages include transparency and 
the ability to compute optimal solutions. Construction of mathematical models for 
use in decision processes must focus on changes in system state variables induced 
by implementation of different management actions. Variables that are not under 
the control of managers can enter models either implicitly as environmental varia-
tion or, if they are important influences and readily measured, explicitly. Frequently, 
there is substantial uncertainty about how actions translate into system responses. 
Such uncertainty can be accommodated by the inclusion of multiple models in the 
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decision process. Just as described for the multiple-hypothesis approach to science, 
multi-model management requires model weights or metrics reflecting relative 
degrees of faith in the different members of the model set (Williams 1996; Williams 
et al. 2002). Unlike objectives and management actions, the development of man-
agement models is primarily the task of scientists and managers. However, if dif-
ferent stakeholder groups have very different ideas about system response to 
management actions, then it is important that these disparate views be included in 
the model set for reasons of transparency and fair play.

The final component required for making informed decisions is system monitor-
ing. Indeed, camera trapping may form the basis for monitoring programs designed 
to inform certain management programs. For example, management directed at 
tigers might require estimates of tiger density or abundance across different times 
and/or locations, depending on the scale of the management problem. Estimates of 
state and other variables obtained from monitoring programs are used for three 
primary purposes in informed management (Yoccoz et al. 2001; Nichols and 
Williams 2006). The first purpose involves the state-dependence of management 
decisions. That is, the decision of what management action to impose at a particular 
decision point is likely to depend on whether population size, for example, is 
greater or smaller than we would like, or instead near a desired value. The second 
use of monitoring data is to assess the degree to which management objectives are 
being met. The third use of monitoring data is to inform our knowledge of system 
dynamics, as encoded in our system models. Data from monitoring programs are 
typically used to estimate the rate parameters (e.g., rates of survival, reproduction, 
local patch extinction) that populate the models. In addition, for management pro-
cesses that are repeated through time, adaptive management (e.g., Walters 1986; 
Williams et al. 2002, 2007) can be used as a means of simultaneously managing for 
objectives and learning about system responses to management actions. A key step 
in adaptive management (see below) is the comparison of system state, as identified 
by the monitoring program, against the predictions of the different models describ-
ing system behavior. This step permits learning in exactly the same way as 
described under multiple-hypothesis science, with new information about how well 
the different models predict, leading to updated weights reflecting their relative 
predictive abilities (4.1).

4.3.3 Sources of Uncertainty

Structured decision-making focuses on these four components (objectives, actions, 
models, monitoring) separately, hopefully leading to clear thinking about the nature 
of the decision process. However, even when the decision maker has fully devel-
oped these components, decision-making can still be difficult. A primary source of 
this difficulty is uncertainty. Some decision makers respond to uncertainty with 
paralysis and calls for “more information,” whereas the wise decision maker simply 
attempts to deal with uncertainty as part of the decision process (Walters 1986; 
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Williams et al. 2002, 2007; Nichols and Williams 2006). We recognize four 
categories of uncertainty in the management of animal populations and communities 
(e.g., Williams et al. 2002). First, ecological or structural uncertainty refers to 
the common situation in which system dynamics and, in particular, responses to 
management actions, are not completely known. As noted above, we can deal with 
this uncertainty via use of multiple models that incorporate our various hypotheses 
about system responses to management actions. Second, environmental variation 
represents an important source of uncertainty in all natural systems. Third, manag-
ers typically face the issue of partial controllability, in which management actions 
are applied only indirectly, and immediate effects of actions are characterized by 
uncertainty. Finally, partial observability refers to the manager’s inability to directly 
observe the state of nature. Instead, system state must be estimated, with resulting 
estimates characterized by uncertainty. Indeed, the estimation methods that are used 
with camera trapping data and emphasized in this volume are those that permit 
estimation of variances that characterize partial observability.

4.3.4 Adaptive Resource Management

Adaptive resource management is a form of structured decision-making that is useful 
for so-called sequential decision processes, processes for which management 
decisions are made periodically through time (Walters 1986; Williams et al. 2002, 
2007). For example, harvest management and certain kinds of habitat manipulation 
(e.g., prescribed burning) are frequently characterized as sequential decision pro-
cesses, with decisions (e.g., about harvest quotas or whether or not to burn) made 
each year or at specified time periods. At each such decision point, the manager 
must decide which management action to take based on objectives, available 
actions, models of system response (with their respective weights which govern the 
relative influence of different models in the decision) and the current estimated 
system state obtained from the monitoring program. The actual process of selecting 
an action may be informal or may involve formal optimization methods (Williams 
1996; Williams et al. 2002). In either case, the action is taken and the system 
responds in some manner. Monitoring then identifies the new system state, and 
comparison with model-based predictions leads to an updating of model weights 
using (4.1). At the next decision point (e.g., next year), armed with the same objec-
tives, set of potential actions, and model set, but with new model weights and 
estimate(s) of system state, the manager makes the next decision and the process 
proceeds in an iterative manner. Just as with the multiple-hypothesis approach to 
science, learning is reflected in the evolution of model weights over time, with 
weights becoming larger for the model(s) that predict system responses to manage-
ment well and smaller for those that predict poorly.

This iterative process of adaptive management can proceed indefinitely, but 
there is also an opportunity to revisit the components of the process. For example, 
after the process has been underway for some period of time, stakeholders may 
choose to reconsider objectives and/or available management actions. If none of the 
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models in the model set seems to predict well (this might lead to model weights that 
fluctuate and do not accumulate for a single model), then additions to the model set 
should be considered by scientists and managers. It is also possible that the moni-
toring program is not as informative as it could be, in which case it might be altered 
as well. This periodic revisiting of the components of adaptive management is 
referred to as double-loop learning (Johnson 2006; Williams et al. 2007). The only 
restriction on such reconsideration of process components is that it should occur at 
time periods that are long relative to the iterative phase of the adaptive management 
process described above.

4.3.5 Management, Conservation, and Camera Trapping

We are not aware of any management program as described above that is currently 
being informed by a monitoring program based on camera trapping. Certainly a 
number of camera trap studies have considered scientific hypotheses that should be 
relevant to management. For example the relationship between predator and prey 
density (Karanth et al. 2004b; Kawanishi and Sunquist 2004) is obviously relevant 
to the use of law enforcement and protection of prey as management actions of 
potential use in managing predator populations. Studies of population dynamics in 
areas that do (Karanth et al. 2006) and do not emphasize law enforcement and 
protection are relevant to management as well. Similarly, studies directed at model-
ing occupancy (as estimated from camera trap data) as functions of habitat covari-
ates (e.g., O’Connell et al. 2006) are relevant to potential habitat management.

We believe that monitoring programs based on camera traps have the potential to 
be very useful in future structured decision-making directed at animals that are most 
easily sampled by camera traps. For single-population management in which abun-
dance is the state variable of interest, camera trapping may be the most efficient means 
of monitoring, at least for animals that can be individually identified from photo-
graphs. In cases where occupancy or proportion of patches occupied is the state vari-
able of primary management interest, camera trapping will be the most efficient 
sampling approach for a number of secretive medium- to large-sized species 
(Karanth et al. 2004a). Animals that are more easily sampled by camera traps than by 
any other means (e.g., large cats) include several charismatic species at which substan-
tial conservation funds have been directed. It seems reasonable to expect greater 
accountability for use of such funding in the future, and this expectation should lead 
to increasingly focused management efforts guided by structured decision processes.

4.4 Discussion

This chapter has focused on the processes of science and management and may 
seem to some readers to be misplaced in a volume dealing with camera trapping as 
a sampling methodology. Our rationale lies in our belief that neither the data nor 
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the parameter estimates resulting from camera trapping have great inherent utility. 
Instead, they attain value only to the extent that they inform the larger processes of 
science or management in which they are embedded. This view of estimation and 
monitoring, not as stand-alone activities but as parts of a larger process, leads to the 
view that aspects of sampling design should also be inherited from the larger pro-
cess. Thus, there is no omnibus design for camera trap studies that should be uni-
versally applicable. Instead, design should be dependent on, and tailored to, the 
uses to which the resulting data and estimates are to be put.

This view does not seem to be widely held by investigators involved in camera 
trap sampling. All too frequently, it appears that estimates of density or abundance 
or occupancy based on camera trapping are viewed as ends in themselves, rather 
than as information useful in informing a larger process. To some extent, this view 
can be defended with the observation that estimation based on camera trapping is a 
relatively new methodology that must be properly tested and evaluated. Our claim 
is that basic approaches to estimation have now been provisionally worked out, and 
the bulk of this volume will elaborate these approaches. Given this stage of relative 
maturity, it is time for scientists and managers to shift primary focus from the meth-
ods themselves to their application in the conduct of science and management. So 
while the remainder of this volume emphasizes how to use camera trapping data to 
estimate and monitor quantities of interest, we ask the reader to consider the why 
of estimation and monitoring, with an eye towards specific uses of camera trap data 
to inform science and/or management.
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5.1 Introduction

The study of animal behavior has long been a topic of interest to evolutionary biologists, 
conservation biologists, and wildlife managers. The study of activity patterns is a 
subset of the general study of behavior. Jürgen Aschoff, famous for his research of 
circadian rhythms, stated in 1954 “an animal is active when it moves parts of its 
body or moves itself.” Despite the popularity of this research topic, recording and 
quantifying behavior and activity patterns in wild, free-ranging animals presents 
challenges and, to this end, a variety of techniques have been employed with varying 
degrees of success. Remote camera systems (i.e., camera traps) are the newest tool 
for researchers examining both animal behavior and activity patterns. Although not 
a panacea, camera traps have allowed researchers to overcome some of the 
 challenges that have hampered previous efforts. In this chapter, we review  applications 
of camera traps to the study of animal behavior and activity.

5.2  Traditional Techniques of Studying Animal Behavior  
and Activity

Direct observation of a study animal by a biologist physically present in the field is a 
time-tested tool for evaluating wildlife behavior and activity. Prior to the arrival of 
radio telemetry in the 1960s, direct observation was the predominant ethological tech-
nique, and despite many liabilities, is still commonly used today. Direct observation of 
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animal activity can be conducted for extended periods of time and used to evaluate 
reactions of the subject to environmental stimuli that otherwise would be difficult to 
document were a researcher not physically present with the animal. However, human 
presence can alter natural behavior and activity patterns of the target animals. 
Observational studies can also be limited by sample sizes due to logistical constraints, 
and spurious conclusions may be drawn if many hours of observation are conducted 
on only a small number of individuals.

Attaching radio transmitters to individual animals has proven to be a valuable 
tool for researchers examining activity patterns and behavior. Telemetry allows 
animals to be tracked across the landscape while generating information about  
their activity patterns and behavior. Consecutive triangulations in different loca-
tions and modulation in signal strength have been used as indicators that an animal 
was moving across a landscape. Because all animals are handled when transmit-
ters are attached, sex, age, reproductive status and other individual-specific param-
eters are often known and can be included as covariates in behavioral analyses. 
Additionally, unlike direct observational methods, researchers employing teleme-
try can gather data remotely with little disturbance to the animals. They also can 
monitor more individuals and gather data at times and in places not conducive to 
direct observation. However, inferences based on radio telemetry have inherent 
limitations due to biases associated with trapping and handling, and because mis-
interpreting signal strength fluctuations or triangulation error can lead to data 
errors. Thus, although both observational and telemetry-based techniques have 
played an important role in behavioral research, new methods were needed to allevi-
ate potential biases and allow for new avenues of investigation and insight.

5.3 Advantages and Implications for Using Camera Traps

Remote camera systems are one of the newest tools in the ethologist’s arsenal. They 
combine many of the advantages of the traditional techniques described above 
while offering a number of improvements. Although camera housing, sounds, and 
sometimes flashes associated with some camera systems could potentially modify 
behavior, disturbance is likely to be less than would be expected if the researcher 
were present directly observing behavior (Alexy et al. 2003; Bridges et al. 2004a; 
Griffiths and Van Schaik 1993). Data gathered using cameras for population esti-
mation sometimes allow researchers to concurrently quantify activity patterns of 
their target species (Bridges et al. 2004b; Dillon and Kelly 2006; Maffei et al. 
2004). Also, if non-target species can be photographed during sampling,  researchers 
also may be able to examine activity patterns of these species as well (Noss et al. 
2003, 2004). Because it allows researchers to simultaneously study activity patterns 
of multiple species using a single study design, researchers have recently started 
examining temporal activity partitioning and associated implications for niche 
overlap in sympatric species (Fedriani et al. 2000; de Almeida Jacomo et al. 2004; 
Rivero et al. 2005; Wacher and Attum 2005).
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In some cases, the use of camera traps requires identification of specific locations 
where animals are presumed to occur, thereby limiting the type of behavior that 
can be observed. For example, photographing nest sites can document predatory 
behavior, whereas camera traps located near carcasses or fruiting trees can observe 
foraging behavior. However, camera trap photographs may not provide specific 
information about behavior, as the animals’ actions sometimes cannot be determined 
from a single photograph. Behavior is often inferred from the presence of the animal 
in a particular location. For example, animals photographed at artificial nests 
are often considered potential predators of natural nests. Unless the predator is 
photographed with the broken eggshell in its mouth, however, predation can only 
be confirmed by a posteriori examination of the nest (Hernández et al. 1997). 
Patterns of habitat use are often based on comparative photographic encounter 
rates, although photos cannot distinguish animals that are occupying a particular 
habitat from those that are simply passing through.

Triggering mechanisms vary based on the camera systems’ intended applica-
tions. Many studies use commercially available camera systems that incorporate a 
motion and/or heat sensor to trigger the shutter when an animal is present. Some 
studies use actively triggered systems where breaking a beam of light triggers the 
camera (see Swann et al., Chap. 3). Nest predation studies sometimes utilize a trig-
ger system attached to an egg in the nest, ensuring that only displacement or 
removal of the egg, presumably by a predator, will trigger the camera. Other studies 
use a weight sensitive treadle to activate the system.

5.4 Case Studies

Use of camera traps to study animal behavior or activity patterns can be broadly 
divided into the following categories: (1) circadian rhythms, (2) nest predation, (3) 
foraging, (4) niche partitioning and social systems, (5) habitat use, and (6) refugia 
and reproduction.

5.4.1 Circadian Rhythms

Because an entire animal population, not just those individuals that can be physi-
cally captured, is potentially exposed to photography, researchers can come closer 
to population level assessment of activity than using other currently available 
techniques (Bridges et al. 2004b). In research involving American black bears 
Ursus americanus, Bridges et al. (2004b) recorded activity patterns at bait sites in 
Virginia and found bear activity was generally vespertine but exhibited seasonal 
differences with bears becoming more nocturnal in the fall, possibly in response 
to hunting seasons and associated pursuit by bear-hounds. Examining mule deer 
Odocoileus hemionus activity, Hernández et al. (2005) used camera systems 
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positioned at feed boxes and found that this species was most active from evening 
through early morning. Hicks et al. (1998) compared activity patterns of deer mice 
Peromyscus spp. in North Carolina and found that camera traps were not biased 
due to their ability to photograph individuals throughout the entire sample period. 
‘In contrast’ Sherman traps generated biased data because once the traps were 
occupied, they were no longer available for capture to indicate activity of the target 
species. In Malaysia, Azlan and Sharma (2006) found that tigers Panthera tigris, 
leopard cats Prionailurus bengalensis and clouded leopards Neofelis nebulosa 
were heavily nocturnal, whereas leopards Panthera pardus and golden cats 
Catopuma temminckii were less active at night. These tigers may have been 
most active at dawn and dusk to maximize encounter rates with both diurnal and 
nocturnal prey (Laidlaw and Noordin 1998). Di Bitetti et al. (2006) examined felid 
activity on trails in Argentina and found that ocelots (Leopardus pardalis) were 
primarily nocturnal with no significant difference between males and females and 
more activity during dark-sky periods (around the new moon). Similarly, Dillon 
and Kelly (2006) used camera traps to conclude that both sexes of ocelots in 
Belize were primarily nocturnal. Examining usage timing at highway underpasses, 
Foster and Humphrey (1995) found Florida panthers crossed exclusively at night, 
raccoons Procyon lotor and bobcats Lynx rufus crossed throughout the evening 
into morning, and white-tailed deer Odocoileus virginianus and wading birds were 
most frequently photographed during morning hours. Among the earliest studies 
using cameras, Pearson (1959) determined that meadow mice Microtus californicus 
were active all day and night, harvest mice Reithrodontomys megalotis were 
nocturnal, brush rabbits Sylvilagus bachmani were most active in the morning, and 
shrews Sorex ornaturs were nocturnal and more active in the winter.

Several large-scale studies have measured activity patterns and circadian 
rhythms for multiple taxa simultaneously. In the dry forests of Bolivia, research 
teams set cameras primarily on trails and roads (but also on salt licks, ponds, and 
river banks) and described the activity patterns for a variety of mammal species 
including: jaguars (Maffei et al. 2004), jaguarundi Puma yaguarondi (Maffei  et al. 
2007a), Geoffroy’s cats Oncifelis geoffroyi (Cuéllar et al. 2006), ocelots (Gómez et 
al. 2005; Maffei et al. 2005), crab-eating raccoons Procyon cancrivorous (Arispe 
et al. 2008; Gómez et al. 2005), crab-eating fox Cerdocyon thous and pampas fox 
Pseudalopex gymnocercus (Maffei et al. 2007b), lowland tapirs Tapirus terrestris 
(Gómez et al. 2005; Noss et al. 2003; Wallace et al. 2002), giant armadillos 
Priodontes maximus (Noss et al. 2004), three-banded armadillo Tolypeutes mata-
cus, agouti Dasyprocta punctata/variegata, paca Cuniculus paca, puma, gray 
brocket deer Mazama gouazoupira red brocket deer Mazama americana, collared 
peccary Pecari tajacu), white-lipped peccary Tayassu pecari, and Brazilian rabbits 
Sylvilagus brasiliensis (Gómez et al. 2005; Maffei et al. 2002). In Indonesian rain 
forests where camera traps were set along natural and human trails, Van Schaik and 
Griffiths (1996) describe activity patterns for wildlife in Sumatra and Java, report-
ing findings for 13 carnivores, nine ungulates, three other mammal species, three 
birds, and three reptiles.
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5.4.2 Nest Predation

The largest set of behavioral studies using camera traps has focused on predation 
of bird nests, permitting the identification of egg and fledgling predators at natural 
nests (Major and Gowing 1994; Smith 2004) or potential predators at artificial nests 
(J.W. Cain et al. 2003; Hernández et al. 1997; Leimgruber et al. 1994; Savidge and 
Seibert 1988; Sawin et al. 2003; Sieving and Willson 1999; Van der Werf 2001). 
Some studies also assessed the relative importance of these predators in relation to 
nest failure (Farnsworth and Simons 2000; Major et al. 1999; Meckstroth and Miles 
2005; Picman and Schriml 1994).

Liebezeit and Luke (2002) identified nest predation behavior using surveillance 
cameras (video and film) and found that raptors preyed on nestlings more fre-
quently than on eggs, whereas small mammals depredated nestlings and eggs in 
proportion to their availability. Buler and Hamilton (2000) compared predation 
activity at camera-monitored vs. camera-free nests, and concluded that predation of 
artificial shrub nests did not accurately mimic that of natural shrub nests, thereby 
emphasizing the need for research on natural nests. Using artificial nests and cam-
era traps, Laurance and Grant (1994) and Maier and DeGraaf (2000) confirmed a 
number of species as predators and other species as potential predators. Cooper and 
Ginnett (2000) compared predation levels at artificial ground nests at varying dis-
tances from deer feeders. Picman and Schriml (1994) found that mammalian preda-
tors were nocturnal, whereas avian predators were diurnal. In one of the few 
non-avian nest predation studies, Hunt and Ogden (1991) identified predators and 
timing of predation at American alligator Alligator mississippiensis nests and found 
that American black bears were the principal egg predators with common raccoons 
and rice rats Oryzomys palustris also taking eggs.

5.4.3 Foraging

Foraging areas are places that provide food, water, or nutrients for animals and can 
provide insight into animal behavior and activity patterns. Photographs allow for 
estimates of the timing, duration and frequency of visits by particular species 
(Claridge et al. 2004), determine group size and sociality (Altendorf et al. 2001; 
Hernández et al. 2005; López González and Lorenzana Piña 2002; Miura et al. 
1997; Otani 2001), and document behavior–vigilance vs. active foraging (Altendorf 
et al. 2001; Hernández et al. 2005; Otani 2001; Page et al. 2001).

Perovic (2002) used live pigs (Sus scrofa) as bait to test the effectiveness of 
electric fencing for modifying jaguar behavior and to deter predation on domestic 
pigs. Examining foraging at flowering, fruiting, and seeding trees, Beck and 
Terborgh (2002) monitored seed removal from palms (Astrocaryum murumuru) 
inside and outside of peccary exclosures and found that the most frequent 
visitors were the green acouchi Myoprocta pratti and spiny rat Proechimys spp. 
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Similarly, Kitamura et al. (2004) investigated seed removal of mahogany Aglaia 
spectabilis and used camera traps to photograph the consumption of fallen fruits on 
the forest floor. Carthew and Slater (1991) developed a technique for monitoring 
and identifying pollinators at flowering plants and proposed a number of applica-
tions for their newly devised cameras systems. In Malaysia, Miura et al. (1997) 
found varying activity patterns in mammals, birds and reptiles visiting fruiting 
trees. Mazurek and Zielinski (2004) evaluated the importance of older trees spared 
during harvest for subsequent habitat management of California redwoods Sequioa 
sempervirens and found no disproportionate use of these trees by mammals.

Devault and Rhodes (2002) and Devault et al. (2004) used cameras to identify 
vertebrate scavengers and timing of scavenging events at rodent carcasses in upland 
pine and bottomland hardwood forests. Cameras deployed near a cow Bos taurus 
carcass allowed López González and Lorenzana Piña (2002) to describe activity 
patterns of jaguars and turkey vultures Cathartes aura. Pierce et al. (1998) exam-
ined the onset of feeding behavior in mountain lions Puma concolor in California 
by placing cameras at kill sites. They found that most feeding occurred after sunset 
and females with new kittens fed significantly earlier than males or females in other 
reproductive classes.

Edelman et al. (2005) studied squirrel behavior and activity patterns by placing 
baits and camera traps at occupied Mt. Graham red squirrel Tamiasciurus hudsoni-
cus grahamensis middens, unoccupied middens, and at random sites to identify 
previously marked Abert’s squirrels Sciurus aberti and red squirrels visiting the 
sites. They also used visits by other mammals and birds to document species rich-
ness. Claridge et al. (2004) examined spotted-tailed quoll Dasyurus maculates visi-
tation timing at communal latrines in Australia and found that visitation took place 
at all hours instead of the nocturnal activity pattern that had been expected.

At salt licks in the Brazilian Pantanal, Pfeifer (2006) used camera traps to docu-
ment geophagy for 14 taxa including agouti, tapir, peccaries, brocket deer, cracids, 
columbids. Atwood and Weeks Jr. (2003) compared the mean number of visits per 
camera day by white-tailed deer using natural, pure salt, and commercial mineral 
salt licks and found more visits by females than males in all seasons. Griffiths and 
Van Schaik (1993) used cameras on trails in conjunction with systems set at wal-
lows and salt licks to determine that human traffic influenced animal behavior with 
species responding in different ways to this disturbance. These authors (van Schaik 
and Griffiths 1996) later found that the size of mammals and the substrate deter-
mined if behavior patterns were predisposed to being nocturnal, diurnal, or cathem-
eral (equally active throughout the day and night). Morgart et al. (2005) studied 
water usage by placing camera traps at surface water sources to examine frequency 
and seasonality of use by pronghorns Antilocapra americana. In a unique study 
to examine the effects of prey vigilance, Cresswell et al. (2002) used automatic 
cameras to study sparrowhawk Accipiter nisus attacks on vigilant vs. non-vigilant 
prey, documenting the direction of the attack in relation to the prevailing wind. 
Weckel et al. (2006) compared spatial (type of trail and distance from man-made 
roads) and temporal (activity patterns) distribution of jaguars with that of their 
principal prey species to describe jaguar feeding ecology. They suggested that jaguar 



635 Behavior and Activity Patterns

prey use was related to its abundance; however, jaguars may rely on foraging strate-
gies other than chance encounters for exploiting prey.

5.4.4 Niche Partitioning and Social Systems

Several research teams have used camera traps to collect information on behavior 
and activity patterns, using the data to build models for evaluation of niche parti-
tioning, overlap, and competition among sympatric species. Most of the research in 
this area has been conducted on carnivores with at least one report on ungulates. 
Fedriani et al. (2000) quantified activity time using camera traps at scent stations 
as a variable in examining competition between sympatric gray foxes, coyotes, and 
bobcats in California. Wacher and Attum (2005) used camera traps to study niche 
partitioning in red foxes Vulpes vulpes and Rueppell’s sand foxes Vulpes rueppelli 
and found similar activity patterns that suggested overlap. In another study involving 
medium-sized canids, de Almeida Jacomo et al. (2004) used camera traps set on 
trails to study niche overlap in maned wolves Chrysocyon brachyurus, crab-eating 
foxes, and hoary foxes Lycalopex vetulus in Brazil, and found similar nocturnal 
foraging times but differential diurnal foraging times. Séquin et al. (2003) used 
camera traps to describe social structure and characterize behavior of controlling 
alpha, resident beta, and non-territorial transient coyotes Canis latrans. Camera 
trap records may also permit analyses of spatial and temporal separation or avoid-
ance behavior among multiple individuals of one or more species. For example, 
sympatric jaguars and pumas in Chaco and Chiquitano dry forests were studied 
using data from camera trap surveys by measuring both temporal and spatial sepa-
ration among individuals (Noss and Venticinque 2006). Rivero et al. (2005) used 
cameras on trails to determine that sympatric red and gray brocket deer were active 
at different times within a 24-h period.

5.4.5 Habitat and Corridor Usage

Camera traps have become popular tools for assessing habitat occupancy and use. 
This is generally accomplished by comparing relative abundance of study species 
across habitats based on photographic capture frequencies. Augustine (2004) studied 
impala Aepyceros melampus in glades vs. bushland habitats and used the number of 
herds photographed per 24-hr period to evaluate seasonal presence and found that 
impala selected nutrient-rich glades more frequently than acacia bushland during dry 
and wet seasons. Raillard and Svoboda (2000) examined habitat use by muskoxen 
and characterized the behavior of each animal as either foraging or resting.

A unique study by Hilty and Merenlender (2004) examined usage of corridors. 
They monitored vineyards near and far from core and riparian habitat corridors and 
found that the activity of native mammalian predators was higher in vineyards near 
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core habitats, whereas the activity of non-native predators was higher in vineyards 
further from core habitats. Camera traps are frequently used to evaluate the effec-
tiveness of a range of artificial features such as culverts, overpasses, underpasses 
that are intended to facilitate wildlife movements across the landscape and reduce 
highway mortality (Cain et al. 2003; Dodd et al. 2004; Ng et al. 2004). Many of 
these studies use camera traps in conjunction with other detection methods, including 
direct observation, tracks, and radio-telemetry (Foster and Humphrey 1995; Mata 
et al. 2005).

5.4.6 Refugia and Reproduction

Camera traps have also been deployed at entry or exit points of animal dens or bur-
rows to document activity patterns. These systems allow researchers to document 
activity while minimizing disturbance to animals entering or exiting these sites 
(Bridges et al. 2004a). In addition to describing nest predation, camera traps can 
generate information on other aspects of reproductive activity. In the first published 
study to use cameras to examine bear denning behavior, Bridges et al. (2004a) used 
camera traps outside of American black bear dens to quantify activity patterns of 
bears moving in and out of den structures in Virginia. They found that bears were 
surprisingly active during denning and frequently exited and re-entered dens prior 
to final emergence. They were also able to calculate cub age at den emergence. At 
gopher tortoise Gopherus polyphemis burrows, Alexy et al. (2003) used an actively 
triggered camera system to monitor movements and activity of tortoises and com-
mensals in Florida. Although nocturnal activity was also recorded, gopher tortoises 
were found to be strongly diurnal. Doody and Georges (2000) used camera traps in 
a study of hog-nosed turtle Carettochelys insculpta nests to determine nest initia-
tion timing, emergence time of hatchlings, and to link mothers to specific nests.

5.4.7 Statistical Analyses

Behavioral and activity patterns lend themselves particularly well to graphical rep-
resentation, and thus many papers do not report statistics, instead relying on infer-
ence drawn from histograms and proportions. Although this type of information 
may paint a valid picture from a biological perspective, the use of formal statistical 
methods allow for more robust inference. Traditional statistical methods such as 
analysis of variance (Augustine 2004; Campbell et al. 2006), chi-square goodness 
of fit tests (Foresman and Pearson 1999; Griffiths and Van Schaik 1993; Liebezeit 
and Luke 2002; de Almeida Jacomo et al. 2004; Campbell et al. 2006), likelihood 
ratio chi-square tests (Rivero et al. 2005), Kruskal–Wallace test (Pierce et al. 1998), 
Pearson’s r (Zegers et al. 2000), F-tests (Zegers et al. 2000), and Mann–Whitney U 
tests (Griffiths and Van Schaik 1993) have been employed to examine differences 
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in behavior and activity. Advances in statistical analyses of habitat selection offer 
new opportunities for analysis of activity pattern data. These techniques can often 
be applied if the analyst treats activity time as a use-vs.-availability question. For 
example, Bridges et al. (2004b) employed compositional analysis (Aebischer et al. 
1993) in their analyses of American black bear activity patterns and Di Bitetti et al. 
(2006) used circular statistics (e.g., Batschelet 1981) in their analyses of ocelot 
circadian rhythms.

5.5 Future Applications for Camera Traps in Behavior Studies

Camera traps provide a tool that offers many advantages compared to traditional 
techniques for examining animal behavior. However, because some aspects of 
behavior may be better studied using other techniques, researchers may prefer to use 
multiple techniques simultaneously to provide a more thorough analysis. Replacing 
film-based systems with digital systems has resulted in camera traps that are rela-
tively quiet and less likely to alarm or disturb animals. Digital systems also increase 
image storage capacity which reduces the frequency of researcher visitation and site 
disturbance. Additionally, many digital systems can also now record videos and can 
provide new research opportunities. Video systems inserted into previously inacces-
sible areas, such as nest boxes and bear dens, will provide insight into previously 
unattainable aspects of behavior and activity. Cameras mounted to individual 
animals, such as CritterCams®, will likely expose previously unknown behaviors 
(see Nichols et al., Chap. 14). Technological advances and continued innovation 
ensure camera traps will almost certainly play an increasingly important role in the 
study of wildlife behavior and activity.
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6.1 Introduction

In the early 1990s, biologists began experimenting with camera traps to estimate 
the abundance of tigers Panthera tigra in the Nagarahole National Park (Karanth 
1995), marking the first time that camera traps were used to sample a wildlife 
population in a statistically rigorous manner. Since that time, camera traps have 
been employed for a wide variety of uses in behavioral and ecological studies. 
Camera trap studies can result in capture histories of species whose members are 
individually recognizable via distinct natural traits or artificial markings (e.g. radio 
collars, tags) as well as capture histories of species that are not reliably identified 
as individuals. In either case, dependent on study objectives, each type of data may 
be used to estimate population size, species richness, site occupancy or relative 
abundance indices. In addition, well-designed camera trap studies usually include data 
on covariates at the sites where the cameras are set. Ideally, covariates are chosen 
based on their purported influence on abundance or other parameters of interest, 
including detectability (White 2005). The challenge to biologists is to use these 
data to the greatest extent possible, to make unbiased inferences about the state of 
the target wildlife population under investigation.

In this chapter, I review some design and analytical issues associated with the use 
of camera traps to estimate abundance, density, and relative abundance, to make 
comparisons among estimates and to monitor populations over time. I focus on the 
estimation of detection probability, abundance in both open and closed populations, 
and density, as well as on occupancy-abundance models, abundance indices and 
sources of bias. Almost all of the topics I cover here are explored in much more detail 
elsewhere, for example in books such as The Estimation of Animal Abundance and 
Related Parameters (Seber 1982), Techniques for Wildlife Investigations (Skalski and 
Robson 1992), The Analysis and Management of Animal Populations (Williams et al. 
2002), and Occupancy Estimation and Modeling (MacKenzie et al. 2006).
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6.2 Estimation of Abundance

The estimation of abundance of wildlife populations lies at the heart of most 
ecological research and monitoring. Ecologists seeking to understand population 
processes require models that accurately track populations. Management, whether 
for game species or non-game species, often seeks to maintain or increase popula-
tion size of target species. Management for decreasing population size falls into the 
more specialized realm of pest control or invasive species management. Monitoring 
efforts attempt to understand the effect of management interventions or covariates, 
such as climate change, on the population. When studying most animals, it is rarely 
possible to conduct a complete count or census. Sampling methods usually yield a 
count of some portion of the population or an index that relates to actual abundance 
via the probability of detection. Camera trap methods become particularly useful in 
studies of animals that roam over areas too large to sample completely, and when 
the species is elusive and difficult to observe.

Population size estimation from samples has a long history dating from 
LaPlace’s (1786) development of ratio estimators for application in demographic 
analysis to Peterson’s (1896) basic formulation and Lincoln’s (1930) application to 
estimation of waterfowl populations. Subsequent development has been substantial, 
relaxing constraints on sources of variation in detection probability and on population 
closure. Closed populations models have been reviewed in Otis et al. (1978), Seber 
(1982), Williams et al. (2002), and Chao and Huggins (2005a,b).

Many of the published camera trap studies have the objective of estimating 
abundance at a site, and the study is designed to estimate the size of a single population 
in a spatially and temporally closed system (Karanth 1995; Karanth and Nichols 
2000; Silver et al. 2004), based on surveys over a subset of the total area of interest. 
Only one study, to date, has used camera traps to estimate vital rates over time 
(Karanth et al. 2006). Often unstated, is why the estimate is needed or how the 
estimate will be used. Specifying the objectives for the estimation exercise, or why 
the abundance estimate is required, is an important first step (Yoccoz et al. 2001; 
Pollock et al. 2002, see Nichols et al., Chap. 4).

Estimation of abundance over large study areas, a typical objective of camera 
trap studies, requires that an investigator pay special attention to spatial variation in 
abundance. When attempting to make inference about a large area, it is rarely possible 
to sample the entire area of interest, and investigators should take care to select 
locations for sampling arrays that are representative of the area for which inferences 
are made. If the investigator wishes to make inferences beyond the effective 
sampling area (e.g., extend the inference from a sampling area to an entire park), 
then rules of stratification or random sampling should apply in determining the 
location of a sampling array (Cochran 1997; Thompson 1992). Often, sampling 
areas are chosen because they appear to be typical of the larger area of interest, or 
because they are easy to access. Representativeness, however, is not easy to assess 
subjectively and easily accessible areas often are not typical of areas that are not 
 easily accessed. In the case of non-random choice of sampling areas, it may be that 
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not all areas have a chance of being sampled, and inferences are then restricted to 
the portion of the population that does have a chance of being sampled.

Once a sampling area is assigned for a camera trap study, the investigator faces 
the problem of sampling the target species. If all of the animals in the sample area 
could be counted, we would have a census of the sample area. Detectability, however, 
is rarely complete, so we must consider the more common situation in which the 
detection probability, denoted by p or b, is less than 1. For the purpose of abundance 
estimation, detection probability can be defined as the likelihood that an individual 
will be detected (photographed or captured) if it is present in a sample unit during 
the time of the sample. Detection is a source of variability in abundance estimation 
because not all animals will be detected with absolute certainty during a sampling 
effort, individuals may vary in their detectability and detection may vary over time and 
space. The likelihood of detecting an individual during a sample occasion provides 
the key to converting the sample count statistic into an estimate of abundance or 
density. Detection probabilities therefore are an important component of any 
abundance estimation exercise or monitoring program.

The incorporation of an estimate of the detection probability distinguishes a 
population estimate from a population index. An abundance index is a statistic that 
is assumed to be correlated with the population size in some way. If the assumption 
holds, then an average change in the index should reflect an average change in 
population numbers. Abundance indices require that the index have a monotonic 
relationship to true abundance; however, the nature of the functional relationship 
between the index and abundance is crucial for meaningful inference. An index 
based on a monotonic linear relationship (I = bN) will not behave the same as an 
index based on a nonlinear monotonic relationship (e.g. I = ebN). Without knowledge 
of the functional relationship, all the abundance index reveals is the direction of 
change in N. Calibration of an index with independent estimates of abundance helps 
improve the interpretation of the index but the calibration needs to be checked over 
time and space to ensure that it holds. Because of the strong assumptions needed 
to use an index, they should be avoided unless no reasonable alternative is possible. 
I return to the topic of indices at the end of this chapter.

In studies designed to estimate abundance using camera traps, camera trap 
placement in the sampling area affects the ability to detect individual animals and 
therefore the detection probability. For abundance estimation, cameras should be 
placed in locations that maximize the chance of detecting the target species. If camera 
trapping points are spaced too widely, there may be areas large enough to contain a 
target species’ home range that are not subject to coverage by a camera. Animals 
living in these gaps in coverage have essentially no chance of being detected even 
though they reside within the sampling area. Closer spacing of cameras closes the 
gaps and increases the probability of detecting individual animals by increasing the 
number of cameras in a home range. Animals with more camera trap points in their 
home ranges may have higher detection probabilities than animals with fewer trap 
points, creating heterogeneity in detection probabilities. There are tradeoffs in camera 
trap deployment because close trap spacing often reduces the sample area coverage, 
resulting in fewer individuals being available for sampling whereas wide trap spacing 
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may create holes, or reduce an individual’s exposure to traps. Appropriate placement 
and spacing of camera sampling points depends on a thorough understanding of the 
movement patterns and habitat use of the target species.

If we consider a properly collected sample count C of animals on some study 
area, then C is related to the population size N by the detection probability. C can 
be considered a random variable that likely varies each time a sample is collected. 
E(C) is the expected value or average of the count over a very large number of 
replicated samples of the population:

 E(C) = Np or Nb. (6.1)

If detection probability, p, can be estimated by some means, then abundance can be 
estimated as

 ˆ .
ˆ
C

N
p

=  (6.2)

This is the most basic form of a general population estimator used in both distance 
and capture–recapture (CR) sampling and is often called the canonical estimator 
(Williams et al. 2002). The estimator can also be written as

 
1

ˆ ˆ1 /
C

i

N p
=

= ∑  (6.3)

to emphasize that each animal counted shares a common detection probability and 
that the abundance estimate relies on the detection of individuals as well as the 
count of individuals. This equation can then be generalized to include heterogeneity 
in detection probability among the C individuals in the sample by substituting ˆ

ip  
for p̂  in expression (6.3).

The estimate of the variance of population size can be generally written as

 ≈ +2 2 2ˆ ˆˆ ˆvar( ) [var( ) / E( ) var( ) / ] .N C C p p N  (6.4)

When a population estimate is required over an area that is too large to survey 
completely, a representative proportion a of the area is sampled, and the estimate 
for the entire area incorporates the probability of sampling a particular area, a:
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The sampling fraction is frequently known, but it is written above for the general 
case in which the sampling fraction is estimated. In the case of sampling that 
involves selection of potential sample units with probability a, the variance of the 
count statistic contains a spatial component that declines as the sampling fraction 
a increases. A survey of the complete area does not have this spatial component.

Bailey et al. (2004a, b) point out that frequently part of the population may 
become temporarily unavailable for sampling through temporary emigration from 
the study area, burrowing or hiding at a point, or through camera failures (or thefts) 
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that create holes in the sample coverage. In this case, ˆ
ip = ˆ

aip ˆ
dip , where ˆ

aip

estimates the probability that the ith individual is available for detection and ˆ
dip

estimates the probability that ith individual was detected given that it was avail-
able for detection. Under the assumption that a population is closed to additions and 
subtractions during the sampling period, ˆ

aip  is often assumed to equal 1.
Estimating the population size when ˆ

aip <1 typically requires the use of open-
population models (Williams et al. 2002). If temporary emigration is a random process, 
estimates of total population size should be unbiased (Kendall 1999). Temporary 
emigration during sampling occasion j may depend on whether the individual 
was in or out of the study area during occasion j − 1. This is called Markovian 
emigration, and it requires two probabilities, g  ¢

j
 = the probability that an animal 

absent from the sampling area in time j − 1 stays away from the study area in time 
j, and g ″

j
 = the probability that an animal present in the sampling area in time j − 1, 

moves out of the area in time j. Kendall et al. (1997) present models for estimating 
both types of emigration when data are collected using Pollock’s (1982) robust 
design (see below).

The interpretation of p̂  is the probability that an individual is caught at least 
once during a sampling period of K trap occasions. When K = 2,

1 2
ˆ 1 (1 )(1 )p p p= − − −

or 1 minus the probability of not being encountered during either trapping occasion. 
When K > 2 trap occasions, this generalizes to

 
1

ˆ 1 (1 ).
=

= − −∏
K

i
i

p p  (6.6)

Equation (6.6) is the general form of the detection probability corresponding to the 
primary sampling period. As K increases, the likelihood of capturing an individual 
at least once ( p̂ ) increases for a given p

i
 (Figs. 6.1 and 6.2). This is especially 

important for camera trap estimation of abundance because often the species of 
interest has a very low likelihood of being captured on a given occasion (low p

i
). 

The ability to increase the number of sampling occasions for little additional cost 
by leaving the cameras in position for extra days may increase estimates of p̂ . 
If behavioral changes in detectability occur after the first capture (trap-response), 
and if recapture probability is not related to capture probability, then all of the 
information for estimating p and N is contained in the number of initial detections 
occurring in each sampling period.

6.2.1 Closed Capture–Recapture Models

Closed CR estimators are used to estimate the population size of a target species 
composed of marked or individually recognizable individuals, in a geographically 
and temporally closed system that precludes immigration, emigration, births and 
deaths. The Lincoln–Petersen estimator (Peterson 1896; Lincoln 1930) is the 
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simplest case of this family of estimators, involving just two sampling occasions 
(K = 2) with a relatively short interval between occasions. Consider a population 
of N individuals. On the first trapping occasion, n

1
 animals are photographed and identi-

fied. On the second trapping occasion, n
2
 animals are photographed and identified, 

of which m animals were captured on the first trapping occasion. The propor-
tion of marked animals in the population after the first capture occasion is n

1
/N. If 

all animals have equal capture probabilities, an assumption of the estimator discussed 
below, then the proportion of marked animals in the population should be the same 
as the proportion of marked animals in the second sample. If true,

1 2/  = / ,n N m n

which leads to the Lincoln–Petersen estimator,

 
1 2

ˆ / .=N n n m  (6.7)

If we consider n
1
 as a count statistic, C, the estimate of the capture probability 

associated with the count statistic is p̂
1
 = m/n

2
, and we can derive N̂ using the 

canonical estimator (6.2).
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Fig. 6.1 The cumulative likelihood of capturing an individual with a Pr(detection) per sampling 
occasion = p over K = 1 … 30 sampling occasions. As p and K increase, the likelihood of detection 
approaches 1
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When the number of capture occasions exceeds K = 2, it is possible to model 
variation in capture probability that arises from time, behavioral response to 
capture, and individual heterogeneity. These K-sample models are described by 
Otis et al. (1978) and others as the M

0
 (constant p), M

t
 (temporal variation in p), M

b
 

(p varies between first capture and subsequent captures), and M
h
 models (p varies 

by individual). More complex combinations of these models are possible, but have 
not been used widely in the camera trap literature. M

h
 models are commonly used 

in camera trap studies because associated estimators are robust and because it 
seems realistic that individuals would have different probabilities of capture. 
Because camera traps are considered passive data collection devices, they are not 
expected to impart a trap response following capture (but see Wegge et al. 2004). 
In any event, trap response can be modeled (M

b
, M

bh
) and does not present a 

problem in abundance estimation.
Use of closed population models requires that three assumptions be met:
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Fig. 6.2 Relationship between detection probability per sampling occasion and the probability 
of detecting an individual at least once during the study. Data are from published population 
estimates for tigers, jaguars (P. onca) and ocelots (Leopardus pardalis). Estimates of detection 
probabilities calculated using CAPTURE software (p*) illustrate that camera trap studies 
typically result in large detection probabilities (p̂* = 0.788, SD = 0.164, n = 41 estimates)
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(1) Population is closed to birth, death, immigration and emigration processes. 
The interpretation of population closure is slightly different for the Lincoln–
Petersen model vs. K-sample closed models. Deaths that occur during sampling 
(d) are known, and these animals can be removed from the CR data. N̂  then 
estimates the population size after sampling, and N̂  + d estimates the pre-sam-
pling population. Losses that occur between sampling (emigration and death) 
are tolerated when they are equally likely for marked and unmarked individuals, 
but the interpretation of  N̂  is restricted to population size at the first sampling 
period. When there are additions to the population between sampling (births and 
immigration), N̂ estimates the population size at the second sampling period. 
When both losses and gains occur between sampling periods, N̂  is positively 
biased, and open models should be used instead. When temporary immigration 
and emigration occur randomly, the detection probability estimate includes the 
probability of an individual being present in the study area during sampling as 
well as the probability of capture given that it is present (Kendall 1999). In this 
situation, the Lincoln–Petersen closed population estimate,  N̂ , and K-sample 
estimates represent a super-population composed of animals that are capable of 
moving into and out of the sample area. Tests of the population closure assump-
tion are available in the software programs CAPTURE (Otis et al. 1978) and 
MARK (White and Burnham 1999).

(2) No tag loss during the study. Loss of identifiable individuals after the first trapping 
period causes detection probability to be underestimated in subsequent trap 
occasions. Seber (1982) describes double tag studies to estimate tag loss. This is 
not too much of a problem when distinctive marks are used to identify individuals, 
but it may be a problem when photos contain target animals but the distinguishing 
marks cannot be observed. Again, if this inability to detect distinguishing marks 
is a result of a poor photograph, and poor photographs are a random occurrence 
(i.e. not more likely with one animal than another), then the absence of detection 
is simply incorporated into the complement of detection probability. Only if 
some individual animals are consistently poorly photographed compared to other 
individuals in the sample can bias arise due to heterogeneity of detection.

(3) Sources of variation in detection probability are properly identified and modeled. 
Ensuring that all sources of variation in detection are included in an analysis 
requires that one consider the most general (i.e. complex) model. There is a tradeoff 
in modeling between bias and precision because the most complex models fit 
better, but provide less precise estimates than models with fewer parameters. One 
alternative is to choose the most parsimonious model (Otis et al. 1978; Burnham 
and Anderson 2002) using the goodness of fit tests and discriminant analysis for 
model selection in CAPTURE (Otis et al. 1978) or the Akaike’s Information 
Criterion (AIC) to evaluate models in MARK (Cooch and White 2006). Another 
alternative is to incorporate uncertainty in model selection using the model-
averaging approach to estimation (Buckland et al. 1997; Stanley and Burnham 
1998; Burnham and Anderson 2002). Under model averaging, the estimate N̂  is 
a weighted average of several model estimates. The weights represent the likeli-
hood that a particular model is the “best” of a set of candidate models.
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6.2.2 Open Capture–Recapture Models

When the population is open to the demographic processes of birth, death, immigration, 
or emigration that cause permanent changes in the population (as opposed to tempo-
rary movement in and out of a study area), open-population models may be used to 
incorporate gains and losses over time. Open models may be single age models in 
which capture and survival probabilities are assumed to be the same for all 
individuals in the sampled population or multiple-age models in which survival and 
capture probabilities are age- or age-class-specific. Camera trap studies of marked 
cats have normally assumed that kittens were not reliably sampled and all other 
animals were adults. These assumptions indicate the use of a single-age model, known 
as the Jolly–Seber model, that includes capture probability, survival, recruitment and 
abundance as parameters (Jolly 1965; Seber 1965), although multi-age models would 
be possible if enough data were available and individuals could be classified to 
age groups. Variations of the Jolly–Seber model include partially open models 
(Darroch 1959), which consider only losses or only gains, and reduced-parameter 
models in which some of the detection and/or survival parameters are assumed to 
be constant over time (Brownie et al. 1986). Recruitment can be obtained as a 
derived quantity (Jolly 1965; Seber 1965) or modeled using Pradel’s temporal 
symmetry approach (Pradel 1996) or a “superpopulation” approach in which the 
superpopulation is the total number of individuals that were in the study area at 
any time between the first and last sampling occasion (Crosbie and Manly 1985; 
Schwarz and Arnason 1996).

The Jolly–Seber open model is based on two kinds of parameters: p
i
 is the 

probability that a marked individual in the population at period i is photographed 
during period i, and j

i
 is the probability that a marked individual in the population 

at period i survives until period i + 1 and remains in the study area, a condition that 
precludes permanent emigration. j

i
 combines the probability that an individual 

survives with the probability that it does not permanently emigrate, and as such is not 
a true survival rate. An additional parameter, c

i
, is the probability that an animal alive 

and in the population at period i is not caught or observed again in any subsequent 
period. c

i
’s are calculated by

 
1 1(1 ) (1 )j j + += − + −i i i i ipχ χ   (6.8)

For a study involving K periods, c
K
 = 1–c

i
 describes the fates of animals that are 

not recaptured after the ith period: either they fail to survive in the study area 
(die or move away) or they survive in the area and simply are not captured again. 
Two additional parameters of the Jolly–Seber model, representing the probability 
of release for marked and unmarked animals captured in the ith period, are assumed 
to be 1 in camera trap studies since camera trap “capture” does not involve a physical 
capture or risk of removal. Williams et al. (2002) provide a description of the structure 
of the probability model.

