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Introduction

Histamine has been recognised for almost a century to be a mediator of acute allergic 
responses. β-Imidazolylethylamine was first synthesised in 1907 by Windaus and 
Vogt [1] and was later named histamine (from the Greek histos = tissue) because of 
its ubiquitous presence in animal tissues, particularly in mast cells. In classic phar-
macological studies, Sir Henry Dale demonstrated the potent bronchoconstrictor 
and vasodilator activity of histamine when injected intravenously into animals [2]. 
In the same laboratory 13 years later, it was noted that many of the symptoms of 
antigen injection into sensitised animals could be reproduced by histamine and it 
was, therefore, considered to be a humoral mediator of the acute allergic response 
[3]. With the description of the wheal-and-flare response in human skin, Thomas 
Lewis further expanded on the vascular actions of histamine [4]. However, it was 
not until 1953 that histamine present in human skin was localised to mast cells of 
the dermis [5].

Histamine is synthesised in the Golgi apparatus of mast cells and basophils 
by decarboxylation of its precursor amino acid, histidine, under the influence of 
histidine decarboxylase. It is stored in ionic association with the acidic residues 
of the glycosaminoglycan (GAG) side chains of heparin or related proteogly-
can [6]. Once in the extracellular environment, histamine is metabolised rapidly 
(t½ ~1 min) by either of two enzymatic pathways, by ring methylation by 
 histamine-N-methyltransferase (HMT) or by oxidative deamination by diamine oxi-
dase (DAO), the dominant route of metabolism depending on the tissue. HMT is a 
ubiquitous enzyme, which is regarded as the key enzyme for histamine  metabolism 
in the bronchial epithelium and nasal mucosa [7, 8]. Because HMT is an intracellular 
enzyme and histamine is a charged molecule, which enters the intracellular space 
with difficulty, a facilitated uptake mechanism, known  historically as ‘uptake 2’ is 
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necessary. This is performed by a group of organic cationic transporters (OCTs), 
predominantly OCT-2 and extraneuronal  monoamine transporter (EMT), sometimes 
known erroneously as OCT-3 [9]. The reaction product of  HMT-catalysed histamine 
metabolism, N-methylhistamine, is excreted by the  kidney and may be  measured 
in the urine as an index of endogenous histamine release [10]. A proportion of 
the methylated product is oxidised further by monoamine oxidase and excreted as 
methylimidazole acetic acid. In mammals, diamine oxidase expression is restricted 
to specific tissues, the highest activities being in the intestine, placenta and kidney, 
where it is thought to be responsible for blocking the transport of extracellular 
histamine from these organs into the circulation [11]. Although diamine oxidase is 
usually found associated with the plasma membrane, it is a soluble protein and is 
thought to be released into the extracellular environment upon cell stimulation [12] 
allowing it to act as either a cell-associated or cell-free enzyme. Diamine oxidase 
oxidises histamine to imidazole acetic acid. This intermediate undergoes condensa-
tion with phosphoribosyl diphosphate followed by dephosphorylation forming the 
terminal metabolite,  riboside-N-3-imidazole acetic acid.

Mast cells isolated from human lung, skin, lymphoid tissue and small intestine 
contain 3–8 pg of histamine per cell [13–15]. Histamine is secreted spontaneously 
at low levels by mast cells, the resting level in the skin being approximately 5 nM 
[16], somewhat higher than those of 0.5–2 nM found in the plasma. In normal indi-
viduals, urinary histamine clearance is around 10 μg/24 h, while in mastocytosis it 
may exceed 150 μg/24 h [17].