The Jolly–Seber model considers the population size at each time interval (N
i
) 

and its components (M
i
 marked animals and U

i
 unmarked animals) and the number 
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of new recruits (B
i
) as unknown variables to be estimated. Abundance estimation at 

each time interval corresponds to the canonical estimator (6.2)

 1
ˆ ˆˆ/ / .= =i i i i iN n p M n m  (6.9)

where M̂
i
 is equal to the estimated number of marked animals in the population at 

the time. M̂
i
 can be estimated by m

i
 + R

i
z

i
/r

i
, where m

i
 is the number of marked 

animals caught in the ith period, R
i
 is the number of animals released in the ith 

period, r
i
 is the number of animals released at i, that are subsequently recaptured, 

and z
i
 is the number of animals caught before the ith period, not caught in the ith 

period, but caught at some time after i. Estimation of recruitment is based on the 
assumption that the population size at time i + 1 is equal to the proportion of the 
population that survives from time i plus the number of additions to the population 
between time i and i + 1 (B

i
). B

i
 is estimated for the sampling periods 2 to K − 2 by

 1
ˆ ˆ ˆ .ĵ+= −i i i iB N N  (6.10)

The Jolly–Seber model and its variants all assume:

(1) All animals in the population at time i have the same probability of detection p
i
;

(2) All animals present in the population immediately following sample period i 
have the same survival probability j

i
, until sampling period i + 1;

(3) Marks or tags are not lost;
(4) Sampling periods are instantaneous (or very short);
(5) All emigration is permanent;
(6) Detection and survival of an individual are independent of the fates of other 

individuals.

Assumptions 1 and 2 affect the ability to make population and survival estimates. 
Varying detection and survival probabilities affect the underlying distribution prop-
erties of the model, leading to potentially severe bias in some estimates. Stratification 
of the population into groups (e.g., sexes) expected to exhibit different rate parameters 
is a wise way to try to achieve similar rates for individuals within groups. Individual 
covariates can also be used, if such covariates are thought to influence survival and/
or capture probabilities. Williams et al. (2002) discuss a number of alternatives to 
deal with violations of assumptions including stratification and multi-state models.

Assumption 4 is important to keep the likelihoods of mortality and emigration near 
0 during the sampling period. In fact, “short” period may be interpreted as a period 
of time short enough relative to the time interval for which survival is estimated.

Assumption 5 is used to clarify the interpretation of detection probability. 
Consider the case of an individual with a capture history 1001. The 1’s represent a 
capture with detection probabilities p

i
, and the 0’s represent their complement 

(1 - p
i
). Let g

i
 be the probability of temporary emigration. When temporary emigra-

tion occurs, a 0 that is bracketed by 1’s has two possible explanations: either the 
individual is present and not detected (1 - p

i
) or the individual has left the area (g

i
). 

In this situation, the interpretation of ˆ
ip   changes to (1 - g

i
)p

i
, and the resulting 

estimate of abundance now estimates the superpopulation size, including animals 



816 Abundance, Density and Relative Abundance

temporarily outside the sampled area. Kendall et al. (1997) present a model that 
incorporates temporary emigration using a robust design approach.

Assumption 6 becomes important when estimating abundance of animals that 
live in groups. For individuals within groups, survival or detection may be dependent, 
in the sense that if one animal is caught, the likelihood of capture for other individuals 
in the group may also increase. Violation of this assumption results in biased 
variance estimates for detection and survival parameters but usually does not lead 
to biased point estimates.

Jolly–Seber models can be implemented under MARK (Cooch and White 
2006), POPAN (Schwarz and Arnason 1996) or JOLLY (Pollock et al. 1990). They 
can be developed with covariates associated with detection and survival (MARK, 
POPAN), and models can be evaluated using goodness of fit tests (Pollock et al. 
1985; Burnham et al. 1987), between model tests and AIC model selection 
(Burnham and Anderson 2002).

6.2.3 Mixed Time Scale Model

Pollock’s (1982) robust design combines the strengths of closed and open population 
estimation while avoiding some of the limitations of each. Specifically, closed models 
cannot be used to estimate quantities associated with population change, and open 
models result in biased estimates when there is heterogeneity in detection probabil-
ities and, sometimes, when there is temporary emigration. Under the robust design 
(Fig. 6.3), sampling is divided into K primary periods and l secondary sampling 
periods in each primary period. Secondary periods occur in a relatively short time 
frame and are used to develop closed CR model estimates of abundance for the 

Fig. 6.3 Schematic illustration of Pollock’s robust design. A long-term study is divided into K primary 
sampling periods, each composed of l secondary sampling periods. Primary trapping periods represent 
seasons or years for which information on demographic processes such as survival (j) and recruitment 
(g) is desired. The secondary periods with each primary period are closed trapping periods within which 
estimates of abundance (N), capture probabilities (p) and recapture probabilities (c) are made
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primary trapping period. Data are then combined across primary periods, and each 
animal is recorded as captured in the ith primary period if it was observed at least 
once during the l secondary periods. Survival can then be estimated using the 
Jolly–Seber model, and recruitment is estimated using both closed and open model 
estimates.

Under Pollock’s (1982) original formulation, the data from the secondary periods 
within a primary period are modeled independently from the data of the other primary 
periods (an ad hoc approach). Williams et al. (2002) observed that this opens the 
possibility that different closed models of abundance may be selected under the 
automated model selection algorithms within a single analysis. In the absence of 
a priori reasons for expecting such differences, they recommend that a common 
single closed population model be used for each of the K abundance estimates in the 
analysis. Use of a single model may result in more sensible estimates of recruitment 
when the closed and open estimates are combined. The model selection results 
from closed population estimates can aid in choosing the general model, since it is 
unlikely that covariates affecting detection probability will change substantially 
throughout a study. A priori expectations may also play a role in the selection of a 
common model. Karanth et al. (2006) used the M

h
 model in preference to the model 

selection choice (M
0
) based on the robustness of the heterogeneity estimator and 

the belief that tigers are likely to vary in their individual capture probabilities.
Kendall et al. (1995) provide a likelihood-based framework for robust design 

models. The key feature of the likelihood-based models is the link between detection 
probabilities for the primary and secondary trapping periods. These models also 
were restricted in that the closed models did not include heterogeneity models for 
which there were maximum likelihood estimators. Pledger (2000) extended the 
work of Norris and Pollock (1996) to model heterogeneity using a finite mixture 
model that assumes a population is composed of sub-groups of animals that each 
share common detection probabilities. This approach allows maximum likelihood 
solutions for heterogeneity models. Kendall and Nichols (1995) and Kendall et al. 
(1997) also provide models for the case of temporary emigration in the population.

The assumptions underlying the robust design are the same as those for separate 
closed and open population models. Initial work on the robust design required that 
the population be closed during the secondary samples (although temporary emigra-
tion may be incorporated), that no tag loss occurs, that there is no heterogeneity in 
capture probabilities during the secondary periods, that survival between primary 
periods is the same for all animals, and that the fates of animals are independent. 
Robust design models can now accommodate open modeling of secondary period 
data as well (e.g., Schwarz and Stobo 1997).

6.3 Estimation of Density

Given an estimate of abundance based on an array of camera traps, estimating density 
is relatively straightforward if we have a method of determining the area sampled 
A. Given estimates of N and A, density (D) and its variance are
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  ˆˆ ˆ / ,=D N A   (6.11)

 2 2 2ˆ ˆˆ ˆ ˆ ˆvar( ) [var( ) / var( ) / ( )].D D A A N N≈ +  (6.12)

Estimation of A is of primary importance, and the variance of Â  can be estimated 
using the bootstrap method (Efron and Tibshirani 1986) or the delta method (Seber 
1982), depending on how the area is calculated.

At its most simplistic, A may be described by a concave polygon defined by 
connecting the outermost trap locations (A

tp
; Mohr 1947). This assumes that animals 

do not move from outside the bounded area to inside the area or vice versa. Unless 
the study is conducted on a small island or a physical barrier is erected in the study 
area to limit movement of animals, this assumption is unlikely to be true. More 
often, a boundary area of width W (A

w
) is added to the area defined by the polygon 

A
tp
 to reflect the area beyond the limit of the traps that potentially is contributing 

animals to the abundance estimate (Otis et al. 1978). The sampled area, also known 
as the effective area, is then A(W) = A

tp
 + A

w
. Calculation of the buffer strip width 

(W) is critical to the estimation of density and is problematic because there is no 
agreed upon method of estimating W. Solutions to this problem all involve ad hoc 
methods that date back to early attempts to estimate abundance and home ranges 
based on trapping grids (see Hayne 1949). Dice (1938) first drew attention to this 
problem in small mammal studies and recommended using one-half the diameter 
of an average home range. Other solutions have included use of inter-trap distances 
(Blair 1940; Burt 1943), mean movements among traps, maximum movements 
among traps (Holdenried 1940, Hayne 1949), nested grids (Otis et al. 1978), and 
assessment lines (Smith et al. 1971).

Otis et al. (1978) recommended a nested-grid analysis to estimate the contribution 
of animals centered outside a trapping grid to the abundance estimate. In the 
simplest case, consider a camera grid defined by the four corner cameras as X km 
by X km or X2 km2. The effective area is defined as

 2 2( ) 4 .= + +A W X XW Wπ  (6.13)

Note that 4X is simply the perimeter of the grid. To estimate density we use the 
estimate N̂ and fix X, W is unknown. If two grids of different sizes are used, the 
original grid and a grid composed of interior cameras, W can be estimated and 
consequently D̂ . Otis et al. (1978) caution that the nested grid approach has large 
data requirements. At a minimum they recommend a 9 × 9 trapping grid, which 
precludes many camera trap studies. Alternatively, they recommend reducing the 
spacing between cameras, or increasing the number of traps to increase capture 
rates. An experimental evaluation of this approach (Parmenter et al. 2003) indicated 
poor performance when sample sizes are small, which highlights the limitation of 
this approach for typical camera trap studies in which trapping arrays include fewer 
than 80 points.

Wilson and Anderson (1985) explored the problem of correcting sampling 
area of trapping arrays using one-half of the mean of the maximum distances 
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between capture locations. This approach is known as the “mean maximum 
distance moved” or MMDM. The choice of one-half the MMDM is arbitrary, but 
follows the recommendation of Dice (1938). Here, I refer to the Wilson and 
Anderson method as the ½MMDM to distinguish it from the recommendations of 
Parmenter et al. (2003) who use the actual or full MMDM (Fig. 6.4). 

Let d
i
 be the maximum distance moved for the ith animal in a sample of m ani-

mals caught at least twice in a study. Then:

 
1

ˆ/ , and / 2,
m

i
i

d d m W d
=

 
= =  ∑  (6.14)

and

 ( ) ( )2

1
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m

i
i
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=

= − − =∑  (6.15)

F(MMDM)F(MMDM)

Fig. 6.4 Schematic array of camera traps and effective sampling area. A convex polygon of area 
A

tp
 is defined by connecting the camera trap points. Circular home ranges are calculated with radii 

expressed as some function F (F = ½, 1) of the mean maximum distance moved by individuals 
between camera traps for individuals captured more than once. F(MMDM) defines a length W 
specifying an area A

w
 that is added as a buffer around the convex polygon under the assumption 

that individuals with home ranges centered outside the convex polygon of trap points but within 
the buffer area fall within the sampled population. The effective sample area is then defined as 
A(W) = A

tp
 + A

w
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Var(A(Ŵ )) is then calculated using the delta method and var(D̂) as in (6.12). 
This approach includes an underlying assumption that ½MMDM is greater than or 
equal to the radius of a circle of area equal to the average home range of the study 
animal so that animals whose (circular) home range centers fall within W are likely 
to be included in the sampling area.

The Wilson and Anderson (1985) modeling exercise found good support for the 
½MMDM; the relative percent bias was good at low densities and still reasonable 
at high densities. Wilson and Anderson caution that the ½MMDM approach 
requires that a sufficient number of recaptures is needed for reliable estimates 
of MMDM. Parmenter et al. (2003) found that use of ½MMDM consistently 
overestimated true densities in a controlled experiment comparison of density 
estimation using different W estimation techniques with CR models, and web-based 
DISTANCE sampling.

Parmenter et al. (2003) examined a number of approaches to estimate density of 
rodents using trapping grids with CAPTURE and trapping webs with DISTANCE. 
They found that using the full MMDM, Ŵ  = d

_
, provided the most accurate grid-

based density estimates for the area calculations considered. They found that the 
full MMDM density estimators tended to underestimate at low densities and over-
estimate at high densities, but that the bias declined as the cumulative capture prob-
abilities increased. One encouraging result for camera trap studies is that the most 
accurate estimates were of low density populations with large MMDM values, a situ-
ation typical of many species targeted by camera traps.

Which form of MMDM to choose depends on whether a radius or a diameter 
provides a better estimate of movements within a home range. The use of either 
form of MMDM requires additional considerations about movement patterns, effect 
of social interaction on movements, home range size and shape, the degree that 
home ranges overlap the grid and constraints on the upper limit of “apparent” dis-
tance moved due to trap spacing (Parmenter et al. 2003).

Factors influencing movement patterns are likely to vary by study and species, 
and this makes generalizations of the “best” method to estimate sample area difficult. 
Many confounding factors can be controlled by careful design (i.e., restricting 
analysis to certain age classes, planning seasonal studies when dispersal is likely to 
be low). Perhaps the biggest constraint on the use of either MMDM approach, 
however, is that camera trap studies yield relatively small numbers of inter-trap 
movement distances. When inter-trap distances are used, MMDM usually increases 
as the number of recaptures increases (Stickel 1954). Small sample sizes are expected 
to yield a constrained set of inter-trap distances, tend to underestimate movement 
distances and, on average, result in underestimates of full MMDM, ½MMDM and 
“true” A(W) for a trapping grid. For example, in a study of Sumatran tigers, O’Brien 
et al. (2003) found only four recaptures and based their A(W) estimate on the 
maximum inter-trap distance because the MMDM was unrealistically small for 
tigers. While most published camera trap abundance studies have 10 or more 
capture occasions, few have more than 30 estimates of maximum distances. Jett and 
Nichols (1987), recognizing that maximum distances tend to increase with the 
number of recaptures, suggested a method for determining the maximum  movement 
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for animals observed a large number of times. Let –d
i
 = the MMDM for animals 

caught exactly i times, and d* = the expected MMDM for animals that move an 
indefinitely large number of times. The equation;

 ( ) ( 1) *[1 e ] ,i b
iE d d− −= −   (6.16)

where b is a model parameter, may be solved by nonlinear least squares, and d* used 
as an estimate of MMDM. Again, this method requires an adequate number of 
recaptures. Williams et al. (2002) recommend a minimum of 10 trapping occasions 
when using MMDM methods, or the use of the expected maximum movement (d*) 
of animals rather than the average.

Ideally, the best way to estimate W is to use information on actual movement 
patterns collected during the capture period. Karanth (1995) was the first to 
combine radio telemetry information on home ranges with camera trap abundance 
estimates to determine density. He used the estimated non-overlapping home 
ranges of five resident, female tigers that he detected in camera traps as the effec-
tive size of his sampling area. Later estimates of sample area for this study, based 
on ½ MMDM, were only 55% as large as the home range estimate. Soisalo and 
Cavalcanti (2006) used radio telemetry in conjunction with a camera trap study of 
jaguars to compare different methods of deriving the effective area and density 
estimates. They considered ½MMDM, full MMDM, a MMDM calculated from 
telemetry movement data and ½ diameter of the average home range. They found 
that the ½MMDM estimate of W from camera traps was much smaller than ½ 
diameter of the home range based on telemetry. As a result, the density estimates 
based on ½ MMDM from camera traps were much higher than the telemetry-based 
estimates (Fig. 6.5). The full MMDM density estimates were similar, though 
slightly lower, than the telemetry based estimates. Interestingly, the full MMDM 
in both years was greater than the telemetry-based MMDM, probably due to the 
small sample size of the telemetry data set (n = 6, compared to 25 and 31 for the 
full MMDM estimates). Recent work on a known leopard population in South 
Africa, however, supports the use of a ½ MMDM based on camera traps for estimat-
ing effective sampling area using camera traps (Balme et al. 2009). These contradic-
tory results highlight the problems of density estimation when the sampling area 
must be estimated.

Recognizing the problems that arise from edge effects and the ad hoc estimation 
of W from trapping data, Efford (2004) proposed a combination of Monte Carlo 
simulation and inverse prediction methods (Pledger and Efford 1998) to estimate 
jointly population density and two parameters of individual detection probability 
directly from CR data. The model assumes stationary home ranges that are of equal 
sizes with centers Poisson-distributed with density D. The probability that an animal 
is detected in a trap at distance r from its home range center is described by a 
2-parameter spatial detection function g(r), usually a half-normal distribution with 
parameters g

0
 when r = 0 and s, a scale measure of home range size. D, g

0
 and s define 

the detection process. Monte Carlo simulation is used to match the parameters to the 
statistics calculated from the CR study (N̂, p̂, 

–
d). An inverted linear model is then used 
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to predict the values of the parameters (D, g
0
, s) from the field data. In addition to 

the normal closed population assumptions, DENSITY-based estimation assumes 
that animals occupy stable home ranges and that capture does not affect the prob-
ability of recapture. The method is robust to the choice of an abundance estimator 
(including the number of individuals caught [M

t+1
]; Efford et al. 2004, 2005), 

choice of trapping configuration and number of traps, and produces unbiased esti-
mates when assumptions are met. Relative precision was density dependent (Efford 
2004) between 0.5 and 5.0 ha−1 but showed only minor variation at higher densities. 
Relative precision also was dependent on the number of recaptures (Efford et al. 
2004). A software program, DENSITY (Efford et al. 2004) implements the 
method.

Density estimation using DENSITY has been tested with birds (Efford et al. 
2004), brushtail possums Trichosurus vulpecula (Efford et al. 2005), and performed 
well, producing unbiased and precise estimates compared to population estimates. 
A test of DENSITY methods to estimate density of ship rats Rattus rattus (Wilson 
et al. 2007) produced estimates that were less precise than desired for the preferred 
model, but this was attributed to sampling design rather than inherent problems with 
the estimation methods. Borchers and Efford (2008) have developed likelihood-based 
model fitting and model selection procedures and Royle et al. (2009) have applied 
a Bayesian extension of the methods.

Fig. 6.5 Estimates of jaguar density from Soisalo and Cavalcanti (2006) using the ½MMDM, full 
MMDM based on camera trap data and GPS telemetry data. Telemetry estimates include an actual 
MMDM estimate for collared animals and an estimate based on the radius of the home range. 
Estimates based on ½MMDM are significantly larger that estimates based on telemetry and full 
MMDM
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6.4 Relative Abundance Indices

Perhaps one of the most contentious issues among wildlife researchers is the extent 
to which we can rely on indices of abundance for monitoring populations and making 
comparisons over space and time (Nichols and Pollock 1983; Conroy 1996; Gibbs 
2000; Anderson 2001, 2003; McKelvey and Pearson 2001; Pollock et al 2002; 
Engeman 2003; Conn et al. 2004). An index can be thought of as the metric of last 
resort. They should only be used when it is not possible to conduct a proper popula-
tion estimation study or a study that includes estimation of the detection probability. 
This issue is especially acute for sampling cryptic or rare species, typical target 
species in camera trap surveys (Carbone et al. 2001, 2002; Jennelle et al. 2002). 
An index can be any count of animals or sign that is expected to vary directly with 
population size (Caughley 1977). Indices typically are used when (1) the target 
species is difficult to capture or observe, (2) it is logistically difficult or too expensive 
to implement surveys capable of determining detection probability, or (3) there is 
historical precedent for index surveys. Index surveys are almost always easier and 
less expensive to implement than surveys based on formal abundance estimation, 
but yield weaker inferences compared to surveys based on CR or line transect or 
any other sampling approach that incorporates detection probability. Because indi-
ces rely on (often untested) assumptions about the relationship to abundance, 
their use should be based on a careful consideration of trade-offs between strength of 
inference, feasibility of other methods to estimate abundance, and cost. Indices 
based on camera trap data include the counts of individually recognized animals in 
photographs (C or M

t+1
), and catch per unit effort indices (CPUE indices), usually 

some variation of the number of camera trapped animals/100 trapdays.
A fundamental problem with use of indices is the recognition that counts are 

underestimates of population size when p < 1 and that p is not likely to be uniform 
across populations being compared. If we assume that detectability, represented 
here by b, is constant between two time periods, then b

1
 = b

2
 = b. Population counts 

C
1
 and C

2
, should represent patterns in population abundance irrespective of 

possible bias associated with the counts, and we can also assume that changes in 
counts reflect changes in population size because the bias stays constant and can be 
discounted. For the estimate C

2
 − C

1
:

 
2 1 2 2 1 1 2 1E( ) ( ) ,b b b− = − = −C C N N N N  (6.17)

when b
1
 = b

2
 = b. Changes in the count reflect changes in the population and the bias 

attributable to imperfect detection does not affect the interpretation of patterns in 
population size (Williams et al. 2002). When b

1
 ¹ b

2
, changes in the count statistic 

may arise from population change or from changes in detection, and it is impossible 
to know which process is occurring without additional information on detectability. 
In general, use of an index may be justified so long as the emphasis is on relative 
abundance rather than changes in absolute abundance and assumptions about the 
relationships between relative and absolute abundance are met.
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A more common relative abundance index treats differences in relative abundance 
between time 1 and time 2 as a proportional abundance (Skalski and Robson 1992; 
Williams et al. 2002). Following Williams et al. (2002), let T = C

2
/C

1
 and:

2 1 2 1E( ) E( / ) E( ) / E( ).= ≈T C C C C  

Because C
1
 and C

2
 are related to N

1
 and N

2
 through b

1
 and b

2
, we can express 

E(T) as

 2 2 1 1E( ) / .b b≈T N N   (6.18)

When b
1
 = b

2
 = b, C

2
/C

1
 is an unbiased estimator of N

2
/N

1
. Furthermore, when b is 

constant between sample occasions, ratios of count statistics have smaller sampling 
error than ratios of abundance estimates because the abundance estimate incorporates 
sampling error in the count statistic plus variation due to estimating b. Skalski and 
Robson (1992. p. 64) provide a test of equal detection probability for surveys in 
which individuals are distinctive. MacKenzie and Kendall (2002) provide an 
equivalence testing approach and a model-averaging approach to the same problem. 
Note that testing for similar detection probabilities requires collection of data for 
estimation of, and inference about, detection probabilities.

The use of nonproportional indices requires the demonstration of a functional 
relationship between the index and abundance over the desired range of inference, a 
calibration of the relationship, and an evaluation of the precision of the relationship. 
The basic assumption is that the index, denoted by I, has a monotonic relationship to 
N, i.e. E(I) = b

0
 + b

1
N, to ensure that inferences based on the index relate to changes 

in N. Usually, b
0
 is assumed to equal 0 and the relationship becomes the familiar 

E(I) = bN. Most ecologists also assume the index and N share a positive relationship 
that is constant across habitats and time. This often is an untested and incorrect 
assumption (Conroy 1996; Link and Sauer 1998; Gibbs 2000). An index may have 
a lower limit of N below which the index is insensitive to changes in N. In terms of a 
positive linear relationship, the index may have a negative y-intercept, b

0
 < 0, crossing 

the x-axis at (N*,0), with N* > 0. This relationship is particularly common in surveys 
of rare species. Similarly, an index may become insensitive to changes in population 
size when N is large. This is manifested as an asymptotic curve in which the relation-
ship between the index and N approaches 0 as N increases. An index that is essentially 
flat for large values of N may still be useful for monitoring a population at low and 
intermediate levels of abundance, whereas an index that is insensitive when N is 
small is unlikely to be of much use. If the slope of an index-abundance relationship 
is shallow, the index will not be good predictor because large changes in N may be 
accompanied by small changes in the index that may be masked by sampling error. 
Finally, if detection varies by habitat or time, then a single value of the index may 
represent multiple population sizes N

i
 that depend on habitat or time i.

Camera trap surveys offer some promise for standardization, at least for indices 
that track changes in the population over time within a survey site. Proper sample 
design and trap placement can reduce large-scale habitat effects that might influence 
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p while ensuring that the objectives of the survey are met by the sampling effort. 
Since the detection of animals is automated, observer error is limited to variation in 
placement of cameras, rather than the actual observation of individuals. Typically 
standardization in camera trap surveys involves scaling the index to a standard unit 
of effort, usually 100 camera trap days and conducting surveys in the same season. 
Skalski and Robson (1992) argue that attempts to make inferences about popula-
tions using an index require careful standardization in any experimental design to 
minimize variation in p. It is unlikely however, that even standardization would 
suffice to allow comparisons of camera trap indices across sites or across regions.

In the situation where detection probability is thought to vary due to uncontrollable 
effects, the use of covariates that relate to sources of variation in p may help. Choice 
of covariates, however, is important. Covariates that influence both detection 
probability and abundance, however, cannot be used as a covariate for an index since 
it will be impossible to disentangle the effect of the covariate on N and p. Habitat 
type is an example of a covariate that is likely to affect both p and N. Environmental 
variation, such as rainfall, or temperature are likely to affect p and not N. Typically, 
analysis of covariates is used to deal with variation in the index due to suspected, 
covariate-induced differences in p. Unfortunately, it is nearly impossible to foresee 
and control for the many possible factors that affect detection. Residual variation in 
p due to unmodeled variation adds noise to the index values that is simply relegated 
to sampling error under the untestable assumption that this error is small, unimportant, 
and unrelated to the dimensions (i.e., space, time) of comparison.

An index should be validated through periodic calibration with independently 
derived estimates of abundance or through complementary surveys. The use of a 
double sampling design can help calibrate an index. O’Brien et al. (2003) used 
a combination of line transect and CR estimates to test the relationship between a 
relative abundance index based on independent photographic events per 100 trap 
nights and found a reasonably strong relationship (r2 = 0.79) for several species. An 
analysis using line transect and point count estimates of three ungulate species 
preyed upon by Asiatic cheetah (Acinonyx jubatus venaticus) to calibrate photo-
graphic indices of prey abundance yielded similar results (T. O’Brien, unpublished 
data). However, as Williams et al. (2002) note, most indices are neither calibrated 
nor validated. Borrowing a calibrated index from another site or another species 
and assuming the same relationship exists is not a reliable form of calibration or vali-
dation and is not recommended. Local conditions can affect p and/or N, making 
the demonstrated relationship at site A unreliable or meaningless at site B unless 
the effects on p and N can be disentangled.

When analyzing time trends at a site, use of relative abundance indices may be 
more easily justified. Gibbs (2000) points out that trend analysis is more concerned 
with the signal in the index data and that should be apparent despite noise in the 
data, although there is an assumption of a common distribution for p so E(p) is 
constant. Basically, variation in detection probability of a species is likely to be lower 
over time within a study area compared to variation between study areas. Karanth 
and Nichols (2002) agree that use of relative abundance to detect trends is “safer” 
than using an index to infer change over space. As shown above (Skalski and 
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Robson 1992), a proportional difference in abundance, N
2
 / N

1
, may be approximated by 

C
2
 /C

1
 when b

1
 = b

2
. If b

1
 ¹ b

2
, the uncertainty in the count ratio is minimized only 

to the degree that the differences among b
i
 are minimized. Researchers need to be 

on guard, however, because human-related covariates may still cause changes in 
p over time causing inferential problems for detecting time trends using indices. 
Much of work on use of abundance indices to monitor changes in populations over 
time has been developed to minimize the effect of variation in p and address the 
shortcomings of count data (Link and Sauer 1997, 1998, 2002). Because of the 
weak inference associated with abundance indices, any use of indices should be 
accompanied by a discussion of the relationship of the index used to the population 
size, and the limitations of the method.

Recently, binomial mixture models have been proposed for estimating abundance 
and detection probability from count data (Dodd and Dorazio 2004; Royle 2004; 
Kéry et al. 2005). These models do not necessarily rely on individual identification 
for the estimation of detectability, making them potentially useful for species lacking 
distinguishing characteristics and appearing in camera traps. The main requirement 
is that count surveys are replicated at a number of sampling locations over a period 
for which populations are closed. If we treat a camera trap survey as a sampling 
protocol deployed at a large number of very small, spatially distinct sampling units, 
then the photographic record of a single camera may be treated as a point count 
survey of local abundance replicated over d days. The size of the population at each 
camera trap point is expected to be small and often 0. The observed counts for a 
single day at a trap also are likely to be small (1 or 2 individuals), and probably include 
many 0’s. Abundance at the different trap sites will vary spatially (N

i
) and repeated 

counts at site i may be treated as binomial random variables with parameters N
i
 

(local abundance) and p
i
 (detection probability). Under these circumstances, estimates 

of N
i
 may be poor, but the estimate of total or average point abundance, N̂, at the 

trap sites may be good (Royle and Nichols 2003). The average point abundance can 
then be used as a detectability-corrected abundance estimate for purposes of tracking 
changes over time and space. I include this approach in the relative abundance 
section because the average point abundance is expected to change as N changes; 
therefore changes in ratios of average point abundances N̂

2
 /N̂

1
 should be an unbi-

ased estimate of changes in N over time and space.
One obstacle to implementing this approach is the potential for double counting 

the same individual during a sample or at multiple sites. Careful scrutiny of consecu-
tive photographs of the same species, or multiple photographs of a single species 
during a single sampling period, can usually discern differences in individuals, even 
if the individuals cannot be identified reliably from day to day, reducing the chance 
of double counts. This method will work best when applied to species that live 
singly or in small groups. It is also appropriate for territorial species when cameras 
are spaced such that coverage is approximately one camera per territory. For 
example, in five replicate camera trap surveys from Indonesia (T. O’Brien, unpubl. 
data), four of the most commonly observed species in 24-h samples were usually 
photographed only one time per day and as an individual (range 58–89% of samples). 
For red muntjac (Muntiacus muntjac), 89% of non-zero samples were of a single 
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animal. For Great Argus Pheasants (Argusianus argus), 80.4% of samples were of 
individuals and two-third of the samples with > 1 individual were photographs of 
two to three individuals in a single frame. Even group-living wild pigs (Sus scofa) 
and pig-tailed macaques (Macaca nemistrina), were often discernable to individual 
in consecutive photographs; 68% and 58% of samples, respectively, were classified 
as a single animal per sample.

Williams et al. (2002), Pollock et al. (2002) and others stress their discomfort 
with the use of indices to monitor populations because of the formidable challenge 
of meeting model assumptions and, often, the inability to test these assumptions. 
Link and Sauer (1998) defend the use of indices but caution that any analysis that 
relies on indices should recognize that counts are not necessarily good surrogates 
for population size. The vast majority of pictures/data collected during a camera 
trap survey are species whose members are difficult to reliably identify as individuals, 
requiring innovative analytical techniques and interpretations. While the concerns 
regarding the use of indices are real, the resolution of problems related to uniden-
tifiable individuals should be a major area of inquiry in camera trap studies. Finding 
ways to improve the reliability of abundance indices and extend the use of count 
statistics is required if the use of camera trap studies in conservation and ecology 
is to move beyond the limited and rather special case of abundance estimation for 
species with recognizable individuals.

Properly designed studies of abundance and density using camera traps will always 
pose logistical challenges to investigators, but the payoff can be great considering the 
insights gained into populations of rare and endangered species (e.g., Karanth et al. 
2004, 2006). Where possible, camera trap CR studies should be replicated over 
time to take advantage of open model estimation of demographic parameters. For 
species that are not individually recognizable, it may be worthwhile to capture and 
tag a portion of the population and use resighting of marked animals in camera traps 
along with counts of unmarked animals to provide the data to estimate detection 
probabilities. The use of point abundance estimators has potential for territorial or 
solitary species as well as those that live in small groups.

Finally, the development of unbiased estimators of density is probably the most 
important issue facing practitioners of camera trapping for abundance estimation. 
Density estimates make the comparison of abundances in space and time possible. 
Abundance estimates based on CR methods are confounded with variation in spatial 
and non-spatial components of detection and with the configuration of the camera trap 
layout (Efford et al. 2004). Abundance estimates without an associated area may be as 
difficult to interpret as count-based indices (Anderson 2003). The lack of consensus on 
the best practice for density estimation and the potential for misinterpreting the results 
of an abundance analysis suggest that researchers exercise caution in reporting and 
comparing abundance and density estimates. Although the methods of Efford (2004) 
offer a promising answer to the problem of density estimation, there is still need for 
investigation of the effects of transients in the population, heterogeneous home range 
size, minimum data requirements and extension to open population models. Clearly, 
advances in abundance and density estimation are creating new questions and new 
opportunities for application in research and monitoring.
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7.1 Introduction

7.1.1  Camera Trap Studies of Tigers: Natural History and Science

Automated photography of tigers Panthera tigris for purely illustrative purposes 
was pioneered by British forester Fred Champion (1927, 1933) in India in the early 
part of the Twentieth Century. However, it was McDougal (1977) in Nepal who first 
used camera traps, equipped with single-lens reflex cameras activated by pressure 
pads, to identify individual tigers and study their social and predatory behaviors. 
These attempts involved a small number of expensive, cumbersome camera traps, 
and were not, in any formal sense, directed at “sampling” tiger populations.

Karanth (1995) first employed camera traps as a population sampling tool, 
using tiger photos to generate capture histories that were then used to estimate 
population size (abundance) in a closed model capture–recapture (CR) framework 
(Otis et al. 1978; White et al. 1982). Although this post-hoc analysis partially 
shoe-horned data into a CR framework, it did lead to identification of key issues 
related to trap-spacing, population closure, model selection and density estima-
tion. These issues were addressed in subsequent refinements introduced by 
Karanth and Nichols (1998), and were elaborated in a technical manual (Karanth 
and Nichols 2002). Thereafter, several camera trap studies have tried to estimate 
tiger abundance using the Karanth–Nichols approach (Karanth et al. 2004a,b, 
2006; Kawanishi and Sunquist 2004; Simcharoen et al. 2007) or variations on it 
(O’Brien et al. 2003; Wegge et al. 2004; Johnson et al. 2006). The material in this 
chapter will be based on the approach advocated by Karanth and Nichols (1998, 2002). 
This approach is sound and can be implemented with existing software at this time. 
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However, we note that a new approach to density estimation using spatially 
explicit CR models (Efford 2004; Borchers and Efford 2008; Royle and Young 
2008; Royle et al. 2009 a, b) holds a great deal of promise and may become the 
method of choice in many situations.

Overall, these studies highlight the potential for monitoring populations of 
this highly endangered big cat using camera traps. However, to generate reliable 
estimates of tiger abundance and density, camera trap studies must overcome 
several daunting challenges posed by the ecology of this scarce, elusive animal. 
In this chapter, we cover key issues including equipment needs, resource require-
ments, field survey protocols and analytical methods, and illustrate them with 
examples from tiger surveys. We also try to evaluate common problems associ-
ated with the rigorous conduct of camera trap studies of tigers. We have not tried 
to explain here the general concepts underlying animal abundance estimation 
(Seber 1982; Thompson et al. 1998; Williams et al. 2002). We refer the reader 
to the extensive literature on CR sampling for closed populations (Otis et al. 
1978; White et al. 1982; Chao and Huggins 2005a, b). Thompson (2004) pro-
vides a good overview of statistical issues in sampling populations of rare or 
elusive animals, wherein application of camera traps to this task is covered by 
Karanth et al. (2004c).

7.1.2 Tiger Ecology in Relation to Abundance Estimation Issues

Despite the tiger’s formerly vast range across Asia shrinking by 93% during histori-
cal times, the cat is still distributed widely but patchily across an extensive area of 
1.1 million km2 (Sanderson et al. 2006). However, tigers occur at relatively low 
densities of 1–20 individuals per 100 km2, compared to, say large ungulates that 
attain densities of 100–10,000 individuals in an equivalent area (Karanth et al. 
2004a). Furthermore, tigers are secretive, nocturnal animals that possess extraordi-
narily keen senses that they effectively employ to avoid encounters with humans. 
Tigers can move over long distances (5–25 km) overnight, but also stay localized 
around prey carcasses for 3–10 days at a time (Sunquist 1981; Smith 1993; Karanth 
and Sunquist 2000). Home ranges of individual tigers vary widely in size 
(15–1,500 km2), depending on local ecology and social status of the individual. 
Tigers are solitary animals, except for mother-cub associations that may last for 
18–24 months and mating pairs that associate for 3–7 days.

Because of these ecological factors, tiger population size cannot be estimated 
using methods based on visual detection and counting, such as distance sampling 
(Buckland et al. 2001). Invasive techniques that involve physical capture and radio-
telemetry, which are useful for tiger behavioral studies (Sunquist 1981; Smith 
1993), pose impossible logistical challenges when the goal is to adequately sample 
populations to estimate numbers.

Because of such problems rooted in tiger ecology, non-invasive “camera 
trapping” has emerged as an attractive alternative methodology for assessing tiger 
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numbers. In this context, the fact that tigers are “naturally marked” confers a major 
advantage for investigators interested in abundance estimation using CR methods 
(Nichols 1992). Moreover, none of the alternatives proposed can boast of compa-
rable theoretical development, analytical rigor, empirical testing, and software 
development (Williams et al. 2002; Amstrup et al. 2005). Furthermore, except for 
careful advance planning, there are virtually no extra costs or difficulties associ-
ated with rigorous photographic CR sampling when compared to other ad hoc 
approaches (Karanth and Nichols 2002). However, we do emphasize that chal-
lenges posed by tiger biology that defeat alternative counting methods (see 
Karanth et al. 2003) also pose problems for photographic CR surveys. Therefore, 
planning of surveys keeping these problems in view is the key to successful 
camera trapping.

7.2 Equipment and Field Practices

7.2.1 Camera Traps and Related Equipment

Camera traps are now manufactured by a number of commercial firms and can even 
be assembled at home. However, because deployment and maintenance of camera 
traps at a scale required by tiger surveys is a difficult and expensive exercise, we 
strongly advise against use of unreliable home-made equipment. Among various 
types of commercially available camera trap units (see Swann et al., Chap. 3), 
choice in a particular context is governed by several factors.

As we shall see later, deployment of dozens or even hundreds of camera traps is 
necessary for generating sufficient capture data for reliable abundance estimation. 
Further we recommend that every trap contains two cameras to photograph both 
flanks of the tiger (Karanth et al. 2002). Abundance estimation is still possible with 
single-flank photographs, but the additional uncertainty associated with individual 
identification typically combines with small sample size to yield very imprecise 
estimates.

Because typical tiger surveys are funded only to the extent of a few thousand 
dollars, investigators must choose cheaper units over expensive ones with more 
frills. This is an overarching constraint under which the following additional factors 
come into play.

Active infrared camera trapping units (Swann et al., Chap. 3) typically have a 
shorter recycling time (~5 s) between pictures, thus enabling photo-capture of a 
second or even a third tiger when mother and her pre-dispersal offspring, siblings, 
or mating pairs are involved. Although active units take longer to set up, they are 
easier to target and frame the tigers clearly, thus facilitating easier individual iden-
tification. Active units perform more reliably than passive ones, particularly in 
extreme cold weather or if the temperature difference between the tiger’s body and 
surrounding environment is small.
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However, in wet or rainy weather passive infrared units perform more reliably, 
which is a major advantage for surveying tigers in tropical regions. Passive units 
are less often triggered by non-target objects. Moreover, passive traps tend to be 
substantially cheaper compared to active ones, conferring another major advantage. 
Although some types of active units can trip more than one camera, saving on cost 
of a tripping unit, the overall relative cost advantage of passive infrared units over 
active ones is still substantial.

Camera traps are sometimes damaged by inclement weather or animals such as 
elephants, and, rarely by bears or tigers. More often, traps are stolen or vandalized 
by humans. Providing a rugged protective unit (such as the one described in 
Karanth and Nichols 2002, p. 184–186) is one option. However, strong protective 
shells that can thwart elephants or determined thieves tend to be heavy and cumber-
some. An alternative option is to hide or mask the camera traps, which becomes 
particularly difficult with flashlight photography. Careful choice of trap sites 
increases tiger capture probabilities (Plate 1), and the use of a metal shell can 
reduce theft or animal damage. 

However, it is our general view that most presently available commercial camera 
traps are of inadequate quality and/or too expensive to deploy in sufficient numbers 
necessary to sample tiger populations at the right spatial scales. Tigers Forever, a 
project sponsored by Wildlife Conservation Society and Panthera Foundation is cur-
rently working on developing an entirely new camera trap for large mammal surveys 
that works on a cellphone platform, which aims to overcome these constraints 
(Ed Yarmchuk and Alan Rabinowitz, Panthera Foundation, pers. commun).

Plate 1 Researchers setting up a camera trap on a frequently used tiger travel route in Nagarahole, 
India. Photo credit: Eleanor Briggs
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7.2.2 Choice of Trap Sites

Because tigers live at relatively low densities even in the best of habitats, the probabili-
ties of their encountering camera traps are very low. Therefore, the most important 
survey design goal should be to maximize probabilities of photo-capturing tigers by 
increasing the per sample detection probability “p” (Otis et al. 1978; Williams et al. 
2002; Nichols and Karanth 2002). An important secondary design goal is to expose the 
different individuals in the surveyed area to similar capture probabilities and to mini-
mize variation among individuals in the probability of capture. Increased capture prob-
abilities lead to captures of more individuals in the sampled population and increase 
recapture rates of previously caught tigers. Therefore, camera traps must be set on trails 
and paths that are most likely to be frequented by tigers. Attempts to place traps sys-
tematically by using a grid-like pattern typical of rodent trapping or to randomize selec-
tion of trap locations (see Rowcliff et al. 2008) are likely to detract from selection of 
the best trap sites. Such practices may, in fact, drastically reduce tiger capture probabili-
ties. We note, however, that if the goal of the survey is not solely to maximize captures 
of tigers, alternative ways of choosing trap locations may be justified (see Kéry, Chap. 12; 
O’Brien et al., Chap. 13). It must be noted that tiger cubs <1 year age are usually  
camera trap-shy with extremely low capture rates, rendering it almost impossible to use 
photographic CR analyses to estimate their abundance. For example, in a 10-year data 
set of 366 tiger photo-captures from Nagarahole, India (Karanth et al. 2006), only two 
photo-captures were of cubs less than 1 year in age.

Typically, tigers move along well-used travel routes (Smith et al. 1989), which 
can be identified by skilled trackers based on tiger signs such as tracks, scent marks 
and scat-deposits. Optimal camera trap sites are found on such routes, particularly 
where trails of ungulate prey species converge. Although we have not used baits or 
lures in our tiger studies, these can potentially increase photo-capture probabilities 
in studies of big cats and should be used in such cases.

The survey area should be thoroughly reconnoitered beforehand using the best 
available local knowledge, maps and survey tools. This reconnaissance should have the 
specific goal of identifying approximately double the number of camera trap sites than 
are likely to be used later (as explained in the next section). These extra trap sites 
provide flexibility to locate traps optimally in the final survey design, without lowering 
capture probabilities or compromising on trap-spacing needs. Investigators should 
seek the assistance of local naturalists for such reconnaissance surveys: after all, the 
goal of “maximizing tiger captures in traps” is the same one pursued by illegal hunters 
who are often the most knowledgeable with respect to tiger natural history locally.

7.2.3 Accurately Recording Data

Regardless of the type of camera trap equipment used, trouble-shooting – fixing 
problems with cameras, film, tripping devices, batteries, cables, etc. – has to be 
done as often as possible, preferably once a day if the survey logistics permit. We 
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recommend developing a clear check-list and data form for maintaining trouble-
shooting records to ensure cost-effectiveness and data integrity.

Each tiger photo-capture should have the following ancillary data for abundance 
estimation: the location of trap-site (for computing distances moved, buffer area, 
and for use in spatially explicit modeling); the date, and if possible the time, of each 
capture event, for assigning it to the correct sampling occasion. Therefore, it is 
efficient to have pre-designed data forms (Karanth and Nichols 2002, p. 183). We 
cannot emphasize strongly enough the absolute need to uniquely number each 
photo-frame (by marking each film canister with a unique indelible identification 
number before loading it into the camera). Similarly the location and date of each 
photo must be recorded accurately. If errors creep in while recording these details, 
the capture-histories generated, as well as the resulting analyses, will be flawed.

Tigers are not difficult animals to reliably identify from good photographs based 
on stripe patterns on their flanks, limbs, face and even the tail (Plate 2). Poor quality 
photos might lead to uncertain individual identifications, which cannot be used 

Plate 2 Camera trap photos of flanks enable unambiguous individual tiger identifications from stripe 
patterns as well as additional information on the sex and broad age-category for some of the captured 
tigers. The top picture shows an adult tigress uniquely identified as NHT-115 and the bottom picture 
shows the male tiger NHT-004, both photographed on successive nights at the same trap site in 
Nagarahole, India during January 1995. Photo credit: Ullas Karanth, Wildlife Conservation Society
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efficiently in CR analyses. In longer term studies, number of individuals captured 
increases over the years, and, newly caught animals must be compared to all previ-
ously caught ones. An automated pattern-matching freeware computer program 
specifically designed for identifying tigers, developed by Hiby et al. (2009; 
ExtractCompare v 1.8, http://www.conservationresearch.co.uk/tigers/tigers1.htm) 
can now facilitate rapid ranking and short-listing of most likely matches from a 
database of tiger photos. This automated process permits investigators to concen-
trate on the final visual identifications, thus greatly reducing effort.

The photographic capture data analysis requires “capture histories” of individual 
tigers in the “x matrix” format (Table 7.1). Capture histories are simply strings of 1’s 
and 0’s indicating capture and no capture, respectively, at each specific sampling 
period (see O’Brien, Chap. 6). For example, a capture history of 01001 indicates that 
the animal was captured only on sampling periods 2 and 5 of a 5-occasion study. Such 
histories are constructed after a careful comparison of photographs to identify indi-
viduals from stripe patterns on both flanks of the animals. A single pair of photographs 
of both flanks of a tiger (obtained simultaneously) is needed to “link” the left and right 
profiles and identify the animal permanently. Thereafter, the animal can be identified 
from the photograph of any one flank. However, this in effect means that every camera 
trap should have two cameras. There is no avoiding this investment.

7.3 Survey Design Considerations

7.3.1 Season, Survey Duration and Population Closure

The survey duration is the total number of days taken to sweep the entire area of 
interest with cameras, two or more times (sampling periods). Abundance estimation 
assuming a closed population (Otis et al. 1978; White et al. 1982; Williams et al. 2002) 

Table 7.1 Capture histories of individual tigers photographed in Panna Tiger Reserve, Central 
India, on 15 sampling occasions during February–April 2002

Individual  
identification number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PAT-101 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
PAT-102 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
PAT-103 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
PAT-104 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
PAT-105 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
PAT-106 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
PAT-107 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
PAT-108 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAT-109 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
PAT-110 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
PAT-111 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

http://www.conservationresearch.co.uk/tigers/tigers1.htm
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dictates that the duration of such a multi-sample CR survey should be as “short” as 
possible in relation to likely turnover of the targeted animal population as a result of 
births, deaths, immigration and emigration. Tiger populations have high mortality, 
recruitment and turnover rates (Karanth et al. 2006), but assuming closure over 
periods of 30–60 days may be justifiable. However, an even shorter duration is 
always preferable! Keeping cameras going for months is likely to violate the clo-
sure assumption, and requires different types of analyses specific to demographi-
cally open populations (Pollock et al. 1990; Kendall et al. 1995; Karanth et al. 
2006, see Karanth et al., Chap. 9; O’Brien, Chap. 6).

The choice of the survey season is dictated by several factors: weather condi-
tions necessary to effectively run the camera traps, accessibility of the entire area 
to survey personnel, incidence of human activities that may help or hamper the 
work, the feasibility of deploying traps to maximize tiger capture probabilities, and 
administrative factors such as availability of personnel, permits and equipment.

7.3.2 Spacing and Placement of Traps

Closed model CR analyses are based on the “ball-and-urn” conceptual model 
(White et al. 1982, p. 4). Their major underlying statistical assumption is that 
samples consisting of a few tigers are being repeatedly drawn from a single popu-
lation consisting of all tigers. Therefore, each tiger must have “some” probability 
of being photo-captured (although not all animals may in fact be caught during 
the actual survey). In other words, the entire sampled area should be covered by 
camera traps, without leaving any large “holes” in which a tiger could spend the 
entire survey period without any probability of encountering a camera trap 
(Fig. 7.1).

The maximum spacing between two traps necessary to avoid a “hole”, and 
ensure that every individual tiger is potentially exposed to trapping, depends on the 
expected minimum home range size of tigers. Typically, breeding tigresses holding 
territories have the smallest home ranges (Sunquist 1981; Smith 1993). The size of 
these female ranges will vary from 10 to 500 km2 depending primarily on prey 
abundance. Correspondingly, the maximum spacing between traps can be set at 
about 2–10 km depending on expected female range size specific to that habitat. 
Another rule of thumb is to set at least two traps per female home range, although 
more traps are always better than fewer. By using female range size to apply this 
minimum rule, it is automatically ensured that other social classes of tigers such as 
post-dispersal offspring and adult males, whose home ranges may be 3–10 times 
larger (Smith 1993), get a reasonable number of traps set in their ranges.

Investigators face a dilemma with regard to trap spacing: given a fixed number 
of traps, increased trap density (traps being placed more closely) is likely to 
increase CR rates for tigers exposed to traps, thus increasing capture probabilities; 
on the other hand, reduced trap density (traps placed further apart) can potentially 
sample a larger number of animals, thus catching a larger sample of individual 
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Fig. 7.1 Camera trap locations used for survey of the tiger population at Nagarahole, India
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tigers (M
t+1

) and increasing this component of sample size (Otis et al. 1978; White 
et al. 1982). Table 7.2 shows this relationship between trap-spacing, capture prob-
ability (p), number of tigers caught (M

t+1
) and estimated population size from a data 

set from Nagarahole, India.
Tiger densities are primarily dependent on densities of ungulate prey (Karanth 

et al. 2004a). In Table 7.3 we show prey density estimates, as well as predicted and 
estimated tiger densities at 11 sites in India. Potential number of tigers in an area 
to be sampled can be predicted from prey density data because there is approxi-
mately one tiger for 500 ungulate prey animals.

If there are no prior data on tiger movement and home range use in the area, our 
practical recommendation is to potentially expose at least 10–30 individual tigers 
to trapping, ensuring there are no “holes” in the sampled area. Thereafter, if more 
traps become available, trap densities can be increased to improve capture rates.

7.3.3 Adequate Coverage of the Sampled Area

After decisions are made on the survey season, duration, trap-spacing, number of trap 
locations, and geographic area to be covered, a second set of decisions has to be made 
based on the total number of camera traps available and logistical constraints.

For illustration, we can assume that 100 trap locations have to be sampled in a 
30-day closed survey period. If the investigator has 100 functioning traps and suf-
ficient logistical capacity to run all 100 traps simultaneously, a maximum of 30 
sampling periods (these are also called “samples” or “sampling occasions”) will be 
available to construct tiger “capture histories.”

The resulting closed model CR analyses can have a minimum of 2 sampling 
periods to a maximum of 30 sampling periods. In the first case, all tiger capture 
data from the two 15-day periods (days 1–15, 16–30) are treated as the two sam-
ples, whereas in the second case all captures during each day are treated as one 
sample (total 30 samples). With reasonable numbers of tiger captures, generally, 
the ability to fit more complex models to the data increases if there are more 
sampling periods. On the other hand, decisions about sample periods should not 

Table 7.2 The relationship between trap spacing, capture probability (p), number of tigers caught 
(M

t+1
) and estimated population size from a data set in Nagarahole, India, 2004. Number of camera 

traps: 40; Number of sampling occasions: 10; Model: M
h
. Captures from trap sites were succes-

sively eliminated to create survey designs with different trap spacing

Trap spacing 
(km)

Area of camera 
trap polygon 
(km2)

Estimated capture 
probability per 
occasion  p̂

Number of tigers 
captured M

t+1

Estimated 
population size N̂

 ~1.5  98.7 0.0840 16 25
 ~2.5 249.6 0.0383 16 47
~3.5 373.3 0.0255 23 94
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produce many sample periods with zero captures, as this can create numerical problems 
with estimation software and simply makes the modeling of capture probability 
more difficult. Therefore, in the above case, it may be preferable to construct capture 
histories with 10 samples of 3 days each or perhaps 6 samples of 5 days each.

Usually, investigators will not have enough camera traps to cover all the identi-
fied locations simultaneously. In such a case, trap locations are spatially segre-
gated into logistically convenient “blocks” or “trap lines” (see Fig. 7.1) and 
sampled successively. An additional logistical constraint is that camera traps can-
not be moved easily and set up every day. In the above case, if we had only 25 
camera traps, the 100 locations would be segregated into four trap lines. Cameras 
in each line would be trapped continuously for 7 days and then moved to the next 
line, to complete the survey in 28 days. This approach would result in a capture 
history matrix with seven sampling periods, each containing tiger photo-captures 
from one day selected from each one of the four trap lines (Nichols and Karanth 
2002, design 4, p. 134). For example, the first day of trapping in each line could 
be combined to form sample period 1, the second day from each line combined to 
form sample period 2, etc.

The key point is that tiger capture data going into each sampling period should 
be generated from across the entire study area, to ensure that each individual tiger 
in the population has some probability of being exposed to traps during each period. 
If the approach described above involving trap lines and movement of camera traps 
is employed during the survey, abundance estimation models that incorporate influ-
ence of time (the sampling occasion) on capture probabilities typically should not 
be used in the analyses. However, we believe that in short duration surveys, such 
time-related influence on capture probability may not be important for tigers. 
In this context, we note that the spatially explicit CR model recently developed by 
Royle et al. (2009a, b), does not require sampling periods to be structured in this 
manner and can effectively deal even with the presence of potential “holes” in the 
sampled area at any sampling period.

The area over which camera traps are deployed typically attains the shape of 
an irregular polygon of some sort (Fig. 7.1). In practice, the shape of this “trap 
polygon” may be dictated by a variety of influences, such as: local tiger distribu-
tion and potential densities; geographical and logistical factors that affect trap 
deployment; and social factors such as legal access and need to protect traps 
against theft or vandalism. Although the computation of the sampled area is cov-
ered later in this chapter, the following points should be considered when select-
ing the trap locations.

The more a trapped area resembles a complete circle, the better it is from an 
analytical point of view. Shapes that have high periphery-to-area ratios (such as 
“doughnuts”, narrow strips, radiating projections) are to be avoided if possible. 
Furthermore, if the tiger habitat in the sampled area has a “hard-edge” that borders 
non-tiger habitat, instead of locating traps right on the edge, placing traps inside will 
avoid coverage of areas where tigers do not occur, and thus free up camera traps.

Tigers are exposed to traps as they move along their travel routes looking for 
prey, water, shade, or social contact with other tigers. They do not choose travel 
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routes through a “random process” that might be best sampled by a regular grid of 
intersecting points at which to set traps. Therefore, constraining the choice of 
potential camera trap sites indirectly by using some sort of a pre-planned “grid” to 
guide trap setting will almost certainly reduce tiger capture probabilities. The best 
possible set of trap locations for photographing tigers is unlikely to be selected 
through such self imposed constraints on the investigator’s part. Therefore, investi-
gators should avoid using grid-like patterns or randomly selected GPS coordinates 
as a basis for setting camera traps for tigers. The primary reason for use of such 
systematic or random trap locations is to provide similar capture probabilities for 
all animals in the sampled area. However, if animal movement is restricted to a 
small subset of all possible areas (i.e., along trails and roads), then restriction of 
traps to this subset can accomplish this objective. Given the numerous ecological 
and logistical challenges investigators already face in getting sufficient photo-cap-
tures of this elusive species, selecting trap locations “randomly” is a luxury they 
can ill-afford.

7.4 Data Analysis: Issues and Examples

7.4.1 The Approach to Analysis of Tiger Photo-Capture Data

It is our view that given major analytical advantages of using “marked animals” for 
studying animal population dynamics (Nichols 1992; Williams et al. 2002), tiger 
ecologists should not forgo these advantages by using approaches based on simple 
trapping rates to make inferences about abundance (e.g., Carbone et al. 2001). For 
estimating tiger abundance from short-duration surveys, we recommend use of 
sound closed CR models which are being continually developed, evaluated and 
refined (for details, see reviews by Otis et al. 1978; Williams et al. 2002; Chao and 
Huggins 2005a, b; Royle et al. 2009a, b).

Relevant software, such as the reliable old war-horse, program CAPTURE 
(White et al. 1982; Rexstad and Burnham 1991), as well as the more recent and 
versatile program MARK (White and Burnham 1999), is available at no cost off the 
internet (http://www.mbr-pwrc.usgs.gov/software.html; http://www.warnercnr.
colostate.edu/~gwhite/mark/mark.htm). Tiger biologists using these modern 
approaches are also supported by helpful list servers (http://www.phidot.org/forum) 
and detailed manuals (Karanth and Nichols 2002).

The analysis of tiger photo-capture data for estimating abundance and density 
using the above software involves the following steps:

(1) Testing the assumption that the tiger population was closed, using the 
observed tiger capture frequencies, (2) Selecting the CR model most likely to have 
generated the observed tiger capture history data, by using the discriminant func-
tion model selection statistics and comparing the relative fit and number of param-
eters of various plausible models, (3) Estimating capture probabilities per sampling 

http://www.mbr-pwrc.usgs.gov/software.html
http://www.warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://www.warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://www.phidot.org/forum
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period (p) and tiger abundance (N) using the most appropriate model for the data 
on hand, and (4) Estimating the area effectively sampled by camera traps and com-
puting the tiger population densities based on abundance estimates.

7.4.2 Testing for Population Closure

The capture history data are first tested to check if the assumption of population 
closure during the “short” survey is justified. In program CAPTURE the null 
hypothesis of a closed population (and heterogeneity in capture probabilities) is 
statistically tested using an approach based on the observed times between first and 
last captures for all individuals captured twice or more (Otis et al. 1978; Williams 
et al. 2002). This test is sensitive to certain time-related patterns in capture proba-
bilities (e.g., low probabilities at the beginning or end of a study), behavioral 
responses to capture, and temporary emigration. Program MARK (White and 
Burnham 1999) can be used to test the null hypothesis of complete closure (and 
time-specific variation in capture probabilities) against the alternative hypothesis of 
a completely open population, with both mortality and recruitment (Stanley and 
Burnham 1999a). This test is somewhat sensitive to behavioral responses and indi-
vidual heterogeneity, but not to temporal variation in capture probabilities. If the 
closure assumption cannot be rejected, analyses can proceed. However, if the tiger 
population appears to be open, investigators may have to apply suitable open model 
analyses (Pollock et al. 1990; Williams et al. 2002; Karanth et al., Chap. 9) such as 
the Jolly-Seber model (Jolly 1965; Seber 1965) and more recent parameterizations 
of this model (Pradel 1996; Schwarz and Arnason 1996). However, closed models 
are generally more useful for abundance estimation from short duration surveys.

7.4.3 Model Selection and Estimation of Tiger Abundance

The next step in the analysis requires comparisons among plausible CR models that 
attempt to approximate the processes that generated the observed capture histories. 
In program CAPTURE these comparisons are performed using a series of between-
model and goodness-of-fit hypothesis tests, and the resulting statistics are used to 
compute an overall score based on a discriminant function developed using simu-
lated data (Otis et al. 1978; White et al. 1982). In program MARK, likelihood-
based model selection criteria such as Akaike’s Information Criterion (AIC; 
Burnham and Anderson 2002) may be used to compare models. Different closed CR 
models consider the potential effects on capture probabilities of such potential 
sources of variation as behavioral response of tigers to camera trapping (e.g., trap-
avoidance), time-specific variation (e.g., weekly weather changes), and heterogeneity 
among individual tigers (e.g., caused by factors such as territorial status of the animal 
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or trap access). More complex models that incorporate the combined effects of 
these factors on capture probabilities are also available.

Typically the following models (Otis et al. 1978; White et al. 1982; Williams 
et al. 2002; Chao and Huggins 2005a, b) are considered in the analyses of tiger 
capture data:

M
o
 –   Capture probability is the same for all tigers and is not influenced by 

behavioral response, time or individual heterogeneity.
M

h
 –   Capture probabilities are heterogeneous among individual tigers, but are 

not affected by trap response or time.
M

b
 –  Capture probabilities differ between previously caught and uncaught tigers 

due to trap-response behavior, but are not influenced by heterogeneity or 
time.

M
t
 –    Capture probability is the same for all individual tigers, but varies from 

one sampling period to another due to time-specific factors.

The model selection process also considers more complex models such as M
bh

, M
th
, 

M
tb
 and M

tbh
 that incorporate effects of heterogeneity, trap-response, and time, in 

various combinations.
Generally, because tigers are territorial animals and the number of traps in each 

animal’s range is likely to vary, models that incorporate either heterogeneity alone 
(M

h
) or in combination with trap-response (M

bh
) are appropriate for analyses of 

tiger capture data. In short duration surveys, time (sampling period) is unlikely to 
influence capture probabilities. For estimation of capture probabilities and abun-
dance based on models M

h
 or M

bh
, several specific estimators have been imple-

mented in programs CAPTURE and MARK. These are reviewed in detail by several 
authors (Otis et al. 1978; Williams et al. 2002; Chao and Huggins 2005a, b). While 
tigers may in some cases develop a trap-shy response, as pointed out by Wegge  
et al. (2004), we note that this problem can be effectively handled by using behav-
ioral response models (e.g., model M

bh
), provided sufficient capture data are available.

In cases where there is a substantial amount of uncertainty about appropriate 
models, it may be useful to compute model-averaged estimates (e.g., Buckland 
et al. 1997; Stanley and Burnham 1998, 1999b). Specifically, a weighted mean abun-
dance estimate is computed, with weights based on AIC (Burnham and Anderson 
2002) or whatever other model selection statistic is computed (Stanley and 
Burnham 1998; 1999b). The variance of this weighted abundance estimate includes 
two components: the conditional variance of each abundance estimate based on its 
model and the squared deviations of the model-specific abundance estimates from 
the weighted mean (Buckland et al. 1997; Stanley and Burnham 1998, 1999b). The 
latter variance component reflects model uncertainty. Model averaging was found 
to perform well for closed population CR models in simulation studies by Stanley 
and Burnham (1998, 1999b).

The analyses using programs CAPTURE or MARK yield estimates of capture 
probability per sample occasion, p, and population size, N (abundance). Table 7.3 
shows tiger abundance estimates from camera trap studies in 11 reserves across 
India (Karanth et al. 2004a).
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7.4.4 Estimating the Sampled Area Size and Tiger Densities

While abundance estimates are useful for tracking changes in a tiger population at 
a given site over years, estimates of tiger density (usually expressed as number of 
tigers per 100 km2) permit spatial comparisons across different sites, habitat types 
and larger regions. However, to derive tiger densities it is necessary to estimate area 
sampled by the camera trap survey. In our view, this problem remains somewhat of 
a weak link in analyses of CR data of big cats. Indeed, the issue of geographic 
closure extends beyond large cats and can cause problems with CR estimation in 
general (e.g., White et al. 1982).

For estimating the area actually sampled by camera traps, Nichols and Karanth 
(2002) proposed a refinement of a technique originally suggested by Dice (1938) 
and found to perform well in simulation studies by Wilson and Anderson (1985). 
This approach uses the mean of the maximum distance moved between captures for 
each individual tiger (MMDM) as an estimate of the average home range diameter, 
and attaches a buffer strip width of half this home range diameter around the poly-
gon formed by outermost camera traps to estimate the area sampled (described in 
detail by Karanth and Nichols 1998; Karanth et al. 2004b). Application of the 
Wilson and Anderson (1985) method in field studies has generated tiger density 
estimates that appear to be very reasonable when compared to densities predicted 
from prey abundance (Table 7.3).

Nichols and Karanth (2002) proposed that instead of the delta approxima-
tion method (e.g., Seber 1982) used for estimation of variance of the buffer 
distance, which assumes a trap polygon roughly circular in shape (Karanth and 
Nichols 1998), a GIS-based bootstrap simulation using the actual camera-
trapped area may perform better. However, this refinement has not been tried 
out in any field studies.

Soisalo and Cavalcanti (2006) studied radio-collared jaguars in Brazil and sug-
gested that the Wilson and Anderson (1985) approach may underestimate jaguar 
home range diameter and, thereby overestimate densities. In their study, use of the 
full trap-based MMDM (rather than half of this distance) provided a better approx-
imation to trap-based home range radius. It is not possible to judge the generality 
of this result. If MMDM is based on small numbers of recaptures (this is fre-
quently true with tigers), then it may be wise to implement an estimation approach 
that accounts for the fact that greater distances tend to be associated with larger 
numbers of recaptures. For example, Jett and Nichols (1987) proposed use of an 
exponential model in which MMDM was modeled as an increasing function of 
number of captures and then estimated model parameters using data on MMDM 
for animals recaptured once, twice, etc. This approach permits estimation of the 
asymptotic MMDM that would be expected if there was a large number of recap-
tures of every animal.

We like the idea of incorporating radio telemetry data into analyses directed at 
density estimation (e.g., Nichols and Karanth 2002). Unfortunately, in most cases, 
radio-telemetry data on tigers (particularly on the same group of animals that are 
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camera-trapped) are not available. Furthermore, if radio-telemetry data are indeed 
available at a site where tigers are being camera trapped, we believe that careful 
thought should be devoted to the manner in which they are used in the density 
estimation process. For example, Powell et al. (2000) did not focus on density esti-
mation but developed a joint likelihood for telemetry and CR data to investigate 
temporary emigration. A similar approach based on the superpopulation concept 
(Kendall et al. 1997) could be developed for combining camera trap and telemetry 
data. Under the new spatial CR approach of Royle et al. (2009a, b), the telemetry 
data could be used to inform the spatial parameter relating an animal’s capture 
probability at a specific trap to distance between the home range center and the trap. 
If studies employing radio telemetry and camera traps become more common, we 
believe there is much interesting work to be done investigating the best ways to 
combine these data sources.

7.5 Camera Trapping Tigers: Some General Comments

Having examined various constraints faced by investigators, the complexity of the 
answer to the common question “how many camera traps should be used in a study 
of tigers?” can be appreciated. The short answer is: “as many as you can afford.” 
However, all too often investigators photo-trapping tigers for abundance estimation 
(as opposed to just getting tiger pictures) deploy too few cameras, but with far too 
many expectations about the data they can generate. Unfortunately, closed model 
estimates of tiger abundance generated from less than half a dozen tiger capture 
histories may not be very reliable. While one may be forced to begin the pilot work 
with a small number of cameras, ultimately, for reliable abundance estimation, 
there is no getting around the fact that a substantial number of camera traps will be 
required. This is simply a function of the relatively small numbers of study animals, 
the extensive spatial scale, and the short study duration that investigators studying 
tigers are forced to deal with.

In spite of the above problems, investigators using camera traps sometimes try 
to answer fundamental questions related to CR methodology, simply by chopping 
up their small capture data sets into even smaller and smaller sub-samples. We 
believe that many basic statistical and modeling issues of CR methodology are better 
addressed through appropriate analytical studies (e.g., Seber and Whale 1970; 
Carothers 1973; Williams et al. 2002, p. 293–295) or simulations (Otis et al. 1978; 
Menkens and Anderson 1988; Lee and Chao 1994; Rosenberg et al. 1995) or even 
field studies in special situations where population size is known (e.g., Greenwood 
et al. 1985; Manning et al. 1995). Some of these studies are published in specialized 
statistical journals (e.g., Biometrics) that investigators studying tigers sometimes 
tend to overlook.

While the easy availability of flexible software such as CAPTURE and MARK 
has been helpful, sometimes the output from these programs is not carefully stud-
ied, understood and reported by investigators. For the reader to understand the 
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reliability and value of tiger abundance estimates, components of the analyses 
such as closure test results, the model selection process, model comparison 
results, and the relevant parameter estimates under more likely models should be 
reported clearly.

Sometimes, investigators studying tigers appear to become disheartened by the 
large variances associated with the abundance and density estimates generated by 
CR analyses. In response, they either abandon standard estimation protocols or 
make unjustifiable modifications to these. We point out that large variances of CR 
estimates are consequences of uncertainties resulting from small sample sizes of 
tigers caught and low levels of effort. They also arise partly because of a scientific 
philosophy that tries to explicitly model relevant parameters such as capture prob-
ability, instead of simply pretending that these don’t exist. “Seat-of-the-pants” 
approaches may provide investigators an escape from the complexities of modeling 
tiger ecology, but they do not yield the kinds of reliable inferences that should 
emerge from studies that require nontrivial investments of research or conservation 
funds. Tiger studies conducted across extensive spatial (Karanth et al., 2004a) and 
temporal (Karanth et al. 2006) scales demonstrate that these uncertainties around 
estimates of tiger abundance are best dealt with by increases in the quality and quan-
tity of the photographic capture data, and by overall integration of such data using 
improved modeling and estimation techniques now available in the general realm 
of marked animal studies.

We submit that camera trap studies of tigers will be more useful for science and 
conservation when they employ well-developed statistical methodologies, and 
when investigators make efforts to ensure that assumptions of these methods are 
satisfied in their field studies. Given the acute scarcity of demographic data on 
tigers and the many existing questions about tiger population responses to manage-
ment and conservation efforts, we see great potential for investigations using cam-
era traps. Because of the substantial effort and resources required to conduct a good 
camera trap study of tigers, we recommend that future studies be closely focused 
on either informing conservation efforts or addressing scientific questions (see 
recommendations in Nichols et al., Chap. 4). Such integration of estimation and 
monitoring into larger programs of science or conservation is especially important 
when estimation is such an expensive endeavor.
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8.1 Introduction

Since camera traps were first used to estimate the density of tiger Panthera tigris 
populations in India (Karanth 1995; see also Karanth et al. this volume), this 
methodology has been widely used to study a variety of species: leopards Panthera 
pardus (Henschel and Ray 2003; Karanth et al. this volume; Kostyria et al. 2003), 
snow leopards Panthera uncia (Jackson et al. 2006), pumas Puma concolor (Kelly 
et al. 2008), ocelots Leopardus pardalis (Di Bitetti et al. 2006, 2008; Dillon and 
Kelly 2007, 2008; Maffei et al. 2005; Trolle and Kéry 2003, 2005), and Geoffroy’s 
cats Oncifelis geoffroyi (Cuéllar et al. 2006; Pereira et al. 2006). However, jaguars 
Panthera onca have probably received the most attention with respect to using 
camera traps to estimate the abundance and density of populations that cover the 
species’ entire Neotropical range (Cullen et al. 2005; Kelly 2003; Maffei et al. 2004b; 
Miller and Miller 2005; Silver et al. 2004; Soisalo and Cavalcanti 2006). To date, at 
least 83 different camera trapping efforts have been carried out to survey jaguars, 
from southern Arizona in the north to northern Argentina in the south. In this chapter, we 
describe the details of this methodology – summarizing information on survey 
design and methodologies, results, data manipulation and analyses – and discuss 
how future surveys can be refined to allow for more robust inferences.
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8.2 Study Sites

The studies have been carried out in 14 countries and 12 major habitat types 
that range from dry and moist forests to grasslands (Fig. 8.1 and Table 8.1). 
Most of them were conducted inside designated Jaguar Conservation Units 
(Sanderson et al. 2002; Zeller 2007). The surveys have covered portions of at 
least 19 national parks or other protected areas, one Biosphere Reserve, three 
state or provincial parks, six private reserves, three wildlife sanctuaries or man-
agement areas, four indigenous territories, 15 cattle ranches, 11 forestry 
reserves or concessions, and one private conservation concession (Table 8.1). 
Additional surveys are underway or planned (for example, by V. Quiroga in the 
Argentine Chaco, by WCS-Ecuador in Yasuní National Park), the most ambi-
tious of which is Mexico’s national jaguar census (CENJAGUAR) to be com-
pleted during 2008–2009, with the participation of 18 researchers, and the 
support of more than 10 institutions led by the Universidad Nacional Autónoma 
de México (Chávez et al. 2006).

Fig. 8.1 Jaguar Conservation Units and points where systematic jaguar camera trapping surveys 
have been carried out (map adapted from Zeller 2007). Not all sites are represented at this scale – 
some single points represent more than one site in Argentina, Belize, Bolivia, Colombia, Costa 
Rica, and Peru
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Table 8.1 Camera trap surveys for jaguars: number of surveys per site, ecoregion and land use

Country Study site Surveys Type of forest-ecoregion Land use

Argentina Copo 1 Chaco / tropical dry  
forests

National Park

Argentina Impenetrable 
ChacoAboriginal 
Reserve

1 Chaco / tropical dry  
forests

Indigenous Territory

Argentina Iguazú 2 Atlantic / tropical moist 
lowland forests

National Park and 
Forestry Reserve

Argentina Urugua-í 1 Atlantic / tropical moist 
lowland forests

Provincial Park and 
Private Reserve

Argentina Yabotí 1 Atlantic / tropical moist 
lowland forests

Forestry Reserve

Belize Chiquibul 5 Central America / tropical 
moist lowland and 
submontane forests

Forest Reserve and 
National Park

Belize Cockscomb Basin 6 Central America / tropical 
moist lowland forests

Wildlife Sanctuary

Belize Fireburn 1 Central America / tropical 
moist lowland forests

Private Reserve, 
Forest Corridor, 
Mesoamerican 
Biological 
Corridor

Belize Gallon Jug Estate 2 Central America / tropical 
moist lowland forests

Private protected 
area

Belize Rio Bravo 1 Central America / tropical 
moist lowland forests

Conservation and 
Management 
Area

Belize Mountain Pine  
Ridge

6 Central American / tropical 
pine forests

Forest Reserve

Bolivia Alto Madidi 2 Tropical Andes / tropical 
moist lowland forests

National Park

Bolivia Cerro Cortado,  
Kaa-Iya

2 Chaco / tropical dry  
forests

National Park and 
Indigenous 
communal lands

Bolivia El Encanto
CIMAL

2 Cerrado / tropical dry 
forests (Chiquitano  
dry forest)

Certified forestry 
concession

Bolivia Estación Isoso,  
Kaa-Iya

2 Chaco / tropical dry  
forests (transitional 
Chaco-Amazon)

National Park

Bolivia Guanacos, Kaa-Iya 2 Chaco / tropical dry  
forests (grasslands)

National Park and 
cattle ranches

Bolivia/
Paraguay

Palmar, Kaa-Iya 2 Chaco / tropical dry  
forests (transitional 
Chaco-Chiquitano)

National Park, 
private reserve, 
and cattle ranch

Bolivia Puestos Ganaderos 1 Chaco / tropical dry  
forests (transitional 
Chaco-Chiquitano)

Cattle ranches

(continued)
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Table 8.1 (continued)

Country Study site Surveys Type of forest-ecoregion Land use
Bolivia Ravelo, Kaa-Iya 2 Chaco / tropical dry  

forests (transitional 
Chaco-Chiquitano)

National Park

Bolivia Rio Heath, Madidi 2 Tropical Andes / tropical 
moist lowland forests, 
tropical grasslands

National Park

Bolivia Rios Tuichi and 
Hondo, Madidi

3 Tropical Andes / tropical 
moist lowland  
forest

National Park

Bolivia San Matias 1 Pantanal / herbaceous 
lowland grasslands

Cattle ranch 
and National 
Integrated 
Management 
area

Bolivia San Miguelito 2 Cerrado / tropical dry 
forests (Chiquitano  
dry forest)

Private reserve and 
cattle ranch

Bolivia Tucavaca, Kaa-Iya 3 Chaco / tropical dry  
forests (transitional 
Chaco-Chiquitano)

National Park

Brazil Emas National Park, 
Goiás

1 Cerrado / tropical dry 
forests

National Park

Brazil Fazenda Cauaia 1 Cerrado / tropical dry 
forests

Cattle ranch

Brazil Fazenda Santa Fé 
and Cantão State 
Park, Tocantins

1 Amazon / tropical 
moist forests – 
Cerrado / tropical dry 
forests ecotone

Cattle ranch, State 
Park

Brazil Fazenda Sete 2 Pantanal / herbaceous 
lowland grasslands

Cattle ranch

Brazil Moro do Diablo 1 Atlantic / tropical moist 
lowland forest

National Park

Brazil Serra da Capivara 1 Caatinga/xerics National Park
Brazil SESC Pantanal 1 Pantanal / herbaceous 

lowland grasslands
Private reserve

Brazil Varzeas do Rio 
Ivinhema

1 Atlantic / tropical moist 
lowland forest / varzea

State Park

Colombia Amacayacu National 
Park and Ticoya 
Indigenous 
Territory

1 Amazon / tropical moist 
lowland forest

National Park and 
indigenous 
territory

Colombia Calderón river valley 1 Amazon / tropical moist 
lowland forest

National Forestry 
Reserve 
(unprotected) 
and indigenous 
territory

Costa Rica Corcovado 1 Central American / tropical 
moist lowland forest

National Park

(continued)
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Country Study site Surveys Type of forest-ecoregion Land use

Costa Rica Golfo Dulce, Golfito 1 Central American /  
tropical moist lowland 
forest

Private ranches, 
Forest Reserve, 
Wildlife Reserve

Costa Rica Golfo Dulce 1 Central American /  
tropical moist lowland  
forest

Forest reserve

Costa Rica Santa Rosa, 
Guanacaste,  
San Cristobal

3 Central American / 
 tropical dry forest

National Parks 
and biological 
corridor

Ecuador Yasuní and Waorani 
Ethnic Reserve

2 Amazon / tropical moist 
lowland forest

National Park and 
indigenous 
territory

French 
Guiana

Counami forest 1 Amazon / tropical moist 
lowland forest

Unprotected

Guatemala Carmelita-AFISAP 1 Central America / tropical 
moist lowland forest

Forestry concessions

Guatemala La Gloria-Lechugal 1 Central America / tropical 
moist lowland forest

Forestry concession, 
multiple use zone

Guatemala Rio Azul 1 Central America / tropical 
moist lowland forest

National Park

Guatemala Tikal 1 Central America / tropical 
moist lowland forest

National Park

Mexico Sonora 1 Mexican xerics / tropical 
thorn scrub

Private Reserve and 
cattle ranches

Nicaragua Bosawas 1 Central America / tropical 
moist lowland forest

Biosphere Reserve

Panama Darien 2 Central America / tropical 
moist lowland forest

National Park

Peru Los Amigos 2 Tropical Andes / tropical 
moist lowland forest

Conservation 
concession

Peru Bahuaja Sonene, 
Tambopata

1 Tropical Andes / tropical 
moist lowland forest

National Parks

United 
States

Southern Arizona 1a Mexican xerics / tropical 
thorn scrub

National Forest, 
National Wildlife 
Refuge, private 
ranches

a McCain and Childs (2008) established a grid system of camera traps to monitor the southern 
Arizona borderlands continuously from 2001 through 2007.

Table 8.1 (continued)

8.3 Survey Design and Data Analysis

Two approaches have been used to set camera traps for jaguar surveys: (1) placing 
traps in a single grid for the entire sample period, or (2) shifting traps to a different 
area within the study period for a length of time equal to the initial sample. The second 
approach is used when the number of cameras available cannot cover the entire 
study area in a single sample period. In the second case, the sample period is 
considered the length of time the camera traps are operable in a single location. 
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For either of the sampling approaches described, jaguar surveys have followed 
a systematic survey design that typically follows some defined travel route 
(Silver et al. 2004; http://savingwildplaces.com/media/file/SilverJaguarCamera-
TrappingProtocol.pdf) to accommodate low jaguar densities and capture probabilities 
high enough to run capture–recapture (CR) models (but see Discussion). In some 
cases, researchers clear trails specifically for the survey in order to reach inaccessible 
areas and distribute the camera traps throughout the study area, as well as providing 
a feature to attract jaguars. Once trails are established, they are routinely cleared to 
maintain travel routes for jaguars. Figure 8.2 shows a selection of camera trapping 
grids that take advantage of available roads, trails, and rivers at various survey sites.

Cameras usually are set 30–40 cm above the ground to accommodate the height 
of the target species. Jaguars can be active day or night, and therefore camera traps 
are programmed to take pictures 24 h per day. The time delay for activation is usually 
between 30 s and 5 min, but in places with high traffic of non-target species/objects 
(e.g., roads with trucks, trails or salt licks with people or wildlife), a longer time 
delay can be used. We also note that on several occasions different male jaguars 
have been photographed within 2 min of each other at one camera station (M. Kelly, 
Virginia Tech University, Blacksburg, VA, unpublished data). In locations with low 
traffic, camera traps are typically checked only once every 10–14 days, whereas 
they are checked every two or three days at sites with high traffic, in order to avoid 
running out of film. Pilot surveys are useful in determining the frequency with which 
cameras and film need to be checked and replaced, as well as in evaluating the 
optimum sites for photographing jaguars (Rosas-Rosas 2006). Scents or attractants 
are not known to be necessary or even effective for increasing capture probabilities, 
but jaguars are known to occasionally investigate scents. This can result in multiple 
photographs from different angles, facilitating identification in some cases. In areas 
with abundant livestock, researchers have protected cameras with fencing that 
permits wildlife and especially jaguar movement, but keeps livestock away from 
the cameras (Rosas-Rosas 2006).

Surveys are based upon the standard procedures used in CR sampling of closed 
populations (see Karanth and Nichols 1998; 2002) using cameras in place of live 
traps, and using the natural markings of the jaguar to recognize individuals and 
“recaptures” in photographs. The objective of our CR (in this case, photograph/
rephotograph) surveys was to estimate the number of individuals within a sample 
area. In general terms, this estimate is obtained by first estimating capture probabil-
ity based on the capture histories of individuals that are caught at least once. The 
number of animals in the sampled area is then estimated by dividing the total num-
ber of animals caught by the estimated average probability of catching an animal at 
least once. The technique does not have to be based on a random sampling of the 
area, but rather, cameras are set up systematically in a pattern designed to maxi-
mize capture probability for all animals in the sampled area (Silver 2004). The 
method estimates the efficiency of the survey to photograph all the individuals in 
the survey area. The more jaguars that are photographed, and subsequently the 
more often they can be rephotographed, the more robust the abundance estimate 

http://savingwildplaces.com/media/file/SilverJaguarCamera-TrappingProtocol.pdf
http://savingwildplaces.com/media/file/SilverJaguarCamera-TrappingProtocol.pdf
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Fig. 8.2 Camera trap placement patterns for jaguar surveys (dots camera trap positions)
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will be for the study period. With the date and time stamped on the photographs, 
researchers can measure days or blocks of days as discrete sampling events.

Single CR surveys assume a closed population (i.e., no births, deaths, immigra-
tion or emigration of individuals) within the study area during the survey. In reality, 
few animal populations are actually closed, so in practice researchers try to meet 
this assumption by limiting the duration of the survey. A short survey length, rela-
tive to the lifespan of the animal, decreases the likelihood of violating this assump-
tion. Since jaguars, like tigers, are long-lived, most jaguar surveys follow the 
convention established by Karanth and Nichols (1998) in using no longer than a 
4-month time period to gain photographs to conduct CR and yet still satisfy the 
assumption of a closed population. Similarly, surveys on African leopards have 
typically used two to three months (Henschel and Ray 2003). Although there are few 
life history data available for jaguars, it is reasonable to assume the same duration 
is satisfactory. Most jaguar surveys have used three months or less as a data collec-
tion period. The most commonly used software for estimating jaguar abundance 
through camera photographs is the program CAPTURE (Otis et al. 1978; White 
et al. 1982), available online from the Patuxent Wildlife Research Center website 
(http://www.mbr-pwrc.usgs.gov/software/capture.html). This program uses different 
models to generate abundance estimates based on the number of individuals cap-
tured and the proportion of recaptures. The models differ in their assumed sources 
of variation in capture probability, including variation among individuals (e.g., sex, 
age, ranging patterns, dominance, activity), variation over time, behavioral 
responses to having been captured, and various combinations of these factors. 
Specifically, the model M(o) indicates that the probability of capture is the same for 
every animal at every occasion; M(h) incorporates heterogeneity, a unique capture 
probability for each individual; M(t) is characterized by differences in capture due 
to time; and M(b) applies where animals have different reaction to the camera traps 
such as being trap-happy or trap-shy. A series of models also combines the afore-
mentioned factors. The majority of jaguar surveys have used M(h) as the best fitting 
model based on our knowledge of individual animal behavior and ecology, indi-
viduals – especially territorial carnivores – that have different capture probabilities 
(Karanth and Nichols 1998). Occasionally, however, M(o) may be the model that 
CAPTURE recommends; but we recommend caution when this is the case. The 
M(h) model uses the jackknife estimator, which is much more robust than the maxi-
mum likelihood estimator that the other models use.

Collapsing data from a long survey into fewer trapping occasions (e.g., a 
70-day survey into ten 7-day trapping occasions), increases the capture prob-
ability per trapping occasion, and may ameliorate violations of closure. If sam-
pling generates multiple recaptures of multiple individuals, collapsing the 
number of trapping occasions does not generally affect the abundance estimate 
and may reduce the standard error of the estimate. CAPTURE uses a discrimi-
nant analysis function in its model selection procedure to determine which model 
best fits the available data. It should be noted that CAPTURE is also a built-in 
feature of the program MARK (http://welcome.warnercnr.colostate.edu/~gwhite/
mark/mark.htm).

http://www.mbr-pwrc.usgs.gov/software/capture.html
http://welcome.warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://welcome.warnercnr.colostate.edu/~gwhite/mark/mark.htm
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The second important assumption is that every jaguar inhabiting the survey area 
has at least some probability of being photographed (i.e., one camera trap within 
each animal’s home range for the duration of the survey). This assumption dictates 
distance between camera traps and determines the maximum size of an area to be 
sampled by at least one camera trap. Thus, the estimated minimum home range 
of a jaguar in the study area ultimately determines the local minimum camera 
trap density. Ideally, there should be no gaps between camera trap stations large 
enough to encompass a jaguar’s home range. A conservative approach to satisfy 
this assumption is to adopt the smallest home range estimate documented locally 
for jaguars. In practice, most jaguar surveys have spaced cameras 2–3 km apart 
using the smallest home range of 10 km2 for a female jaguar in Belize (Rabinowitz 
and Nottingham 1986). This spacing may not be applicable for other areas where 
jaguars have larger home ranges.

Once we have the abundance estimate, the next step is to calculate the area 
surveyed. This has been one of the most problematic issues for estimating jaguar 
population density based on camera trap surveys. The classical way to estimate 
the sampling area is to calculate the mean maximum distance moved (MMDM) 
as a proxy for home range diameter (Wilson and Anderson 1984), sum the maxi-
mum distances moved by every individual captured in at least two different 
locations (but see Dillon and Kelly 2007 regarding animals repeatedly captured 
at one location), calculate the average, diameter, divide by two (radius), and 
apply this as a buffer around the camera traps. In the scientific literature, the 
buffer has been applied two ways: as a strip around the polygon formed by con-
necting the camera trap locations (polygon buffer), or as a circular buffer sur-
rounding each camera trap location (point buffer). The first method is more 
subjective because different researchers (and software programs) create different 
polygons depending on the way they connect the camera locations. The second 
method is not subject to an interpretation of  polygon-drawing because it gener-
ates the same area surveyed each time and is the one commonly used in jaguar 
surveys. However, some argue that buffering each camera location individually 
does not conform to the idea of a single jaguar population being sampled under 
the “ball-and-urn concept” (White et al. 1982), where individual jaguars repre-
sent the “balls” within a single population or “urn.” All areas determined by 
creating circular buffers and dissolving those buffers have resulted in a continu-
ous sampling area. It is important to note, however, that this may not always be 
the case; for example, when using camera trap data from a jaguar study to esti-
mate buffers for animals with a smaller home range such as the ocelot. The 
estimation of the buffer, which in turn determines the area effectively sampled, 
is the weakest link in density estimation. The MMDM can vary widely even 
between surveys (in the same location); thus, when data are available from mul-
tiple surveys in the same location, we can opt to use one half of a cumulative 
MMDM. This cumulative MMDM averages the maximum distances moved by 
all individuals across multiple surveys in different years. This increases the 
sample size and reduces the variance associated with the MMDM, and gives a 
more precise estimate of the effective sample area (Dillon and Kelly 2007). 
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However, even this does not improve the estimate of MMDM if the overall 
sample area is too small relative to the ranging patterns of the individuals.

New approaches are being developed to address the deficiencies in density 
estimation procedures (Borchers and Efford 2008; Efford et al. 2004; Royle 
et al. 2009).

8.4 Results

Both the camera trap polygons and the effective survey area (including a ½ MMDM 
buffer around the camera traps) vary considerably across surveys, from 24–555 km2 
to 54–938 km² respectively (Table 8.2). In the case of private reserves, cattle 
ranches, and relatively small reserves, the cameras can be distributed across 
30–100% of the land use unit: Moro do Diablo National Park and Fazenda Sete 
ranch in Brazil, San Miguelito Private Reserve in Bolivia, Gallon Jug Estate in 
Belize. At the opposite extreme is the Kaa-Iya del Gran Chaco National Park, 
where surveys at six different sites add up to barely 1% of the park’s land area. 
Considering the area effectively surveyed, most surveys cover at least 35% of the 
land area, again with the exception of the Bolivian parks such as Kaa-Iya where the 
all surveys total only 4% of the area. Other surveys fall between the two extremes. 
For example, the largest camera polygons achieved in any study, 550 km2 at Iguazú 
and Yabotí, represented 21% of the protected areas in each case. Including the buf-
fer, the effective survey areas in these two studies covered 35% of the protected 
areas. Density estimations also varied considerably across study areas (Table 8.2): 
from 0 to  > 11 individuals per 100 km². Some of the highest density estimates were 
reported from private properties: a cattle ranch in the Brazilian Pantanal (Soisalo 
and Cavalcanti 2006) and a private reserve in Belize (Miller and Miller 2005). 
Another unexpectedly high density estimate comes from forestry concessions that 
are under heavy pressure from non-timber forest product harvesters and hunters 
(McNab et al. 2008).

Several surveys using camera traps in specific areas have not photographed jag-
uars despite documentation of individuals by other means. We can attribute these 
results to a number of issues: (1) camera failure, (2) low jaguar densities, (3) 
camera trapping period was not long enough to photograph an individual, and 
(4) lack of local knowledge about routes jaguars travel combined with a failure to 
place camera traps in such areas. Problems with density estimation also arise when 
too few individuals are photographed, without recaptures or with very few recap-
tures. Nevertheless, these data do comprise a minimum confirmed population based 
on the number of individuals positively identified. Camera trapping data has been 
used to calculate a “capture frequency” based on the number of photographs 
recorded per 100 or 1,000 trap-nights. Overall capture frequency has been found 
to correlate with abundance of target animals (see O’Brien, Chap. 6), but popula-
tion density estimates based on individual identification and CR analysis provide 
the only reliable comparisons across studies and species when measuring  abundance 
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Fig. 8.3 Jaguar population density estimates relative to capture frequency (excluding the Fazende 
Sete site, Brazil, with a capture frequency of 13–16 photographs per 100 trap nights and a popula-
tion density of 11 individuals per 100 km2)
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or density. Using capture frequency as an index of abundance, therefore, remains 
controversial (Carbone et al. 2001, 2002; Jennelle et al. 2002). Figure 8.3 confirms 
that population density and capture frequency do not correlate across sites: the sites 
with the highest capture frequencies in Belize and Bolivia are not the same as the 
sites with the highest population densities. The Atlantic forest site, Moro do Diablo, 
in Brazil has a capture frequency as high as the Belize/Guatemala moist forest sites, 
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but a considerably lower population density in the range of the dry forest sites in 
Bolivia. Furthermore, excluded from Fig. 8.3 is the case of the Fazenda Sete in the 
Brazilian Pantanal. This area had this area recorded an average capture frequency 
of 15 photographs per 100 trap nights across two surveys, a figure >2.5 times the 
next highest capture frequency recorded anywhere. However, the population den-
sity was similar to the highest Belize estimate (Table 8.2).

Sex ratios also vary across camera trap surveys (Table 8.3), but most surveys 
have recorded more males than females: from 3:2 (Maffei et al. 2004a, Soisalo and 

Table 8.3 Adult sex ratios by jaguar survey site (cumulative where multiple surveys conducted), 
and locations where cubs/juveniles were photographed

Study (reference) Males Females Unsexed
Cubs/
juveniles

Argentina Iguazú (Paviolo et al. 2008) 4 6 0 Yes
Argentina Urugua-í (Paviolo et al. 2008) 1 0 0
Argentina Yabotí (Paviolo et al. 2008) 1 0 0
Belize Chiquibul (M. Kelly [Virginia Tech University, 

Blacksburg, VA] unpublished data)
15 6 0 Yes

Belize Cockscomb (Silver et al. 2004) 9 0 2
Belize Fireburn (Miller 2006) 3 0 2
Belize Gallon Jug (Miller and Miller 2005) 9 7 4
Belize Mountain Pine Ridge (M. Kelly [Virginia Tech 

University, Blacksburg, VA] unpublished data)
14 7 0 Yes

Bolivia Cerro Cortado (Maffei et al. 2003) 6 2 1 Yes
Bolivia CIMAL (Arispe and Venegas 

[WCS / Fundación para la Conservacion del 
Bosque Chiquitano, Santa Cruz, Bolivia], 
unpublished data)

2 4 0 Yes

Bolivia El Encanto (Arispe et al. 2007) 4 0 0
Bolivia Estación Isoso (Romero-Muñoz 2008) 4 1 0 Yes
Bolivia Guanacos (Cuéllar et al. 2004) 2 2 2 Yes
Bolivia Palmar (Romero-Muñoz 2008; Montaño  

et al. 2007)
7 2 0

Bolivia Ravelo (Cuéllar et al. 2003) 5 2 0 Yes
Bolivia Río Tuichi / Río Hondo (Silver et al. 2004) 5 3 1 Yes
Bolivia San Miguelito (Arispe et al. 2005; Rumiz  

et al. 2003)
5 5 1 Yes

Bolivia Tucavaca (Maffei et al. 2004a) 5 3 1 Yes
Brazil ENP (Silveira 2004) 2 1 5
Brazil Fazenda Santa Fé and Cantão State Park  

(L. Silveira and N.M. Negrões [Jaguar 
Conservation Fund / Instituto Onça-Pintada, 
Mineiros, Brazil], unpublished data)

6 0 2

Brazil Fazenda Sete (Soisalo and Cavalcanti 2006) 15 10 6 Yes
Brazil Moro do Diablo (Cullen et al. 2005) 2 3 1 Yes
Brazil Serra da Capivara (Astete 2008) 6 4 3 Yes
Colombia Amacayacu (Payan 2008) 3 1 0

(continued)
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Study (reference) Males Females Unsexed
Cubs/
juveniles

Colombia Calderón river valley (Payan 2008) 2 1 1
Costa Rica Corcovado (Salom-Pérez et al. 2007) 3 1 0
Costa Rica Corcovada buffer zone (Bustamante 2008) 4 0 0
Costa Rica San Cristobal (Amit 2007) 0 3 1
Ecuador Yasuní-Waorani (S. Espinosa [University of 

Florida, Gainesville, FL], unpublished data)
3 0 0

Guatemala Carmelita-AFISAP (McNab et al. 2008) 7 3 0
Guatemala La Gloria-Lechugal (Moreira et al. 2007) 4 2 0
Guatemala Río Azul (Miller and Miller 2005) 6 0 1
Guatemala Tikal (García et al. 2006) 3 1 3
Mexico Sonora (Rosas-Rosas 2006) 4 1 0 Yes
Nicaragua Bosawas (Polisar 2006) 3 0 1
Panama Darien (Moreno 2006) 1 3 0
Peru Los Amigos (S. Carrillo-Percastegui, M. Tobler 

and G. Powell [Arizona State University, Tucson, 
AZ], unpublished data)

6 3 1

Peru Bahuaja-Sonene, Tambopata (S. Carrillo-
Percastegui, M. Tobler and G. Powell [Arizona 
State University, Tucson, AZ], unpublished data)

5 1 1

United States (McCain and Childs 2008) 4 0 0

Table 8.3 (continued)

Cavalcanti 2006) to 4:1 (Kelly 2003, Wallace et al. 2003) and up to 9:0 (no ani-
mals positively identified as females, Silver et al. 2004). One exception is in the 
Darien, and two others in Atlantic forest: Iguazú and Moro do Diablo National Parks. 
In the latter two cases, the protected areas are islands of forest surrounded by heavily 
transformed landscapes and may provide breeding refuges for jaguars. Most radio 
telemetry studies report that males have larger home ranges than females (Crawshaw 
1995; Cullen et al. 2005; Rabinowitz and Nottingham 1986; Scognamillo et al. 2002, 
2003; Soisalo and Cavalcanti 2006), so we would assume that more females than 
males are present in any given area where there is a resident breeding population. 
However, males may have a higher capture probability because of larger home ranges 
that are presumably include relatively more cameras. In addition, males tend to walk 
more than females (Rabinowitz and Nottingham 1986) and use human trails/roads 
(where camera traps are almost always set) more than females (Salom-Pérez et al. 
2007). Both radio telemetry and camera trapping studies suggest that multiple males 
and females overlap in their ranging patterns. Sites where females and cubs are present 
clearly represent conservation priorities. On the other hand, the failure to photograph 
females does not mean that they are absent from an area, but only that such areas 
should be evaluated more carefully to determine whether they function principally as 
corridors or dispersal areas, and whether they potentially represent population sinks.

Finally, the camera trap methodology can provide considerable information about 
jaguars besides density estimation (see other chapters of this volume), including activity 
patterns, reproduction data (number of cubs, seasonality) and information on prey 
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( species present, relative abundance from capture frequency, activity patterns). 
Figure 8.4 presents jaguar activity budgets derived from camera trapping records at a 
sample of survey sites. Camera trap photos suggest that jaguars can be active at any time 
of day, but are principally crepuscular-nocturnal in their habits. Cubs are occasionally 
photographed (single cubs only in the Chiquibul in Belize; and Cerro Cortado, 
Guanacos, Tucavaca in Bolivia), and juvenile animals occur in the company of their 
mothers more frequently (a pair of juveniles together in the Chiquibul in Belize and 
Cerro Cortado in Bolivia; single juveniles only in Estación Isoso, Ravelo, San Miguelito, 
Tucavaca in Bolivia). This type of information provides preliminary information on 
reproductive patterns: one to two cubs born during the rainy season, December–May in 
Chaco dry forests, and maternal care until the juveniles approach adult size.

Conducting multiple surveys at the same site can validate density estimates, rang-
ing patterns, and document rough turn-over rates of individuals within specific  popu-
lations. For example, Table 8.4 suggests which individuals may be resident (females 
T2 and T4, males T5 and T6) vs. transient (possibly males T1, T3, T10, and T9 
[unknown sex]). This information must be viewed in context, however, because alter-
natively, the latter group could have been photographed at the edge of their ranges, 
thereby incorrectly categorizing as transients resident individuals whose ranges over-
lap minimally with the camera layout. For example, the cub of female T2 and the 
juvenile offspring of female T7 were not subsequently photographed, suggesting that 
they dispersed outside the survey area if they survived. Karanth et al. (2006) go much 
further to estimate rate of change, survival, recruitment, temporary emigration, etc., 
based on 12 years of data. Though jaguar researchers have not estimated these rates 
to date, the longest running surveys are currently six years and these estimates should 
be possible in the near future. Camera trap surveys have also documented transbound-
ary movements of jaguars between the United States and Mexico (McCain and Childs 
2008), between Argentina and Brazil (Paviolo et al. 2006), and between Bolivia and 

Fig. 8.4 Sample activity patterns for jaguars based on camera trapping records from Bolivia dry 
forest sites (N = 605 records)
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Paraguay (Romero-Muñoz et al. 2007). Such information is invaluable for promoting 
international conservation efforts.