G Protein-Coupled Receptors

In humans, there are four subtypes of histamine receptors, H
1
, H

2
, H

3
 and H

4
, all 

encoded on different genes [18]. All histamine receptors identified so far are mem-
bers of the superfamily of G protein-coupled receptors (GPCR). This superfamily 
represents at least 500 individual membrane proteins that share a common struc-
tural motif of seven-transmembrane (TM) α-helical domains, numbered TM I–VII, 
arranged in a circular fashion [19–21] (Fig. 1). All GPCRs have specific receptor site, 
usually within the central core of the cylinder formed by the transmembrane α-helical 
domains. These sites confer ligand specificity, ligands ranging from photons, Ca2+ 
ions and small organic molecules to complex polypeptide hormones [22]. The com-
mon functional characteristic of all GPCRs is their intracellular signal mediation, 
activation of a Gαβγ heterotrimer of the cytosolic G protein complex (Fig. 1) [19].

The intracellular mechanisms of signal transduction by GPCRs is the subject of 
an excellent review by McCudden and colleagues in 2005 [23]. In this review, gua-
nine nucleotide-binding proteins or ‘G proteins’ are referred to as cellular ‘switches’, 
which alternate between a GDP-bound off state and a GTP-bound on state (Fig. 2). 
In the inactive state, the Gα subunit binds GDP and is closely associated with the Gβγ 
heterodimer, the resultant trimeric complex being closely associated with the 
cytosolic domain of the GPCR. In this state, Gβ facilitates the coupling of Gα to 
the receptor and also acts as a guanine nucleotide dissociation inhibitor (GDI) for 
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Gα-GDP, slowing the spontaneous exchange of GDP for GTP. Activation of the 
receptor occurs by binding to a site on the GPCR specific for each ligand. In the case 
of the histamine H

1
-receptor, histamine cross-links a site on transmembrane domain 

III containing an aspartate residue with one on transmembrane domain V containing 
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Fig. 1 Diagram of a GPRC within a membrane. (a) The Gγβα complex can be seen associated 
with the intracellular part of the receptor complex. (b) Numbering of the transmembrane (TM) 
domains of a GPCR. The inside and outside of the cell are labelled in this figure. This orientation 
is consistent in all figures
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Fig. 2 Standard model of the activation of a GPCR. In the absence of ligand, the Gα subunit is 
GDP-bound and closely associated with α γβ the Gγβ heterodimer. The Gα-GDP/Gγβ heterotrimer 
interacts with the cytosolic loops of a seven-transmembrane-domain G protein-coupled receptor 
(GPCR). Gγβ facilitates the coupling of Gα to receptor and also acts as a guanine nucleotide disso-
ciation inhibitor (GDI) for Gα-GDP, slowing the spontaneous exchange of GDP for GTP. Ligand 
binding (green star) stimulates guanine nucleotide exchange factors to induce a conformational 
change in the Gα subunit, allowing it to exchange GTP for GDP. Gγβ dissociates from Gα-GTP, and 
both Gα-GTP and Gγβ may then signal to their respective effectors. The cycle returns to the basal 
state when Gα hydrolyses the gamma-phosphate moiety of GTP, a reaction that is augmented by 
GTPase-accelerating proteins (gaps) such as the regulator of G protein signalling (RGS) proteins
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lysine and asparagine residues (Fig. 3) [24]. This induces a conformational change 
in the GPCR, which causes the rapid dissociation of the Gαβγ trimer from the recep-
tor [25], an event which stimulates the Gα subunit to exchange GDP for GTP and 
separate from the Gβγ subunit, allowing both subunits to signal to their respective 
effectors. The cycle returns rapidly to the basal state by the hydrolysis of the Gα 
GTP to GDP, a reaction that is augmented by GTPase-accelerating proteins (GAPs) 
such as the regulator of G protein-signalling (RGS) proteins.

In the human genome, there are 16 Gα genes, which encode for 23 known Gα 
proteins giving wide diversity to GPCRs. While these are normally classified by 
their structure, these proteins may also be divided into four major classes according 
to their cellular targets: Gαs, which stimulates adenylyl cyclase to generate cyclic 
AMP; Gαi, which inhibits adenylyl cyclase and thus opposes the action of Gαs; 
Gαq, which activate phosphoinositide-specific phospholipase C (PI-PLC) isoen-
zymes; and Gα12/13, which can regulate the small G-associated protein, RhoA.