8.5 Discussion

Another approach when there are too few detections to calculate abundance or 
when grid trapping is not possible is to use detection-non detection data at each 
camera site to model detection probabilities and the proportion of area occupied 
(MacKenzie and Kendall 2002; MacKenzie et al. 2003, MacKenzie et al. 2006, see 
O’Connell and Bailey, Chap. 11). In this way, detection-nondetection data (often 
referred to as presence-absence) data can be used as a surrogate for abundance for 
cryptic or low density species. The underlying logic is that changes in the propor-
tion of occupied sites will be correlated with changes in the population size, pro-
vided sites are defined at an appropriate spatial scale (MacKenzie 2005; MacKenzie 
et al. 2006). So far, this approach has not yet been applied to jaguars, but holds 
promise for future studies.

Although new camera trapping techniques are developing that use random cam-
era placement, combined with information on species’ day range, to address spatial 
variability (Rowcliffe et al. 2008), random placement is unrealistic for most jaguar 
field studies because capture probabilities would be impossibly low. Given that cap-
ture probability is already low even in studies that target jagaurs (~2 per 100 trap 
nights), the increased effort required to obtain captures using random placement is 
probably not realistic. The study approach for jaguars – systematic, regularly-spaced, 
traps set to target jaguars (i.e., on roads, trails, games trails, riverbeds, etc.) – vio-
lates the random placement of traps which has proven to be necessary to generate 
unbiased estimates as in the gas model approach of Rowcliffe et al. (2008). 
However, increasing the capture probability is also necessary to obtain enough 
recaptures to conduct CR surveys. Perhaps a compromise approach of random 
placement with directed sampling will be fruitful. Alternatively, the approach of 
Borchers and Efford (2008) used capture locations to estimate animal locations and 
spatially referenced capture probabilities. With this technique, density is evaluated 
in a maximum likelihood framework, based on spatial and temporal co-variates. 
This approach has not yet been applied to jaguars.

Table 8.4 Turn-over of individual jaguars according to multiple camera trap surveys at Tucavaca, 
Kaa-Iya del Gran Chaco National Park (Maffei et al. 2004a)

T1 T2 T2 T3 T4 T5 T6 T7 T8 T9 T10

TotalM F Cub M F M M F J ? M

Preliminary May–Dec, 2001 14 2 1 3 2 20
Survey I Jan–Mar, 2002 11 5 1 2 3 1 1 24
Survey II Apr–Jun, 2003 3 4 3 2 12
Survey III Mar–May, 2004 8 2 1 3 14
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An underlying problem for all jaguar camera trap surveys is that we do not actu-
ally know the true densities of the target population and therefore cannot judge 
whether we are underestimating or overestimating true densities. Calibrating the 
camera trapping technique would require conducting a camera survey in an area 
with known densities. This may be possible for other animals such as lions 
Panthera leo where all study animals in an area are known (C. Packer [University 
of Minnesota] pers. comm.), but it is unlikely to be the case for any area in the 
jaguar’s range.

The systematic camera trapping methodology was originally developed for 
tigers in India, where many protected areas are relatively small islands and where 
surveys can cover large proportions or even all of the area, and where the target 
species may have difficulty moving outside the protected area. Similar conditions 
may exist for jaguars in parts of their range, for example in much of Central 
America and in Atlantic forest patches in Brazil. However, in many other land-
scapes and particularly in South America, we are often surveying only tiny portions 
of vast protected areas or potential habitat, exceeding 10,000 km2, through which 
jaguars can move freely beyond the boundaries of a 100–500 km2 camera trap 
survey. The density estimate is then crucial because it provides information on the 
status of the species within this wider landscape. However, it should only be used 
tentatively and cautiously to extrapolate and estimate total populations (Maffei 
et al. 2004b) for wider protected areas or regions. Carnivore densities may vary 
significantly even under natural conditions with no or minimal human interventions 
(Karanth et al. 2004; Sunquist et al. 1999).

Density estimates are extremely sensitive to the calculation of the effective 
survey area, which depends on the size of the buffer surrounding traps. Camera trap 
spacing, total survey area, and degree of concordance between home range radius 
and ½ MMDM from cameras have arisen as three important factors impacting 
density estimation (Dillon and Kelly 2007; 2008). Increased camera spacing can lead 
to decreases in density estimates because MMDM increases (Dillon and Kelly 2007). 
Maffei and Noss (2008) suggest that MMDM may not be an appropriate proxy for 
home range diameter when camera survey areas are small compared to home range 
areas of the target species because the small area leads to an underestimate of 
maximum distance moved. While the use of ½ MMDM as a proxy for home range 
radius has a long history in the literature (Dice 1938) and has performed well in 
simulation studies (Wilson and Anderson 1985), its use has recently been called 
into question. Parmenter et al. (2003) found that small numbers of capture locations 
produce severe underestimates of home range size and movement distances. Most 
jaguar studies use 30 or fewer camera stations, undoubtedly a small number of 
capture locations. And while Parmenter et al. (2003) found that using the full rather 
than the ½ MMDM performed very well empirically in their small mammal studies, 
they caution against using MMDM at all due to the large number of underlying 
assumptions about animal movement. They instead suggest substituting known 
movement distances derived from radio telemetry.

A few studies have done this. Soisalo and Cavalcanti (2006), who followed jaguars 
with radio collars simultaneously with camera trapping efforts in the Pantanal, 
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found that distances moved with radio collars were as much as twice the distance 
estimated with camera traps. Based upon comparisons between the ranging behavior 
of the collared jaguar and their MMDM, they recommended using the full MMDM 
to buffer camera locations rather than ½ MMDM (following Parmenter et al. 2003). 
Recent research on ocelots with simultaneous camera trapping and radio telemetry 
has proven equivocal with one study finding similar results to Soisalo and 
Cavalcanti (2006) (Dillon and Kelly 2008) and the other finding ½ MMDM a good 
proxy for home range radius (Maffei and Noss 2008). Habitat types were different 
in the two ocelot studies pointing to flexibility in wild cat movements patterns from 
one subpopulation to another.

In order for the MMDM to be an accurate characterization of ranging patterns 
in surveyed jaguar populations (and therefore an accurate tool in estimating the 
effective sample area), the camera trapping grid must be large enough to account 
for the long distances the jaguars are likely to travel during the survey. Obviously, 
having camera trap arrays with cameras spread only 15 km apart will not allow an 
accurate ranging characterization of animals that travel > 15 km. Thus, investigators 
designing camera trap surveys need to make some a priori assumptions about the 
minimum dimensions of a camera trap grids.

In Central America, radio telemetry studies have reported the following home range 
sizes for jaguars: 10–40 km2 in the tropical moist lowland forests of Belize (Rabinowitz 
and Nottingham 1986), 32–59 km2 in tropical moist lowland forests of Mexico 
(Ceballos et al. 2002), and 25–65 km2 in Mexican dry forests (Núñez et al. 2002). 
Applying the recommendation that camera trap surveys encompass at least four aver-
age home ranges of the target species (Maffei and Noss 2008), jaguar surveys in 
Central America should, at a minimum, cover areas in the range of 100–180 km2. 
Several of the Belize surveys have met this requirement, as well as the San Cristobal 
survey in Costa Rica and the second Darien survey in Panama (Table 8.2). The low 
population densities and wide ranging patterns of jaguars in the Mexico–USA  border 
region require that even extensive areas be surveyed (McCain and Childs 2008).

In South America, average home ranges are considerably larger than in Central 
America: 52–176 km2 in Pantanal grasslands (Crawshaw and Quigley 1991; Soisalo 
and Cavalcanti 2006), 43–177 km2 in Atlantic tropical moist lowland forest (Crawshaw 
1995; Cullen et al. 2005), 48–130 km2 in Venezuelan Llanos grasslands (Scognamillo 
et al. 2002, 2003), and 69–1,200 km2 in the Chaco (McBride et al. 2004, 2005; 
Romero-Muñoz et al. 2007). Again, applying the tentative rule suggested by Maffei 
and Noss (2008), jaguar surveys in South America should ensure that cameras cover a 
minimum of 500–600 km2. The Yabotí and second Iguazú surveys (Argentina – 
Paviolo et al. 2008) do so, each covering around 550 km2, which is equivalent to 21% 
of the protected area in each case. The Moro do Diablo study (Brazil) comes close to 
doing so, coincidentally also covering 90% of the island protected area, and with 
telemetry information to confirm the camera trap density estimation (Cullen et al. 
2005). The second Palmar survey in Bolivia also comes close to doing so, but covers 
barely 3% of the immense Kaa-Iya National Park (Montaño et al. 2007).

We recommend that density estimates from camera trapping surveys, particu-
larly when they cover only small portions of vast protected areas or potential jaguar 
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habitat, be treated only as preliminary until the methodology can be tested further by 
conducting camera trap surveys with cameras spread ³ 500 km2. If it is logistically 
impossible to insure that the area covered by the camera traps include at least four 
average home range areas, we suggest that density estimates for jaguar populations 
be interpreted with great care. In addition, radio telemetry studies are needed to 
determine daily home ranges across similar habitats and regions that can be used as 
a substitute for ½ MMDM to estimate the effective area sampled by camera traps. 
We also recommend the development of a more theoretically sound approach, 
based on modeling, to estimate effective survey area.

Finally, compared to tiger surveys published in the literature, jaguar surveys 
have generated relatively small samples sizes (Table 8.3). Given the generally low 
population densities of jaguars across their range, future research should emphasize 
larger survey areas to confirm whether density estimates are consistent with larger 
sample sizes.
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9.1 Introduction

Chapter 7 (Karanth et al.) illustrated the use of camera trapping in combination with 
closed population capture–recapture (CR) models to estimate densities of tigers 
Panthera tigris. Such estimates can be very useful for investigating variation across 
space for a particular species (e.g., Karanth et al. 2004) or variation among species 
at a specific location. In addition, estimates of density continued at the same site(s) 
over multiple years are very useful for understanding and managing populations of 
large carnivores. Such multi-year studies can yield estimates of rates of change in 
abundance. Additionally, because the fates of marked individuals are tracked through 
time, biologists can delve deeper into factors driving changes in abundance such as 
rates of survival, recruitment and movement (Williams et al. 2002). Fortunately, 
modern CR approaches permit the modeling of populations that change between 
sampling occasions as a result of births, deaths, immigration and emigration (Pollock 
et al. 1990; Nichols 1992). Some of these early “open population” models focused 
on estimation of survival rates and, to a lesser extent, abundance, but more recent 
models permit estimation of recruitment and movement rates as well.

Given the importance of understanding long-term animal population dynamics, 
relatively few such studies of large mammals are available because of constraints 
on carrying out studies of large mammals at the appropriate spatial and temporal 
scales. For example, in the case of tigers, only a few studies, in Nepal (Sunquist 
1981; Smith 1993; Kenny et al. 1995) and Russia (Kerley et al. 2003), have generated 
some ad hoc estimates of survival rates based on radio-telemetry of samples of 30–40 
individuals. However, high costs and logistical difficulties severely limit the poten-
tial use of radio-telemetry for estimating tiger demographic parameters. Furthermore, 
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most published estimates of vital rates used in studies of tiger population dynamics 
(e. g. Smith 1993; Kenny et al. 1995; Carroll and Miquelle 2006; Chapron et al. 
2008) generally ignore the central problem of incorporating detection probabilities, 
thus weakening their final inferences.

In this chapter, we illustrate the use of non-invasive camera trap data in conjunc-
tion with open population CR models to estimate key demographic parameters, such 
as time-specific abundance, annual survival rate, and number of new recruits. The 
methodology is illustrated with examples from a 9-year study of a tiger population in 
Nagarahole, southern India carried out by Karanth et al. (2006) during 1991–2000.

9.2  Tiger Behavior and Demography in Relation  
to Monitoring Issues

9.2.1 Sampling Considerations

Efficiently “capturing” several individual tigers using camera traps (or other tech-
niques) is an important issue since accuracy and precision of parameters estimated 
using CR models depends on sample size. As examined earlier in Chap. 7 camera 
trapping often involves a tradeoff between sampled area and sampling intensity. 
Fortunately, tigers often move on forest roads and trails to “patrol” their ranges or 
to locate prey (Karanth and Chundawat 2002). Biologists can set up camera traps 
along such travel routes to maximize capture probabilities (see Chap. 7 for details 
of selecting trap sites and other field survey design issues).

However, tigers in all age-sex classes are not equally likely to be photographed 
even when traps are set at optimal sites based on field assessments. Tiger spatial 
organization and land tenure systems pivot around breeding females, which usually 
establish territories in a part of, or adjacent to, their own natal territories. Typically 
these females first reproduce at 3–4 years age and hold their territories for the next 
5–7 years. Ranges of adult males are much larger and overlap several female 
ranges, but male tenures are typically shorter at 2–4 years. At about 18–24 months, 
sub-adults disperse away, with males moving farther away from their natal ranges 
than females. These dispersers may move over dozens of kilometers, through 
several breeder territories, looking for vacant territories to settle in by trying to 
evict existing breeders of their own sex (Sunquist 1981; Smith et al. 1987; Smith 
1993; Miquelle et al. 1999; Karanth and Sunquist 2000).

We emphasize that the problem of dealing with the nuisance parameter of 
detection probability looms large even in the case of open model studies. The area 
camera trapped by biologists might not necessarily cover the entire tiger habitat 
patch. Because of patterns of tiger social organization described above, tigers in any 
population may have heterogeneity in capture probabilities among individuals. 
Because cubs younger than a year may avoid being photographed, demographic 
parameters are usually estimated only for animals older than a year. Post-dispersal, 
transient tigers just passing through the sampled area will have low probability of 
being captured more than once. Some individuals may temporarily move out of the 
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sampled area during some periods, but will be present and possibly captured in 
subsequent periods. This is known as temporary emigration. Permanent loss of a 
tiger from a population in a long-term study may occur as a result of post-natal 
dispersal or death. All of these processes interact to produce the capture history 
data from which population-dynamic inferences must be made, and, therefore must 
be at least considered when modeling CR data. Furthermore, even open model 
analysis must deal with trap response, behavior, and time-related variation in cap-
ture probabilities. As explained more fully under Data Analysis Issues below, it is 
important to realistically incorporate, to the degree possible, these aspects of tiger 
biology into models for open population camera trap studies, just as in models for 
closed population studies (see Chap. 7).

Sizes of tiger home ranges are primarily set by densities of large ungulate prey 
(Karanth and Stith 1999; Karanth et al. 2004). In prey-rich habitats such as the 
alluvial grasslands of Nepal and India, and the moist deciduous forests of peninsu-
lar India, home ranges of breeding female tigers tend to be small and tiger densities 
high, whereas in habitats where densities are lower, either naturally or because of 
human impacts, tiger home ranges could be larger and densities lower by as much 
as 10–20 times. However, even in the best of tiger habitats, mortality rates may be 
inherently high for all age classes, with cubs and post-dispersal transients having 
the lowest survival rates.

Proximate causes of tiger cub mortality include infanticide, starvation, floods, forest 
fires, and predation by other species. Post-dispersal transients are vulnerable to 
mortality from intra-specific aggression, starvation and human persecution (Karanth 
and Chundawat 2002). Local tiger populations also lose individuals through perma-
nent emigration (dispersal) and death of evicted breeders (Smith 1993). Thus, even in 
a healthy tiger population, equilibrium densities (determined primarily by prey densi-
ties) are temporally dynamic, characterized by high turnover rates of individuals.

Spatial correlations of tiger and prey densities (Karanth and Nichols 1998; Karanth 
et al. 2004), as well as simulations of tiger population dynamics (Karanth and Stith 
1999), predict that healthy tiger populations may be more susceptible to prey depletion 
(which decreases carrying capacities, as well as survival of cubs and adults) than to 
direct poaching of tigers themselves, since removal of tigers is likely to be at least 
partly compensated by increased survival and recruitment of survivors. The case study 
presented in this chapter tried to test the prediction that tiger populations in prey-rich 
habitats are demographically viable despite hypothesized high rates of annual loss.

9.2.2 Field Survey Issues

Most of the practical field survey considerations are covered in Chap. 7, and in 
greater detail in the manual edited by Karanth and Nichols (2002). This discussion 
is limited to aspects of photographic CR surveys of tigers and illustrated by obser-
vations from a long-term study of tiger population dynamics.

Selection of a study area for a long term photographic CR survey of tigers  
may be based on several factors, but the issues of sample size and logistics will 
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 necessarily constrain the choices. Capture–recapture estimation of tiger abun-
dance based on camera traps has been found to work well in areas with densities 
above 2–3 tigers per 100 km2 (Karanth and Nichols 2002). Areas with lower densi-
ties, or very small study areas, may not yield sufficient data to reliably model the 
photo-capture process. As noted in Chap. 7 selection of the actual camera trap loca-
tions should not at all be at “random,” but should aim to maximize tiger capture 
probabilities. The trap spacing must ensure that there are no “holes” within the 
sampled area (Chap. 7). In a multi-year study, if the sampled area changes, time-
specific abundance estimates cannot be used directly to derive estimates of popula-
tion growth rates and recruitment, as changes in the sampled population will reflect 
both population dynamics and changes in area sampled. Expansion of study areas 
over time is relatively common, and estimation of population growth rate and 
recruitment can be accomplished by focusing on a portion of the total study area 
and/or by use of density (rather than abundance) estimates. Estimates of survival 
rates are less likely to be affected by increases in the sampled area.

9.3 Identification of Tigers and Assignment of Age-Sex Classes

Because estimates of both capture probabilities and survival rates using CR models 
(with camera trap data) are completely dependent on unambiguous individual identi-
fication, it is critical that (a) the same individual is never misidentified as two or more 
individuals, and (b) two or more individuals are never assigned the same identity. 
Broadside pictures of tigers have the added advantage of permitting categorization by 
sex and broad age-classes. If heterogeneity of estimated parameters is likely to be due 
to differences between age-sex classes, it may be useful to carry out a “stratified” or 
multistratum analysis (e.g., Williams et al. 2002) in which parameters are estimated 
separately for different age-sex classes of tigers. However, this is possible only if suf-
ficient numbers of tigers are captured in all relevant age-sex categories. In the long-
term study we report here, we were not able to obtain sufficient data for this type of 
analysis, and the parameter estimates are best viewed as averages for all tigers of all 
catchable classes. Because they were rarely captured (2 out of 366 tiger photo-
captures), cubs <1 year are excluded from these analyses. Independent of a priori 
categorization into age-sex classes, some CR analyses can estimate the proportion of 
transient individuals in the population, as described below.

9.4 Data Analysis Issues

9.4.1 Model Framework

In closed population CR studies, the probability of observing a particular capture 
history (e.g., 101001; see Chap. 7) depends only on capture probabilities, which may 
or may not vary over time, among individuals (heterogeneity), or between newly 
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captured and previously captured animals (trap response). The count (number of 
individuals captured during the study) is equal to the product of real abundance and 
overall capture probability (probability that an individual in the population is cap-
tured at least once). Therefore, the “nuisance parameter” of capture probability must 
first be estimated from the capture history data (Karanth and Nichols 2002; 
Williams et al. 2002) to estimate true abundance.

In open population CR studies, the probability of observing a particular capture 
history is dependent both on the capture probabilities and the probabilities of indi-
vidual tigers surviving between sampling occasions and staying within the sampled 
area, since the population is open to additions and losses across time and space. 
This persistence is referred to as “apparent survival”, and does not distinguish 
between losses due to death and permanent emigration. Models of capture history 
data thus include parameters for capture and survival probabilities. The method of 
maximum likelihood, the most commonly used parameter estimation method, simply 
finds those parameter values that are most likely, given the data (i.e., the values 
maximize the likelihood of actually getting the observed set of photo capture histo-
ries). Survival and capture probabilities may or may not vary over time, between 
groups (e.g., sex), or as a function of time- (e.g., weather) or individual-specific 
(e.g., weight) attributes.

The basic open population model, usually referred to as the Cormack–Jolly–Seber 
(CJS; Cormack 1964; Jolly 1965; Seber 1965) model, tracks recaptures of marked 
individuals and permits estimation of capture probabilities and apparent survival. 
This model does not require the assumption that marked (captured) and unmarked 
individuals have the same capture probabilities, and thus does not allow estima-
tion of abundance. The Jolly–Seber (JS) model includes the CJS model within 
its structure. By assuming that individuals are randomly sampled from the 
population (i.e., captures of marked and unmarked individuals are equally 
probable), the JS model provides estimates of abundance in addition to capture 
probabilities and apparent survival (Pollock and Alpizar-Jara 2005). A major 
problem is that these abundance estimators are especially sensitive to violations 
of the assumption of homogenous capture probabilities. Heterogeneity in capture 
probabilities among individuals and trap-happiness tend to bias abundance esti-
mates negatively, while trap-shyness results in positive bias. Estimates of appar-
ent survival, on the other hand, are robust to heterogeneity of capture probabilities 
and trap response, though the latter may affect variance estimation (Pollock and 
Alpizar-Jara 2005).

One way of overcoming some of these problems is to use Pollock’s (1982) robust 
design, where sampling is carried out at two temporal scales: primary sampling 
occasions are separated by relatively long time-periods, during which the population 
is open to losses and gains; and multiple secondary sampling occasions occur within 
each primary sampling occasion and are separated by relatively short periods, during 
which closure can be reasonably assumed (Williams et al. 2002; Nichols 2005). As 
originally envisaged, survival is estimated over the primary sampling occasions 
using CJS estimators, and abundance estimated within primary occasions using 
closed population estimators, based on capture histories observed over secondary 
sampling occasions. Recruitment into the population could then be estimated by 
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combining estimates of survival and time-specific abundance. Kendall et al. (1995, 
1997) later developed a likelihood-based approach to estimation under the robust 
design, where data from both primary and secondary sampling occasions are used to 
simultaneously estimate parameters in one step. This joint modeling of open and 
closed datasets has the advantage of permitting reduced parameter models, for 
example where some parameters are kept constant over time, effectively borrowing 
information across years and increasing the precision of estimated parameters.

The development of likelihood-based estimators that incorporate heterogeneity 
(Norris and Pollock 1996; Pledger 2000) now allows heterogeneity to be incorpo-
rated in closed population or robust design analyses. A robust design analysis also 
has the advantage of permitting estimation of temporary emigration. The proportion 
of new captures that are transients and population growth rates can be estimated 
using open population models and thus using robust design models as well. 
Temporary emigration, if unaccounted for, can lead to substantial biases in estimates 
of abundance and sometimes apparent survival. For example, if an individual had a 
capture history of 001001 over primary occasions, a model that does not permit 
temporary emigration will assume that the individual was present within the sam-
pled area during occasions 4 and 5, but not captured (thus leading to potential under-
estimates of capture probability, as traditionally defined), while a model that permits 
temporary emigration will consider the possibilities that (1) the individual was pres-
ent but not captured or (2) that the individual had temporarily moved out of the 
sampled area in either occasion 4, or 5, or both. Similarly, the proportion of individu-
als that are transients needs to be estimated, since these individuals have a near-zero 
probability of being captured in subsequent sampling occasions, leading to underes-
timation of survival for resident animals (Pradel et al. 1997).

We note here that the way “transience” and “temporary emigration” are defined in 
CR analyses may not correspond exactly to phenomena described by tiger biologists 
under these names. For instance, “transience” in CR analyses defines the proportion 
of newly caught tigers that have a near-zero probability of being recaptured again 
during the entire survey. However, biologists use the term “transients” to refer to 
tigers that are post-dispersal individuals yet to establish territories. Temporary emi-
gration is likely to be a function of study area size: with small study areas, many 
individuals may be absent during some primary occasions, simply because parts of 
their home ranges lie outside the sampled area. The assumption of closure is still 
required across secondary sampling occasions under many robust design models, 
but it can be assessed using the tests described in Chap. 7.

A class of CR models known as multi-state models assigns individuals to 
classes (e.g., breeding vs. non-breeding, different geographic locations), and per-
mits estimation of transition probabilities from one class to another (Arnason 1972; 
Brownie et al. 1993; Schwarz et al. 1993; Williams et al. 2002; Schwarz 2005). In 
the case of tigers, this approach is most useful in estimating rates of movement 
between populations, where the class memberships pertain to geographic loca-
tion. Another approach known as reverse-time modeling (see Williams et al. 2002; 
Nichols 2005 for details) of CR data also allows population gains to be separated into 
those attributable to in situ reproduction and immigration (Nichols and Pollock 1990; 
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Nichols et al. 2000). All these analyses can be carried out using data from a 
robust design CR study (Nichols 2005). Open population models for spatially 
explicit data have the potential to deal with transience, temporary emigration and 
trap-induced heterogeneity within a single framework (see Royle and Gardner, 
Chap. 10).

9.4.2 Model Selection

Given a set of capture histories from a robust design study, a very large number of 
potential models is possible: capture probabilities can be modeled as constant or 
varying over time (primary and/or secondary occasions), constant or varying 
between new captures and recaptures, heterogeneous or homogenous across 
individuals. Similarly, survival probabilities can be varied or held constant over 
primary occasions, and between new captures and recaptures. Survival rates can 
also be allowed to vary in parallel (on a logit scale) between new captures and 
recaptures, or held constant for new captures while being allowed to vary for recaptures. 
The probability of being a temporary emigrant can be modeled as either different 
depending on whether the animal was or was not a temporary emigrant the previous 
period, or independent of previous emigration status. Temporary emigration can 
also be modeled as time-dependent or time-constant (see Karanth et al. 2006 for 
details). Considering the number of possible combinations of these parameters, 
clearly a very large number of potential models can be fit to the data. The models 
to be considered in any analysis reflect hypotheses about the process that generated 
the data. Our preference is to limit the models considered to as small a number as 
possible, including in the model set only those that we view as most plausible based 
on our a priori hypotheses and ecological knowledge about the system. We have no 
formal proof that this approach outperforms all others, but we do note that 
approaches that include all possible models should be much more likely to find 
models that fit any data set well just by chance alone. Our objective in model selec-
tion is to find a good approximating model for the process that generated the data 
rather than simply a model that fits well. This objective reflects our interest in esti-
mating the values of parameters governing the generating process rather than in 
simply describing variation in the data.

Given a reasonable model set, the issue of model selection then involves two 
questions. The first question is whether the model set includes any models that are 
reasonable. This question is generally addressed by asking whether the most general 
(complicated) model fits the data adequately. The second question is then, given 
that the set includes at least one reasonable model, which model(s) should be 
selected as the basis for inference? Goodness-of-fit tests for robust design models 
have not yet been developed; however, it is possible to separately assess fit of  
the different model components. Fit is typically assessed separately for each of the 
closed model data sets (one set of secondary period data for each primary period) 
and the single open model data set obtained by combining secondary period data to 
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indicate at least one capture or no capture at each primary period. Goodness-of-fit 
tests developed specifically for closed (Otis et al. 1978) and open (Pollock et al. 
1985; Burnham et al. 1987) models can be used to assess fit of different compo-
nents of the robust design data set (also see Williams et al. 2002; Nichols 2005). 
Lack of fit could be due to inappropriate model structure or to a lack of indepen-
dence between fates (e.g., capture and survival) of individual animals. If the most 
general model in the model set fails to fit the data adequately, then a variance infla-
tion factor, ĉ, can be estimated and used in model selection and variance estima-
tion (see Burnham and Anderson 2002; Williams et al. 2002).

For model selection, because all models described here use likelihood-based 
estimation procedures, it is possible to apply objective model selection criteria such 
as Akaike’s Information Criterion (AIC; Burnham and Anderson 2002) to trade off 
the greater bias associated with simple models against the lower precision of complex 
models. In practice, it is recommended to use the small sample correction (AIC

c
) if 

sample sizes are moderate to low, and the quasi-likelihood correction (QAIC) based 
on ĉ if there is evidence of lack of fit for the most general model. If two or more 
models have strong support, estimates can be derived using model averaging proce-
dures (Burnham and Anderson 2002).

9.4.3 Software Options

Program MARK (White and Burnham 1999) is a flexible and powerful software 
program that offers a large suite of models for a range of CR data types. Closed 
captures, CJS, JS and robust design analyses can all be carried out using MARK. 
In addition, MARK implements different options for computing goodness-of-fit 
test statistics and ĉ, including various simulation-based approaches (White et al. 
2001) and the goodness-of-fit test of program RELEASE (Burnham et al. 1987), 
which can be called up from the MARK interface. For the secondary sampling 
occasions, by comparing models where apparent survival is constrained to be = 1 
with models where it is not constrained, program MARK also allows a test for 
violation of closure due to death or permanent emigration. In addition, programs 
CAPTURE (Otis et al. 1978; Rexstad and Burnham 1991) and ClosTest (Stanley 
and Burnham 1999) can be used to carry out tests of the closure assumption, as 
described in Chap. 7.

9.5 Population Dynamics of Tigers in Nagarahole, India

We carried out a 9-year long study of tiger population dynamics using camera traps, 
analyzing the data under the robust design (Karanth et al. 2006). Field survey pro-
tocols were as described in Chap. 7 and in Karanth and Nichols (2002). The study 
was conducted in the well-protected central part of Nagarahole reserve in the 
southern Indian state of Karnataka. This 643 km2 reserve supports high densities of 
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prey (~56 ungulates per km2: Karanth et al. 2004) and, consequently, of tigers. We 
expected that this tiger population would be relatively stable despite suspected high 
annual losses from mortality and emigration. Given that our Nagarahole study area 
was embedded in a larger landscape consisting of other reserves, multiple use for-
ests and agricultural land, we also expected to find a relatively high proportion of 
transient individuals trying to establish territories.

To test these hypotheses, we estimated time-specific abundance, survival, transience, 
recruitment and rates of population change. Camera trapping was first carried out 
over an area of 41.4 km2, which was later expanded to 101.5 km2, and finally to 
231.8 km2 (Fig. 9.1). Over the entire period, we invested a sampling effort of 5,725 
trap-nights, photo-capturing a total of 74 adult tigers. Table 9.1 gives details of pri-
mary and secondary sampling periods, sampled areas, camera trapping effort, and 
number of tigers photo-captured (by primary sampling periods and cumulatively).

Analytic methods followed were based on those described above in Data Analysis 
Issues and Model Selection and are described in more detail by Karanth et al. (2006). 
We first carried out tests and preliminary analyses using program CAPTURE (Otis  
et al. 1978; Rexstad and Burnham 1991). The null hypothesis of closure within each 
primary sampling period was tested against the alternative hypothesis of an open popu-
lation. These tests failed to reject the null hypothesis for any of the primary periods, 
although most of the z statistics were negative, suggesting some gains and losses.

We also examined the between-model tests, goodness-of-fit tests and the model 
selection scores (see Chap. 7 for details) provided in the CAPTURE output to help 
narrow down the list of candidate models to be used for the final analysis. Model M

0
 

was selected for most datasets, but since it is known that this estimator is not robust 
to violations of assumptions, we did not use it in subsequent analyses. There was 
evidence of heterogeneity and trap-response, with much less support for time-related 
variation in capture probability. Therefore, in our set of candidate models, we 
included heterogeneity and trap-response as modeled sources of variation across 
secondary sampling periods, as well as temporal variation in capture probabilities 
across primary sampling periods. Heterogeneity was incorporated using Pledger’s 
(2000) finite mixture model, by including a mixing parameter and considering two 
groups of animals with different capture probabilities. Modeling of survival rates 
and temporary emigration are described in Model Selection above. The goodness-of-
fit tests from program RELEASE indicated an adequate fit of the full CJS model to 
the data (

2
16 16.11, 0.45Pχ = = ). However, examination of one of the tests carried 

out by RELEASE provided weak evidence of a transient response (c
8
2 = 11.69, 

P = 0.17). Therefore, we included a transient parameterization in our candidate 
model set, which consisted of 30 competing models.

Examination of DAIC
C
 values and AIC

C
 weights (Burnham and Anderson 2002) 

indicated that the selected “best” model was substantially better than its closest 
competitor (AIC

c
 weight = 0.68; AIC

c
 weight of nearest competitor = 0.21). Therefore, we 

did not use model-averaged parameter estimates. The selected best model included 
heterogeneity and trap response in capture probabilities, with initial capture prob-
abilities estimated at ˆ ˆˆ ˆ ˆ ˆ0.40, ( ) 0.067; 0.15, ( ) 0.020p SE p p SE p= = = = , for the two 
groups (mixture model), respectively. Estimated recapture probabilities were 
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Fig. 9.1 Map of the areas sampled by camera traps in Nagarahole National Park from 1991–2000. 
Inset shows the park’s location within India
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Table 9.1 Details of the primary and secondary sampling periods, sampled areas, camera trapping 
effort and number of individual tigers photo-captured at Nagarahole, India, 1991–2000. The 
sampled area Â(   ̂SE (Â)) has been estimated as described in Karanth and Nichols (1998)

Primary 
period no.

No. of 
second. 
periods

Mid 
point

Total 
days

Area  

Â (ŜE (Â))  km2

Effort 
trap-days

No. of 
tigers 
caught

Cumulative 
no. of tigers 
caught

1 6  5/91 162 41.4 (3.3) 294  9  9
2 5 12/91 127 41.4 (3.3)  87  4 10
3 3  4/93  75 101.5 (5.2) 108  5 13
4 7  1/94 197 101.5 (5.2) 668 17 24
5 10  1/95  78 101.5 (5.2) 691 12 26
6 18  3/96 118 231.8 (7.8) 938 26 44
7 8  6/97  33 231.8 (7.8) 448 15 47
8 12  1/98  39 231.8 (7.8) 695 16 50
9 15  3/99  47 231.8 (7.8) 868 22 60

10 15  5/00  54 231.8 (7.8) 928 28 74

ˆ ˆˆ ˆ ˆ ˆ0.26, ( ) 0.048; 0.080, ( ) 0.010c c c cSE SE= = = = , for the two groups, respectively, 
providing some evidence of trap-shyness. The proportion of individuals in each of 
the two groups was allowed to change over time, and there was no evidence of 
heterogeneous detection probabilities in some years (estimated mixing parameter 
approximately = 1 or 0). Temporary emigration was estimated to be constant over 
time, and random, rather than dependent on the previous year’s status (see Kendall 
et al. 1997); 10% ˆ( 0.069SE = ) of the individuals were estimated to be temporary 
emigrants during any primary period.

In the selected best model, survival was modeled as differing between the first 
interval following detection (indicating transience) and all other intervals, but other-
wise constant over time. Because the mid-points of the primary sampling periods 
were not separated by exactly 1 year, estimated interval survival rates were rescaled 
to obtain an annual rate of apparent survival of 0.77 ( ˆ 0.051)SE = (on average, 23% 
of tigers were lost annually from the population due to mortalities and permanent 
emigration during the study). The survival estimates for the intervals following 
initial detection of each animal were used to estimate the probability that a newly 
detected animal is a transient (0.18, ˆ 0.11)SE = . Abundance was modeled as varying 
over time (Table 9.2).

Using the parameters estimated directly by the model, we were able to compute 
other quantities of interest. We estimated the number of new recruits in each pri-
mary period, B

t
 = animals present at t + 1 but not present in the population in any 

previous primary sampling period (see Karanth et al. 2006 for details). The time-
specific abundance estimates also allowed us to compute time-specific finite popu-
lation growth rates (Table 9.2). Growth rates and recruitment were only computed 
for primary periods 6–10, since the study area size increased twice between periods 
1 and 5, exposing a larger number of tigers to sampling efforts and producing 
changes in abundance and new animals that were associated with these sample area 
changes as well as with population dynamics. The geometric mean of the time-specific 
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finite growth rates between 1996 and 2000 was estimated at 1.03 ( ˆ 0.020)SE = , 
representing a 3% annual increase.

We also obtained primary period-specific estimates of density from the abun-
dance estimates using the approach based on mean maximum distances moved by 
recaptured tigers (MMDM; see Chap. 7). These density estimates were also used to 
compute density-based estimates of population growth rates, which would be rela-
tively unaffected by changes in sampled area. However, the expanded study area 
included new areas with lower tiger density compared to the original study site. 
This was reflected in the results as an apparent decline in tiger population densities 
over the long term, especially for the 2 years during which the area sampled was 
expanded (Table 9.3).

9.6  Utility of Camera Trap Data for Assessing  
Population Dynamics

The results of our study supported our predictions that despite substantial losses 
(23% loss of tigers ³1 year age, each year), tiger populations can remain high 
(densities ranged between 7.3–21.7 tigers per 100 km2) and demographically 
viable. This is likely a result of the high prey densities (~56 ungulates per km2) in 
Nagarahole that facilitate high reproduction and recruitment rates. This result 
underscores the importance of controlling human hunting of prey species and 
not focusing solely on direct hunting of tigers. The estimated annual loss of 23% 
includes mortalities (human induced and natural), as well as some permanent 
emigration out of the area in the form of dispersing sub-adults or as evicted 
resident tigers (Smith 1993; Smith et al. 1999). Our prediction of finding a relatively 

Table 9.3 Estimated area sampled by camera traps, Â , abundance, ˆ
tN , population density, ˆ

tD , and 
rate of change in density, l̂

t
D, for primary sampling periods, for the tiger population in Nagarahole, 

India, 1991–2000. We report means and standard errors of various estimated parameters

Primary 
period 
(t) Date

Time 
interval ( )∆t  
between t, 
t + 1

Abundance 

ˆˆ ˆ( ( ))t tN NSE

Sampled area 

ˆˆ ˆ( ( ))A ASE

Density 

ˆˆ ˆ( ( ))t tD DSE

Density change

 ˆ D
tλ ( ˆSE ( ˆ D

tλ ))

1 5/91 0.667  9 (0.0) 41.4 (3.3) 21.73 (1.7) 0.78 (0.30)
2 12/91 1.333  7 (2.6) 41.4 (3.3) 16.91 (2.6) 0.64 (0.40)
3 4/93 0.750 11 (5.5) 101.5 (5.2) 10.84 (5.4) 1.91 (1.01)
4 1/94 0.917 21 (3.2) 101.5 (5.2) 20.69 (3.3) 0.57 (0.10)
5 1/95 1.250 12 (0.0) 101.5 (5.2) 11.82 (0.6) 0.99 (0.08)
6 3/96 1.167 27 (1.4) 231.8 (7.8) 11.65 (0.7) 0.74 (0.13)
7 6/97 0.583 20 (3.2) 231.8 (7.8)  8.62 (1.4) 0.85 (0.17)
8 1/98 1.250 17 (1.7) 231.8 (7.8)  7.33 (0.8) 1.35 (0.18)
9 3/99 1.083 23 (1.7) 231.8 (7.8)  9.92 (0.8) 1.30 (0.15)

10 5/00 30 (2.1) 231.8 (7.8) 12.94 (1.0) –
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high proportion of temporary emigrants was supported (10%), as was our expectation 
of high rates of transience, with the selected model estimating the transience 
parameter at 18%. Thus, our tiger population sampling and modeling approach 
using non-invasive camera traps allowed us to estimate parameters that are virtually 
impossible to estimate otherwise in populations of large, elusive, wide-ranging 
felids such as the tiger.

Our estimates of tiger abundance varied over time and are characterized by rela-
tively high variances. This is partly a result of our analysis explicitly incorporating 
sources of uncertainty arising from the sampling process as well as from tiger ecology. 
In our opinion, tiger monitoring methods that claim to improve “precision” and 
“ability to detect changes” by essentially ignoring these uncertainties do not repre-
sent a valid alternative approach. We were also constrained by the limited number 
of camera traps we could deploy, particularly in primary periods 1–5. Increasing the 
numbers of camera traps as well as the sampled area will increase recapture rates 
and capture more individuals (See Table 9.1), improving precision of parameter esti-
mates. In addition, sampling a greater proportion of the population of interest (e.g., 
the tigers of the entire Nagarahole reserve) will likely reduce the estimated propor-
tion of temporary emigrants. These ideas are currently being tested in our ongoing 
field studies over a wider landscape around this site.

Some investigators have used the relatively low precision of year-specific 
abundance estimates to argue against the use of camera traps as a means of 
monitoring tiger populations. However, the population growth rate over the entire 
period of study was estimated relatively precisely ˆ =  ˆ 0.02])SEl( = 1.03� [ , at least 
when compared with other studies of animal populations. By using reduced 
parameter models that borrow information over time, we were able to estimate 
change in tiger population size and other parameters (e.g., annual survival) with 
reasonable precision, while satisfactorily dealing with various ecological and 
sampling-related uncertainties. Thus, in situations where a demographic monitoring 
program is really needed to address management or scientific questions, we believe 
that intermediate- to long-term camera trap studies of the type presented here 
can be an effective approach to the conduct of management and science on 
tiger populations.

Long-term studies of tigers based on radio-telemetry or visual identification 
of individuals (Sunquist 1981; Smith 1993; Smith et al. 1999) have traditionally 
classified tigers in a population as residents, pre-dispersal offspring and transients. 
Such post hoc categorizations are subjective, based on the detection histories 
themselves, and do not consider the probability of individual tigers not being 
detected despite their presence during some seasons. In such studies, individuals 
detected only once are typically categorized as transients, whereas our modeling 
recognizes that such individuals may also include resident tigers that die before 
being recaptured. Many of our models were parameterized specifically to deal with 
transience (see Pradel et al. 1997), and model selection results provided strong 
support for these models. As noted earlier, this transient parameterization does 
not necessarily correspond exactly to what tiger biologists (Sunquist 1981; Smith 
1993; Karanth and Sunquist 2000) subjectively term as “transience,” but is instead 
based on quantities that can be estimated from CR data.
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In most large-scale ecological field studies of this nature, experimental 
manipulation, randomization, replication and controls are impossible to achieve. 
However, conservation still requires answers to questions about population 
responses to management and conservation actions in the face of uncertainty. Our 
study in Nagarahole was begun after a period of population response to effective 
conservation actions (Karanth et al. 1999). This history of an effective conservation 
program led to the prediction of a relatively large and stable tiger population. 
Studies that are initiated before implementation of management actions and 
continued afterwards can provide even stronger inferences about population 
responses to such actions. We believe that long-term camera trap studies using the 
robust design have great potential for evaluating effects of such factors as management 
actions and human disturbance on tiger populations.

By using reduced parameter models that borrow information over time, we were 
able to estimate multi-year trends reflecting changes in tiger population size and 
other demographic parameters with reasonable precision, while satisfactorily deal-
ing with various ecological and sampling-related uncertainties. We believe that 
other camera trap studies of animal population dynamics would benefit from adopting 
similar approaches.
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10.1 Introduction

Much of the theory and methodology underlying inference about population size is 
concerned with populations that are well-defined in the sense that one can 
randomly sample individuals associated with some location or area and, usually, 
uniquely identify them. However, individuals within populations are spatially 
organized; they have home ranges or territories, or some sense of “place,” within 
which they live and move about. The juxtaposition of this place with a trap or array 
of traps has important implications for sampling design, modeling, estimation and 
interpretation of data that result from trapping data. In particular, this juxtaposition 
induces two general problems. First, for most populations, the spatial area over 
which individuals exist (and are exposed to capture) cannot be precisely delineated, 
and movement of individuals onto and off of a putative sample unit results in a form 
of non-closure, which has a direct effect on our ability to interpret the estimates of 
population size, N, from closed population models. The second problem is that this 
juxtaposition induces heterogeneity in capture probability as a result of variable 
exposure of individuals to capture. Certain individuals, e.g., those with territories 
on the edge of a trapping array, might experience little exposure to capture, perhaps 
only coming into contact with one or two traps. Conversely, individuals whose 
territories are located squarely in the center of a trapping array might come into 
contact with many traps. As such, these individuals should experience higher 
probabilities of capture than individuals of the former type.

The use of arrays of camera traps for estimating abundance of large cats is wide-
spread. They have been used in studies of tigers Panthera tigris (Karanth 1995; Karanth 
and Nichols 1998; Karanth et al. 2006), ocelots (Trolle and Kéry 2003, 2005), jaguars 
(Wallace et al. 2003, Maffei et al. 2004), and other species which are uniquely 
identifiable by spot or stripe patterns. The conventional approach to the analysis of 
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density from these systems is to apply closed population models, and then attempt to 
convert those estimates to densities using a wide variety of heuristically motivated but 
essentially ad hoc methods. For example, ecologists have used various heuristic 
“adjustments” based on auxiliary location information to estimate the mean or maxi-
mum distance moved to adjust the effective sample area (Wilson and Anderson 
1985a,b; Karanth and Nichols 1998; Parmenter et al. 2003; Trolle and Kéry 2003). The 
standard estimator used in camera trapping studies seems to derive from Karanth and 
Nichols (1998) which places a buffer strip around the trap array (more precisely, 
around a convex hull containing the array) that is equal to half the mean maximum 
distance moved by individuals captured in more than one trap. As noted by Williams 
et al. (2002, p. 316), this approach has little theoretical justification, but seemed to 
perform well in simulation studies of Wilson and Anderson (1985a). Although these 
procedures appear to work adequately in practice, the model or range of conditions for 
which they do seems to be poorly understood and difficult to characterize theoretically; 
thus, there is no basis for their extension. Formalization of the use of auxiliary spatial 
information requires the precise definition of a model – the linkage of encounter loca-
tion to some notion of territory or home range (and perhaps movements).

The deficiency with classical closed population models for estimating density 
from trapping arrays is that “space” has no explicit manifestation in such models. 
The parameter N  is just an integer parameter of the model, and the structure of the 
model is unchanged regardless of trap spacing, whether it is applied to data from a 
10 ´10  grid of small mammal traps, an irregular array of hair snares for bears, or 
camera traps that are rotated among blocks of forest habitat. To develop a general 
framework for inference from trapping arrays requires a radical reformulation 
of closed population models in a manner that admits space explicitly. The natural 
way to do that is with the use of point process models (Efford 2004). That is, 
we entertain the notion that individuals are referenced by points in space, say  
s

i 
for i = 1,2,...,N. Then, ordinary closed population models (which describe the 

encounter of individuals) are augmented with a model that describes this point 
process. The result is a hierarchical model (Royle and Dorazio 2008) – a model 
which possesses explicit models for both an ecological process (distribution of 
individuals in space) and the imperfect observations of that process (encounters of 
individuals in traps).

In this chapter, we develop the hierarchical formulation of spatial capture–
recapture (CR) models. Although formulation of hierarchical models for data from 
trapping arrays is relatively simple, analysis of the models poses a difficult statisti-
cal problem because the home ranges, or territories of each individual are 
unknown. In developing formal analysis techniques for spatial CR models, these 
are regarded as latent variables (i.e., random effects). Moreover, the number of such 
activity centers (i.e., the population size N) is also unknown. To attack inference 
under the hierarchical model, we adopt a Bayesian analysis of the model based on 
data augmentation (Royle et al. 2007), which has been applied to a number of 
similar models (e.g., Royle and Dorazio 2008; Royle and Young 2008; Royle 2009; 
Gardner et al. 2009).
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We address three distinct classes of models in this chapter which are distinguished 
by the specific assumptions imposed on the observation model. The distinct obser-
vation models arise as a result of the type of trapping apparatus or the manner by 
which data are obtained from the traps. In the following sections we present the 
technical development of the models. We begin with a basic Poisson encounter 
model, which we will label Model 1. The other models are related to one another 
by the imposition of specific constraints, which produce a binomial encounter 
model (Model 2) or a multinomial encounter model (Model 3). Thus, our typology 
of models consists of:

Model 1 (Poisson observations): an individual can be caught an arbitrary number 
of times in an arbitrary number of traps during any particular trapping interval.

Model 2 (Binomial observations): an individual can be caught at most one time 
in any single trap, but in an arbitrary number of traps during any particular trapping 
interval.

Model 3 (Multinomial observations): an individual can be caught at most one 
time in at most one trap during any particular trapping interval.

In all cases, the traps can catch multiple individuals, and thus they are variations 
of the “multi-catch” traps (Efford et al. 2008). Arrays of mist-nets are a common 
type of multi-catch trap, but these models are relevant conceptually and technically 
to hair snares, camera traps and other sampling methods. Camera trapping studies 
will usually be concerned with observation models 1 or 2. We note that a fourth 
type of observation model occurs in many animal population studies that use con-
ventional traps which capture a single individual. We will not be concerned with 
models for these “single-catch” situations here. Efford (2004) devised a method for 
inference under such models using a simulation-based approach known as inverse 
prediction.

We adopt an approach to developing these models in which we encourage the 
reader to “think hierarchically.” By that we mean instead of solving the most 
general version of the problem first, we develop a sequence of simpler variations 
of the model that assume certain quantities are known. In particular, we first 
develop the basic model under the assumption that N is known, and that we know 
the home range (centers) of all individuals in the population. Analysis of this 
simpler model is conceptually and methodologically instructive, and the exten-
sion does not introduce much additional technical complexity. We develop two 
subsequent generalizations that prove to be only incrementally more complex, 
technically and conceptually. This approach reveals the true simplicity of these 
models as basic Poisson and binomial generalized linear models (GLMs) with 
random effects. Indeed, in our adoption of a Bayesian framework for inference 
using data augmentation (Royle et al. 2007), the models are precisely zero-
inflated GLMs with random effects. We develop the basic models for closed 
populations, and we provide the basis for implementing those models in the 
freely available software package WinBUGS. We also provide (Sect. 10.8) a spa-
tial CR model for a demographically open system, allowing for both survival and 
recruitment of individuals.
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10.2 Background

We noted in the previous section that a large number of ad hoc approaches have 
been used to derive an “estimate” of effective sample area for use in the calculation 
of density. These approaches are ad hoc in the sense that the underlying models that 
justify any particular adjustment are poorly understood. They are distinctly not 
model-based procedures. Conversely, Efford (2004) was the first to formalize a 
model for spatial CR problems in the context of trapping arrays. He adopted a 
Poisson point process model to describe the distribution of individuals and a 
distance sampling formulation of the observation model describing the probability 
of detection as a function of individual location. While earlier (and contemporary) 
methods of estimating density from trap arrays lacked a formal description of the 
spatial model, Efford achieved a formalization of the model, but adopted a more or 
less ad hoc framework for inference under that spatial model (using a simulation 
based method known as inverse prediction). By this, we mean that it is not clear in his 
development how that framework relates to established frameworks for parametric 
inference (i.e., likelihood or Bayesian inference).

Recently, there has been a flurry of effort devoted to formalizing this model-based 
framework for the analysis of spatial CR models. Two distinct approaches have been 
developed: (1) classical inference based on likelihood and (2) that  based on Bayesian 
inference. To motivate the origins and relevance of these approaches, we note that, 
fundamentally, spatial CR models are analogous to classical “individual covariate” 
models in CR – within a fully model-based inference framework (i.e., based on the 
“full likelihood,” Borchers et al. 2002; see also Royle 2009). While a model-based 
treatment of individual covariate models is contrary to the traditional manner in which 
inference is achieved under those models (i.e., Huggins 1989; Alho 1990), model-
based analysis has proven necessary in certain classes of individual covariate models, 
such as with time-varying individual covariates (Bonner and Schwarz 2006) or covari-
ates with measurement error (e.g., distance sampling; see Royle and Dorazio 2008, 
Karanth et al., Chap. 7). The model-based formulation is easily adapted to standard 
individual covariate models as well (Royle 2009).

Because spatial CR models are formulated in terms of a collection of latent 
variables or random effects (corresponding to individual locations), a natural 
framework for analysis of the models is based on integrated likelihood (Laird and 
Ware 1982). That is, while the observation model is conceptualized conditional on 
the random effects, inference is formally based on the likelihood constructed from 
the marginal probability distribution of the observations (i.e., unconditional on the 
random effect). The random effects are removed from the conditional likelihood 
by integration (which is accomplished numerically in spatial CR models). This 
approach to inference has been formalized in the context of trapping array prob-
lems by Borchers and Efford (2008), Efford et al. (2008), and Efford et al. (2009), 
and implemented for some classes of models in the software package DENSITY 
(Efford et al. 2004).

Bayesian analysis is another natural framework for the analysis of models 
containing latent variables or random effects. Under this approach, analysis of the 
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model is based on Monte Carlo simulation from the posterior distribution, which is the 
product of the conditional likelihood, the distribution of random effects and perhaps 
other distributions. This approach was developed by Royle and Young (2008) and was 
motivated by work focused on modeling individual effects in CR models. In particular, 
a convenient reparameterization of individual covariate models can be obtained using 
a method known as data augmentation (Royle et al. 2007). This was applied to classi-
cal individual covariate models in Royle (2009). The close similarity between indi-
vidual covariate models and spatial CR models, with the activity center of the 
individual, s

i
, representing the individual covariate, led to the application of the data 

augmentation method described by Royle and Young (2008). This is a fairly distinctive 
application in that there weren’t traps, but rather, a physical area (quadrat) that was 
searched repeatedly. Thus, individuals could be captured anywhere within the bound-
ary of the quadrat. This model stimulated developments for the analysis of tiger cam-
era trapping data (Royle et al. 2009a) and bear hair snares (Gardner et al. 2009). We 
note that both of these applications made use of a multinomial (Model 3) observation 
model instead of the more appropriate binomial model (Model 2).

These two technical formulations (integrated likelihood and Bayesian) both 
provide rigorous solutions to the inference problems posed by spatial CR data. The 
technical distinctions are that Borchers and Efford (2008) assume a Poisson point 
process that is unconditional on N, whereas Royle and Young (2008) and related 
work assume a binomial point process model which is conditional on N. More 
importantly, Borchers and Efford develop the analysis in a way that is unconditional 
on the point process (which is removed from the conditional likelihood by integra-
tion). Conversely, the analysis of Royle and Young (2008) is conditional on the 
underlying point process.

We believe that the hierarchical modeling approach is flexible and accessible to 
practitioners because, fundamentally, the models are simply binomial or Poisson 
GLMs with random effects. Thus, they are conceptually accessible to practitioners with 
some basic statistical understanding and experience. For example, we demonstrate 
in this chapter how the models are developed in WinBUGS as GLMs with random 
effects (Royle et al. 2009b). We believe that practitioners will have some flexibility 
in developing models that fit their specific situation. We provide an example with 
moving traps that does not pose any additional difficulty in defining the model, and 
thus can be analyzed directly by MCMC in WinBUGS. More generally, integrated 
likelihood for complex point process models may prove difficult, and so analysis of 
the model that is conditional on the underlying point process will prove to be more 
versatile and generalizable.

10.3 Model Formulation

As we noted in the Introduction, the basic deficiency with applying closed population 
models to encounter history data from trap arrays is that space and movement have 
no explicit manifestation in such models, i.e., the models are not “spatial.” Under 
these traditional models, N is just an integer-valued parameter that has no spatial 
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context whatsoever. Thus, we seek to formalize the manner in which spatial 
organization of individuals is relevant to how they are observed. The natural way 
to accomplish this is with spatial point process models (Efford 2004). In particular, 
we suppose that individuals are referenced by fixed points in space, say s

i
 for 

1,2, , ,= …i N  and we describe properties of these point locations with a point pro-
cess model. We then develop hierarchical extensions of ordinary closed population 
models that use the point process model. That is, we augment these standard obser-
vation models with a model for the underlying point process describing individual 
locations. The point locations are assumed to be fixed for the duration of the sampling, 
which represents a form of closure. Thus, individuals may not be static during 
sampling, but we suppose there exists a spatial attribute of each individual, the 
point s

i
, which is fixed for the duration of the study. Strictly speaking, the definition 

of these points is purely an abstraction, but we might view them conceptually as 
home range centers (Efford 2004) or points about which animal movements can be 
described probabilistically (Royle and Young 2008).

Two approaches for characterizing this point process have been suggested. 
Efford (2004), Borchers and Efford (2008) and related work adopt a Poisson point 
process assumption which is not conditional on N. In contrast, Royle and Young 
(2008) and Gardner et al. (2009) adopt a binomial point process assumption which 
is conditional on N. This is something of a minor distinction between the basic 
formulations of the model, but it is somewhat more important in the development 
of inference procedures as we noted in Sect. 10.2.

To begin, we suppose that each individual in the population can be characterized 
by a fixed point, s

i
 = (s

1i
, s

2i
), which is a two-dimensional coordinate representing a 

point in space about which the movements of individual i are concentrated (i.e., its 
“activity center”). Further, we suppose that there exists a population of N centers 

; 1, 2, ,i i N= …s  distributed over some region, say S, the state-space. In practice, S 
will be prescribed (e.g., by specifying coordinates of some polygon that contains a 
trapping array). As an example, consider Fig. 10.1. This figure shows a 10 × 10 array 
of traps with unit spacing (the black dots) within some hypothetical region bounded 
by a square of dimension 18 × 18 units, which is shown by the dashed boundary. 
This large square is S. We do not observe the individual activity centers. Instead, they 
are latent (unobserved) variables in the model.

Next we need to describe the juxtaposition of individual activity centers with the 
trapping array. Sampling is carried out by a network of J traps, having locations 
{x

j
 ; j = 1,2,..., J}. In the subsequent development of the model we will suppose 

that the probability of an individual being captured in some trap j is a function of 
the distance from the trap to its activity center, and one or more parameters that will 
be estimated. In the context of the models that we will consider, density estimation 
is equivalent to estimating the density of activity centers in S, or some subset of S, 
such as a national park or wildlife refuge.

The sequence of observations generated from trapping arrays are y
ijk

 for individual 
i = 1,2,..., n, trap j = 1,2,..., J, and sample (trapping “occasion” or “interval”) k = 
1,2,..., K. Although these observations can be binary, y

ijk
 = 1 if individual i is cap-

tured and y
ijk

 = 0, they generally may be trap-specific frequencies (i.e., the number 
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of times individual i is captured in trap j during occasion k). Regardless, we will 
refer to them as encounter or capture histories. Note that this is a three-dimensional 
array whereas, in classical CR models, we obtain a two-dimensional matrix of 
encounter observations, usually constructed with rows of the matrix representing 
individuals and columns representing successive sample periods. In the present 
case, the extra spatial information provided by trap identity increases the complex-
ity of the encounter history by this third (spatial) dimension. Thus, each individual 
in the population possesses an encounter history matrix, which we will represent as 
a J × K  matrix, where J is the number of traps and K  is the number of samples of 
the population. In certain cases, depending on the specific model under consideration, 
we will be able to reduce the three-dimensional array of observations, by sufficiency, 
to a smaller two-dimensional array (n × J) by summing the observations over the 
replicate samples.

Subsequently, we describe models for the two-dimensional encounter history of 
each individual that is conditional on that individual’s activity center, s

i
. For all of 

the models we describe here, we assume that individuals are independent of one another 
in terms of their detection in traps. This would not be realistic in some situations, 
especially in classical trapping grid problems where traps hold or kill individuals 
(Efford 2004). Moreover, it is probably not a biologically reasonable assumption for 
territorial carnivores. That said, there have not yet been extensions of spatial CR 
models that allow for more realistic dependence between individuals.

Fig. 10.1 Simulated realization of trapping grid with captured individuals. Simulated captures of 
individuals (red dots) were made by a 10 × 10 grid of traps (black dots). The trap(s) in which each 
individual was captured are indicated with blue lines
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10.3.1 Observation Models

A number of basic observation models are possible. These derive primarily from 
the type of, or restrictions on, the physical trap, or the manner in which data are 
obtained from the trap. We begin by considering a Poisson encounter model, which 
applies to the situation in which an individual can be caught an arbitrary number of 
times in an arbitrary number of traps. Strictly speaking, this probably makes sense 
for camera traps because individuals can visit (and be “observed”) an arbitrary 
number of times during any sampling occasion. However, in camera trapping studies 
it is often the case that multiple detections of individuals are processed into a single 
“net detection.” Moreover, multiple encounters during a single short occasion (e.g., 
a night) are not likely to be independent (Royle et al. 2009b) and thus may contrib-
ute relatively little information. While we use the Poisson model here as our start-
ing point, we note that other models for detection frequencies in this situation are 
possible. For example, Efford et al. (2009) consider a negative binomial model. Two 
other models can be derived directly from the Poisson model. One model that is 
most relevant to camera trapping studies is the Bernoulli or binomial encounter 
model. Under this model, an individual can be caught at most one time in any single 
trap, but in each of an arbitrary number of traps. Thus, encounter (or not) in each 
trap is a Bernoulli trial. For a study based on K sampling occasions, in the absence 
of time-variation in parameters, the resulting encounter frequencies have a binomial 
distribution. Finally, we consider a multinomial encounter model in which indi-
viduals can be caught at most a single time and in only a single trap during any 
particular trapping interval. We do not provide an analysis of this model here 
because the model is a technical misspecification in most camera trapping situa-
tions (see Royle et al. 2009a).

10.3.1.1 Model 1: The Poisson Model

For observations y
ijk

  that are detection frequencies of individual i in trap j during 
occasion k, then a natural choice for the observation model is the Poisson 
distribution:

0~ Poisson( ),ijk ijy gλ  

where l
0
 is the baseline encounter intensity and g

ij
 is some decreasing function of 

distance between trap and activity center. Here, we only consider a “half-normal” 
function of the form:

 g
ij
 = exp (–d 2

ij
/s  2) (10.1)

where, in this expression, s 2 is a parameter that will be estimated from data. Thus, 
for a trap that is located precisely at an individual’s activity center, l

0
 is the 

expected number of captures in that trap.
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There are several reasons why we favor the half-normal function. First, it is a 
common “detection function” used in distance sampling and also in the spatial CR 
model of Efford (2004) and subsequent developments. Secondly, it can be moti-
vated as arising under an explicit model of movement-induced exposure of indi-
viduals to trapping (Royle and Young 2008). For this reason, we sometimes use 
the term “exposure function” to refer to g. Finally, the half-normal exposure func-
tion leads to a precise representation of the model as a Poisson regression with 
random effects. In particular, note that the log-transform of the Poisson mean has 
the form:

 log (E [y
ijk

]) = a + b d 2
i j 

,

where a = log(l
0
) and b = – (1/ s 2). In the present case, d

ij
 is a random effect. 

Evidently, choice of the function g
ij
 merely affects the functional relationship 

between the Poisson mean and distance – i.e., the “link function.” See Royle and 
Dorazio (2008, Sect. 4.5.2) for some other instances where link function choice is 
considered in the context of animal sampling.

10.3.1.2 Model 2: The Binomial Encounter Model

Next we consider the case where the observations are binary. We will view the 
binary observations conceptually as reductions of the counts that we could have 
observed in the more general case. This might be realistic for bear hair snare studies 
(and other DNA-based sampling) where an individual can be encountered a number 
of times during any period, and the biological material (hair, etc.) accumulates but 
cannot be partitioned into distinct visits after it is collected. To formalize this, suppose 
that we obtain binary observations y

ijk
  such that

 p
ijk

 = pr (y
ijk

 = 1) = 1 – exp (– l
0  
g

ij
)  

which is the probability y > 0 under the Poisson encounter frequency model. Thus, 
the parameters of the model are fundamentally the same, but the observable quantity 
is a reduced-information summary of what we would prefer to observe (see Royle 
and Nichols (2003) and Royle (2004) for a similar pairing of models). We realize it 
could be confusing to use the same variable name (y) for the new data type, but 
whenever the context might be ambiguous we will be clear about whether this is the 
Bernoulli or Poisson observation.

This model has a representation as a binomial GLM with a linear effect of 
distance on a suitable transform of the binomial parameter ijkπ . In particular, the 
complementary log-log transform of ijkπ  yields:

 log (–  log (1 – p
ijk

 )) = a + b d 2
i j

where a and b are as before. Again, we have a GLM (binomial in this case) with a 
random effect, d

ij
. It is worth noting, although we don’t develop this issue further here, 
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that the random effects d
ij

2 are spatially correlated. The relevance and consequences of 
this will be developed elsewhere.

10.3.1.3 Model 3: The Multinomial Observation Model

The final model considered here is that which applies to the situation where an 
individual can only be captured at most a single time during a sample occasion. 
This is typical of avian mist net studies (Borchers and Efford 2008), although such 
a model was also used to estimate density in camera trap studies by Royle et al. 
(2009a). We refer to this model as a multinomial observation model because the 
“trap of capture” is a multinomial trial. We can think of this as the outcome of rolling 
a J–sided die. To motivate this model from the basic Poisson model we note that, 
under the Poisson encounter model with independent traps, the total number of 
captures for each individual during each period (i.e., when we sum over traps) is also 
a Poisson random variable (by compound additivity of Poisson random variables):

 . 0~ Poisson( ).i k ijk ij
j j

y y gλ= ∑ ∑  (10.2)

Then, the distribution of the individual trap-encounter frequencies conditional on 
y

i.k
 is a multinomial distribution (this is a standard distribution result – independent 

Poisson random variables when conditioned on their total, have a multinomial 
distribution). Thus, the trap frequencies y

ijk
  have a multinomial distribution:

 1 . .{ } | ~ Multinom( ; ).=

  
 
  ∑

ijJ
ijk j i k i k

ijj

g
y y y

g
 (10.3)

To obtain the relevant observation model, we condition on the event that y
i.k

= 1. 
That is, an individual is captured only one time. Then, the trap-of-capture is equal 
to trap j with probabilities as given in (10.3). This component of the model 
describes the trap-of-capture. But we also need to describe the Pr(y

i.k
 = 1)  – the 

apparent or “total” probability of capture. We can obtain this by accumulating the 
positive mass under the Poisson assumption. That is, define:

 p̄
 
i
= Pr(y

i.k
 > 0) = 1–  exp(– l

0
 å

j   
g

ij
)  (10.4)

Therefore, if iky is a multinomial observation for individual i during occasion k, 
then we can describe the cell probabilities of this J + 1 dimensional multinomial 
distribution by

 for 1,...,−π = =
∑

ij
j i

ijj

g
p j J

g
 

and, for the last cell corresponding to “not captured”, 1 – p̄
 
i
 . 
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In Royle et al. (2009a) and Gardner et al. (2009), different forms for 
−

ip were used, 
as they did not derive it from the Poisson assumption.

10.4 Analysis of the Models

We proceed with the analysis of these two models (for binomial and Poisson 
observations) as if we knew precisely the collection of s

i
 for all N individuals in 

the population. In this case the inference problem is to estimate the parameters l0 
and s. The aim in doing this is to describe the basic formulation of the inference 
problem. In addition, this conditional-on-s formulation of the model reveals the 
simplicity of the hierarchical model for camera trap array data. In particular, while 
the general models are GLMs with random effects, when the s

i
 are fixed and 

known, the models are simple Poisson or binomial GLMs – i.e., with fixed effects 
only. Extension of the model to allow for s to be unknown is technically and con-
ceptually straightforward.

For fixed and known s
i
, Bayesian analysis of the model can be carried out easily 

using the freely available software package WinBUGS (Gilks, et al. 1994). We will 
not provide an introduction to Bayesian methods here since Bayesianism is a popu-
lar inference paradigm and there is a wealth of background material available in the 
literature, in addition to many accessible texts. In adopting a Bayesian analysis of 
the model, we require prior distributions for parameters. For that, we use priors that 
are customarily used to reflect the absence of prior information: for s, a uniform 
prior on [0, 5] and, for l

0
, a gamma prior with scale parameters 0.1 and 0.1. Note 

that the upper bound of the uniform prior for s must depend on the coordinate 
system and should be large enough so that the posterior mass for that parameter is 
not concentrated near the upper bound.

10.4.1 Poisson Detection Frequencies

The WinBUGS model specification for the Poisson model, when s
i
 are fixed, is 

shown in Panel 10.1. We see that this only requires a few lines of WinBUGS 
model description, and most of that is computing the distances between traps and 
activity centers. The coordinates of the activity centers are sx and sy and they 
are input to WinBUGS as data along with X, which is a matrix of the coordinates 
of the traps, N, J, and K which are the number of individuals, number of traps and 
number of samples. Finally, the dependent variable is the three-dimensional array 
y. The WinBUGS pseudo-code rendering reveals how remarkably simple the 
model is. This is the power of hierarchical modeling. When we think about 
the model conditional on the right latent variables, a very simple probability 
structure emerges. The R code for simulating data and then fitting this model is 
available from the authors.
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10 4.1.1 Model Extensions and Reductions by Sufficiency

The model specification in Panel 10.1 is more general than may be required in many 
situations because it specifies the observation model in terms of the finest scale 
observation – encounter frequencies of every individual, in every trap, and for all 
K occasions. When specified at the level of the most basic observation, the model 
allows for many extensions. For example, we could add time effects or individual 
effects to a model for l0 by adding only a couple lines to the code in Panel 10.1.

When there are no time effects, we can improve the efficiency of the analysis 
by recognizing that the total number of captures of each individual in trap j is a 
Poisson random variable with mean K × λ

0 
g

ij
. Thus, K, the number of replicates, 

is just an additive offset in the linear model for the mean. One implication of this 
is that we can choose K = 1 without compromising identifiability of the model 
(see Efford et al. 2009 for additional context). That is, replicate samples are not 
required.

Due to additivity of Poisson random variables, other simplifications are possible 
in some cases. We neglect implementation of the possible simplifications and 
extensions as there are no additional technical considerations.

10.4.2 Model 2: Bernoulli Encounter Process

Under the Bernoulli observation model, an individual may be captured in 
each trap only once during each sampling occasion. Thus, whether an individual 
is captured or not in any particular trap can be viewed as a Bernoulli outcome. 
Implementation of this model, for fixed s

i
, requires a barely noticeable modification 

to the WinBUGS model specification, which is shown in Panel 10.2.

model {
sigma2~dunif(0,5)
lam0~dgamma(.1,.1)
for(i in 1:N) {

for(j in 1:J){
dist2[i,j]<- ( pow(sx[i]-X[j,1],2) + pow(sy[i]-X[j,2],2) )
mu[i,j]<- lam0*exp(-dist2[i,j]/sigma2)
for(k in 1:K){

y[i,j,k]~dpois(mu[i,j])
}

}
}

}

Panel 10.1 WinBUGS model specification for the trapping grid model when s
i
 are known for i = 1, 

2,…, N. The activity centers, s, are input to WinBUGS as data in the form of sx and sy, vectors 
of the x- and y-coordinates of all N activity centers. This is an over-simplification of the model that 
reveals the simplicity of the essential structural component of the model – the relationship between 
observations, individual activity centers, and trap locations
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model {
sigma2~dunif(0,5)
lam0~dgamma(.1,.1)
for(i in 1:N){

for(j in 1:J){
dist2[i,j]<- ( pow(sx[i]-X[j,1],2) + pow(sy[i]-X[j,2],2) )
mu[i,j]<- 1-exp( -lam0*exp(-dist2[i,j]/sigma2) )
for(k in 1:K){

y[i,j,k] ~ dbern(mu[i,j])
}

}
}

}

Panel 10.2 WinBUGS model specification for the Bernoulli encounter model when s
i
 are known 

for i = 1, 2,…, N

This specification is more general than may be required in many cases because, 
as with the Poisson version in Panel 10.1, the observation model is specified in terms 
of the Bernoulli probabilities for each binary observation. While potentially inducing 
considerable computational burden, this specification allows for simple extensions. 
For example, we could add time effects or individual effects to a model for λ

0
 by adding 

only a couple lines to the WinBUGS specification. We can improve the efficiency 
of fitting the model in some cases by recognizing that the total number of captures 
of each individual in trap j is a binomial random variable based on a sample of size 
K. Then, the data can be reduced to the N × J matrix of capture frequencies (number 
of captures out of K samples). An example of this is given in Panel 10.5 using a 
slightly more complicated version of the model described in Sect. 10.5.

10.4.3 Analysis of Simulated Data

We simulated data for a hypothetical 10 × 10 array of camera traps having unit 
spacing, and then we will fit the model to the simulated data. N = 120 individuals 
were uniformly distributed over an 18 × 18 square that contains the grid of traps 
(Fig. 10.1). We used λ

0
 = 0.15 and s = 1.5. These individuals were subjected to 

K = 6 survey periods and 61 of them were captured. The total number of captures 
for all 120 individuals is:

capture frequency 0 1 2 3 4 5 6 7 8
number of individuals 59 15 13 12 6 7 3 3 2

Since multiple captures are allowed under the Poisson encounter model, there 
are some capture frequencies >6. For these data, there were 37 instances in 
which an individual was captured in more than one trap during a sample occasion 
(2 traps in 28 instances, and 3 traps in 9 instances). We could tinker around with the 
parameters of this model (l 

0
 and s) in order to achieve the desired structure in the 
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data. When the data are reduced to binary indicators of capture for each individual 
and each trap, we lose the information that comes from multiple captures in each 
sample. That is, an individual captured twice in the same trap in the same sample 
occasion is registered as a single capture. When the simulated data set is reduced in 
this way, the new (individual) capture frequencies are

capture frequency 0 1 2 3 4 5 6 7 8
number of individuals 59 15 16 10 5 9 1 4 1

and there were 32 instances where an individual was captured in multiple traps 
during any particular occasion (twice, 25 times and thrice, 7 times). Since there 
isn’t much loss of information here (subjectively speaking), we would expect both 
models to yield similar results.

The results of fitting both models to this simulated data set are given in 
Table 10.1. In general, the posterior standard deviations should be less under the 
Poisson model, but they are within Monte Carlo error in this case (based on only 
about 4,500 posterior draws). It might be useful to carry out a full-scale simulation 
study to see how much information is obtained from multiple captures.

10.5 Model Extension: Unknown s and N

Suppose we know N, the true number of individuals available for trapping in the 
region S, but not the location of the activity centers s. Conceptually, these can be 
thought of as random effects in the usual sense of the concept as it is used in clas-
sical statistics. For analysis of random effects models, we adopt a prior distribution 
for s and proceed with standard methods for analyzing such models. Precisely how 
we proceed depends in large part on whether we adopt a classical approach to the 
analysis of random effects or a Bayesian approach.

In the classical treatment of random effects, we would remove them from the 
likelihood by integration. This was the strategy recently adopted by Borchers and 
Efford (2008) (see also Efford et al. 2009) for spatial CR models. Alter natively, 
Bayesian analysis of the random effects model is straightforward and also more 

Table 10.1 Estimates of model parameters for the Poisson and Bernoulli 
encounter models fitted to the simulated data set shown in Fig. 10.1

Parameter Mean SD MC error 2.5% Median 97.5%

Poisson
λ

0
0.143 0.0148 0.00027 0.115 0.142 0.174

s 1.646 0.1204 0.00235 1.434 1.637 1.901
Bernoulli
λ

0
0.142 0.0150 0.00031 0.114 0.141 0.173

s 1.653 0.1183 0.00220 1.438 1.647 1.907
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accessible to ecologists using the WinBUGS software. The natural prior distribution 
for s is that it is uniformly distributed. In the present context, we assume that points 
are uniform over some region S, which we will denote by

s ~ Uniform(S).

The region S is referred to as the state-space of the point process and it is the 
region over which potentially catchable individuals could be drawn – i.e., a 
prior distribution for s. While S could be made arbitrarily large, too large an 
area will generate additional computational burden. We require specification of 
S whether or not we carry out a Bayesian analysis of the model. If we were to 
do a non-Bayesian analysis based on integrated likelihood, we would still 
have to prescribe the limits of integration which is precisely equivalent to 
prescribing S.

To implement this in WinBUGS it is helpful to describe S by a regular poly-
gon and that way the uniform assumption on s can be described with the expres-
sions sx[i]~dunif(Xl,Xu) and sy[i]~dunif(Yl,Yu) as illustrated in 
Panel 10.3. The upper and lower limits (Xl, Xu, Yl, Yu) are input into 
WinBUGS as data. We see the implementation of this model for fixed N is straight-
forward. The interested reader can explore application of this minor embellishment 
to the simulated data. Royle et al. (2009a) used a discrete representation of S so that 
they could clip out non-habitat. In that case, s was assumed uniform on the avail-
able points. Borchers and Efford (2008) used a discrete approximation to S in order 
to facilitate a numerical approximation to the integral required to carry-out the 
integrated likelihood.

model {
sigma2~dunif(0,5)
lam0~dgamma(.1,.1)

for(i in 1:N) {
sx[i]~dunif(Xl,Xu)
sy[i]~dunif(Yl,Yu)
for(j in 1:J) {

dist2[i,j]<- ( pow(sx[i]-X[j,1],2) + pow(sy[i]-X[j,2],2) )
mu[i,j]<- lam0*exp(-dist2[i,j]/sigma2)
for(k in 1:K) {

y[i,j,k] ~ dpois(mu[i,j])
}

}
}

}

Panel 10.3 WinBUGS model specification for the trapping grid model when s
i
 are unknown but N 

(the number of individuals) is known
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We may wish to estimate the number of activity centers located within any arbitrary, 
polygon. For example, we may be interested in the number of individuals having an 
activity center located within some polygon X (e.g., a national park), say N(X). Or, 
the density of individuals in X, D(X) = N(X)/A(X) where A(X) is the known area of 
X. In order to compute these things we simply tally-up the individual coordinates 
s that are located within the polygon for the simulated draws of s

i
;i = 1,2,…, N from 

the posterior distribution. WinBUGS properly simulates those summary statistics 
from the required posterior distribution. Doing this requires a few more lines of 
WinBUGS model specification. We have to add the following lines to the model 
specification:

tmp1[i]<- step(sx[i] - xmin)
tmp2[i]<- step(xmax - sx[i])
tmp3[i]<- step(sy[i] - ymin)
tmp4[i]<- step(ymax - sy[i])
incenter[i]<-tmp1[i]*tmp2[i]*tmp3[i]*tmp4[i]

and then, outside all the loops, add these lines:
Nin<-sum(incenter[1:N])
D<-Nin/81

In this case, 81 is the area of the smallest square containing the 10 × 10 array of 
traps for which we simulated the data in the previous example, and xmin, xmax, etc., 
would be the boundaries of that square, which are provided as data to WinBUGS. 
This is implemented in the WinBUGS specification shown in Panel 10.4. To improve 
efficiency of the analysis in WinBUGS, this version of the model is described in 
terms of the N × J matrix of capture frequencies obtained by summing the K 
frequencies for each individual as described in Sect. 10.4.1.

10.6 Unknown N: Data Augmentation

Here we generalize the model one step further, allowing N to be unknown. The dif-
ficulty in analyzing the more general model is that the dimension of the parameter 
space (the number of “random effects” – i.e., activity centers) is itself an unknown 
quantity. It is this problem that motivated the analysis of similar models using the 
method of data augmentation (Royle et al. 2007). Using data augmentation, Bayesian 
analysis can be accomplished very directly, in effect allowing us to analyze a version 
of the “complete data” model – the model with a fixed number of activity centers, 
which we just accomplished in the previous section. We noted previously that spatial 
CR models are conceptually and technically similar to a broad class of CR models 
known as individual covariate models. That context has been developed by Royle 
and Dorazio (2008, Chap. 7) and Royle (2009).

To introduce data augmentation, we think first about simply developing a 
Bayesian analysis of the more general model (i.e., N unknown). This requires that 
we describe prior distributions for the parameters N, l0, and s. A natural choice of 
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priors that reflect the absence of information about these parameters is to assume a 
discrete uniform prior for N on the integers 0,…,M for some large value of M (i.e.,  
N ~ Du(0, M)). Priors for l0 and s are defined as before. We focus our attention on 
the discrete uniform prior for N. Choice of M is not a critical consideration except 
that it must be chosen large enough so as to not truncate the posterior distribution 
of N, which can be checked after a trial analysis.

In principle, the model could be analyzed under this prior specification by conven-
tional MCMC methods for sampling from the posterior distribution. However, we note 
that, because N is unknown, the dimension of the parameter space – i.e., the number of 
random effects s

i
 – is also unknown. As such, each time that a new draw of N is made 

from the posterior distribution, the number of random effects (activity centers) changes. 
Properly updating parameters in this setting has proved to be a challenging problem of 
some technical complexity. This technical problem motivated an approach to the 
analysis of such models using the method of data augmentation in Royle et al. (2007).

A heuristic description of data augmentation is that it arises by simply adding 
excess “all zero” encounter histories to the data set. That is, for M sufficiently large, 

model {

sigma2~dunif(0,5)
lam0~dgamma(.1,.1)

for(i in 1:N) {

sx[i]~dunif(Xl,Xu)
sy[i]~dunif(Yl,Yu)

tmp1[i]<- step(sx[i] - xmin)
tmp2[i]<- step(xmax - sx[i])
tmp3[i]<- step(sy[i] - ymin)
tmp4[i]<- step(ymax - sy[i])
incenter[i]<-tmp1[i]*tmp2[i]*tmp3[i]*tmp4[i]

for(j in 1:J) {
dist2[i,j]<- ( pow(sx[i]-X[j,1],2) + pow(sy[i]-X[j,2],2) )
mu[i,j]<- lam0*exp(-dist2[i,j]/sigma2)
log(lam[i,j])<-log(K)+ log(mu[i,j])
y[i,j] ~ dpois(lam[i,j])

}
}

Nin<-sum(incenter[1:N])
D<-Nin/81

}

Panel 10.4 WinBUGS model specification for the Poisson version of the trapping grid model 
(Model 1) when s

i
 are unknown but N (the number of individuals in S) is known. This specification 

also computes the derived parameters N(X) (population size) and D(X) (density) for the minimum 
area rectangle enclosing the trapping grid, X. This version of the model is based on pooled encounter 
frequencies over all K surveys
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then we can augment the data set with M – n all-zero encounter histories and 
recognize that the resulting model for the augmented data is a zero-inflated version 
of the model for the complete data set (i.e., as if N were known). In models with 
individual effects, data augmentation is a convenient framework because it allows 
us to retain a maximal set of random effects in the (augmented) data set, and their 
values are updated at each iteration of the MCMC algorithm.

Formally, data augmentation is justified as a reparameterization of the model 
that arises under the discrete uniform prior for N. In particular, note that the 
discrete uniform prior for N can be constructed by specifying a binomial prior for 
N: N ~ Bin(M, y), and then placing a uniform (0,1) prior on y. When y is removed 
from the binomial component by integration, the result is N ~ Du(0, M). While this may 
seem only a mathematical curiosity, it suggests a convenient implementation of 
Bayesian analysis for such models. Namely, we can think of the discrete uniform prior 
as suggesting a super-population consisting of M individuals, where M – n of them 
have corresponding “all-zero” encounter histories (because they were not captured). 
We recognize that some of the M individuals are fixed zeros (i.e., individuals not in 
the population) whereas some of them are sampling zeros – they correspond to 
individuals in the population that were not captured. This can be formalized by the 
introduction of a set of latent indicator variables z

1
, z

2
, . . . , z

M
 such that z

i
 = 1 if 

individual i is a member of the population and z
i
 = 0 if individual i is a fixed zero. 

We assume z
i
 ~ Bernoulli(y). To implement data augmentation, we augment the N 

observed encounter histories with M – n “all-zero” histories, and then specify 
the model for the augmented data set in terms of the zero-inflated version of the 
“known-N” model. As an example, for the Poisson model, the model for the indi-
vidual and trap-specific encounter frequencies (i.e., summed over K occasions) is

y
i
 ~ Poisson(λ

0 
g

ij
) if z

i
 = 1

y
i  
= 0  if z

i 
= 0

Under data augmentation, the parameter y formally replaces the parameter N, the 
two being related by the prior specification N ~ Bin(M, y ). Because the dimension 
of the parameter space is fixed, this facilitates a formal analysis by standard 
methods of MCMC. While developing the MCMC algorithm for analysis of the 
augmented data is straightforward under this model, we avoid those technical 
details because the model can also be implemented in WinBUGS.

10.6.1 Implementation

This incremental (but important) extension of the model requires only a little bit of 
additional WinBUGS model specification. In particular, we must define latent 
indicator variables, z

i
, associated with the data augmentation which we assume to 

be Bern(y) random variables. Then, we note that the counts for the augmented data 
are zero-inflated Poisson or zero-inflated Binomial counts. To implement this, 
redefine the parameter of the (Poisson or Binomial) distribution to be the product 



18110 Hierarchical Spatial Capture–Recapture Models

model {

sigma2~dunif(0,5)
lam0~dgamma(.1,.1)
psi ~ dunif(0,1)

for(i in 1:N) {
z[i]~dbern(psi)
sx[i]~dunif(Xl,Xu)
sy[i]~dunif(Yl,Yu)

for( j in 1:J){
dist2[i,j]<- ( pow(sx[i]-X[j,1],2) + pow(sy[i]-X[j,2],2) )
mu[i,j]<- lam0*exp(-dist2[i,j]/sigma2)
log(lambda[i,j])<-log(K)+ log(mu[i,j]) 
tmp[i,j]<-lambda[i,j]*z[i]
y[i,j] ~ dpois(tmp[i,j])

}
}

N<-sum(z[1:M])
}

Panel 10.5 WinBUGS model specification for the Poisson encounter process model. In this specifi-
cation, the activity centers s and N are unknown

of the indicator z[i] and the parameter of the “known-N” model. For example, 
expanding on the Poisson model from Panel 10.5, the relevant specification to 
zero-inflate the Poisson distribution is:

z[i] ~ dbern(psi)
log(lambda[i,j])<-log(K)+ log(mu[i,j])
tmp[i,j]<- lambda[i,j]*z[i]
y[i,j] ~ dpois(tmp[i,j])

This construction of the zero-inflation process means that, if z[i] = 1, then 
the observations are Poisson with mean lambda[i, j]; whereas, if z[i] = 0, 
then the observations are fixed zeroes, which is represented here as a Poisson 
random variable having mean 0.

This can be seen in context in Panel 10.5. When this model is fit to the sample 
data, setting M = N, i.e., with no additional all-zero encounter histories beyond 
the actual known number of individuals, then the posterior distribution of y 
concentrates mass at y = 1, as we might expect.

10.7 Application to Nagarahole Tiger Data

We provide an analysis of data on tigers from the Nagarahole reserve in the 
state of Karnataka, southwestern India, which has been studied via camera trap 
methods by Karanth and associates from 1991 until the present (e.g., Karanth 1995; 
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Karanth and Nichols 1998, Karanth et al. 2006). The specific data set examined 
here was obtained in 2006 from sampling at 120 trap stations, each referenced by 
latitude-longitude and by UTM coordinates (Fig. 10.2). The analysis of the data 
here follow Royle et al. (2009b) except where noted below. Two camera traps were 
placed at each location. The sampling took place over 48 nightly intervals between 
24 January and 16 March.

Sampling over this period resulted in Bernoulli encounter data on 44 individuals. 
Thus, each individual encounter history was a K × J (48 × 120) matrix where element 
(k, j) is equal to 1 for each occasion and trap location where a detection occurred, and 
0 for each occasion and trap location where the animal was not detected. The 
Bernoulli encounter model is appropriate for these data. We did not consider a 
model with time-varying parameters, and so the encounter histories were reduced 
to individual and trap-specific frequencies by summing over the K = 48  occasions. 
An important feature of the study design is that not all 120 trap stations were oper-
ated simultaneously. Instead, the reserve was subdivided into four blocks of 
approximately 30 trapping stations each, and each block was run for 12 consecutive 
days. Then, cameras were moved to the next block for another 12 days and the 
process repeated until all four blocks were sampled. This design follows sample 
design 4 of Karanth and Nichols (2002, p. 133). Thus, some of the zeros are structural 
zeros (as opposed to sampling zeros) because if a trap is not operational during a 
sampling occasion, then an animal cannot be detected.

In the Nagarahole study, traps were moved around such that only 30 of the 120 
locations contained a trap on any particular night. This is a standard design for camera 
trap studies, as well as in hair snares used for obtaining DNA, and other methods of 

Fig. 10.2 Nagarahole reserve tiger camera 
trapping array, composed of 120 traps.  
A unit of distance on this graph is 5 km
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detecting individuals. This is simple to handle in the analysis merely by defining an 
indicator of whether trap j was in operation at occasion k, say m

jk
, and then:

Pr(y
ijk

 = 1) = 1 − exp(−λ
0
m

jk 
g

ij
)

where m
jk
 = 1 if trap j is operational during occasion k and m

jk
 = 0, otherwise. Thus, 

whenever a trap is not operational, Pr(y
ijk

 = 1) = 0, as it should.
For the analysis of these data, we defined S to be a rectangle containing the 120 

locations shown in Fig. 10.2. Here, S was defined to be two units larger than the 
minimum and maximum coordinate in the four cardinal directions, an area repre-
senting approximately 2,331 km2. Note that the coordinate system was scaled so 
that a standard unit was 5 km, and thus also are the units of s. In previous analyses 
(Royle et al. 2009a, b), we developed an implementation of the model for this dis-
crete state-space situation in the R programming language so that non-habitat could 
be clipped out of S. Here, we provide the complete analysis in WinBUGS using the 
continuous state-space.

Posterior summaries from fitting the Bernoulli encounter model are provided in 
Table 10.2. Recall that the number of unique individuals observed was 44. The estimate 
(posterior mean) of N(S) is approximately 301 individuals and the posterior mean of 
the density over S is 12.935 tigers per 100 km2. This is slightly larger than reported 
in Royle et al. (2009b) who reported about 12.2 tigers per 100 km2 based on area 
within the rectangle judged to be suitable habitat. In the present case, the 95% posterior 
interval for density is (8.75, 18.44). The parameter λ

0
 is the capture rate in a trap for 

an individual having s located precisely on a trap location. Thus, λ
0
 = 0.015 indicates 

a probability of capture for such a situation of 1 − exp(−0.015) ≈ 0.015.

10.8 Demographically Open Systems

Many camera trap studies take place over multiple years, or are long enough in 
duration that we do not expect demographic closure to be satisfied. Indeed, there is 
considerable biological interest in survival and recruitment in the conservation and 
management of species. Therefore, one useful extension of spatial CR models is the 
case where populations are open to mortality and recruitment (Karanth et al., Chap. 9). 

Table 10.2 Posterior summaries of model parameters for the tiger 
camera trapping data. N(X) is the number of activity centers in S, 
the state-space of the latent point process, and D is the density per 
100 km2. The number of unique individuals observed was 44

Parameter Mean SD 2.5% Median 97.5%

λ
0

 0.015  0.004  0.008  0.015   0.024
s  0.338  0.086  0.212  0.325   0.546
y  0.567  0.114  0.374  0.557   0.821
D  12.935  2.494  8.750  12.697  18.444
N(X) 301.566 58.134 204.000 296.000 430.000
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An important practical motivation for pursuing such models is that, due to the low 
density of many species studied by camera trap methods, using data from multiple 
years can greatly improve estimates of density.

The hierarchical formulation of spatial CR models can be extended directly to 
demographically open systems, and we describe that extension here, based on 
Gardner et al. (2010). We focus here on the basic conceptual and technical formula-
tion, but do not provide an analysis of data. The interested reader should refer to 
that paper for analysis and results. The analysis is based on a study of Pampas cats 
(Leopardus colocolo) for T = 2 years of data, with multiple samples per year. As 
with the closed population models, open population models are easily specified for 
either a binomial or Poisson observation model. Thus, the encounter data are y

ijkt
 for 

individual i, trap j, sample occasion k, and year t. The observations y
ijkt

 are binary, 
if an individual can only be captured a single time per trap and occasion, or detec-
tion frequencies if individuals can be recorded an arbitrary number of times. Under 
normal circumstances, when cameras are functioning properly, the type of data 
obtained may be primarily the result of data processing protocols. We will assume 
time invariance of all parameters within a year, and define y

ijt
 to be the total number 

of captures out of K samples (note that K may vary by year but we avoid that gen-
erality here in order to be concise). The data structure is consistent with that which 
arises under the “robust design” (Pollock 1982). Because T = 2, there is only one 
survival parameter and one recruitment parameter. We note that the extension to T 
> 2 years is direct, but we avoid the conceptual generality here in order to achieve 
clarity.

Gardner et al. (2010) exploited the conceptual linkage between spatial CR and 
individual covariate models in closed populations to develop a spatial CR model 
for open populations. An individual effects parameterization of open models was 
provided by Royle and Dorazio (2008, Chap. 10), and Gardner et al. (2010) then 
used that formulation to develop spatial CR models. In particular, the underlying 
model describing survival and recruitment is unchanged. However, the observa-
tion model is modified to accommodate a spatial individual covariate in the form 
of individual activity centers, precisely as in the closed population situation. As 
we have done previously, we develop the model “conditional-on-N” and then 
attack inference using data augmentation, by introducing excess y

ijt
 = 0 pseudo-

observations, producing a data set of size M. In particular, N in this context will 
be the population of individuals that have ever been alive during a study, i.e., what 
Schwarz and Arnason (1996) (see also Crosbie and Manly 1985) referred to as 
the “super-population.” To indicate the population size of a particular year, we 
use N

t
.

The state model underlying the Jolly–Seber model has a simple representation 
in terms of a hidden Markov process model. Define a latent variable z(i, t) which 
describes the “alive state” of individual i at year t: z(i, t) = 1 indicates that the indi-
vidual is alive and z(i, t) = 0 indicates that the individual is not alive. In the context 
of data augmentation, “not alive” includes individuals that have died, or individuals 
that have not yet been recruited. The state model is composed of the following two 
components: First the initial state is described by
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z(i, 1) ~ Bern(y)

and then a model describing the transition of individual states from t = 1 to t = 2:

z (i,2) ~ Bern(f z(i, 1) + γ (1 – z (i, 1))).

Thus, if z(i, 1) = 1, then the individual may survive with probability f whereas, if 
z(i, 1) = 0, then the “pseudo-individual” may be recruited with probability γ. The 
observation model, based on K sampling occasions, is

y
ijt
|s

i
 ~ Poisson(Kλ

0
g

ij
(s

i
, x

j
)z(i, t)), 

where g
ij
 is some function of the distance between the activity center i and trap j, 

just as in the closed model. Note that under this construction of the observation 
model, y

ijt
 is the outcome of a Poisson random variable if individual i is alive at time 

t (i.e., z(i, t) = 1). Otherwise, if z(i, t) = 0, then y
ijt
 = 0 with probability 1.

Within the data augmentation framework, the observations are augmented with 
a large number of y

ijt
 = 0 observations to bring the total size of the data set to M 

individuals. This set of M individuals contains individuals that were observed in 
the sample, individuals that were not observed in the sample, and also “potential” 
individuals that may never be recruited. In formulating the model based on data 
augmentation, the model has a formal equivalence with “multi-season occupancy” 
models (see Royle and Dorazio 2008, Chaps. 9 and 10). Under this formulation of 
the model, the recruitment parameter is expressed relative to the pool of available 
zeros, which does not yield an interpretation that is directly useful. We can define 
the total number of recruits to be

 
1

( , 2)(1 ( ,1))
M

i

R z i z i
=

= −∑  

which is just the total number of individuals alive at time t = 2 that were not alive at 
time t = 1. Then, the recruitment rate is r = R/N

1
 where 

1 ( , 1)= ∑
i

N z i . Similarly, 

2 ( , 2)
i

N z i= ∑ .
Given the description of the model in terms of individual encounter histories, we 

now only need to introduce a model describing the individual locations, and then 
the relationship between the observations and individual locations. In Gardner et al. 
(2010), we assumed that individual activity centers were static over the two years, 
i.e., s

i,t
≡ s

i
 ~ Unif(S ). There are no further considerations in analysis of this hierar-

chical model – the model can be described directly (see Panel 10.6) and analyzed 
using WinBUGS. Alternatively, we could allow the activity center to change across 
years which seems like it would be easy to implement. One possibility is to assume 
that s(i, t) ~ Normal(s(i, t − 1), d 2I) so that individuals home range centers are 
perturbed randomly from their previous value. Using such models we could con-
ceivably test hypotheses about home range dynamics. We emphasize the conceptual 
and technical parallels of spatial CR models with individual covariate models. See 
Bonner and Schwarz (2006), King et al. (2008) and Royle and Young (2008) for 
some context related to time-varying individual covariates.
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10.9 Summary and Discussion

Historically, density estimation in camera trapping studies has been addressed 
using a number of largely ad hoc or heuristic methods based on closed population 
estimators of population size applied to individual encounter history data. 
The conceptual limitation of closed population estimators is that, while the 
estimate of N may be valid in the sense of estimating the size of a population 
exposed to sampling, movement of individuals makes it difficult to associate a 
precise area with the population size estimator. Conventional methods have sought 
to estimate an effective sample area using informal methods not formally linked (by 
a statistical model) to the observed encounter history data. Because the underlying 
models are not specified precisely, they are not sufficiently flexible or extensible. 
For example, these ad hoc techniques cannot accommodate moving traps, open 
systems, or multiple captures in a single occasion.

model {
sigma2 ~dunif(0, 10)
lam0~dgamma(.1,.1)
psi ~dunif(0, 1)
phi ~dunif(0, 1)
gamma~dunif(0, 1)

for (i in 1:M) {
z[i,1] ~dbern(psi)
mu[i] <- phi*(z[i,1]) + gamma*(1-z[i,1])
z[i,2] ~dbern(mu[i])
SX[i] ~dunif(xl, xu)
SY[i] ~dunif(yl, yu)

for(j in 1:J){
D2[i,j] <- pow(SX[i]-[j,1], 2) + pow(SY[i]-[j,2],2)
mu[i,j] <- lam0*exp(-D2[i,j]/sigma2)
log(pmean[i,j])<-log(K[j]) + log(mu[i,j])

for(t in 1:2){
tmp[i,j,t]<-pmean[i,j]*z[i,t]*op[j,t]
y[i,j,t]~dpois(tmp[i,j,t])

}
}
a[i]<-(1-z[i, 1])*z[i,2]
}
N1<-sum(z[1:M,1])
N2<-sum(z[1:M,2])
R<-sum(a[1:M])
}

Panel 10.6 WinBUGS model specification for the open population model with a Poisson encounter 
process model. In this specification, the activity centers s and N are unknown. Here, K[j], entered 
as data, represents the number of times that trap j was operational while op[j,t] indicates which 
trap j was operational during year t
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Considerable work has recently been directed at developing a model-based 
framework for inference in spatial CR models. Efford (2004) presents the first 
development of such a model based on a Poisson point process governing the 
distribution of individuals in space. Inference in spatial CR models was formal-
ized in a recent paper by Borchers and Efford (2008) who used an approach based 
on integrated likelihood – a classical (i.e., non-Bayesian) method for handling 
random effects. This approach is implemented in the software package DENSITY 
(Efford et al. 2004). In this chapter, we summarized the hierarchical modeling 
framework for a broad class of spatial CR models based on a Poisson encounter 
frequency model. We adopted a Bayesian inference strategy for the hierarchical 
model based on data augmentation (Royle et al. 2007) which was developed in 
the context of spatial CR models by Royle and Young (2008) and subsequent 
efforts.

One of the themes of this chapter is that the different classes of models (Poisson, 
binomial and multinomial) are closely related to one another by formal reductions 
or constraints on the observations. A second theme is that fundamentally these 
models are just GLMs (binomial or Poisson) with random effects (indeed, GLMs 
in which the random effects are spatially correlated), a class of models referred to 
as generalized linear mixed models (GLMMs). For example, the Bernoulli model 
has, for  π

ijk
 = Pr(y

ijk
 = 1),

 2log ( log (1 ))p a b− − = +ijk ijd , 

where d
ij
 is a random effect (i.e., it is unobserved). More precisely, d

ij
 depends on 

the latent activity centers s
i
. Note that the half-Gaussian “detection function” leads 

to the quadratic distance term, but we could use a simple exponential function 
instead, creating a more standard generalized linear mixed model. Regardless of the 
precise form of the detection function used, we see that the resulting model, for 
binary observations, is a standard “logistic regression,” although with an alternative 
link function. This particular link function is usually referred to as the complemen-
tary-log-log link.

With this representation as a generalized linear mixed model, we see clearly the 
linkage between spatial CR models and more traditional “individual covariate” 
models (Royle 2009). Moreover, this representation also raises the issue elucidated 
by Link (2003), who noted that the population size estimator is strongly affected by 
the choice of the distribution for the individual random effect (indeed, N may not 
even be identifiable). In the present context, choice of the point process model may 
induce the same ambiguity, as it will largely determine the distribution of d

ij
. 

However, as we noted above, the random effect is spatially correlated which may 
partially mitigate the problem that Link (2003) identified. That the random effect is 
spatially correlated is interesting for a number of reasons that will be taken up 
elsewhere.

For analysis of the models, we developed a progression beginning first with the 
case where activity centers s are fixed, and N (the number of such centers) is known. 
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This establishes the fundamental simplicity of these models as GLMs. Extending 
the model slightly to allow for s to be unknown, but N fixed, produces a random 
effects model that is naturally analyzed by putting a prior distribution on s. In 
the case of spatial CR models, the natural choice is the uniform distribution. 
Models with unknown s are formally related to individual covariate models, 
where the individual covariate is measured with error (Royle and Dorazio 2008, 
Chap. 7). The third case considered in the conceptual progression is that where 
N is unknown. Analysis of this most general case is aided by the technique of 
data augmentation (Royle et al. 2007) in which we augment the data set with a 
large number of all-zero encounter histories, corresponding to hypothetical, 
uncaptured individuals. We admit that the augmented data set is a zero-inflated 
version of the “known-N” data set. Bayesian analysis of this model under  
data augmentation is straightforward, as is specification of the model in 
WinBUGS.

We believe the hierarchical formulation will prove flexible in the develop-
ment of extensions of spatial CR models. One area that we have developed in 
this chapter is the extension of these models to demographically open systems. 
Within the hierarchical modeling framework, inclusion of an individual covari-
ate (activity center) is not difficult. It is an extension of the basic individual 
effects parameterization of Jolly-Seber type models described by Royle and 
Dorazio (2008, Chap. 10). The resulting model represents a hierarchical exten-
sion of a simple space–time point process with imperfect observation of points. 
Development of more complex space–time point processes is a natural consider-
ation (e.g., Rathbun and Cressie 1994). Generalizing the point process to allow 
for non-independence between points also seems like an important direction for 
extension of spatial CR models. For example, it is natural to consider point pro-
cess models that exhibit interaction (e.g., inhibition models, Markov point pro-
cesses, and processes that allow for clustering) which can be used to model the 
interaction of individuals defending territories, or sex differences, or even inter-
actions among species. The filling-up of available habitat by individuals (espe-
cially rare species) is an ecological process of some importance in conservation 
biology and management (e.g., Fretwell 1972). Spatial CR models allow us to 
make explicit inferences about the underlying point process. We believe that as 
the underlying point process model is made more complex (e.g., containing 
interactions and conditional dependencies), the integration required to compute 
the integrated likelihood (Borchers and Efford 2008) may become computation-
ally inhibiting. However, Bayesian analysis of the hierarchical formulation only 
requires (in principle) the capability to carry-out conditional simulation of the 
activity center locations. Finally, camera traps can collect data in “real time,” 
and so extension of the models to continuous time measurements might yield 
efficiencies. While camera traps can obtain multiple captures within a sample 
interval, the data are often not rendered at their finest resolution for operational 
reasons. Moreover, observations are likely to be highly dependent at some time 
scale and thus some consideration should be given to models of temporal clus-
tering of observations.
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11.1  Introduction

This chapter deals with the estimation of occupancy as a state variable to assess the 
status of, and track changes in, species distributions when sampling with camera 
traps. Much of the recent interest in occupancy estimation and modeling originated 
from the models developed by MacKenzie et al. (2002, 2003), although similar 
methods were developed independently (Azuma et al. 1990; Bayley and Petersen 
2001; Nichols and Karanth, 2002; Tyre et al. 2003), all of which deal with species 
occurrence information and imperfect detection. Less than a decade after these 
publications, the modeling and estimation of species occurrence and occupancy 
dynamics have increased significantly. Special features of scientific journals have 
explored innovative uses of detection–nondetection data with occupancy models 
(Vojta 2005), and an entire volume has synthesized the use and application of occu-
pancy estimation methods (MacKenzie et al. 2006). Reviews of the topical con-
cepts, philosophical considerations, and various sampling designs that can be used 
for occupancy estimation are now readily available for a range of audiences 
(MacKenzie and Royle 2005; MacKenzie et al. 2006; Bailey et al. 2007; Royle and 
Dorazio 2008; Conroy and Carroll 2009; Kendall and White 2009; Hines et al. 
2010; Link and Barker 2010). As a result, it would be pointless here to recast all 
that these publications have so eloquently articulated, but that said, a review of any 
scientific topic requires sufficient context and relevant background information, 
especially when relatively new methodologies and techniques such as occupancy 
estimation and camera traps are involved. This is especially critical in a digital age 
where new information is published at warp speed, making it increasingly difficult 
to stay abreast of theoretical advances and research developments.

A.F. O’Connell (*) 
U.S. Geological Survey,  Patuxent Wildlife Research Center, Beltsville, MD 20705, USA 
e-mail: aoconnell@usgs.gov

L.L. Bailey 
Department of Fish, Wildlife, and Conservation Biology, Colorado State University,  
Fort Collins, CO 80523, USA

Chapter 11
Inference for Occupancy and Occupancy 
Dynamics

Allan F. O’Connell and Larissa L. Bailey 

A.F. O’Connell et al. (eds.), Camera Traps in Animal Ecology: Methods and Analyses,
DOI 10.1007/978-4-431-99495-4_11, © Springer 2011



192 A.F. O’Connell and L.L. Bailey

First, we review the principles that guide occupancy estimation (e.g., sampling 
design considerations) and its role in ecological studies. We provide the basic model 
framework for single and multi-season occupancy models (MacKenzie et al. 2002, 
2003), discuss the underlying assumptions of occupancy models and options for analyz-
ing occupancy data, and present proactive methods of evaluating different sampling 
designs prior to study initiation (Bailey et al. 2007). Case studies are then used to illus-
trate some extensions of the basic occupancy models that can provide greater flexibility 
and utility with respect to making inferences about species occurrence and related sys-
tem dynamics. Specifically, we discuss a multi-method approach (that includes camera 
traps) used to provide inferences about occupancy at multiple scales (Nichols et al. 
2008), abundance-induced heterogeneity models (Royle and Nichols 2003; Wenger and 
Freeman 2008), and a species co-occurrence model (MacKenzie et al. 2004). We also 
summarize recent advances that will likely be utilized in camera trapping studies in the 
future, including multistate models (Nichols et al. 2007; MacKenzie et al. 2009) and a 
one dimensional spatial autocorrelation model (Hines et al. 2010).

11.2  Occupancy in Animal Ecology

Estimating population parameters such as abundance or density has long been the 
focus of many animal population studies (see O’Brien, Chap. 6; Karanth et al., Chap. 7; 
Maffei et al., Chap. 8). Information on population size and associated vital rates is 
often necessary to evaluate the status of and monitor changes in populations (see 
Karanth et al., Chap. 9), but requires relatively large populations where individuals 
can be uniquely identified or physically captured and marked [i.e., capture–recapture 
(CR) methods, Chaps. 6–9]. In cases where capture and marking of animals is very 
difficult, or when densities are expected to be low, occupancy information can be a 
useful alternative, providing estimates of species distributions and the processes driv-
ing distributional patterns. In addition, the type and amount of data necessary to 
estimate occupancy (i.e., species occurrence information) are usually less expensive 
and time-consuming to collect than abundance or density information.

Fundamentally, occupancy is a function of abundance (i.e., number of individual 
animals) and parameters that govern the dynamic process of how animals are distri-
buted in the environment (Royle and Dorazio 2008). For some species, occupancy 
can even be viewed as a surrogate for abundance (MacKenzie and Nichols 2004). 
Occupancy has been widely used in a variety of ecological investigations to address 
basic ecological questions related to geographic range, metapopulation dynamics, 
habitat relationships, resource selection, and species interactions. In general, occu-
pancy is defined as the probability that a site or patch is occupied by a target species, 
but several pseudonyms can be found in the literature including patch or site occu-
pancy or proportion of area occupied (PAO) (see MacKenzie et al. 2006 for more 
details on the origin and interpretation of these pseudonyms). The collection of 
occupancy data in animal ecology is relatively simple, and sampling can take many 
forms, from observations of the animals themselves (e.g., photographs from camera 
traps) to some indicators that the species is present (e.g., scat or tracks).
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Making valid inferences about changes in the occurrence of a species requires 
addressing two important sources of variation common to most animal sampling 
programs: spatial variation and detectability (Lancia et al. 1994; Thompson, 2002). 
Many programs cannot sample the entire area of interest so a probability-based 
method for selecting sample units is recommended (e.g., simple or stratified ran-
dom  sample). The sampled units are then used to draw inference to the entire area 
of interest. The second issue of concern is detectability, a near-universal situation 
in animal population sampling where survey methods do not detect all the animals 
or species present in the sampled area (Pollock et al. 2002). Historically, species 
occurrence information has long been referred to as presence–absence information 
whereas detectability, or the probability of detecting the target species at an occu-
pied site, was largely ignored. Recent advances in ecological sampling now permit 
efficient use of detection–nondetection information to draw inferences about 
whether a species is present or absent, given the imperfect observation process that 
involves detecting the species at occupied locations (MacKenzie 2005; Royle and 
Dorazio 2008). In the case of occupancy data, there is no uncertainty about the 
occupancy state at locations where the species is detected, but at locations where 
the species is not detected the occupancy state is ambiguous (i.e., the species could 
be present or absent). Detectability has long been considered a key element in CR 
methods because of the need to assess uncertainty in the recapture process (i.e., not 
all marked individuals are recaptured). When a detection probability is not incor-
porated into the modeling of detection–nondetection information, the reliability of 
the inference breaks down because the relationship between the count (the number 
of locations where the species was detected) and the parameter of interest (occu-
pancy) is not known. Instead, the naive estimates of occupancy (proportion of sites 
at which the species is detected) are negatively biased by some unknown but vari-
able amount (Bailey et al. 2004). All occupancy estimation methods discussed in 
this chapter deal explicitly with this issue of non-detection and attempt to provide 
unbiased estimates of occupancy and related dynamic parameters (MacKenzie 
et al. 2006).

11.3  Model Framework, Assumptions and Analytical Options

11.3.1  Standard Models for Occupancy Estimation  
and Modeling Occupancy Dynamics

The occupancy estimation technique developed by MacKenzie et al. (2002, 2003) 
simultaneously estimates probabilities for detectability and occupancy in a maxi-
mum likelihood framework (but see Royle and Dorazio 2008 for a Bayesian treat-
ment). The basic sampling scheme involves multiple visits to a randomly selected 
subset of sites within an area of interest. Detection–nondetection information is 
collected during each visit, and the visits occur during a short time interval when 
sites are closed to changes in the occupancy state (i.e., sites are either  occupied or 
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not during the sampling interval). We use y i  to denote the probability that site i is 
occupied by the target species, and ijp  is the probability of detecting the species at 
site i during the jth independent visit to the site. Dropping the i notation for each 
site, the probability of detecting the species at least once during T

visits can be written as ( )
=

= − −∏*

1

1 1
T

j
j

p p . Accordingly, (1−p*) is the probability

of failing to detect the species at an occupied site.
Detection–nondetection data are compiled for each sampled site, and model 

parameters are used to describe the stochastic processes that could have pro-
duced the data. For example, a site sampled on five occasions (visits) may have 
a detection history of ‘00101’. The probability of observing this history would be 
written as:

 ( ) ( )( ) ( )y= − − −1 2 3 4 5Pr 00101 1 1 1p p p p p  (11.1)

A detection history consisting of all zeros, 00000, would have two possible 
explanations: either the site was occupied, but the species was not detected during 
any visit, or the site was unoccupied. Written as a mathematical expression we 
have the following:

 ( ) ( )( )( )( )( ) ( )y y= − − − − − + −1 2 3 4 5Pr 00000 1 1 1 1 1 1p p p p p  (11.2)

The original ‘single-season’ model (MacKenzie et al. 2002) assumes the occupancy 
state of sampled locations is closed during the sampling ‘season’; however, the 
occupancy state can change  over time (i.e., between ‘seasons’) as one would expect 
due to significant events such as habitat enhancement or human disturbance, result-
ing in local colonization and extinction events.

MacKenzie et al. (2003) extended the ‘single season’ occupancy models to 
include two dynamic parameters: e

t
 = the probability that an occupied site in season 

t becomes unoccupied in season t + 1 (i.e., local extinction) and g
t
 = the probability 

that an unoccupied site in season t is occupied by the target species in season t + 1 
(i.e., colonization). These ‘multi-season’ models still assume that sites are visited 
multiple times within a season, over a period during which the occupancy state at 
each site is static [notice this design resembles Pollock’s (1982) robust design in 
CR studies]. Under this model, a site sampled three times during each of two sea-
sons might yield a detection history of ‘100 000’. The target species was clearly 
present at the site during the first season, but two possibilities may explain the 
nondetection during the second season, specifically that the species is either present 
but not detected or the species went locally extinct:

 ( ) ( )( ) ( ) ( )
=

 
= − − − − + 

 
∏

3

1,1 1,2 1,3 1 2, 1
1

Pr 100000 1 1 1 1 j
j

p p p py e e  (11.3)

Here, detection probability may vary among seasons t or visits within seasons j, tjp .
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In addition to the closure assumption within seasons (no change in occupancy 
state within each season), the original occupancy models require that: (1) sites and 
detections are independent, (2) species are not misidentified, and (3) probabilities 
of occupancy and detection are constant across all sites within a stratum or can be 
modeled using covariates (MacKenzie et al. 2006). Modeling occupancy, extinction, 
and/or colonization as a function of covariates is often a primary focus of occu-
pancy studies. Models incorporating different combinations of covariates represent 
competing hypotheses about factors believed to influence species occurrence and 
vital rates (extinction and colonization probabilities). These models are then fit to 
the data and evaluated via model selection procedures (e.g., Burnham and Anderson 
2002). An alternative approach to estimation and modeling is to view the above 
models hierarchically under a Bayesian framework, and statistical inference is 
achieved using Markov chain Monte Carlo (MCMC) methods (e.g., Royle and 
Dorazio 2008). Using either procedure, it is possible to model occupancy, dynamic 
parameters, and detection probability as functions of measured covariates.

Several software programs are available for analyzing occupancy data including 
program PRESENCE (http://www.mbr-pwrc.usgs.gov/software/presence.html) and 
program MARK (White and Burnham 1999) for maximum likelihood estimates. 
R or WinBUGS code can be written for Bayesian estimation, and Royle and 
Dorazio (2008) provide sample WinBUGS code for occupancy modeling.

11.3.2  Abundance-Induced Detection Heterogeneity

As noted previously, occupancy estimation operates under the basic premise 
that heterogeneity in detection probability is adequately modeled via time- or 
site-specific covariates. In many systems, however, variation in local abundance 
can create heterogeneity in a species’ detection probability that is difficult to model 
with conventional covariates (e.g., habitat features, Royle 2005; MacKenzie et al. 
2006). Logically, the probability of detecting at least one member of a species will 
tend to increase with the species’ local abundance. In study systems where local 
populations vary among sites, this phenomenon may lead to considerable heteroge-
neity in species detection probabilities, and failing to account for this heterogeneity 
will yield to underestimation of occupancy.

Royle and Nichols (2003) addressed abundance-induced heterogeneity directly 
by exploiting the relationship between abundance, detection and occupancy. 
Specifically, they noted that site-specific detection probability could be written as:

 ( )= − −1 1 iN

ip r  (11.4)

where p
i
 is the probability of detecting at least one individual of the target species 

at site i, r is the individual detection probability, and N
i
 is the abundance at site i. 

If local abundance is unknown, but is likely closed (i.e., no change) during the 
sample period, it may be modeled with an appropriate parametric distribution. 
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Often, site-specific abundance is estimated using a Poisson distribution with mean 
l, where l may represent the average number of individuals per site. Under the 
assumption of the Poisson distribution, occupancy is a derived parameter, 

( )Pr 0 1 .eN ly −= > = −  If a species is absent for a large proportion of sites, a zero-
inflated Poisson distribution may be more appropriate (Wenger and Freeman 2008), 
and the negative binomial distribution has also been considered, though this distri-
bution is often difficult to fit (Royle and Nichols 2003; MacKenzie et al. 2006).

Abundance-induced heterogeneity may be important when animal populations 
exist at low densities that vary over the area of interest (e.g., N

i
 <10, MacKenzie 

et al. 2006). Such conditions existed for a camera trap study involving a suite of five 
ungulate species in Peru (Tobler et al. 2009, also see Sect. 11.6.2). Preliminary 
analyses confirmed high levels of heterogeneity in detection probability for all spe-
cies among camera trap locations; thus, the authors used the Poisson model imple-
mented in program PRESENCE to explore how habitat influenced mean abun-
dance, l, among different study areas and sampling seasons. Occupancy estimates 
were then derived for each habitat, study area, and time period (season) using the 
best supported model.

11.4  Study Designs for Occupancy Models

All occupancy models described in this chapter require some type of replication 
at sampled units (sites) over a time period where the occupancy state is closed. 
Investigators need to carefully consider what constitutes a ‘site’ and ‘season’ in 
their given biological systems (MacKenzie et al. 2006). For example, occupancy-
based research on a single species warrants a different sampling approach com-
pared to large-scale efforts to monitor species richness of entire communities. 
Although design of occupancy studies using camera traps will vary greatly 
depending on study objectives (see also Sect. 11.8 below), some of the more 
obvious questions to consider revolve around the camera system itself and the 
ecology of the target species. Definition of a site (or patch) selection, and alloca-
tion of sites across the area of interest (e.g., randomization, stratification) should 
be evaluated with respect to the study objectives and the home range size and 
habits of the target species. In camera trapping studies, sites may be naturally 
occurring, discrete patches of habitat (e.g., islands of habitat or salt licks, 
Terborgh et al. 2001; Tobler et al. 2009). More often, sites are arbitrarily defined 
as a camera trap location within quadrats of a specified size (e.g., 1 ha quadrats). 
The definition, and spacing, of sites relate to the model assumptions of closure 
and independence. If sites are defined as quadrats of habitat that are smaller than 
an individual’s home range, or spacing among sites allows for a single indi-
vidual to be detected at multiple sites within a season, then both assumptions 
are violated. Ironically, good camera trap design for estimation of abundance or 
density (as discussed in Chaps. 6–9) may violate key assumptions of occupancy 
estimation.
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Design considerations should also include some thought about the number of 
visits or sampling occasions (e.g., days) needed to detect rare species (i.e., the 
length of a season), what species can be expected to be photographed (e.g., 
terrestrial versus arboreal), type of camera trap (e.g., active versus passive camera 
systems, see Swann et al., Chap. 3), and the environmental covariates an investigator 
deems important to the  detection process. Investigators increase their chance of 
success if they think about these issues before sampling begins. Such issues are at 
the heart of the Wildlife Picture Index (WPI), an indicator effort recently proposed 
to monitor trends in tropical biodiversity (O’Brien et al. 2010). The WPI is a 
composite index based on the geometric mean of relative occupancy estimates 
scaled over time (Buckland et al. 2005). We suggest that practitioners of camera 
trap surveys interested in conducting occupancy studies consider a priori the issues 
above, otherwise use of indices such as the WPI are applied with unrealistic 
expectations.

Once definitions of site, season, and occasions per season have been established, 
there are various programs to aid investigators in determining how to best allocate 
effort among sites to achieve desired scientific or conservation objectives (e.g., 
Bailey et al. 2007). These programs are also useful at evaluating the impact of 
potential assumption violations (e.g., closure). Program GENPRES (http://www.
mbr-pwrc.usgs.gov/software.html), a companion to program PRESENCE, and pro-
gram MARK (White and Burnham 1999) both have flexible simulation capabilities 
to allow investigators to consider a wide variety of sampling designs utilizing any 
and all of the occupancy models described above. Well-defined scientific or conser-
vation objectives are easily translated into models representing competing hypoth-
eses about the status and dynamics of the study system. Information from pilot 
studies or other systems can be used to provide initial parameter estimates for 
exploring sampling design trade-offs (e.g., O’Connell et al. 2006). Results from 
study design evaluations can be extremely useful during the critical planning phase, 
prior to the initiation of field work. Additionally, such exercises can provide realis-
tic expectations for managers and funding agencies and help evaluate monitoring 
programs (e.g., Mattfeldt et al. 2009).

11.5  Suggestions for Presenting Results of Occupancy Analysis

In this chapter we have focused on various likelihood-based models that can be fit 
to camera trap data yielding maximum likelihood estimates (see Royle and Dorazio 
2008 for use of Bayesian estimation methods). Most studies will fit multiple mod-
els, representing competing hypotheses, and evaluate these hypotheses via model 
selection methods (e.g., Burnham and Anderson 2002). Several concise papers have 
provided practitioners with important guidance for presenting results of these types 
of analyses (e.g., Anderson et al. 2001; Anderson and Burnham 2002), but we 
emphasize a few basic points here in hopes of improving the information conveyed 
by camera trap studies that utilize occupancy estimation methods.

http://www.mbr-pwrc.usgs.gov/software.html
http://www.mbr-pwrc.usgs.gov/software.html
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We expect that most surveys or studies using occupancy analysis will focus on 
how covariates (e.g., habitat type) influence occupancy, dynamic parameters, or 
detection probabilities. It is imperative that if such models are supported by the data, 
investigators report the effect size and a measure of its associated precision, or graph 
the relationship between the parameter of interest and the covariate(s). For example, 
if a species’ occurrence is influenced by distance to the nearest road, stream, or 
amount of forested habitat, authors should graph the relationship or report the esti-
mated effect size and direction (positive or negative) to adequately communicate 
results to readers and provide comparisons to other published studies.

It is well known that relationships between naïve estimates of occupancy prob-
abilities and relevant covariates can be biased when species detection probabili-
ties are <1 (Gu and Swihart 2004; MacKenzie et al. 2006). For example, 
parameters specifying occupancy–habitat relationships show the largest bias when 
detection probabilities are also related to the habitat variables of interest (Gu and 
Swihart 2004; MacKenzie et al. 2006: Fig 2.3). Assuming that detection probabil-
ities are equal over sampled sites (e.g., p(.) models) has the potential of producing 
biased results if species detection probabilities vary among covariates.

Finally, caution should be taken when reporting and interpreting an ‘overall occu-
pancy probability’ (often denoted as ψ̂). If this estimate is obtained by averaging over 
site-specific occupancy estimates for each sampled site (as was the case in early ver-
sions of program PRESENCE), the estimate may not represent the occupancy prob-
ability of a randomly chosen site in the area of interest. The two quantities are 
equivalent only if sample sites are chosen via a simple random sample, thus assuring 
that the distribution of covariates in the sample is representative of the covariate dis-
tribution in the area of interest. If this is not the case (e.g., if sites are chosen via a 
stratified random sample), then the overall occupancy estimate should be calculated 
as a weighted average of stratum-specific estimates and the delta method can be used 
to provide a variance estimate (MacKenzie et al. 2006, p.121–122).

11.6  Occupancy Estimation with Camera Trap Data: 
Model Extensions

Camera traps provide detection–nondetection information for any species that can 
be photographed, along with a variety of ancillary information (e.g., behavior, age, 
and physical condition). Cameras can be deployed as the sole detection method or 
in combination with other methods in a manner that is consistent with the sampling 
framework previously described to yield data that are well suited for occupancy 
models. Estimates of occupancy are especially appealing when species cannot be 
uniquely identified, and these techniques have given new life to simple detection–
nondetection data. Indeed, recent camera trapping studies have used the standard 
single-season occupancy model detailed above to establish baseline species’ distri-
butions in previously unsampled regions (Johnson et al. 2009), to explore the 
importance of forest structure or forest retention on the occupancy probability of 
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various mammal species (Linkie et al. 2007; Baldwin and Bender 2008; McShea 
et al. 2009), and to evaluate the influence of human activities such as recreation on 
species occurrence and behavior (Zielinski et al. 2008).

To date no study has attempted to use camera trap data to estimate occupancy 
dynamics (vital rates) over time, but given that declines in geographic range are 
often used to evaluate a species status and assign risk categories (e.g., IUCN crite-
ria), we suspect that occupancy dynamic models will be utilized in the future.

Next, we use several camera trap studies to illustrate extensions to the standard 
occupancy models that relax model assumptions or estimate additional parameters.

11.6.1  Multiple Methods and Multiple Scales

Camera traps are commonly used to detect multiple species, but no sampling device can 
detect all species with equal efficiency (Gompper et al. 2006; O’Connell et al. 2006; 
Long et al. 2007; Tobler et al. 2009). Increasingly, monitoring programs are being 
developed that target multiple species requiring the use of multiple methods (Manley 
et al. 2004; Mattfeldt et al. 2009). Under such designs, data from detection methods 
may simply be combined to indicate whether the target species was detected by at least 
one method, but researchers often want to test the effectiveness of the different detec-
tion methods or evaluate the influence that alternative detection methods can have on 
occupancy estimates (Bailey et al. 2004; O’Connell et al. 2006; Long et al. 2007).

Camera traps, cubby boxes (i.e., enclosed track plates) and hair snares were all 
included in sampling arrays used to estimate occupancy and detection probabilities 
for a variety of mammal species on Cape Cod, Massachusetts and seven other U.S. 
National Park Service lands in the northeastern USA (O’Connell et al. 2006; 
Nichols et al. 2008, e.g., Fig. 11.1). Nichols et al. (2008) capitalized on the use of 
multiple detection methods and extended the standard ‘single-season’ model to 
estimate occupancy probabilities at two spatial scales and compare detection prob-
abilities associated with each of the detection methods. The approach permits 
occupancy estimation at a large spatial scale, corresponding to species’ presence 
within a sample unit (1 ha) and, conditionally, at a smaller scale that corresponds 
to the species availability at the array or site (local occurrence or use, Fig 11.1). In 
addition, the authors found relatively strong evidence of temporal variation in 
detection probabilities for several species (e.g., striped skunks Mephitis mephitis) 
among different detection methods, including camera traps.

We believe that this model may be particularly useful for low-density, highly 
mobile species where the species may occupy a relatively large sample unit, but 
may not be near camera locations during a given sampling occasion. The use of 
additional detection methods, such as animal sign (e.g., hair, tracks or scat), may 
enhance camera trapping studies in the future allowing investigators to estimate 
species occurence at large-scale sample units and also local availability or use at 
trapping locations within occupied units. It should be noted that sign must be cor-
rectly assigned to species and a time period corresponding to camera trapping 
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effort. In other words, if both camera traps and animal sign are surveyed, detections 
from each method should indicate a species occurrence (locally) over the same visit 
or survey occasion (Rhodes et al. 2010).

11.6.2  Species Co-Occurrence and Resource Partitioning

Tobler et al. (2009) used camera traps to explore patterns of spatial partitioning 
among ungulate species using a species co-occurrence model that allows for 
imperfect detection (MacKenzie et al. 2004). Expanding the standard single- 
season occupancy model to include two species, the true occupancy state at any 
given sample site now includes four mutually exclusive possibilities: occupied by 
both species y AB, occupied by species A only y y−A AB, occupied by species B 
only y y−B AB, or unoccupied y y y− − +1 A B AB. If the two species are distrib-
uted independently one would expect y y y= ×AB A B; however, the co-occurrence 
model (MacKenzie et al. 2004) includes a species interaction parameter g where 

Fig. 11.1 Diagram representing hypothetical ranges for four striped skunks distributed among 
nine sample units (each grid cell is a sample unit). Two of the sample units (A and B) were ran-
domly selected for sampling, and a detection array (sample station site) was randomly placed 
within each of these units. Each detection array consisted of a single camera trap at the centre and 
two track plates and two hair removal traps placed equidistant (~50 m) from the camera in the four 
cardinal directions (Reprinted with permission from John Wiley and Sons)

Camera and
infrared detector

1 of 9 sample units

Cubby box
w/track plate

Hair
removal trap

~50 m ~50 m

~50 m

~50 m
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y y y g= × ×AB A B . Values of g <ˆ 1 suggest that the two species co-occur less 
often than expected, suggesting possible avoidance or competitive exclusion, 
whereas g >ˆ 1 would indicate that the species tend to occur more often than 
expected under the assumption of independence. A similar interaction parameter 
is also included to explore interaction in the detection process, or to test whether 
the detection probability of one species is influenced by the occurrence or detec-
tion of the other species (MacKenzie et al. 2004).

The five ungulate species studied by Tobler et al. (2009) exhibited considerable 
spatial overlap and g ≈ˆ 1  for most species comparisons indicating little spatial 
resource partitioning. These authors did not suspect interactions in the detection 
process and assumed that detection probabilities were not influenced by the pres-
ence of a conspecific, but this may not be true in many carnivore studies that 
involve highly territorial species. The two-species occupancy model has been 
used to investigate such relationships in systems where species interactions in 
both occurrence and the detection process are likely (e.g., Bailey et al. 2009).

11.7  Recent Advances

To our knowledge these advances have not yet been used in camera trapping 
studies, but we discuss them to serve as an impetus for the future.

11.7.1  Multistate Occupancy Models

The standard single and multi-season models have been extended to include different 
categories of occupancy (Royle 2004; Royle and Link 2005; Nichols et al. 2007; 
MacKenzie et al. 2009). Often these models are used to classify occupied sites by 
whether reproduction occurred at the sites (i.e., occupied sites either supported repro-
duction or not), but the definition of occupancy categories, or states, is very general 
and can include abundance categories (low or high relative abundance) or animal 
behaviors such as territoriality or seasonal migration. The model can even be used to 
model occupancy and habitat dynamics simultaneously (Martin et al. 2010).

11.7.2  Occupancy Models with Spatially Clustered Subunits

Although the original occupancy models were developed assuming temporal 
replication (multiple, independent visits to each site), a number of additional 
options have been proposed to achieve ‘repeat surveys’ including: (1) conduct mul-
tiple surveys within a single visit, but separate detections into multiple time periods 
(e.g. Nichols et al. 2008, p.1323) (2) use multiple independent observers during a 



202 A.F. O’Connell and L.L. Bailey

single visit, or (3) conduct surveys at multiple spatial subunits within a larger 
sample unit. This latter method requires that the target species has a nonzero prob-
ability of being detected at all sampled subunits within occupied sites (this can be 
insured by sampling subunits with replacement): criteria that are not met in many 
study systems (Kendall and White 2009). Hines et al. (2010) developed a model to 
accommodate a sampling design based on spatial replicates (subunits) that are sam-
pled only once and are expected to exhibit spatial dependence. The model was moti-
vated by large-scale tiger sampling that relies on detection of sign along trails and 
roads, where it is likely that tiger sign is present on successive sections (subunits) of 
sampled trails or roads (Hines et al. 2010). Using successive sections of a trail as 
replicates likely violates the independence assumption of standard occupancy models, 
but the Hines et al. (2010) model decomposes the detection process into two compo-
nents: the probability that the species is present at the subunit and the probability of 
detection, given the subunit is occupied. The species presence at, or use of, subunit t 
may be modeled as a function of the species occurrence in the previous subunit t−1 
(i.e., as a first order Markov process) and relevant covariates. The model also provides 
a way of formally testing for this type of spatial dependence in the data.

To date this model has not been applied to studies involving camera traps, but 
since cameras are often placed at trail intersections (e.g., Tobler et al. 2009), these 
models may be useful in the future.

11.8  Concluding Remarks

Camera traps and occupancy estimation or modeling have each become well-
established tools for sampling and making inferences about animal populations. We 
believe that they complement each other, allowing for time-efficient, cost-effective 
collection of quality data, often in the form of indisputable documentation that 
allows for strong inferences. The combination of using camera traps and occupancy 
models to generate unbiased estimates of animal occurrence represents significant 
progress in how we conduct ecological investigations. Although much of the recent 
work with camera traps and occupancy estimation has focused on mammals, the 
recent application of these techniques to other taxa further demonstrates the flexi-
bility and power of modeling of detection–nondetection data with photographic 
images (e.g., Nomani et al. 2008; Winarni et al. 2009).

With this in mind, we believe it is important to end with a cautionary note about 
using these techniques. Investigators frequently overlook the steps necessary to 
conduct effective research or implement useful monitoring programs. First and 
foremost, we consider it essential that investigators give considerable thought to: 
(1) why they are sampling – either to advance science or inform conservation man-
agement decisions, (2) what it is they hope achieve (i.e., objectives), and (3) how 
they can best design a research or monitoring program to achieve the desired 
results. All too often, investigators rush into the field and begin sampling, bypass-
ing these questions and thereby limiting the value of their work before they even 
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begin. These concepts have been discussed in detail elsewhere (Nichols et al., 
Chap. 4, Nichols and Williams 2006), but we point them out here because they are 
essential to the design and implementation of useful sampling programs that target 
and collect animal occurrence information.

In an era where the risk of extinction for animal species is increasing and biodi-
versity assessments are sorely needed, quantitative methods such as occupancy 
estimation can be used to strengthen scientific inference that can benefit the manage-
ment of animal populations. Unfortunately, the use of estimation methods to analyze 
camera trap survey data has been slow to develop (Conroy and Carroll 2009). 
Because occupancy estimation methods utilize data that are relatively easy to collect 
and which generate unbiased estimates, these methods have a variety of current 
applications, and we anticipate that occupancy estimation may soon become a 
 preferred method for analysis of camera trap surveys in the future.
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12.1 Introduction

The study of animal communities has a long history in many branches of ecology, 
especially community ecology, biogeography and conservation biology. Furthermore, 
characterizing the size, composition and dynamics of animal communities is also 
important from a management perspective. For instance, community characteristics 
such as total size (i.e., species richness) or the size of certain subsets (e.g., number 
of rare or Red listed species) are often used to direct conservation efforts or to moni-
tor their effectiveness. Camera traps can be used to study the size, composition and 
dynamics of animal communities, especially for large and medium-sized mammals 
and birds, terrestrial animals and particularly for nocturnal species. Although camera 
trap data can be treated in much the same way as data from other methods of sam-
pling animal communities, it is particularly suited for capture–recapture (CR)-type 
analyses, given the ease with which discrete capture periods are defined. One impor-
tant feature of camera trap data as used for community inference is that the surveyed 
communities are typically not very large. Hence, the inferential challenges caused 
by the possible presence of a very large number of very rare or elusive species (Mao 
and Colwell 2005) are presumably greatly alleviated.

Regardless of the method used to record species in animal communities, obser-
vations are usually not perfect, i.e., not every species present in a community will 
be detected and not every species occurring will be detected at each site and point 
in time where it occurs (Kéry 2002; Schmidt 2005). This holds even when studying 
only segments of communities, such as certain guilds or taxonomic groups. 
Treating species counts as if they were the genuine numbers of species present is 
equivalent to making the assumption that every species present in a study area is 
indeed detected, or to put more strongly, it means to assume that each individual of 
each species present is detected perfectly. Under binomial sampling, the probability 
of detecting a species at a site (P) is a function of the probability p to detect each 
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single one among N individuals, 1 (1 )NP p= − −  (Royle and Nichols 2003), and P 
can only be 1 when  p = 1.

On the other hand, treating species counts just as indices of relative species 
richness is equivalent to assuming that the proportion of species detected is the 
same, on average, over all dimensions of comparison, i.e., that the expectation of 
detection probability, E(P), is constant. When comparing species richness across 
space, habitat types, along an elevational gradient or over time, the use of raw 
species counts assumes that there is no correlation between the proportion of 
detected species any of these variables, respectively. “On average” does not mean 
that the proportion of species detected must remain exactly constant along these 
dimensions. Rather, this proportion may vary, but it must not do so in relation to the 
factors that are the focus of interest with respect to species richness.

Both assumptions (i.e., P = 1 and E(P) = 1) are hardly ever stated explicitly and 
much less tested, although the first assumption must clearly be wrong in the field 
in all but exceptional cases. Even the second assumption is at least questionable and 
should be tested if possible. Surprisingly though, most managers as well as scientists 
in community ecology, biogeography, conservation biology and related disciplines 
have been remarkably resistant to an explicit recognition of either assumption and 
of the consequences of violating them.

Arguably, a better approach than making untested or unstated assumptions is to 
explicitly account for imperfect detection when making inference about animal 
communities. In spite of only relatively few applications in ecology and manage-
ment, the formal estimation of species richness and related quantities, corrected for 
imperfect detection, has a fairly long history in statistical ecology and has been 
subject to a number of reviews, including Bunge and Fitzpatrick (1993), Colwell 
and Coddington (1994), Nichols and Conroy (1996), Williams et al. (2002, pages 
555–573), Chao (2005), also see O’Brien et al., Chap. 13.

At least four broad classes of approaches have been used to account for unseen 
species in community studies (Dorazio et al. 2006): (1) extrapolation of species accu-
mulation curves (Soberón and Llorente 1993; Gotelli and Colwell 2001), (2) para-
metric models for the apparent species abundance distribution of those species that 
were detected (Pielou 1977, pages 269-290), (3) nonparametric models based on 
sampling theory (Bunge and Fitzpatrick 1993) and (4) community analogs of closed 
population CR models for estimation of abundance, where species take the place of 
individuals (Otis et al. 1978; Burnham and Overton 1979).

Here, I summarize one line of research on the estimation of the size, composi-
tion and dynamics of communities belonging to category 4 along with some associ-
ated software, recognizing that other approaches (e.g., Chao 1987, 2005; Chao and 
Lee 1992; Chao et al. 2006; Mao and Colwell 2005) and software (e.g., EstimateS; 
http://viceroy.eeb.uconn.edu/estimates) exist. The reason for my choice is that CR 
models have the attractive property of being based on an explicit recognition of the 
observation process that relates the true system state, e.g., species richness, to our 
observations of the system, e.g., a species count. Thus, arguably, the CR framework 
provides the most mechanistic representation of the system that produced that 
species count. Further, it is perhaps the most flexible and general approach, since 

http://viceroy.eeb.uconn.edu/estimates
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by a mere redefinition of the unit of analysis (e.g., individuals, occupied areas or 
species), one moves from the inference about a population to that about species 
distributions and finally to an animal community or a metacommunity. This gener-
ality lets one take useful concepts and models from a fairly large branch of research 
in statistical ecology, represented for instance by treatises such as Seber (1982), 
Williams et al. (2002) and Royle and Dorazio (2008), and simply carry them over 
to the community case.

Capture–recapture methods, in the widest sense, are based on the observations 
of a system (here, one or more communities) at repeated points in time (often 
termed occasions), and the observation or non-observation of its individually 
recognizable units (here, species) provides the information required to infer both 
features of the focal system (e.g., size, composition and dynamics of the community) 
and features of the observation process, represented by detection probability and 
possibly other nuisance parameters, such as temporary emigration probabilities. 
Note that as defined here, CR models include site occupancy models (MacKenzie 
et al. 2002).

There are only two places where the analogy between individuals in a population 
and species in a community break down, reincarnation and individual heterogeneity 
(Nichols et al. 1998a). First, when a species goes extinct in a community, recoloni-
zation is possible, but the same is not possible when an individual dies in a popula-
tion. Consider a detection history 101, indicating detection at occasion 1 and 3 and 
nondetection at occasion 2. For an individual, the internal zero may only be associ-
ated with the events “alive but nondetected” or perhaps “alive and temporarily 
emigrated.” However, if this is the detection history for a species at a particular site, 
it may also mean that the species became extinct and then recolonized the site. In 
order to resolve this ambiguity the modeling of open communities requires data in 
the format of a robust design (Pollock 1982; Williams et al. 2002, pages 523-554). 
In the robust design, samples are taken at two temporal scales and changes may 
occur among primary sampling occasions but not among the secondary sampling 
occasions that are nested within the primary occasions. The subsampling at the 
second level of this design provides the information about detection probability 
which is required to distinguish temporary emigration, or extinction followed by 
recolonization, from nondetection.

Second, species are much more different than are individuals that belong to the 
same species. The detectability P of a species at a site is related to its local abun-
dance N by the well-known relationship 1 (1 )NP p= − −  for the case where indi-
viduals are detected individually (Royle and Nichols 2003). Since species’ 
abundances in a community may differ by orders of magnitude, different species are 
likely to be detected with different probabilities. In addition, there is variation among 
individuals of different species in coloration, behavior, social status, sex, age, habitat 
use, physiological or many other state variables, and these will all contribute further 
to variation in detection probability. Heterogeneity among species in detection prob-
ability has been demonstrated many times, including for avian (Boulinier et al. 
1998a, b; Kéry and Royle 2008a, b; Kéry and Schmidt 2008) and butterfly commu-
nities (Dorazio et al. 2006; Kéry and Plattner 2007; Kéry et al. 2009).
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A classic result in CR, in the community context, is that unmodeled species-specific 
heterogeneity will lead to a negative bias of N, i.e., of community size (Dorazio and 
Royle 2003), and this will partly be propagated into the estimates of other quantities 
such as colonization and extinction. Depending on the magnitude of that heterogene-
ity, estimates of species richness and other community descriptors can be severely 
biased. Therefore, in a community context, by default any estimation method should 
account for heterogeneous species detectability.

In addition, species heterogeneity in detection has a further intriguing 
consequence: it makes it very difficult or impossible to obtain a representative 
sample of a community. The sample of species observed will virtually always be 
biased towards the more detectable species and in many cases seriously so. This is 
an added reason for why it is useful to base inference about communities on an 
explicit accounting of the detection process. Otherwise, the inference will be biased 
almost certainly towards the common and more visible members of the community, 
and these may not represent the entire community well (Kéry et al. 2008). For 
instance, owing to their smaller population size, rare species likely experience 
higher extinction rates. Since they are probably also the ones that are most often 
missed in the sample, the sample extinction rate will be a biased estimate with 
respect to the entire community about which inference is sought (Nichols et al. 
1998a; Alpizar-Jara et al. 2004).

In principle, any robust design CR-type of model that allows for individual 
detection heterogeneity is a candidate for inference about animal communities. 
However, the choice of how to model heterogeneity is not trivial and there are many 
types of models to account for it, e.g., non-parametric methods (Burnham and 
Overton 1979; Chao 1987), finite-mixture distributions (Norris and Pollock 1996; 
Pledger 2000) or continuous mixture distributions such as the beta-binomial and the 
logistic-normal (Coull and Agresti 1999; Dorazio and Royle 2003). Unfortunately, 
resulting inferences may not always concur across models. Furthermore, data-based 
criteria such as the deviance or Akaike’s Information Criterion (AIC) cannot be 
trusted as an aid to that choice (Dorazio and Royle 2003). Indeed, Link (2003) has 
shown that N, here defined as community size, is an unidentified parameter across 
classes of such heterogeneity models.

What does this mean in practice? It means that if we use two different ways of 
specifying the heterogeneity among species in detection probability and they give a 
different answer, we have no way to let the data tell us which one is the better answer 
(for some examples of this, see Dorazio and Royle 2003 and Link 2003). However, the 
conclusion that we should not use heterogeneity models at all would mean “throwing 
the baby out with the bathwater”: both in principle and from empirical studies we 
know that species differ widely. And we also know that unmodeled heterogeneity can 
severely bias low inference about community size N and related parameters. Hence, 
not to use a heterogeneity model just because we don’t know which one is the most 
appropriate and instead use a model with constant detection probability (across 
species) will most probably result in inference of much of poorer quality than using 
the “wrong” heterogeneity specification. In addition, heterogeneity models have 
performed well in several studies where population size was known (e.g., Greenwood 
et al. 1985; Manning et al. 1995; Pledger 2000; Conn et al. 2006).
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However, it is certainly advisable to eliminate as much individual heterogeneity 
as possible at the design stage or by using explicit covariates that can explain dif-
ferences between species in the analysis stage. It has also been argued that there are 
so many factors that might induce heterogeneity among species that the result 
might be best represented by a smooth distribution for detection and that continu-
ous mixtures might be more natural than finite-mixtures and therefore be preferred 
(Dorazio and Royle 2003). However, this view has been challenged (Pledger 2005), 
and it is true that in the name of parsimony an “unnatural” model specification may 
indeed be sometimes useful.

So at present, it seems wise to tentatively use the class of mixtures that appears 
best in a particular case, as well as to eliminate as much heterogeneity as possible 
in both the design and the analysis stages of a study. Furthermore, high detection 
probabilities alleviate the problem of divergent inferences (Link 2003), so a high 
search effort always pays – see later section entitled “Design Considerations.”

A useful taxonomy of the inferential situations encountered in the study of animal 
communities is provided by combining the two dichotomies, single-site vs. multiple 
sites and static (also, single “season”) vs. dynamic (also, multiple “seasons”). 
Table 12.1 shows some of the quantities that may be of interest in each of the four 
resulting situations. Note that the quantities for the dynamic situations (cells 2 and 4, 
right column) include those for the associated static cells (1 and 3 (left column), 
respectively). By season is meant a time period that is sufficiently short that the stud-
ied community does not change or hardly so, i.e., can be assumed closed (Kendall 
1999). Evidently, what is “short” will depend completely on the dynamics of the 
studied community. For instance, the duration over which a community can be 
considered closed will be much longer for mammals or birds than for insects. As 

Table 12.1 A taxonomy of inferential situations in animal communities showing some quantities 
of interest. All quantities shown for the static situations may also be of interest in the associated 
dynamic situation for each point in time. A season is defined as a time period within which the 
community does not change, i.e., is closed

Static (single season) Dynamic (multiple seasons)

Single 
site

(1) Occurrence ( zi)

Species richness ( Â= iN z )
Community integrity

(2) Survival rate (f
t
)

Extinction rate ( 1 f−=t tε )
Colonization rate (g

t
)

Trend ( /1t t tT N N+= )
Turnover rate

Multiple 
sites

(3) Occurrence (z
ij
)

Occupancy rate ( iy )
Finite-population occupancy rate (y

fp
i )

Local species richness (N
j
)

Global species richness (N)
Similarity among species
Similarity among sites
Species accumulation

(4) Survival rate (f
jt
)

Extinction rate (1 - f
jt
)

Colonization rate (g
jt
)

Local trend (  = / )jt j , t + j,tT N N1

Global trend (T
t
)

Turnover rate

Notation: N species richness, z presence/absence indicator, i index for seen and unseen species, 
j index for space, t index for time (seasons)
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noted elsewhere (Royle and Kéry 2007), “dynamic” is a more precise term than 
“multi-season” since multi-season data could be analyzed simply by treating season 
as a group and not specifying any relationships between the estimated quantities 
across seasons. Furthermore, the former emphasizes the model whereas the latter 
emphasizes the design.

The following overview is organized around Table 12.1. I will proceed from 
single-site to multi-site inferential situations and, within that, from the static to the 
dynamic case. Interestingly, historically, the methodological development in the 
field has progressed in the same way. Following that, I will consider survey design 
issues and finally offer some outlook. Throughout, I will avoid most technical 
details and rather mention the main idea of a model and then point the reader to the 
relevant primary literature.

12.2 Inference About Single Sites

12.2.1 Static Community at a Single Site

The simplest possible inferential situation is a single static community (Table 12.1, 
cell 1) in which we have an observed species list of length C (for count) and at least 
two surveys providing replicate observations for each species, being zero for a 
species not detected on that particular occasion (replicate survey) and 1 for a species 
that was detected. The main inferential quantity of interest in this situation is 
species richness, or alternatively, the number of species present in the community 
that did not make it onto the list. On the usual assumption that those species that 
were detected are informative about those that were not, one may estimate the 
number of unseen species, and therefore, total species richness using any reasonable 
CR estimator.

The customary CR framework as applied to this inferential situation requires 
temporal replicate observations of a community. However, the framework has also 
been applied for spatial replicates (Nichols et al. 1998a, b; Boulinier et al. 1998a, b; 
Cam et al. 2002a, b; Doherty et al. 2003; Dorazio and Royle 2003). While this is a 
creative idea, it is important to recognize that the approach confounds detection 
heterogeneity with small-scale heterogeneity in the occurrence of species. Finally, 
note that spatial sampling must be done with replacement in order to provide the 
best chance of obtaining an unbiased estimate (Kendall and White 2009).

Key to inference in closed population CR is getting an adequate model for the 
patterns in species-specific detection probability, p. A useful taxonomy of patterns in 
detection probability in the context of models for closed populations is due to Otis 
et al. (1978). They distinguish three kinds of effects on p: individual heterogeneity 
h, behavioral response b and time t. The associated models are denoted M

h
, M

b
 and 

M
t
, respectively, and the first specifies unstructured differences among individuals, 

the second differences in detection according to whether an individual is captured for 
the first time or was captured previously, and the last differences among capture 
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occasions. Pairwise combinations and one three-way combination also exist, as 
does the case where p is constant; this is called model M

0
. One or several estimators 

for most of these models were implemented in the program CAPTURE (Otis et al. 
1978; also see http://www.mbr-pwrc.usgs.gov/software/capture.html), though not, 
for instance, for the most complex model M

tbh
. CAPTURE can be run most easily 

nowadays by a call from within program MARK (White and Burnham 1999; http://
welcome.warnercnr.colostate.edu/~gwhite/mark/mark.htm).

As argued before, a model for species richness by default should include 
individual heterogeneity. Another effect that may potentially be important to 
include is behavior (b), that is, the tendency for detection probability to depend on 
whether a species has been detected previously. This may occur because of the spe-
cies or because of the observer. If a species is very elusive and represented by only 
a few individuals, then these may learn from the negative effects of being captured 
and behave more elusively afterwards, leading to a negative trap response; that is, 
recapture rates that are lower than first capture rates. It is possible to model tempo-
ral change in this capture effect also, for instance, the effect of a first capture on 
later capture probabilities may last for just one capture occasion (immediate trap 
response) or for all subsequent occasions (permanent trap response). Other patterns 
are possible, though the closed models in CAPTURE implement a permanent trap 
response. Positive trap responses are also possible, mostly mediated by a change in 
the knowledge of an investigator: for instance, once he knows where to watch and 
how to search, the probability to detect some species may increase. Behavioral 
response may be an important effect to consider for community modeling, but probably 
much less so for the “blind” and relatively unobtrusive camera traps. One exception 
might be if traps are moved around in a study area until certain species are detected 
leading to a situation where a likely positive trap response should be accounted for 
in order to obtain adequate inference about the community. Variation in detection 
probability among occasions (effect t) is always likely to occur to some degree and 
should be accounted for if it is important.

One of the most widely used estimators for species richness has been the 
jackknife estimator for model M

h
 (Burnham and Overton 1979; Boulinier et al. 

1998a; also see Chap. 13). It is based on capture frequencies f
i
, i.e., the number of 

species captured i times, and the aim is to extrapolate to f
0
, the number of species 

never detected, and has worked reasonably well in many applications (see examples 
cited in Boulinier et al. 1998a). One drawback is that this application requires com-
pletely balanced data in the number of replicate surveys (i.e., the number of actual 
detections does not need to be the same for each species). Furthermore, no effects 
of additional covariates can be modeled. Also, its performance with small samples 
(e.g., 2–3 occasions) has not been studied well, although it has yielded apparent 
sensible results also in such situations (Kéry and Schmid 2004, 2006; Kéry and 
Plattner 2007). There is also a limiting form of the jackknife that can be applied to 
apparent species abundance data from a single occasion (Burnham and Overton 
1979), and that is implemented in the repository of software maintained by J.E. 
Hines at the Patuxent Wildlife Research Center (see program SPECRICH, http://
www.mbr-pwrc.usgs.gov/software/specrich.html).

http://www.mbr-pwrc.usgs.gov/software/capture.html
http://welcome.warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://welcome.warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://www.mbr-pwrc.usgs.gov/software/specrich.html
http://www.mbr-pwrc.usgs.gov/software/specrich.html
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One of the drawbacks of the estimators contained in the program CAPTURE is 
that not all of them are likelihood-based and, therefore, they cannot all be compared 
in a common currency, for instance using the deviance or using AIC (Burnham and 
Anderson 2002). This problem has been addressed by Norris and Pollock (1996) 
and Pledger (2000), who described a modeling framework for closed populations 
based on finite-mixtures. That is, to account for individual heterogeneity, species 
are assumed to belong to one of a few groups (typically just two or three) with a 
constant detection probability for individuals within each group. The detection 
parameters to be estimated are the constant detection probability for each group and 
the mixture proportions (i.e., the proportion of species in that group) for all but one 
group. The proportion of that one group is given by 1 minus the mixture proportions 
of all the others.

Individual heterogeneity in detection may be a consequence of many different 
factors and so is almost surely continuous rather than discrete. Hence, the idea to 
represent it by a finite-mixture distribution may strike one as unnatural. Nevertheless, 
finite-mixture models have compared quite well in comparisons with populations 
of known size (Pledger 2000). Therefore, it seems that the “trick” of attributing 
species in one of a small number of virtual groups may be useful in eliminating a 
fairly large part of the individual heterogeneity. In addition to individual heterogeneity, 
it is possible to specify time and behavior effects, hence, maximum likelihood estimates 
for all combinations of effects in the taxonomy of Otis et al. (1978) can be obtained, 
including for model M

tbh
, making this framework potentially very useful. These models 

can all be implemented in program MARK. Alternatively, they could be imple-
mented as individual covariate models in a Bayesian mode of inference and using 
program WinBUGS (Spiegelhalter et al. 2003; Royle 2009).

Another way to specify individual heterogeneity is by a continuous rather than 
by a finite mixture distribution. The beta-binomial distribution is a continuous 
distribution on the interval (0, 1) and thus appears a natural candidate to specify 
heterogeneity in a probability. Another one is the logistic-normal distribution 
(Coull and Agresti 1999), which specifies normally distributed species-specific 
effects on the logit-transform of detection probability. Dorazio and Royle (2003) 
compare three classes of heterogeneity specifications, finite-mixtures, and 
beta-binomial and logistic-normal continuous mixtures, and find them all useful for 
estimating species richness. (However, they note the existence of non-identifiability 
problems across these classes.) Continuous mixture distributions can be fitted using 
maximum likelihood as do Dorazio and Royle (2003) or in a Bayesian mode of 
inference using program WinBUGS (Spiegelhalter et al. 2003). For code examples 
see the volume by Royle and Dorazio (2008).

For a static community at a single site, a comparison of species richness (N) 
among different sites or times may be achieved by first using a regional pool of 
species that could potentially occur in that particular community (Karr 1990; Cam 
et al. 2002a, b). If such information is available, constructing a ratio of the number 
of species occurring and the number of potentially occurring species may be used 
as a measure of ecological integrity for that community (Table 12.1). This is a 
metric of obvious use for management applications (Cam et al. 2002a, b).



21512 Species Richness and Community Dynamics

This idea provides one of the leads to the use of site occupancy models for inference 
about species richness. Site occupancy models are a fairly recent class of models 
(MacKenzie et al. 2002, 2003, 2006; also see O’Connell and Bailey, Chap. 11) that 
estimate, in their original form, the proportion of sites, e.g., sample quadrats or poten-
tial territories of territorial species, that are occupied, corrected for imperfect detec-
tion, based on replicate surveys of at least some of these sites. Actually, site occupancy 
models are a very general class of models and can be viewed as providing a unifica-
tion of many different models in the CR literature (see Royle and Dorazio 2008).

Interestingly, there is a duality between models used to estimate the size of a 
closed population, where some individuals are overlooked, and site occupancy 
models, where all “potential individuals” (sites) are seen, but some are just not 
recognized to be “occupied.” Indeed, asymptotically, both models are equivalent 
(Although note that individual covariates are usually observed in the site occupancy 
context which creates great inferential benefits.). This recognition has given rise to 
the important notion that classical closed population CR models can be reparame-
terized by zero-inflation and applied to a zero-augmented version of the original 
data set. That is, one can add to the data set an arbitrary number of all-zero detec-
tion histories and fit a site occupancy model, where the occupancy parameter takes 
the place of community size. This data augmentation yields great computational 
advantages and permits extension of the idea of the site occupancy model to a great 
many other CR models, both open and closed (Royle et al. 2007; also see Royle and 
Dorazio 2008).

In addition, by redefining a site to be a species among a list of species that 
could potentially occur in a region, one can then directly use a site occupancy model 
to estimate “relative species richness” or community integrity (Karr 1990; Cam et al. 
2002a,b), corrected for imperfect detection, i.e., species richness relative to some base-
line list of species that may be thought to represent a regional pool of species present.

Site occupancy models can be fit using programs MARK and PRESENCE 2 
(http://www.mbr-pwrc.usgs.gov/software/doc/presence/presence.html). In both 
programs, heterogeneity in detection probability among species (or sites) can be 
incorporated by finite mixtures (Pledger 2000). My own limited experience with 
finite mixtures in a previous version of PRESENCE suggests that the numerical 
optimization for heterogeneity in occupancy models may not be sufficient (i.e., that 
the algorithm often does not converge). In that case, one is stuck with an M

0
 version 

of an occupancy model whereby inference will typically underestimate species 
richness, although estimates of extinction probability may be less affected (Alpizar-
Jara et al. 2004).

Royle (2006) describes site occupancy models with heterogeneity, specifically, 
using finite mixtures and beta-binomial and logistic-normal continuous mixtures as 
well as the Royle–Nichols formulation of abundance-induced heterogeneity (Royle 
and Nichols 2003). He fits these models using maximum likelihood, and Royle and 
Dorazio (2008, book and website) provide some example code in program R (R 
Development Core Team 2008) and also for Bayesian implementations in WinBUGS.

Perhaps the most flexible, general, and to a biologist, accessible way of estimating 
species richness in the single site static case is by fitting a logistic-normal site occupancy 

http://www.mbr-pwrc.usgs.gov/software/doc/presence/presence.html
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model in program WinBUGS (Spiegelhalter et al. 2003) to a zero-inflated version of 
the species detection data. Thus, in what is essentially a logistic regression, species 
detections can be modeled as coming from a Bernoulli distribution, and the logit-
transform of the Bernoulli parameter (detection probability) can be expressed as the 
sum of both fixed and random effects. The former could be known species attributes 
such as approximate population size or body size, and the latter are zero-mean nor-
mal deviates to take account of unstructured heterogeneity in detection among spe-
cies. The other effects in the catalog of Otis et al. (1978), time and behavior, or their 
additive combinations or interactions, can equally be specified in this linear predic-
tor in the flexible fashion of a linear model. Example code to fit site occupancy 
models in WinBUGS can be found in Royle and Kéry (2007), Royle and Dorazio 
(2008), and Kéry (2010), as well as in the volume of ecological examples distrib-
uted with the program OpenBUGS (A. Thomas, St. Andrews, pers. comm.).

Finally, although the CR framework allows one to obtain a rigorous estimate of 
the likely number of species that were not detected, it does not identify those spe-
cies. This could only be done in an informal way. For instance, when one estimates 
that four species were present that were never observed, and experienced naturalist 
may then draw up a list of species that might be expected in the studied community 
and, by comparison with the actually detected species, guess at what species might 
have been the four. Alternatively, in a site occupancy estimation context with a 
regional species list, the value of the occurrence indicators z

i
 (see Table 12.1) 

could be estimated and may give some additional insight into which species were 
most likely missed.

12.2.2 Dynamic Community at a Single Site

Next we consider extensions to more than one season, that is, to a single, dynamic 
community (Table 12.1, cell 2). In addition to the quantities shown in cell 1 of the 
table, several other relevant metrics may now be defined and become estimable 
provided adequate data are available. Foremost among these are the community 
analogs of vital rates, survival and fecundity rate, in population dynamics. That is, 
species survival rates f

t
, or alternatively, species extinction rates 1t t= −e f , and 

species colonization rates g
t
, where t indexes the intervals between successive sea-

sons, t and t + 1. Furthermore, turnover is a function of both survival and coloni-
zation and is useful to characterize the stability of a community. Finally, the 
community analog of the population growth rate l is called T

t
 in Table 12.1.

Nichols et al. (1998a) appear to be the first to develop an estimation framework 
for dynamic ecological communities with imperfect detection. Their sampling situ-
ation is across two seasons and is assumed to be that of the so-called robust design 
(Williams et al. 2002, pages 523-554), where samples are replicated at two tempo-
ral scales. Between the primary sampling occasions (i.e., seasons) the community 
is open but among the nested secondary (i.e., within-season) sampling occasions, the 
community is assumed closed. Importantly, the subsampling within each primary 
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occasion is required to distinguish nondetection from extinction followed by 
recolonization. Based on the Jackknife estimator of species richness for each pri-
mary sampling period, Nichols et al. developed estimators for species richness in 
each primary period and for survival, colonization and turnover rates as well as for 
the trend in species richness between years. They define turnover rate as the prob-
ability that a randomly selected species in year  t + 1 is a species that was not 
part of the community in year  t, i.e., is a new species. Hines et al. (1999) devel-
oped program COMDYN that implements this scheme for two seasons.

This seminal framework has allowed powerful insights into animal communities 
while fully correcting for imperfect detection (e.g., Boulinier et al. 1998b, 2001; 
Lekve et al. 2002; Doherty et al. 2003; Kéry and Schmid 2004) and has been 
adapted to the spatial case (Nichols et al. 1998b) for comparing two communities 
at a single point in time; see later. However, there are also obvious limitations at 
least in the COMDYN implementation, for instance the restriction to a single esti-
mator for community size (sometimes another model than M

h
 may be adequate), 

the restriction to fully balanced data (in some communities, the number of replicate 
observations may not be the same for all species, see later), the limitation to two 
seasons (often, data are available from more, and sometimes many more, seasons). 
Also, species identity is not retained in the analysis leading to a loss of efficiency, 
because detections of species A in year 2 will probably be informative also about 
its detectability in year 1, yet this information is not exploited. Furthermore, 
COMDYN is often used in a two-step fashion when comparisons across multiple 
sites are desired (e.g., Doherty et al. 2003). This is not ideal, but the estimation 
framework of COMDYN would not easily allow a generalization to multiple sites 
with possible spatial correlation.

MacKenzie et al. (2006) suggested that dynamic site occupancy models could be 
used for inference about dynamic communities provided that a comprehensive spe-
cies list, one which would include all species that would possibly occur at the study 
site, could be defined. Indeed, a site occupancy model applied to robust design data 
from samples of a single community over time provides a very useful framework 
to analyze such data (see also Chap. 13). However, it would seem that the tremen-
dous differences among species in a community in detection probability would 
have to be accounted for in that model in order for it to provide useful estimates of 
species richness; otherwise, at least species richness is likely to be greatly underes-
timated. The bias engendered in the other parameters (colonization, extinction/
survival, and turnover) is not entirely obvious, though it may be acceptable for 
extinction/survival (Alpizar-Jara et al. 2004).

Dynamic site occupancy models can be fitted fairly easily using the Bayesian 
software WinBUGS (Spiegelhalter et al. 2003; for WinBUGS code see upcoming 
volume of ecological examples; A. Thomas, St. Andrews, pers. comm.) where the 
inclusion of species-specific random effects in detection probability is fairly 
straightforward (Royle and Kéry 2007). The hierarchical, or state-space, formula-
tion of the model in WinBUGS appears to be very flexible and can easily be 
extended to contain more effects for any of its primary biological parameters (first-year 
occurrence, and extinction and colonization rates for each time interval), for instance, 
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to account for the Otis et al. (1978) taxonomy of effects or for further covariates. 
In addition, finite-population inference is trivial in a Bayesian implementation, for 
instance, an estimate of species richness at a studied site along with its uncertainty 
(SE, CI) is easy to obtain (Royle and Kéry 2007; Link and Barker 2010).

12.3 Inference About Multiple Sites

12.3.1 Static Metacommunity

A metacommunity is composed of a collection of communities. Even in the static 
case, there is a multitude of potentially interesting quantities to characterize a 
metacommunity, see Table 12.1, cell 3. The fundamental quantity from which all 
others can be derived is the species- (i) and site- (j) specific occurrence indicator z

ij
 

for every species in the metacommunity, be it observed or not. These z
ij
 can be 

collected in a matrix, Z, with rows denoting potentially occurring species and 
columns the sites. This Z matrix is also called the presence–absence matrix and has 
been termed the fundamental unit of analysis in biogeography and community 
ecology (McCoy and Heck 1987).

The Bernoulli parameter governing the random variable z
ij
 equals the population 

occupancy rate iy  for species i, while finite-population occupancy rate y fp
i  for 

species i is estimated by the proportion among all studied sites at which z
ij
 equals 1 

(indicating the occurrence of species i at site j). Local species richness at site j is 
simply the sum of z

ij
 over all species at site j, and global species richness can be simi-

larly derived. Furthermore, the similarity of, or conversely, the difference between, 
species and sites, respectively, can be expressed by the proportion of sites where two 
species co-occur or the proportion of species that two sites co-host, respectively. 
Species accumulation is the relationship between the cumulative number of distinct 
species and the number of spatial, and sometimes, temporal, sampling units.

To account for the imperfect observation process in inference about communities 
at multiple sites, several approaches are possible, and I will present three:  
(1) site-by-site analysis followed by a second-step analysis, (2) the spatial analog 
of the robust design approach by Nichols et al. described in the previous section and 
(3) the novel multi-species site occupancy model of Dorazio and Royle (2005).

First, the simplest inference about a metacommunity is obtained by site-wise 
application of any method described for the single-site static case. For instance, 
numerous authors have applied the jackknife estimator independently at a collection 
of sites in a first step, and then in a second step, analyzed resulting estimates of 
species richness, N̂ ,  or other quantities such as mean species detection probability 
( P̂ , computed by the ratio C/N̂) in a linear model to study the relationships between 
these quantities and various explanatory variables. Examples include Boulinier 
et al. (1998a), Doherty et al. (2003), Kéry and Schmid (2004, 2006) and Jiguet 
et al. (2005). This approach is not wrong, but it is likely to be inefficient. For 
instance, detections of species A at site 2 may be informative about its detection 
probability also at site 1, but a piecewise approach does not take species identity 
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into account. Furthermore, when treating estimates from the first analysis step as 
data in the second step, their uncertainties are hard to take account of. If they aren’t, 
this will lead to too short confidence intervals overall and to tests that are too liberal. 
On the other hand, a second-step analysis that properly takes into account the full 
variance–covariance matrix of all estimates from the first step would compromise 
most of the attractive simplicity of the two-stage approach (Link 1999).

As an aside, Cam et al. (2002a) showed how typical species accumulation data 
can be used in conjunction with a sampling-based model, the removal model, to 
estimate species accumulation curves free of the distorting effects of imperfect 
detection. Cam et al. (2002b) show that detection error leads to a bias in the 
observed species accumulation curves: their slope is exaggerated when imperfect 
detection is not accounted for.

Second, for the special case of two sites compared, Nichols et al. (1998b) developed 
a spatial analog of their framework for modeling the temporal dynamics of a single 
community, described in Nichols et al. (1998a) and in the section above. Using 
robust design data, they develop, among others, estimators for species richness at 
each site, relative species richness (the spatial analog to trend between two succes-
sive years), the number of species occurring at one but not at the other site and vice 
versa and the number of shared species. Program COMDYN (Hines et al. 1999) can 
be used for the computations. Again, although this rigorous estimation framework 
was a great advance compared with the then existing methods, it suffers from the 
same drawbacks as were described for the temporal dynamic case: limitation to two 
populations compared, use of the Jackknife estimator and the requirement of bal-
anced data. The extension of the framework as implemented in COMDYN to more 
than two sites is not obvious.

Third, Dorazio and Royle (2005; see also Dorazio et al. 2006 and Royle et al. 
2007) developed a multi-species extension of the site occupancy model (MacKenzie 
et al. 2002). Based on species detection data that are replicated both spatially (i.e., at 
multiple sites) and temporally at each site (i.e., observations are made on ³ 2 occa-
sions for at least some of the sites), this model essentially provides an estimate of the 
true presence–absence matrix Z. The model thus corrects for the fact that some 
species present in the metacommunity, of which the actually sampled sites form a 
sample, do not occur on the sampled sites, and also for species that do occur on the 
actually sampled sites but were never detected. Having an estimate of z

ij
, i.e., for 

the occurrence of every species i, seen or unseen, at each of the sampled sites j, then 
allows one to obtain detectability-corrected estimates of all the metrics shown in 
Table 12.1 (cell 3): occupancy for each species, local species richness (for instance 
at each sampled site or for regions containing several sites) or global species rich-
ness, similarity among sites in terms of the occurring species or among species in 
terms of coinhabited sites, as well as species accumulation curves that are corrected 
for detection bias (Cam et al. 2002a, b) and that do not depend on the order in which 
samples are added up (Dorazio et al. 2006). This model provides an extremely 
powerful framework for analyzing animal communities, both in terms of aggregate 
traits (such as species richness) and in terms of individual traits (such as occurrence 
of individual species). For example applications, see Kéry and Royle (2008, 2009) 
and Kéry et al. (2008). Interestingly, Gelfand et al. (2005) independently developed 
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a similar model. One of the main differences is that they do not extrapolate inferences 
to species that were never seen at all.

To illustrate this modeling framework, I have summarized the study by Kéry and 
Royle (2008). We had data from a subset of 26 quadrats in a national breeding bird 
monitoring program, where each quadrat was surveyed six times in a single breeding 
season thought to contain a closed community. In fact, there were two observers 
that each conducted three surveys, but I will ignore some details and present only 
those features of the study that are essential for illustration of the model. A total of 
103 avian species were detected. One of the questions was about the proportion 
of species that are detected on average.

The observed data are the binary indicators x
ijk

 that are equal to 1 for a species i 
(i = 1...103) that was detected on occasion k (k = 1...6) in quadrat j (j = 1...26) and 
equal to 0 for a species that was not detected. We fitted a minimal version of the 
Dorazio and Royle model, where we assumed that the only effect on detection prob-
ability was species identity; thus, we fitted the equivalent of model M

h
 of Otis et al. 

(1978), but in a site occupancy context. Since we were not interested in any effects 
that varied by occasion k, we collapsed the data over that dimension and modeled a 
two-dimensional data array: x

ij
, the number of occasions (out of 6) that species i was 

detected in quadrat j. A conceptualization of the model as applied to our case is 
shown in Table 12.2, where the fully observed data are shown in dark gray.

The basic idea is to formulate the model in terms of a latent binary process 
which indicates the presence (z

ij
 = 1) or absence (z

ij
 = 0 ) of species i in quadrat j. 

The realizations of this process z
ij
 are only partially observed, i.e., latent, since we 

do not know whether the value of z
ij
 is 0 or 1 at sites where a species was not 

observed, that is, where x
ij
 = 0 . Hence, the values of z

ij
 that correspond to observations 

with x
ij
 = 0 can be viewed as missing observations (NAs) and the aim of the analysis 

is to impute them (Table 12.2; light gray multi-column rectangle).
The model described by Royle et al. (2007) and also by Royle and Dorazio (2008, 

pages 379-400) is a hierarchical or state-space model. That is, it is composed of a 
nested sequence of distributional assumptions that describe the true, but partially 
latent biological process and the imperfect observation process, conditional upon the 
realization of the biological process. The observation model for the observed detec-
tion frequencies x

ij
 in Kéry and Royle (2008a) is a simple logistic regression,

~ (6, * ),ij ij ijx z pBin

where detection frequencies are binomially distributed with sample size equal to the 
number of occasions, here 6, and where success probability is equal to the product of 
the realization of the latent occurrence process, z

ij
, and detection probability p

ij
. Our 

model assumes no false positive errors, i.e., species can only be overlooked but not 
misidentified (an important assumption, see later, “Design considerations”). Hence, 
when species i occurs at site j and z

ij
 = 1, x

ij
 is binomial with success probability equal 

to p
ij
, and when the species does not occur and z

ij
 = 0, x

ij
 is a structural zero.

The model for the latent biological (occurrence) state, z
ij
, is described by another 

logistic regression:

~ (1, ).ij ijz ψBin
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Thus, the occurrence of species i at site j is modeled as a Bernoulli process (a 
binomial with sample size 1, corresponding to a single coin flip) with occurrence 
(or occupancy) probability y

ij
. When we assume that occurrence probability is constant 

across sites and only varies by species, as we did (Kéry and Royle 2008), this 
becomes ~ (1, )ij iz Bin y .

This model can be fitted in a fairly complicated way, as represented by the origi-
nal model formulation in Dorazio and Royle (2005). It turns out, however, that the 
fitting of the model is greatly simplified by data augmentation (Royle et al. 2007): 
to the observed data (dark gray in Table 12.2) are added an arbitrary number of all 
zero detection histories (medium gray in Table 12.2). In our actual analysis we 
added 100 “pseudo” or “potential” species, bringing the total dimension of the 
observed data matrix to M = 203 by 26. To these augmented data we fit a reparam-
eterization of the original model, where an additional hierarchical layer was added. 
This additional layer can be thought of as modeling the availability of species i in 
a larger pool of species (or a super-population of species) and the realizations from 
this process determine whether a species is part of the sampled community represented 
by the 26 quadrats or not. Thus, whether or not a species occurs in the sampled 
metacommunity is another Bernoulli random variable denoted by w

i
 and governed by 

the “inclusion” probability Ω: when w
i
 = 1, species i occurs in the metacommunity 

Table 12.2 Concept of the multi-species site occupancy model of Dorazio and Royle (2005) in 
the data augmentation parameterization described by Royle et al. (2007) as applied to the data 
analyzed by Kéry and Royle (2008)

The fully observed data (dark gray shaded rectangle) contain x
ij
, the detection frequencies of 103 

observed species at 26 quadrats. To these were added 100 detection histories containing only 
zeroes (the data augmentation part, represented by the medium gray shaded rectangle below the 
dark gray rectangle). The model enables inference about two latent structures, the partially 
observed true presence–absence matrix Z (i.e., the N-by-26 matrix containing z

ij
) and the “super-

population indicators” w
i
 (both represented in light gray shading). Essentially, the aim of the 

modeling is to impute the missing values (NA).

Observed: x ij Only partially observed: zij and wi 

Quadrat j 1 2 3 … 26 1 2 3 … 26 wi

Species i 1 6 3 0 … 4 1 1 NA … 1  1

2 0 0 1 … 2 NA NA 1 … 1  1

3 3 0 2 … 0 1 NA 1 … NA 1

… … … … … … … … … … …  …

n 103 0 0 1 … 0 NA NA 1 … NA 1

n+1 104 0 0 0 … 0 NA NA NA … NA NA

… … … … … … … … … … … …

N ? 0 0 0 … 0 NA NA NA … NA NA

N+1 ?+1 0 0 0 … 0 0 0 0 … 0 0

… … … … … … … … … … … …

… … … … … … … … … … … …

M 203 0 0 0 … 0 0 0 0 … 0 0
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associated with our 26 quadrats, while when w
i
 = 0 it does not. The problem 

of estimating metacommunity size N is then converted to the equivalent problem of 
estimating Ω. (Note that the expected value of N is equal to M*Ω.)

Consequently, the hierarchical model now has three levels (note the slight 
change of the state process compared to above) and can be written in three conditional, 
that is, dependent, probability statements:

1. Superpopulation process: w
i
 ~ Bern(Ω)

2. State process (occurrence): z
ij 
~ Bern(w

i*y
i
)

3. Observation process (detection): ~ (6, * )ij ij ijx Bin z p

This model could also be described as a three-level, hierarchical, non-standard 
generalized linear mixed model (GLMM) or alternatively, as a non-standard ran-
dom effects logistic regression (Kéry 2010).

However, the model as currently described has too many parameters to be useful 
and some constraints need to be introduced. Assuming that the occupancy and the 
detection probabilities of the species in the metacommunity are not independent, 
but stochastically dependent in the form of belonging to some common probability 
distribution, reduces the complexity of this model and makes it useful for inference. 
This means that we are making a random-effects assumption about the species-
specific effects in occupancy and detection. In our case, we made the customary 
assumption that the logit transforms of the two parameters are random draws from 
a normal distribution whose mean and variance we estimate. Specifically, for occu-
pancy we assumed logit( )i iψ = a  and 2~ Normal( , )i a aa m s  and for detection 
logit( )i ip = b  and 2~ Normal( , )i b bb m s . (For problems of convergence induced 
frequently by this logistic-normal specification of heterogeneity in WinBUGS and 
a workaround see Kéry and Royle 2009). Importantly, it is precisely this random-
effects assumption about the effects on occurrence and detection of all species in 
the metacommunity, i.e., seen or unseen, which constitutes the extrapolation from 
the seen species to the unseen ones.

We note furthermore that this is a remarkably parsimonious description of a 
metacommunity and the associated detection process: the entire variation in occur-
rence and detection of all species, detected and undetected, is described by just five 
structural parameters in the hierarchical model: the super-population inclusion 
probability Ω (serving the role of community size) and the two normal means ma 

and mb and their associated variances 2
as  and 2

bs . See Kéry and Royle (2008a) for 
further details and results. One of the results of this study was to point out that a 
great advantage of the Dorazio-Royle community model is its spatial integration. 
Thus, compared to a site-wise application of Burnham’s jackknife, the integrated 
model provides much more precise estimates (in terms of their SE) and in addition, 
the integrated model provided many fewer unreasonable estimates.

As is customary for a random-effects GLM, this model can be extended in a 
modular way as needed and as warranted by the available data. For instance, it is 
likely that there exists a correlation between y

i
 and p

i
 (see Dorazio et al. 2006 for 

an explanation and an example) and this can be easily accommodated by assum-
ing a bivariate normal distribution for the logit transforms of these parameters, 
see Kéry and Royle (2009). Further, the linear predictors for either occupancy or 
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detection could be extended to include other effects, either random or fixed. Fixed 
effects could include habitat effects on occurrence or detection-relevant effects 
such as season or time of day on detection, see Kéry and Royle (2009) or Kéry et 
al. (2008) for examples. Importantly, when covariates that vary by occasion are 
included, the observed data must be modeled in their original, uncollapsed for-
mat; that is, we will then model the three-dimensional array as x

ijk
, and the obser-

vation process will be described by a Bernoulli rather than by a binomial 
distribution with sample size > 1, as above (see Kéry and Royle 2009 for 
WinBUGS code examples). Further, random site effects could be included on 
occupancy and these could be made spatially dependent by imposing some 
distance-related correlation function to obtain a geostatistical multi-species site 
occupancy model for a metacommunity. It is one of the key advantages of hierar-
chical models that such extensions are conceptually easy and can be added in a 
fully modular way (Royle and Dorazio 2008). R and WinBUGS code examples 
to fit some of these models can be found in Dorazio et al. (2006), Kéry and Royle 
(2009), Royle and Dorazio (2008), and Zipkin et al. (2009).

One interesting aspect of the modeling of a metacommunity concerns the main 
community metric, N. Much of biogeography deals with explaining large-scale 
variation in species richness. So how would one model relationships between N and 
covariates such as habitat descriptors in the framework of a multi-species site 
occupancy model? It appears that this is awkward, since N is not a primary parameter 
but a derived quantity, the sum of z

i
 over all species. An obvious ad hoc tactic 

alternative would be to estimate N for each study site and then model these 
estimates in a second analysis as a function of the covariates of interest. However, 
doing this while properly accounting for the variance–covariance of the estimates 
would be extremely difficult and normally, such analyses are conducted in a way 
that ignores the uncertainty in the estimates from the first analysis. Another, more 
integrated, approach would be to apply the hierarchical N-mixture model (Royle 
2004) for estimation of population, or here, community size, from spatially and 
temporally replicated counts of species. This approach would integrate the informa-
tion across the spatial samples but would not retain species identity, so might be 
slightly less efficient that a multi-species site-occupancy model.

So the direct modeling of species richness under the multi-species site occupancy 
model is not intuitive. Perhaps, the important thing is this: the organic construction 
of the model as a representation of an animal metacommunity and its observation 
focuses one’s thinking on the actual process that generates the observed patterns of 
species richness, that is, the Bernoulli random process governed by occupancy 
probability of each species, including its relationship with covariates. At the basis 
of any observed association between species richness and, say, a habitat covariate 
is exactly the collection of all species-specific relationships between occupancy 
probability, y

i
, and that covariate. This is perhaps a good example for one of the 

great heuristic benefits of hierarchical models; that they force us into a more 
mechanistic way of thinking.

Camera traps are typically used to study medium and large carnivores and carni-
vore communities seldom contain many species, even at locations with relatively 
high biodiversity. In any case, community size N is unknown and can be estimated 



224 M. Kéry

under the multi-species site occupancy model. The main advantage of using this 
modeling framework may reside in the fact that species “borrow strength” from 
each other. Estimates for species with very sparse data may be greatly improved in 
this way (see Nichols et al. 2008 and Zipkin et al. 2009).

12.3.2 Dynamic Metacommunity

The final inferential situation in the classification scheme depicted in Table 12.1 
concerns the modeling of spatial and temporal variation in an animal community. 
This contains some of the most recent methodological developments and so this 
section will be less well developed than the previous ones. I will mention two 
approaches, ad hoc two-step analyses and dynamic multi-species site occupancy 
models for robust design data.

First and obviously, some static community quantities such as richness or 
dynamic ones such as the vital rates and turnover could be estimated at each of a 
collection of sites using any of the methods previously described. Resulting estimates 
could then be plugged into a second analysis and modeled as a function of spatial 
or other covariates that describe each single community. In spite of the drawbacks 
mentioned earlier, this would seem to be almost the only approach that is accessible 
to a biologist at present.

Second, the multi-species site occupancy model described in the previous 
section is currently being extended to the dynamic case. There are at least two ways 
in which the modeling of the dynamics of metacommunities could be approached: 
temporal covariate and Markovian, or temporal dependence, models (see Royle and 
Dorazio 2008, Sect. 12.4.). For both cases, data are required in the robust design 
format, i.e., there must be at least two replicate observations during a period of 
closure within each of multiple seasons.

The simpler and “cheap” way to model the dynamics of a metacommunity is by 
using some temporal covariate that is informative about the occurrence of species. 
We chose this approach in the context of a Swiss butterfly metacommunity inhabiting 
13 sites that was observed over an entire season (April–September; see Kéry et al. 
2009). There were 4–7 primary sampling occasions and two nested secondary sampling 
occasions. Butterflies, like many other animal or plant species in a seasonal envi-
ronment, have rather well defined flying periods that can be approximated by some 
simple function of time. To model the occurrence of each species in the dynamic 
metacommunity over the entire season, we fitted the multi-species site occupancy 
model to the observations from all primary sampling occasions and related the 
occurrence of each species in each primary occasion to season (e.g., expressed as 
the number of days since April 1) in a species-specific quadratic function. This 
allowed us to obtain estimates of the total size of the butterfly community and 
especially also estimates of the number of species that occurred in each community 
over the entire season. In addition, we obtained detection-corrected phenology 
curves for each species as well as estimates of detection probability for each species. 
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Since strong temporal correlations of occurrence are typical for many species in 
seasonal environments, we expect this modeling framework to be useful in many 
situations. Code examples for running these models in WinBUGS are given in Kéry 
et al. (2009). Obviously, depending on the biological questions and the amount of 
data available, all the typical extensions could be considered again, such as addi-
tional covariates for occurrence or detection, random-effects modeling or correlated 
random effects.

The temporal covariate model does not explicitly model the temporal changes in 
the metacommunity in a mechanistic way, that is, as a function of species appear-
ances (colonization, recruitment) and disappearances (extinctions). However, this 
can be done, and the most general description of a dynamic metacommunity is the 
multi-species extension of the dynamic, single-species site occupancy model 
described by MacKenzie et al. (2003) of which Royle and Kéry (2007) described a 
hierarchical version implemented in WinBUGS. Again, species-specific parameters 
can be collected together using random-effects assumptions; this is, what represents 
the extrapolation from the seen to the unseen part of the communities. A model of 
this type has been recently developed for the seasonal butterfly metacommunity 
previously described and can be implemented in WinBUGS (Dorazio et al. 2010; 
see also Russell et al. 2009).

This concludes our overview of methods of inference about communities and 
metacommunities under imperfect observations of some of their members. It is 
likely that especially for the dynamic metacommunity case, much progress is to be 
expected in the coming years.

12.4 Design Considerations

To obtain data that can be analyzed with methods described in this chapter, many points 
need to be considered and some of them are very general. As initial advice, I like the 
forceful simplicity of the prescription given by Yoccoz et al. (2001) for monitoring 
studies, which applies equally to any study of a wild population or community: first, 
take an adequate spatial sample, and second, take detection probability into account.

Regarding the former, without some sort of probabilistic selection of sites, formal 
inference to a broader statistical “population” cannot be made using the laws of prob-
ability (Thompson 2002; Thompson 2004; Kéry and Schmidt 2008). Unfortunately, 
the commandment of a random or other probabilistic spatial sample is violated in a 
large majority of ecological field studies as well as in many monitoring programs 
(Pollock et al. 2002). With regard to the latter (detection), application of an estimation 
framework as described in this chapter takes this issue into account.

In the following, we briefly discuss issues that are relevant for the proper appli-
cation of these models. Since several methods described are based on site occupancy 
models, the papers by MacKenzie and Royle (2005) and Bailey et al. (2007) are 
certainly very relevant. The latter paper also describes a software program, GENPRES, 
which is useful for studying questions about the design of occupancy studies.
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Almost all models described assume a closed community at some point in time, 
and repeated observations of that community provide the information required to 
model false negative errors in the observation process, i.e., detection probability. 
Closure can be attained by limiting the temporal spacing of secondary samples in 
a robust design. Sometimes it may have to be achieved by discarding some infor-
mation. For instance, bird communities that are sampled repeatedly over an entire 
breeding season (mid-April to mid-July) may have some late-arriving migrants 
that were not yet available during the first one or two replicate visits. Hence, the 
resulting zeroes do not contain information about the binomial detection process 
but rather constitute structural zeroes. One of the easiest ways to deal with that is 
by simply deleting the associated observations (but only for those species) or 
equivalently, turning them into missing values (Kéry and Royle 2009). This is 
possible in the more modern estimation frameworks based for instance on site 
occupancy models, but it wasn’t for the jackknife estimator which requires bal-
anced data. An alternative would be to model the seasonal availability of these 
species along the lines of the butterfly work described in the section on dynamic 
metacommunities (Kéry et al. 2009).

Rota et al. (2009) have developed a formal hypothesis test of the closure 
assumption used in occupancy models and show how to compute analytically the 
power of detecting violations of closure as a function of sample size, and extinction 
and colonization probabilities. They present results for both the standard sampling 
protocol and for the “removal” sampling protocol wherein each site is only sampled 
until first detection of the species.

Population estimation in the presence of individual detection heterogeneity is 
difficult (Link 2003) and yet heterogeneity is a law of life. Reducing detection 
heterogeneity between species is useful and ultimately allows for more robust infer-
ences. This can be done by standardization at the design stage or by use of some 
covariates that can “explain away” some of the differences between species. Also, 
the discrepancies in inferences under different heterogeneity formulations described 
by Link (2003) are reduced for higher detection probability, so a high survey effort 
pays dividends.

All of the CR-based models described in this chapter assume that the observa-
tion process contains only false negative errors, and this assumption is of course 
always violated to some degree: in most situations, misidentifications, representing 
false positive errors, can occur and lead to the detection of a species that is, in real-
ity, not “there”. False positive errors in a site occupancy context have been dealt 
with by Royle and Link (2006). Their results generate concern since they show that 
even small false positive error rates can contaminate the data and lead to remark-
able bias in estimates of occupancy. As is intuitive, this bias is even increased with 
increasing number of observations. Incorporating false positives (misclassification) 
in CR models is an active area of research, but a difficult one. At present, it appears 
important to try and eliminate false positives to the extent possible, for instance by 
using well-trained personnel. And most importantly, it is highly beneficial to dis-
card any doubtful records. This will tend to increase the number of false negative 
errors and hence lower detection probability, but of course, our models deal with 
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this very well. However, discarding doubtful cases will also tend to clean up our 
data from false-positives, with which our models cannot really deal in a satisfactory 
way at present.

CR consists of representing in a model the main features in detection probability. 
In general, the more structure there is, i.e., the more parameters are needed for 
describing the observation process, the less precise are our inferences about the 
community. Therefore, it is advantageous to eliminate as many effects on detection 
as possible. For instance, if possible, try to avoid behavioral effects by using an 
appropriate design such as truly independent replicate observations. Adding behav-
ioral effects into a model, even though it can be done technically, usually greatly 
inflates the uncertainty about parameter estimates. Similarly, reducing variation in 
detection over time pays.

Several choices have to be made regarding sample size: number of sites (com-
munities), number of species (if subsets of a community are studied) and number of 
temporal replicates within seasons (over which closure is assumed). In an occupancy 
setting, some of these questions can be valuably informed by the simulation facilities 
provided in the programs PRESENCE and GENPRES. In general, simulation is the 
best tool to study required sample sizes to attain a desired level of precision of the 
estimates or to gauge the effects of the violation of model assumptions.

I have stressed the importance of accounting for species-specific heterogeneity 
in detection probability when applying an estimation framework in a community 
context. Typically, only few (if any) temporal replicates are available, e.g., 2 or 3, 
and it may be asked rightly whether this is enough to model species heterogeneity 
in detection probability. Otis et al. (1978) always recommend at least five replicates 
in order to discriminate and fit even single-effect models. More research on mini-
mal required sample sizes would be welcome. However, it is likely that in inte-
grated models, where integration means combined analysis of similar data over 
many spatial or temporal replicates such as in the Dorazio and Royle (2005) model, 
the combination of the information about detection across sites (in the static case) 
and primary occasions (in the dynamic case, cf. butterfly study) is likely to pay 
great dividends in this respect.

In a practical application, not only should model assumptions be met as well as 
possible, but a design should be used that achieves a certain precision weighed 
against some maximum cost. For example, the removal sampling protocol could be 
useful in reducing the number of temporal replicates at each site. Much remains to 
be learned about achieving optimal designs, and the aforementioned papers by 
MacKenzie and Royle and Bailey et al. and their associated recommendations and 
software are expecially relevant, as is the speculation made by Dorazio et al. (2006), 
about the importance of sequential sampling designs. Sampling design in commu-
nity studies is another area of research where we can expect much progress in the 
future, either from theoretical investigations or from the comparison of empirical 
studies under different designs.

Acknowledgements I thank Jim Nichols as well as Bob Dorazio, Andy Royle, Allan O’Connell 
and Elise Zipkin for very valuable comments to this chapter.
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13.1 Introduction

The number of biological species that occurs at a particular geographic unit, whether 
that be global, a biogeographic region, country, or national park, is of great relevance 
to the management and conservation of biodiversity. Major policy initiatives at the 
international, national, and regional levels have committed entire government pro-
grams to attaining measurable targets of this variable in the conservation of biodiver-
sity (Danielsen et al. 2005). The Convention on Biological Diversity lists a reduction 
in the rate of loss of biodiversity as a goal for 2010 and many of the indicators proposed 
to measure achievement of that goal are indices that hopefully track changes in species 
richness (United Nations Environment Programme 2002). It is unlikely that govern-
ments will be able to judge their progress without monitoring systems and indicators 
in place to assess the effectiveness of their interventions (Balmford et al. 2005). 
Species diversity usually refers to the number of species in a location or “species rich-
ness” (Schluter and Ricklefs 1993; Lande 1996). Species richness is often used as a 
state variable in evaluating the impact of management interventions and anthropogenic 
disturbance on biodiversity. One of the greatest hindrances to understanding and con-
serving biodiversity, however, is our inability to determine how many species we have 
and how fast that number is changing (Balmford et al. 2005; May 1988).

Species richness can be broken down into three, scale-dependent components. 
Total diversity on a regional scale is called g-diversity and is composed of average 
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site-level diversity in a region or a-diversity, and the turnover of species among sites 
or b-diversity. Typically, b-diversity is calculated from a- and g-diversity. Whittaker 
(1972) defined the relationship between measures as g = ab, a multiplicative relationship. 
Whittaker’s approach leads to b-diversity expressed in dimensionless units of species 
turnover. Lande (1996) notes that Whittaker’s b-diversity is actually the inverse of 
community similarity in species composition rather than a diversity metric. Lande 
(1996) defined the relationship between measures additively, g = b + a, an approach that 
leads to b-diversity expressed in units of species richness. b-diversity can be further 
divided into the variety of habitats and the habitat breadth of species (the inverse of the 
average number of habitats each species occupies: Schluter and Ricklefs 1993).

Ideally, if we knew the abundance of every species, a species abundance 
distribution, composed of the number of individuals of each species in the community, 
would tell us everything we need to know about species richness and evenness (a 
measure of the equitability in distribution of abundance or biomass among species 
in a community). Unfortunately, we are rarely fortunate to have complete knowledge, 
and usually some species escape the sampling effort. With rare exception, it is typical 
that after a sample of n individuals, many species are represented by only one or two 
individuals recorded in only a few samples. It is well known that, as sampling effort 
increases, the likelihood of detecting new individuals of rare species increases, but also 
the detection of new, rare species increases. Mao and Colwell (2005) refer to this as 
“Preston’s demon” or the sampling-dependent movement of the veil line between 
detected and undetected species (Preston 1948). Estimating the number of undetected 
species in a sample is the major challenge to understanding species richness and the 
processes that underlie the dynamics of species richness (Nichols et al. 1998a, b).

There are many approaches to estimating species richness including the extrapo-
lation of species-area or species-effort curves, the use of parametric models of species 
abundance based on count statistics, use of taxon ratios, and estimation of species 
richness based on sampling (Bunge and Fitzpatrick 1993; Colwell and Coddington 
1994; Magurran 1988). The use of species-area or species-effort curves is based on 
sampling relationships. It is well known that the number of species S

n
 in a sample 

increases as sampling effort n increases (n = number of individuals sampled, the 
size of the area sampled, the number of habitats sampled) up to the limit of total 
species, S

max
, in the sample area. Species-area/-effort curves exploit the relationship 

between S
n
 and n by fitting curves to the pattern of species accumulation and 

estimating the asymptote. Colwell and Coddington (1994) review asymptotic and 
non-asymptotic methods of calculating species richness based on species accumu-
lation curves. They point out that the basic problem with extrapolation is that different 
models give different S

max
 for the same data (a given sample effort n produces 

different S
n
). Because the appropriate curve depends on the rate of species accumu-

lation, which in turn depends on the distribution of species abundance, as well as 
on other sources of variation in animal detection probabilities (individuals of different 
species are not likely to be equally detectable), no single model is expected to work 
across a range of accumulation patterns. This is problematic because the answer 
depends on the method and the choice of method is subjective.

Cam et al. (2002a) present a probabilistic, non-parametric estimator of species richness 
for use with species accumulation data. They make the connection between species 
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richness estimation and abundance estimation using capture-removal models in 
which the detection probability changes after the first detection (Model M

b
: Otis et al. 

1978). Removal models are appropriate for species accumulation data because a spe-
cies is removed from the population after its first detection so the only statistics are the 
number of new species detected at each sample period. Cam et al. (2002a) recommend 
the Otis et al. (1978) model M

bh
 in which each species may have a different detection 

probability. They suggest that the jackknife estimator of Pollock and Otto (1983) may 
be the most appropriate for species accumulation data. This approach has the advan-
tage of being less dependent on assumptions about the underlying distribution of spe-
cies richness and is based on the sampling process rather than curve-fitting.

Colwell and Coddington (1994) also review the utility of species abundance dis-
tributions to estimate species richness based on count data. These models include the 
classic lognormal distribution (Preston 1948) and log-series distribution of abun-
dance (Williams 1964). Approaches based on such distributions typically assume 
abundances to be known. The major problem with these methods relates to the general 
problem of using count data addressed in several chapters in this book: true abun-
dance is not known and counts are unlikely to be proportional to true abundance for 
all species. The use of counts that are biased in many different directions depending 
on the species set, results in species richness estimates that are biased in unknown 
directions. In addition, for the case of the parametric models, the choice of interval 
size for abundance categories affects the final answer, and this choice is subjective. 
The lognormal distribution is very sensitive to the number of rare species repre-
sented by only one individual. Finally, there is no measure of reliability for estimates 
of species richness resulting from the lognormal distribution. The log-series model 
has no theoretical limit on the number of species in a distribution. If there is a mea-
sure of effort or number of individuals, however, a log-series fit may give reasonable 
estimates of species richness. Log-series estimates, however, still depend on sample 
effort and relative abundance, producing estimates of S

max
 that are difficult to inter-

pret because the degree of bias is unknown. In addition, proper interpretation of 
species count data requires estimation of the detection probabilities.

Good (1953) first suggested the use of probabilistic models to estimate the number 
of species in a sample as an alternative to fitting species frequencies to particular 
distributions of data (e.g., Chambers and Yule 1942; Corbett et al. 1943; Preston 
1948). Burnham and Overton (1979) suggested the use of models that incorporate 
heterogeneity in species-specific detection probabilities into estimates of species 
richness. The various-order jackknife estimators for the detection heterogeneity 
model of Burnham and Overton (1978, 1979) is the same as the M

h
 estimator in 

closed population estimation permitting heterogeneous capture probabilities among 
individuals (Otis et al. 1978; Williams et al. 2002). For example, species richness 
Ŝ can be estimated by the first-order jackknife:

 
1

ˆ ( 1) / ,S S t f t= + −obs
 (13.1)

where S
obs

 is the number of species observed in t samples and f
1
 is the number of 

species found in only one sample. The general form of the jackknife estimator 
for species richness is
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1

ˆ ,obs
=

= + ∑
l

l il i
i

S S fα  (13.2)

where the a
il
 are constants corresponding to the jackknife estimators of order l 

(Burnham and Overton 1978, 1979) and f
i
 are the number of species seen at exactly i 

of l samples. Thus, f
1
 is the number of species observed at only one sample, f

2
 is the 

number of species observed at two samples and so on. A different kind of estimator 
was proposed by Chao et al. (1992) that relaxes the assumption of equal catchability 
within each species across samples and is analogous to the M

th
 model described by 

Otis et al. (1978). Nichols and Pollock (1983) and Nichols et al. (1986) applied 
Burnham and Overton’s model to the problem of estimating taxonomic diversity and 
extinction rates in the fossil record. Boulinier et al. (1998) and Nichols et al. (1998a, b) 
developed these ideas into spatial and temporal models of species richness that allow 
estimation of extinction, colonization and turnover, all important statistics in 
community dynamics. Using Pollock’s (1982) robust design, these models incorpo-
rate species detection probabilities into the estimation process (see O'Brien, 
Chap. 6 and Kéry, Chap. 12). The program COMDYN (Hines et al. 1999) was 
developed to estimate species richness and associated dynamics parameters using a 
robust design framework.

Because species richness can be estimated from detection/nondetection data, 
recent developments have focused on the use of occupancy models to estimate 
species richness at a site or at a collection of sites (MacKenzie et al. 2006). 
Occupancy models are especially useful for estimation involving site level 
species richness when a list of potential species occurring at the site or in the 
region is available. Species richness at a particular site will be determined by 
local environmental conditions (i.e., habitat) and by the regional species pool (the 
list) that contains all possible species for the area. Cam et al. (2000, 2002b) refer 
to relative species richness, ĵ, as the ratio of species at a single site (a-diversity) 
to the number of species in the regional species pool (g-diversity) or the propor-
tion of total species at a given site. Cam et al. (2000) use the estimated relative 
species richness, ϕ̂ , as an indicator: sites with favorable conditions should have 
greater ϕ̂  than sites that are degraded. ϕ̂  may also be used as a temporal indica-
tor to measure changes in species richness at a site over time. The estimators of 
Cam et al. (2000) are based on the nonparametric estimator of Burnham and 
Overton (1979), developed to deal with heterogeneous detection probabilities not 
associated with species-specific covariates.

When the regional species pool is known, each species may serve as a “site” in 
the context of occupancy sampling. Replicated sampling is carried out (e.g., at a 
single location) and a detection history is constructed for each species in the 
regional pool. The detection history matrix will often contain regional pool species 
that are never detected in the study area. The proportional occupancy of the species, 
ψ̂ , is then interpreted as the probability that a member of the regional pool is pres-
ent in the sample, which is the same as ϕ̂  described by Cam et al. (2000). 
Occupancy modeling allows tracking of changes in species richness over time and 
the modeling of covariates that might affect detectability, extinction or colonization 
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(MacKenzie et al. 2003, 2006). The use of covariates is not possible in the capture 
–recapture (CR) models of Cam et al. (2000) because undetected species are not used 
in the estimation, providing no ability to use covariate information of such species.

13.2 Camera Traps and Species Lists

Typically, ecologists and conservation biologists are concerned with a component 
of biodiversity, rather than total biodiversity. Even studies of biodiversity components, 
however, tend to be complex. Studies attempting to document species richness of 
only terrestrial vertebrate taxa must use a wide range of sampling methods appro-
priate for different taxa. This might, for example, involve line transects for arboreal 
mammals, terrestrial and arboreal trapping for rodents, point counts for birds, drift 
fence trapping for reptiles and amphibians, harp traps for bats, acoustic recording 
for birds, frogs and bats, spoor and sign count surveys, and camera trapping. Camera 
trapping is especially useful for medium-sized to large, terrestrial and semi-terres-
trial mammals, and for large ground birds. While these birds and mammals may 
represent a relatively small proportion of the overall species richness at a site or 
region, it is frequently an especially important threatened subset of vertebrate spe-
cies. Thus, many management activities specifically target this group.

Camera trapping offers some distinct advantages over other methods for surveying 
terrestrial mammals and birds. The method is non-invasive in the sense that taking 
a photograph does not represent a form of harassment of wildlife. Because camera 
traps operate in the absence of humans, there is no observer bias, or response of 
animals to humans, factors that need to be considered in line transects and point 
count surveys. There is a possibility that use of a flash may affect the behavior of 
nocturnal animals, but there is little evidence to support the idea that animals alter 
movement behavior in response to being photographed. Camera traps can operate 
for extended periods of time in remote locations, which makes them especially useful 
as a sampling tool. They can operate 24 h per day which means that the same 
technique may be used for diurnal and nocturnal sampling. Finally, they provide an 
unambiguous record of the species, date and time of detection.

Camera trapping may be especially useful for estimating species richness at a 
particular location, especially when the opportunities for other forms of sampling 
are limited. Although no new species have yet been discovered using camera traps, 
a number of significant re-discoveries and new location records for mammals and 
birds have been possible using remote camera detection methods. On the island of 
Sumatra in Indonesia, camera trapping led to the re-discovery of the giant pitta 
Pitta caerulea, Sunda Ground Cuckoo (M. Linkie, pers. commun) and Sumatran 
striped rabbit (Nesolagus netscheri) in two national parks. In Lao PDR, camera 
traps documented the Annamites Mountains striped rabbit Nesolagus timinsi and 
the Saola Pseudoryx nghetinhenis. In the United States, Zielinski et al. (2005), used 
camera traps to document changes in diversity of the forest carnivore community 
of the Sierra Nevada mountains.
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Table 13.1 illustrates the usefulness of camera trapping in mammal surveys. 
Where camera trap survey efforts have exceeded 1,000 trapdays (e.g., Thailand and 
Indonesia) the cameras have documented the occurrence of 50% or more of the 
total medium and large mammal fauna expected to occur at the site, based on a 
regional species list. The relatively poor performance of camera traps in the 
Pantanal and the Amazon samples probably results from inadequate sampling 
efforts (<500 trapdays, Trolle 2003a). In all survey efforts, however, camera traps 
recorded species undocumented by other survey techniques. In Bukit Barisan 
Selatan National Park, Indonesia, in addition to the giant pitta and striped rabbit, 
the use of camera traps revealed two previously unrecorded pheasant species, a 
second pitta, otter civet Cynogale bennetti, as well as several new records for other 
civets. Camera traps are especially useful for nocturnal terrestrial mammals that 
may hide during the day and for forest mammals. Camera traps are less useful 
detecting the smaller terrestrial species (i.e., rats) or arboreal species such as squir-
rels and medium-sized primates, but even these mammals occasionally appear in 
camera trap photos.

Although species lists are informative about the potential richness of a site, 
there are limitations. Regional species lists or pooled species lists represent the 
accumulated knowledge of a site rather than a snapshot estimate of current species 
richness. Historical presence does not equate to presence today so the regional lists 
only give an idea of the potential species richness. Species lists resulting from a 
sample based on transects, point counts, or camera trapping, represent count data 
and are subject to all of the limitations of count data due to differences in detect-
ability among species.

Table 13.1 Mammal Surveys (excluding bats, small rodents) using camera trapping and transect-
based sampling and old species lists, based on combined, previously published species lists. The 
regional species pool is the expected occurrence of medium and large mammals in the area and 
relative S

obs
 is the proportion of the regional species pool detected by camera trapping and by 

transect-based methods, not corrected for detectability

Pantanal Amazon Thailanda,b Indonesiaa,b Tanzaniab

Camera trap 16 13 30 39 25
Transects 26 23 31 19 41
Old lists – 31 57 22 45
Regional 

species pool
43 50 60 55 55

Relative S
obs

 
(cameras)

0.37 0.26 0.50 0.71 0.46

Relative S
obs

 
(transects)

0.60 0.46 0.52 0.34 0.91

Source Trolle 
(2003a)

Trolle 
(2003b)

Lynam et 
al. (2006)

O’Brien et al. 
(unpubl. data)

Foley et al. 
(unpubl. data),  
J. Kingdon  
(pers. comm.)

a Camera trap surveys conducted over > 1 time period
b Transect surveys conducted over > 1 time period
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13.3  Estimating and Monitoring Species Richness:  
An Example from Indonesia

In 1998, we established a camera trapping program in Bukit Barisan Selatan 
National Park (BBSNP: Fig. 13.1) on the island of Sumatra, Indonesia to monitor 
changes over time in the abundance of tigers and their prey species (O’Brien et al. 
2003), to document edge avoidance by the Sumatran tiger Panthera tigris sumatrae, 
elephant Elephas maximus and rhinoceros Dicerorhinus sumatrensis (Kinnaird et al. 
2003), and to assess the effects of hunting on wildlife species (Wibisono 2006). The 
camera trapping design consists of 10 sampling blocks, each 20 km2 in size 
(2 km × 10 km), oriented from the park boundary inward and spaced at 10–15 km 
intervals along the 150 km length of the park (Fig. 13.1). Camera traps were 
deployed at randomized UTM coordinates within each square kilometer of a sam-
pling block (one camera per km2) and operated for approximately 30 days or until 
all film was exposed. Blocks were surveyed sequentially until all 10 blocks were 
completed. Parkwide surveys were conducted in 1998/1999, 2000/2001, 2002/2003, 
2003/2004 and 2005/2006 (hereafter referred to by the first year).

Fig. 13.1 Location of camera trap sampling blocks in the Bukit Barisan Selatan National Park, 
Sumatra, Indonesia
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This sampling design has some useful features for general biodiversity surveys. 
First, the randomized placement of traps is appropriate for sampling a range 
of species because it breaks the tendency to find the “best” place to trap a particular 
species, a practice that may lead to subjective compromising of trap location or 
convenience sampling. The clustered sample within spatially separated blocks 
allows partitioning of diversity into its components. If we wished to treat the park 
as a landscape, we could decompose g-diversity for the entire park into a-diversity 
at the level of sampling blocks and b-diversity between sample blocks. For the first 
example, however, we treat the southern half of Sumatra as the region and the Bukit 
Barisan Selatan National Park as a single site. The secondary samples are the 10 
sampling blocks surveyed in each of five temporal replications. We will consider 
three measures of species richness: observed species richness based on the number 
of species actually photographed during a sampling interval, a detection-corrected 
estimate of species richness (based on model M

h
: Burnham and Overton 1979; 

Nichols et al. 1998a, b) and relative species richness (Cam et al. 2000), another 
detection-corrected estimate of species richness.

13.3.1 Observed and Estimated Species Richness

To determine the observed and estimated species richness, we restricted the analysis 
to medium- and large-sized, terrestrial and semi-terrestrial mammals, and to the 
four largest species of terrestrial birds: the Red junglefowl Gallus gallus, Great 
argus pheasant Argusianus argus, Sumatran peacock-pheasant Polyplectron suma-
tranus and Salvadori’s pheasant Lophura inornata. Given the height at which the 
cameras were positioned, we assumed that the cameras did not capture small mam-
mals and small ground birds reliably or systematically. Thus, ground squirrels, 
treeshrews, rodents and arboreal primates were excluded from this analysis. The 
analysis used the software COMDYN (Nichols et al. 1998a, b; Hines et al. 1999) 
which incorporates Pollock’s (1982) robust design approach to estimate species 
richness, rate of change in species richness, local extinction probability (rate), 
turnover rates and the number of colonizing species between two survey samples 
separated in space or in time. We follow Nichols et al. (1998a, b) definition of local 
extinction probability during the time period (i, j) as the likelihood that a species 
present in the community at time i is not present in the community at time j, for j > i. 
Turnover rate is defined as the probability that a species selected at random from 
the community at time j is a species that was not present in the community at time 
i. The number of colonizing species is the number of species not present at time i 
that entered the community between times i and j and are still present at time j.

Temporal surveys were compared sequentially such that the 1998 survey was 
compared to the 2000 survey, the 2000 survey was compared to the 2002 survey and 
so on. Data were summarized as follows. In each of 10 sampling blocks, we com-
bined the species detected for all camera traps within the block over the month of 
sampling. The sampling blocks are analogous to survey stops within a single survey 
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route (Nichols et al. 1998a, b) and are the secondary samples of the robust design. 
The species richness estimates and associated statistics are based on two sets of 
samples: f

i
, i = 1, 2, …, 10 is the number of species detected in exactly i sampling 

blocks, and n
i
 is the number of species detected in sampling block i. We calculated 

f
i
 and n

i
 for each sample year and for a subset of the species detected each sample 

year composed of the f
i
 and n

i
 at the second time period (year) for the subset of species 

detected in the first time period (year) and f
i
 and n

i
 at the first time period for the 

subset of species detected in the second time period (Hines et al. 1999). Estimates 
associated with change in species richness over time are based on the subset of species 
that were detected in year 1 that were also detected in year 2, and the subset of 
species detected in year 2 that were also detected in year 1 (Table 13.2).

The rate of change in species richness (l
ij
) is a useful metric for biodiversity 

monitoring. It can be estimated as the ratio of the estimated species richness for 
times i and j ( ˆ ˆ/j iS S ). If the average detection probabilities are equal for the two 
time periods then l

ij
 may be calculated directly from the number of species 

observed during each time period. Using the observed counts of species should 
result in smaller variances of ˆ

ijλ than using the estimated values, and when i jp p=  
the estimate should be relatively unbiased.

The rate of local extinction is calculated in COMDYN as the complement of the 
likelihood that a species present at time i is still present at time j. If S

obs,i
 is the 

number of species observed at time i and M
j
i, is the number of these species still 

present in period j, then the extinction rate (E) can be estimated as

Table 13.2 Species detection histories for Bukit Barisan Selatan National Park camera trap sur-
veys between 1998 and 2005

Species data
# species 
detected

# species detected in i blocks (i = 1 to 10)

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
10

Number of species detected (1998) 29 5 5 1 3 3 1 4 1 3 3
Number of species detected (2000) 27 2 8 2 0 1 2 2 4 3 3
Number of species detected (2002) 26 4 8 1 1 2 2 0 3 2 3
Number of species detected (2003) 28 6 2 5 4 1 2 3 2 1 2
Number of species detected (2005) 23 5 2 3 2 4 1 2 2 2 0
Number of species in 1998 detected 

in 2000
25 3 3 1 3 3 1 4 1 3 3

Number of species in 2000 detected 
in 1998

25 0 8 2 0 1 2 2 4 3 3

Number of species in 2000 detected 
in 2002

24 1 7 1 0 1 2 2 4 3 3

Number of species in 2002 detected 
in 2000

24 2 8 1 1 2 2 0 3 2 3

Number of species in 2002 detected 
in 2003

25 4 7 1 1 2 2 0 3 2 3

Number of species in 2003 detected 
in 2002

25 4 1 5 4 1 2 3 2 1 2

Number of species in 2003 detected 
in 2005

23 3 2 3 4 1 2 3 2 1 2

Number of species in 2005 detected 
in 2003

23 5 2 3 2 4 1 2 2 2 0
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ˆ

ˆ 1 .
i
jM

E
S

= −
obs,i

 (13.3)

The proportion of extinct species is one minus the proportion of species that 
persisted.

The turnover rate (T) is calculated in a similar manner as the extinction rate but 
in the reverse time order. If S

obs,j
 is the number of species observed at time j, and M

i
j 

of the species were present at time i, then the turnover rate is calculated as the pro-
portion of new species or species that were not present at time period i and is 
denoted by

 
ˆ

ˆ 1 .
j

iM
T

S
= −

obs, j

 (13.4)

The COMDYN software outputs a parameter PHI that is an estimate of the proportion 
of species present at time 2 among those present at time 1 that is used to calculate 
the complement, Ê . Similarly, COMDYN outputs a parameter GAMMA that is an 
estimate of the of the proportion of species present at time 2 that were also present 
at time 1 and uses this to calculate the complement T̂ .

We considered a total of 32 species observed during the five replications in the 
analysis (28 of the 39 observed mammals [rodents and arboreal mammals were 
excluded] plus 4 terrestrial birds). The observed number of species tended to 
decline over time as did the estimated species richness although there is consider-
able overlap among confidence intervals in all five estimates of ˆ

iS  (Table 13.3; 
Fig. 13.2). S

obs
 falls within the 95% confidence interval of ˆ

iS in every sample except 
2000, a result consistent with the high average detection probabilities. The standard 
errors and confidence intervals of ˆ

iS  increase substantially in the last two samples 
reflecting an increase in the proportion of rare species and decline in proportion of 
common species in the sample. The average detection probability did not differ 
significantly over time (P > 0.1, Table 13.3).

The estimated rates of local extinction during the four time intervals ranged from 
0 to 0.138, while the turnover rate ranged from 0 to 0.084 (Table 13.3). Between 
1998 and 2000, the estimated extinction probability exceeded turnover, and the 
number of colonizing species was moderately low (<5 species). Between 2000 and 
2002, both local extinction and turnover rates were low and the estimate of coloniz-
ing species was 0. Between 2002 and 2003 we see a jump in turnover rate and esti-
mated number of colonizing species rises to five species. Finally, between 2003 and 
2005 we see an increase in the rate of local extinction, a drop in turnover and no new 
colonizing species. The overall conclusion for BBSNP is that there has been a net 
loss of species over time since 1998, with the number of local extinctions exceeding 
the number of colonizing species. We note that the rates of extinction and turnover 
are dependent on the time interval separating the sampling occasions. In this analy-
sis, we have compared three sampling intervals of two years and one sampling 
interval of one year. Ideally, we would like to compare estimates of similar intervals, 
or make adjustments such that all estimates reflect a similar time interval.
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Fig. 13.2 Number of species observed in camera traps and estimated species richness (with standard 
error bars)
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An important question regarding these data is the rate of change of species rich-
ness. The lack of significant difference among the estimated p–’s indicates that the 
ˆ

ijλ  estimated directly from the observed number of species should provide a more 
precise estimate than the estimated values. In Fig. 13.3, the difference between the 
observed and estimated rate of change based on observed and estimated richness is 
very small at all time intervals indicating that the ˆ

ijλ  based on observed species 
numbers are relatively unbiased. The standard errors and confidence intervals for 
the estimated ˆ

ijλ  are similar to those based on observed number of species for the 
first two intervals but much larger for the last two time intervals. In this case, the 
use of either ratio makes little difference to the overall trend. Using the geometric 
mean of the ratio between 1998 and 2005 for estimated l

ij
, and l

ij
 based on 

observed number of species, we find the trends average 2.9% and 2.4% decline in 
overall observed and estimated species per year, respectively. Both estimates sug-
gest that species richness has declined over time in BBSNP.

13.3.2 Relative Species Richness

A second method to estimate and monitor species richness relies on the use of the 
regional species pool list to estimate the relative species richness, j,̂ , or the propor-
tion of the regional species list present at a site. Estimation of j,̂  may proceed using 
M

h
 estimates of species richness (Boulinier et al. 1998) adjusted by the regional 
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Ŝ)
, a

ve
ra

ge
 d

et
ec

tio
n 

pr
ob

ab
ili

ty
 (

p- )
, e

xt
in

ct
io

n 
ra

te
 

(Ê
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species pool (Cam et al. 2000) or by using occupancy analysis (MacKenzie et al. 
2006). Species that have a zero probability of being detected should not be 
included in the regional species pool. In practice, however, it is often difficult to 
say unambiguously that a species has zero chance of detection unless we know for 
certain that it does not occur at the site, or we know for certain that our sampling 
method has no chance of detecting the species if it is present. For this example, we 
restrict the regional species pool to mammals (excluding small rodents) and retain 
mammals that are unlikely to be sampled because of specialized habitat needs but 
still may have detection probabilities > 0. Specifically, we include three species  
of otters and the otter civet, as well as giant squirrels, gibbons and langurs. The 
regional species pool therefore includes 37 terrestrial species, 4 semi-aquatic 
 species and 13 arboreal species for a total of 54 species.

We followed MacKenzie et al. (2006) using occupancy analysis to estimate relative 
species richness. We treat the park as a single site, pooling the data from all camera 
sites into four observation periods of eight days each. We used a robust design 
(Pollock 1982) in which the five surveys (1998–2005) are the primary sampling 
periods and the four observation periods represent the secondary sampling periods 
within five primary sampling periods. In order to explore the possible effects of body 
size and preferred habitat strata we included body length (transformed to mean 0 and 
variance 1) and stratum (terrestrial, other to indicate arboreal and semi-aquatic) as 
covariates. We also included year as a covariate. We considered three sets of hypotheses 
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Fig. 13.3 Rates of change in species richness over time based on the number of species detected 
and on estimated species richness with bootstrap 95% confidence intervals. Points are offset for 
ease of reading
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related to the covariates. First, we predicted that the detection probability, extinction 
rate and colonization rate would vary over time. Second, we predicted that detection 
probability and extinction probability would increase with increasing body size. We 
believed that since there was ongoing poaching of large mammals for commercial 
markets and for subsistence, that body size might affect the likelihood of local extinc-
tion but not local colonization. Finally, we predicted that terrestrial mammals were 
more likely to be detected than arboreal or semi-aquatic mammals. So we only con-
sidered models in which colonization rate was constant or varied with time, extinc-
tion rate that was constant or varied with time and/or body size, and in which 
detection probability was modeled as a function of time, body size and substrate.

We used a multi-season occupancy model that treated the different species in the 
regional species pool as the “sites,” and each species was known to be present during 
an observation period if it appeared at least once in a camera trap throughout the 
park during an 8-day observation period. For each of five primary sampling periods, 
we assume that a species is present or absent from the park and that system state 
does not change (community closure) within a sampling period. Changes in species 
presence may occur between primary sampling periods so that at primary time t:

 ( ) ( )1 1 1 11 1 ,t t t t tj j e j g− − − −= − + −  (13.5)

where e
t−1

 represents local extinction rate and g
t−1

 represents the local colonization 
rate between time t − 1 and t. The ratio of j

t
/j

t−1
 can be used as a measure of the 

rate of change in species richness in a community.
We initially fit 64 relative species richness models in PRESENCE 2.0. We 

ranked models using the Akaike Information Criterion (AIC) to select the most 
appropriate model for describing the data well using the minimum number of 
parameters for adequate description (Burnham and Anderson 2002). The difference 
between the AIC for a model and the lowest value AIC model is DAIC which can 
be used to compute model likelihoods, measures of the relative strength of evidence 
for a model. AIC model weights are measures reflecting the evidence that a particu-
lar model is the “best” model for the data among the models being compared. 
Sometimes, the weight of evidence may support several alternative models, indicating 
that the “best” model might vary from data set to data set. Multi-model inference, 
based on model averaging, may be used to improve the stability of parameter esti-
mates (Burnham and Anderson 2002). Model averaging uses the AIC weights to 
develop weighted parameter estimates. 

The analysis resulted in 23 models with AIC weights greater than 0. Considering 
only the models with AIC weights ≥ 0.05 resulted in the selection of six possible 
models (Table 13.4). The model with low AIC [φγ(.)ε(year)p(year, size)], included 
extinction probabilities that varied over time, and detection probabilities that varied 
by time and by the size of the species. The low AIC model received a model weight 
of 0.3657, indicating only moderate support for this model while the second model 
[φγ(.) ε(year, size) p(year)] that included size as a covariate of extinction, received 
a weight of 0.2548. All models included an effect of time on extinction probabilities 
and three of six models included an effect of body size (sum of model weights 
equals 0.4209). All models included an effect of time and body size on detection 
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Table 13.4 Multi-season occupancy model selection statistics for analysis of relative species 
richness using occupancy statistics. The models estimate relative species richness for 1998 (j), 
local colonization (g), and extinction (e), and detection probability (p). Covariates for p, g and e 
include time (year), transformed body size (size), and preferred habitat stratum (stratum). Results 
are given for only the top six models with AIC weights greater than or equal to 5%, and AIC 
weights have been adjusted to the model set

Model AIC DAIC Weight (%)
−2 log 
likelihood Parameters

j,g (.),e(year),p(year, size) 856.24 0.00 36.57 823.24 12
j,g (.),e(year, size),p(year, size) 856.97 0.73 25.38 830.97 13
j,g (.),e(year),p(year, size, stratum) 857.98 1.74 15.32 831.98 13
j,g (.),e(year, size),p(year, size, 

stratum)
858.56 2.32 11.46 830.56 14

j,g (year),e(year),p(year, size) 859.85 3.61 6.01 829.85 15
j,g (year),e(year, size),p(year, size) 860.12 3.88 5.25 828.12 16

Table 13.5 Model-averaged relative species richness and community dynamics estimates for 
camera trap samples in Bukit Barisan Selatan National Park calculated from results based on 
PRESENCE software. Each replicate includes the proportion of species detected (j

obs
) from the 

regional species pool, estimated proportion of species (ĵ) with average detection probability (p̂), 
bootstrap estimates of standard error (SE), extinction rate (ê), and colonization rate (ĝ). Extinction 
and colonization rates are calculated for interval t to t + 1

Year f
obs

ĵ SE p̂ SE ê SE ĝ SE

1998 0.555 0.606 0.159 0.598 0.264 0.1762 0.1908 0.0649 0.0706
2000 0.537 0.540 0.272 0.608 0.251 0.0050 0.0121 0.0622 0.0666
2002 0.518 0.551 0.210 0.528 0.279 0.0000 0.0001 0.0650 0.0715
2003 0.593 0.600 0.205 0.563 0.285 0.3414 0.3409 0.0531 0.0625
2005 0.389 0.405 0.381 0.581 0.262

probability, and two models included effects of stratum (sum of model weights 
equals 0.2678). There was only weak support for covariate effects on colonization; 
the last two models included an effect of year (sum of model weights equals 
0.1126).

Because there are several models that might be supported given the same data 
set, model uncertainty is high. We used model averaging (Burnham and Anderson 
2002) to develop weighted estimates of relative species richness, colonization, 
extinction and detection probabilities (Table 13.5). In this example, the relative 
richness based on detected species tracks ĵ reasonably well (Table 13.5) and 
observed j’s fall within the 95% confidence interval for ĵ. This is an expected 
result when detection probabilities are high; in this example average detection 
probability exceeded 0.5 in every survey. Average detection probabilities varied by 
time and body size, as we predicted. For species with body length under 100 cm, 
detection probabilities ranged from 0.01 to 0.64 whereas for larger species, 
detection probabilities ranged from 0.15 to 0.99. There was some support for an 
effect of preferred habitat stratum on detection: average detection probabilities for 
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terrestrial mammals were twice as large as for arboreal and semi-aquatic species. 
Semi-aquatic species were not detected during the five surveys, although they are 
known from the study area and have appeared in camera trap photographs outside 
this survey.

Extinction rates (Table 13.5) for relative species richness follow the same gen-
eral trend as the results for estimated species richness (Fig. 13.3), but are much 
higher in the last interval. Probability of extinction varied by time and was high in 
the first and last interval but low in the middle intervals. There was an effect of body 
size on extinction probabilities but the relationship was opposite to our prediction: 
larger-bodied mammals had lower extinction probabilities. Mammals < 100 cm in 
length had extinction probabilities averaging 78% higher than mammals greater 
than 100 cm between the first and second sampling periods, and 55% greater 
between the fourth and fifth sampling periods. Finally, there was weak support for 
an effect of time on colonization with colonization estimates higher between the 
first and second sampling period and the third and fourth sampling period, com-
pared to the other two estimates. We caution placing too much emphasis on the 
interpretation of short term variation because it is composed of sampling variation 
as well meaningful biological variation.

If we examine the rate of change in relative species richness between 1998 and 
2005 using the geometric mean, we find that the rate of decline is 5% per year. Note 
that this is higher than reported above for the estimates of absolute richness, reflect-
ing the higher estimated extinction rate for relative species richness between the 
fourth and fifth sampling interval. In this example, a 5% decline per year in the 
relative species richness translates to a loss of 1.6 species per year from the local 
area compared to 0.7 species per year based on the estimated species richness. 
Despite this apparent disparity, the annual rates of change in species richness for 
the two methods are not significantly different and both suggest a consistent decline 
of species richness over time.

So what do these results tell us about sampling terrestrial communities of larger-
bodied mammals and birds in tropical forests using camera traps? First, the results 
indicate that camera traps appear to be effective in detecting mammalian and bird 
species and estimating number of species for terrestrial mammals and large terres-
trial birds. Species were detected with consistently high detection probabilities in 
both analyses, and a large proportion of the expected species were detected during 
the sampling periods. The fact that several of these species are nocturnal and most 
have never shown up except as chance observations in the park suggests that camera 
traps are a cost-effective method of monitoring this component of biodiversity in 
tropical forests.

Second, this analysis points out some of the pitfalls faced when a large number 
of rare species turn up in a sample. In the analysis of absolute species richness using 
COMDYN in which we considered 10 spatial replicates per primary sample, the 
confirmed species or species that were actually photographed occur, on average, in 
four of the five primary sample periods and are detected in 2.3 replicates per primary 
sample. Within a sample, seven species on average are considered rare because they 
were detected in only one replication per primary sampling period, and we estimate 
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that 1–3 rare species were undetected in each sample period. During the 2003 
sample, 10 rare species were detected, and each of these species was consistently 
rare or absent in other sample periods. The large number of rare species in the 2003 
sample increased the species richness estimate somewhat and decreased precision. 
In the relative species richness analysis, the high uncertainty associated with the 
best model led to a model averaging solution. Model averaging introduces an addi-
tional component of variation to the estimate of SE, the difference between the 
model-specific and model-averaged parameter values, and this reduces the precision 
of final estimates. Although the trend data suggest that absolute and relative species 
richness are declining, the high rates of colonization and extinction indicate that 
species are rapidly moving in and out of the local sample area.

Our inference about declining species richness in Bukit Barisan Selatan National 
Park is also supported by an analysis of occupancy and associated relative abundance 
(T. G. O’Brien, unpublished manuscript). We analyzed the trends in occupancy and 
relative abundance for 25 species in the park that had sufficient data and found evidence 
of a widespread decline in both occupancy and relative abundance among species, sug-
gesting shrinkage of occupied habitat and smaller population sizes. Commercially 
exploited species (Sumatran tiger, elephant and rhinoceros) exhibited the most dramatic 
declines in occupancy and relative abundance, suggesting an important role of hunting. 
Wibisono (2006) reported that tigers in BBSNP declined by nearly 50% between 1999 
and 2003. Wibisono also reported high hunting pressure on ungulate species and docu-
mented the spatial distribution of hunting. The combined results of these analyses sup-
port the trends predicted earlier by Kinnaird et al. (2003) and O’Brien et al. (2003) of 
continued erosion of species populations due to habitat loss and hunting.

Nichols et al. (1998a) also discuss potential problems with the estimation of the 
extinction, colonization, and turnover probabilities induced by variation among 
species in population sizes (see also Alpizar-Jara et al. 2004). If heterogeneity in 
detection probability due to population size is significant, then the observed species 
upon which we base our estimates will tend to have more individuals than species 
present but not observed and thus likely higher detection probabilities. To explore 
the effect of abundance on detection and vital rates, one might divide the species 
into high and low detection groups based on abundance and calculate vital rates for 
sub-groups (Alpizar-Jara et al. 2004) or incorporate abundance estimates directly 
as covariates in a relative species abundance analysis.

We believe that camera trapping can serve an important function in biodiversity 
monitoring programs that include monitoring the terrestrial bird and mammal com-
ponent of biodiversity. We expect that use of camera traps for species richness 
estimation of terrestrial birds and mammals will prove most useful in forest, wood-
land and shrub habitats where visual detection range is limited and most species are 
cryptic. The methods will also be useful where nocturnal mammals form an important 
component of the community of interest.

Because many terrestrial bird and mammal species appear to be rare, camera 
trap studies of species richness need to be conducted over a sufficient length of time 
to ensure that rare species have a reasonable expectation of detection. We recom-
mend that total effort in a sample exceed 1,000 trapdays.
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Camera trap studies of species richness, as in studies of single species (e.g., 
Karanth et al. 2006) need to be conducted at the landscape scale appropriate to the 
most wide-ranging members of the community of interest. If trap placements are 
too close together, the sampling effort may miss species that are in the landscape 
but outside the trap array. We believe it is better to space traps as widely as is practi-
cal to maximize the total area covered by camera traps.
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14.1  Introduction

As documented in the preceding chapters, the use of camera traps in animal  ecology has 
undergone an appropriate and substantive evolution. This evolution has included the 
general uses of camera traps and the resulting data, as well as more specific topics such 
as equipment and statistical inference methods. Collectively, the contributions of this 
volume should not be viewed as an endpoint summary, but as a milestone along this 
evolutionary path. The various authors have attempted to briefly summarize that evolu-
tion, to describe current methods and uses of camera trap data, and to provide some new 
methods that we expect to see increased use in the future. In this chapter, we use the 
preceding chapters to provide brief summaries of the current state of the art and science 
of camera trap use and then provide speculation and recommendations about changes 
that we anticipate and hope for in the next decade. In terms of organization, we first 
focus on the overall uses of camera traps and resulting data, as these uses provide the 
framework needed to evaluate all further methodological developments. We then 
 discuss equipment and finish with a review of statistical inference methods.

14.2  Uses of Camera Trap Data

Initial uses of camera traps were primarily by nature photographers and natural 
historians to obtain snapshot observations of secretive animals (Kucera and Barrett, 
Chap. 2). Currently, scientists and managers employ camera traps to investigate 
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animal behavior (Bridges and Noss, Chap. 5) and to estimate state variables and 
rate parameters that characterize  populations and communities of animals (e.g., 
Karanth et al., Chap. 7; Maffei et al., Chap. 8; Karanth et al., Chap. 9; O’Brien et 
al., Chap. 13). As noted by O’Brien (Chap. 6), efforts to use camera trap data to 
draw inferences about quantities such as population size effectively began in the 
early 1990s, as Karanth (1995) exploited the natural markings of tigers to estimate 
tiger abundance using formal capture–recapture (CR) methods. As documented in 
O’Brien’s (Chap. 6) review, many of the investigations using camera traps over the 
last decade have focused on estimation methodology. We view this focus as appro-
priate and reasonable for an emergent methodology.

We expect methodological development to continue (see below), but we hope 
that subsequent efforts to estimate parameters of animal populations and communi-
ties are better integrated into overall programs of science or management. All too 
frequently, abundance estimates of animals have been viewed as endpoints, rather 
than as components of larger programs of inquiry or management. We certainly 
understand this initial focus on estimation, as it is natural to want to obtain the first 
real abundance estimates of secretive animals for which such inference has been 
previously impossible. However, it is difficult to argue for the importance of such 
estimates, without the context provided by a larger program of science or conserva-
tion/management. Because camera trap studies are relatively expensive of funds 
and effort, we believe that they should be focused on estimates that are useful either 
for discriminating among competing hypotheses (science) or for informing 
 management decisions (Nichols et al., Chap. 4).

In various parts of the world, camera traps are being used to monitor animal 
populations. However, just as isolated estimates of abundance have low inherent 
value, series of such estimates across time and/or space are also of limited utility 
when viewed alone. Such estimates are most useful when the monitoring program 
is embedded within a larger program of science or management (Yoccoz et al. 
2001; Nichols and Williams 2006). In these cases, it is clear exactly how the result-
ing estimates are to be used as parts of the larger endeavor (see Chap. 4).

As an example of the use of camera trap data in scientific inquiry, Karanth et al. 
(2004) tested an a priori hypothesis about a predicted positive relationship between 
tiger and prey densities. The nature of the hypothesis required estimates of density 
of tigers and principal prey species at a number of sites across India. Camera traps 
were used to estimate tiger densities, and distance sampling was used to estimate 
densities of prey. The approach to spatial monitoring was inherited from the tested 
hypothesis, as appropriate in the conduct of science. Unfortunately, we believe that 
this tailoring of sampling design and data needs to an a priori question or set of 
questions is relatively rare for those using camera traps. Our hope is that the future 
will bring fewer studies initiated simply to provide estimates of animal abundance 
or density and more studies designed to provide such estimates for the purpose of 
discriminating among competing ideas or hypotheses.

As outlined in Chap. 4, the components of a good program of informed man-
agement include: (1) objectives, (2) potential management actions, (3) model(s) for 
predicting system response to management actions and (4) a monitoring program. 
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In informed management, the monitoring program is needed to produce estimates 
of state variables such as population size to serve at least three distinct purposes: (1) 
making state-dependent management decisions, (2) assessing the degree to which 
objectives are being met, and (3) discriminating among competing hypotheses 
about how the system responds to management actions (the scientific component 
of informed management in the face of uncertainty). In the future, we hope to see 
camera traps integrated into conservation programs designed to bring about 
increases in animal numbers by such actions as establishment of corridors connect-
ing previously isolated animal populations, and increased law enforcement to pro-
tect predators and their prey. As with other areas of conservation and wildlife 
management, biologists and managers have generally done a relatively poor job of 
incorporating information from monitoring and scientific investigations into their 
management decisions. Camera trap investigations have frequently focused on 
species of high conservation value, and we hope to see these investigations properly 
integrated into serious programs of management and conservation.

14.3  Camera Trap Equipment and Photographic Data

In Chap. 3, Swann et al. showed that a variety of camera trap designs and manufacturers 
is currently available, suggesting that systems can be found to meet the needs of almost 
any scientific study or survey. Nevertheless, prototypes of camera traps based on cell 
phone platforms are now in development. We expect that such devices will improve 
system efficiency and reduce size and cost (see Chap. 7). The worlds of mobile phone 
technology and video imaging have experienced major advances in both software appli-
cations and hardware innovations (Greene 2006). A number of these technological 
advances are certain to influence camera trap systems and how we use these systems in 
the future. Geo-tagging, the integration of positioning technology with photographic 
images, will allow camera traps (i.e., using the new cell phone platform mentioned 
earlier) to have Geographic Positioning System (GPS) capability, thereby allowing 
practitioners to generate geo-referenced data more efficiently. Research continues in the 
field of image and video searching that may affect how to evaluate or analyze photo-
graphic data. Image recognition software continues to be developed and, for camera 
traps, such programs can play an important role in identifying individual animals (see 
below for a further discussion). In keeping with the cell phone platform referred 
to earlier, incorporating projection systems into cell phone-sized camera traps could 
allow for remote viewing of traps, tracking animal movement over time and space, 
again insuring a more efficient and cost-effective sampling process.

Whatever the choice or need with respect to the type of camera trap (and we 
include videographic devices under this umbrella), miniaturization, digital record-
ing, wireless, networked platforms and even animal-borne video and environmental 
data systems (AVEDs) are expanding the frontier of remote imaging (Moll et al. 
2007). Wireless, networked camera systems are now being used to generate 
 information ranging from presence–absence data, to more complex behavioral 
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observations of breeding birds, to the amount of time animals spend in traps 
(i.e., in order to limit time in pitfall traps and reduce associated deaths) (Hamilton 
et al. 2007; Taggart et al. 2007). Related work on image processing and analysis 
(e.g., image rectification) improve the use of camera traps and other imaging 
systems. Admittedly, some systems, such as AVEDs, may not permit the population-
wide inferences that we have come to expect from camera traps and that we 
have  discussed throughout this volume, but these systems can be used to make 
advances in other areas such as animal behavior, habitat use, and species interac-
tions, especially for elusive species in harsh, inaccessible environments (see 
Chap. 5). For example, miniaturized camera systems (Little Leonardo Co., Ltd, 
Tokyo, Japan) triggered by depth have been used to document group foraging 
behavior in Adélie Pygoscelis adeliae and chinstrap Pygoscelis antarctica pen-
guins (Takahashi et al. 2004), feeding behavior in gentoo penguins Pygoscelis 
papua (Takahashi et al. 2008), and predatory behavior in European shags 
Phalacrocorax aristotelis (Watanuki et al. 2008).

14.4  Statistical Inference Methods

As is the case for equipment, statistical methods for drawing inferences from  camera 
trap data are undergoing rapid evolution. Initial uses of camera trap data for statistical 
inference were focused on abundance of individually identifiable animals (Karanth 
1995). Over the past 15 years there has been some development of new models for 
abundance estimation and a great deal of development in the companion problem of 
translating abundance estimates into inferences about density. Recent work has also 
moved from time-specific snapshots of abundance and/or density to dynamics of these 
state variables over time. The last decade has also brought recognition that camera trap 
data for animals that are not individually identifiable can be used for inference about 
two additional state variables, occupancy and species richness. Occupancy models 
permit inference about the occurrence of a species over space and habitat types, and 
dynamic models permit inference about changes in distribution over time. Species 
richness within a specified taxonomic group is a community-level state variable, and 
its dynamics can also be studied with camera trap data.

14.4.1  Abundance and Density

Closed population CR models are used to estimate abundance from camera trap 
data for individually identifiable animals (Karanth 1995, Chap. 6). The basic set of 
models available for use with such data has not changed much since the early 
1990s. Exceptions to this general statement are models dealing with heteroge-
neous capture probabilities across individual animals. Mixture models (Norris and 
Pollock 1996; Pledger 2000) and a class of parametric models (Dorazio and Royle 
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2003) offer new and flexible approaches to this difficult estimation problem and have 
begun to see use with camera trapping data (e.g., Karanth et al. 2006).

In order to translate abundance estimates into estimates of density, it is necessary 
to draw inferences about the spatial distribution of animals that are exposed to 
capture efforts. For this purpose, Karanth and Nichols (1998, 2002) initially pro-
posed the use of information on animal movement found in multiple captures of 
individual animals during a camera trap study. Their use of such data required two 
steps, was ad hoc, and simply represented the only approach that seemed practical 
at the time. The weakness of this approach is recognized (e.g., Williams et al. 
2002) and has been the basis for arguments in the literature about which move-
ment statistics to use (Soisalo and Cavalcanti 2006, Chap. 6). One of the most 
exciting new developments in the analysis of camera trap data has been the use of 
spatially explicit CR models (Efford 2004; Borchers and Efford 2008; Royle and 
Young 2008; Royle and Dorazio 2008; Royle et al. 2009a, b; Royle and Gardner, 
Chap. 10). As noted by Royle and Gardner (Chap. 10), this approach deals nicely 
with two basic problems of the historical two-step approach to density estimation. 
First, it deals explicitly with heterogeneity in detection probabilities caused by 
different spatial locations of animals with respect to the camera trap array. Second, 
it presents a formal, single-step approach to simultaneously estimate abundance 
and density in a manner that is readily defended. Likelihood-based inferences can 
be obtained with user-friendly software DENSITY (e.g., Borchers and Efford 
2008), and the new software SPACECAP has been recently developed to implement 
flexible Bayesian approaches (Singh et al. 2010). We believe that spatially explicit 
CR modeling will eventually replace previous approaches to the analysis of camera 
trap data and become the method of choice for inference from such data.

Camera trap studies of individually identifiable animals carried out at the same 
locations across multiple years can make use of CR models for open populations 
(Karanth et al. 2006, Chap. 9). Such models permit inference about population 
dynamics and the vital rates (e.g., survival rates) responsible for such dynamics. 
For large animals that are difficult to capture (e.g., large felids), use of camera trap 
data for inference about survival should lead to larger sample sizes and stronger 
inferences than radio-telemetry, the other method used to estimate survival for 
such animals. There are now several camera trap studies that have been ongoing 
for several years at the same locations, and we anticipate much greater use of these 
data to study population dynamics and, hopefully, population responses to man-
agement actions. Some camera trap studies have been extended in space to cover 
 multiple subpopulations (K. U. Karanth, unpubl. data). Data from such programs 
can be used with multistate CR models (e.g., Williams et al. 2002) and will permit 
inferences about dispersal and connectivity within metapopulation systems. One 
of the most exciting areas of methodological development will involve spatially 
explicit CR models for open populations (Chap. 10; Gardner et al. in press). Such 
models will permit all of the usual inferences obtained from open models, but will 
additionally permit inference about home range dynamics (e.g., relatively static 
versus dynamic across years), a topic for which formal inference methods have not 
been previously available.
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We believe that an important area of research in the next decade will be the 
combination of camera trap data with other kinds of data on individual animals. For 
example, Soisalo and Cavalcanti (2006) used radio telemetry to obtain information 
on animal movement and spatial distribution that should be superior to the kinds 
of data provided by multiple recaptures of individuals in camera traps. As noted, such 
data are critical to the translation of abundance estimates into inferences about 
density. Approaches that integrate telemetry data into spatial CR modeling will be 
an exciting area of research. DNA extracted from scat samples can be used to iden-
tify individuals for CR analyses (Lukacs and Burnham 2005; Yoshizaki et al. 2009). 
K. U. Karanth’s use of both camera traps (Karanth and Nichols 1998, 2000, 2002) 
and DNA (Mondol et al. 2009) to sample tigers on the same study areas leads to the 
obvious question of how best to combine these types of data to draw inferences 
about tiger population dynamics.

The methods discussed above for the estimation of abundance and density 
require detection history data for individual animals. The methods thus presuppose 
the ability to unambiguously identify individual animals. In some cases this is readily 
accomplished, but as studies become more extensive in time and space, the use of 
pattern recognition software will play a larger role in camera trap studies. L. Hiby 
has been a pioneer in development of such software for use with the difficult case of 
animal photographs that are not standardized by distance from camera or orienta-
tion of animals (e.g., Hiby and Lovell 1990, 2001; Hiby et al. 2009; Kelly 2001). 
Such software can select from digitized photographic libraries “most probable” 
animals for matches with new photos, thus greatly facilitating the task of the inves-
tigator in matching animals to develop detection histories. We foresee increased 
need for such software as camera trapping studies are extended in space and time 
and to species for which individual identification is possible but difficult (e.g., 
Sarmento et al. 2009).

A final topic in abundance and density estimation in which we expect substantial 
development involves the general topic of study design (e.g., see Kelly 2008). 
Karanth and Nichols (2002) addressed various aspects of this issue by discussing 
desirable features of camera trap study designs. Recognizing that many researchers 
were limited by camera equipment, Karanth and Nichols (2002) also described 
designs that would permit inferences based on a limited number of camera traps. 
More recent work has considered the issue of trap spacing in more detail (e.g., 
Dillon and Kelly 2007). Royle et al. (2009b) have recently developed recommenda-
tions for optimal design of studies that intend to use newly-developed spatial CR 
models for density estimation with camera trap data. We expect the general topic 
of study design to co-evolve with inference methods, and camera trap studies of the 
next decade should benefit from this co-evolutionary work.

14.4.2  Occupancy

The development of occupancy models for inferences about whether or not a local 
area is occupied by a species (MacKenzie et al. 2006) provides a potential use for 
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camera trap data on animals for which individuals do not have natural marks that 
permit individual identification (e.g., Chap. 6 and O’Connell and Bailey, Chap. 11). 
Either spatial (multiple camera traps per sample unit) or temporal (multiple trap-
nights of a single camera trap in each sample unit) replication provides the sort of 
species detection versus non-detection data needed to estimate both detection prob-
ability and occupancy. Recent multistate occupancy models permit characterization 
of occupied locations in terms of reproductive output, disease presence, and relative 
abundance (Nichols et al. 2007; MacKenzie et al. 2009), permitting more detailed 
inferences than simply presence of the species or not. We anticipate greater use of 
camera trap data in conjunction with occupancy modeling for investigating questions 
about animal range and habitat use (MacKenzie et al. 2005, Chaps. 6 and 11).

Some occupancy studies use camera traps together with other remote sampling 
devices at each sample unit (O’Connell et al. 2006). Such studies permit inference 
about the relative detection probabilities associated with the different devices, thus 
providing evidence about the effectiveness of camera traps relative to the other 
sampling approaches (O’Connell et al. 2006; Nichols et al. 2008). These multiple 
device studies also permit inference about species occupancy at two spatial scales, 
the scale of the sample units, and the scale of the actual location of sampling 
devices within the sample units, with occupancy at the latter scale potentially vary-
ing across sampling occasions (Nichols et al. 2008).

Conducting camera trap studies at multiple locations across time (e.g., for mul-
tiple years) permits inferences about the dynamics of occupancy processes 
(MacKenzie et al. 2006). Specifically, a robust design approach (geographic and 
temporal replication within each season/year for multiple seasons/years) permits 
inferences about probabilities of local extinction and colonization across seasons/
years. The state variable of such studies can be viewed as the proportion of area or 
sample units occupied by the focal species. Such studies of occupancy dynamics 
offer the potential to draw inferences about the efficacy of management actions 
applied to different spatial units or years.

Under some sampling circumstances, species-level detection data can be used to 
estimate abundance (Royle and Nichols 2003, Chap. 6). This ability arises from the 
relationship between the probability of detecting a species at a sample unit and the 
number of individuals of that species in the sample unit. This approach can be used 
to estimate abundance using camera trap data and, if assumptions are reasonably 
met, offers some potential for inference about abundance for species that cannot be 
individually identified from photographs.

In summary, the use of occupancy modeling with camera trap detection data at 
the species level permits inferences about animal range and habitat use even for 
species for which individuals cannot be identified from photographs. These meth-
ods can be extended to study the processes underlying occupancy dynamics. In 
some sampling situations, occupancy modeling can even be used to draw inferences 
about the distribution of animal abundance across the landscape. We anticipate 
increased use of occupancy models with camera trap data for species that cannot be 
individually identified from photographs. We also expect accompanying work on 
camera trap deployment and other design issues for studies that are based on the 
occupancy modeling framework.
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14.4.3  Species Richness

Another use of camera trap data that appears to hold great potential and can be used 
even for species that are not individually identifiable is the estimation of species 
richness (Kéry, Chap. 12). Inference is based on species detection–nondetection 
data from camera traps for multiple species within some group of interest. Kéry 
(Chap. 12) describes two general approaches that use camera trap data for inference 
about species richness. The first approach substitutes species identity for individual 
identity and utilizes closed population CR modeling for community level infer-
ences (e.g., Burnham and Overton 1979, Williams et al. 2002). The second 
approach simply extends occupancy modeling to multiple species (Dorazio and 
Royle 2005, MacKenzie et al. 2006). Both approaches are reasonable, and the 
occupancy based approach permits use of species-level covariates, which will make 
it the clear choice in some situations.

Deployment of camera traps at one or more locations with replicate (temporal or 
spatial) sampling within seasons/years and extending across multiple seasons/years 
permits inference about changes in species richness over time. Such changes are 
brought about by local rates of species extinction and colonization, and these vital 
rates can be estimated as well using models patterned after those used for CR robust 
design analyses (e.g., Nichols et al. 1998). Occupancy modeling similarly permits 
inferences about species-specific rates of local colonization and extinction 
(MacKenzie et al. 2006) for the members of a community. Occupancy modeling 
(e.g., MacKenzie et al. 2009) also permits inferences about the effects of presence 
of one species at a location on the rates of local extinction or colonization for 
another species at that location, thus providing mechanistic modeling of possible 
competitive interactions that may be determinants of community dynamics.

As with the occupancy state variable, we expect to see increased use of camera trap 
data for estimation of species richness and community dynamics. For example, we 
could envision simultaneously estimating the richness of predator and prey com-
munities for the purpose of drawing inferences about the relationship between the two 
quantities. Similarly, we can envisage assessment of the effectiveness of conservation 
actions using species richness and related metrics. For example, we might expect estab-
lishment of corridors to produce increases in colonization rates and species richness. 
Camera traps deployed across the landscape and operated before and after corridor 
establishment would yield data that could be used to develop relevant inferences. As with 
the state variables of abundance, density and occupancy, we expect new work on the 
design of camera trap studies focused on a variety of animal community attributes.

14.5  Conclusions

The contributions of this volume have documented the evolution of camera trap use 
from photography of secretive animals to investigations of animal behavior to 
sophisticated analyses of population and community dynamics. As rapid and 
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impressive as this evolution has been, we expect it to continue at a similar pace into 
the next decade. We expect, and hope for, a broadening of the emphasis of camera 
trap studies from primarily methodological development to investigation of serious 
scientific and conservation questions. Clearly, data acquisition capabilities of cam-
era traps and other remote photographic hardware used in ecological field studies 
have benefited from technological advances in electrical and computer engineering. 
In addition, we anticipate further development of statistical inference methods used 
to study state variables ranging from abundance to occupancy to species richness. 
This methodological development will likely be accompanied by research on 
design of camera trap studies that are focused on one or more of these state vari-
ables. Our basic conclusion is that a book written on scientific and conservation 
uses of camera trapping 10 years from now will look substantially different than the 
present volume. We welcome such an outcome and hope that the present volume 
will contribute to the changes that we anticipate.
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