In addition to a large number of Gα proteins, there are five known human Gβ 
and 12 human Gγ subunit genes resulting in at least 60 potential combinations of 
Gβγ dimers. The Gβγ dimer was once thought only to facilitate coupling of Gαβγ 
heterotrimers to GPCRs and act as a Gα inhibitor. However, it is now known that 
Gβγ subunits are free to activate a large number of their own effectors, including 
the regulation of K+ channels, Ca2+ channels, adenylyl cyclase and a variety of 
kinases.

The Concept of Inverse Agonism

The classical concept of interactions of competitive agonists and antagonists with 
receptors was formulated by Ariëns in 1964 in his book Molecular Pharmacology 
[26] (Fig. 4). This theory stated that an agonist must have both affinity to combine 
with the receptor and efficacy to stimulate the receptor. A ‘full agonist’ was defined 
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Fig. 3 The binding of histamine and cetirizine to the H
1
-receptor. (a) The ligand-binding site for 

GPCR is within the transmembrane (TM) domains. (b) Histamine links TMS III and V to stabilise 
the receptor in the active state. (c) Cetirizine, an H

1
-antihistamine, links TMS IV and VI to stabi-

lise the receptor in the inactive state
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as a compound that had maximal efficacy at its receptor and was given an intrinsic 
activity = 1. To explain the observation that not every agonist induced the same 
maximum effect at its receptor, the term ‘partial agonist’ was introduced for weaker 
agonists with an intrinsic activity of less than 1. In this scheme, an ‘antagonist’ was 
described as a compound with affinity for the receptor and but no efficacy to stimu-
late it. By definition antagonists possess an intrinsic activity of 0.

Thus, using this concept, an antagonist prevented receptor stimulation by bind-
ing to a receptor thereby preventing the subsequent binding of an agonist (Fig. 4). 
In retrospect, it is remarkable that the concepts of receptor stimulation and its 
blockade were developed over a period of around 75 years using only the measure-
ment of responses of isolated tissues to pharmacological agents. It is only recently 
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Fig. 4 The classical concept of interactions of competitive agonists and antagonists with recep-
tors. (a) An unstimulated receptor where the Gαβγ complex is in the inactive state (blue oval). 
(b) An activated receptor where an agonist (green star) interacts with the ligand-binding site lead-
ing to the activation of the Gαβγ complex (red star). (c) A ‘blocked’ receptor where an antagonist 
(red line) has interacted with the ligand-binding site and prevented the agonist from binding. The 
Gαβγ complex is in the inactive state (blue oval)
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with the advent of techniques for routine cell culture and molecular biology that we 
have begun to realise the inadequacies of these concepts.

With the introduction of the molecular biology of GPCRs in 1986 [27], it 
became clear that the single-state model described above was not correct. Instead, 
we should visualise the receptor as a two-state model [28] (Fig. 5a). In this model, 
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Fig. 5 Simplified two-state model of GPCR activation. In this model the two isomeric forms of 
the receptor, the inactive state R− and the active state (R*) are in equilibrium (blue and red arrows, 
respectively). (a) In the resting state the equilibrium is usually in favour of the inactive R− con-
figuration. However, if the receptor shows constitutive expression, the equilibrium will shift par-
tially to the active R+ configuration (arrows on parentheses). (b) Binding of an agonist stabilises 
the receptor in the active R* configuration and swings the equilibrium in that direction to increase 
receptor signalling. (c) Binding of an inverse agonist stabilises the receptor in the inactive R− con-
figuration and swings the equilibrium in that direction to decrease receptor signalling. In this 
model, neutral antagonists have equal affinity for both R− and R+ isoforms of the receptor and, 
therefore, do not affect the equilibrium between the two states



Histamine and Its Receptors 335

an equilibrium exists between the receptor isoforms, the inactive R− state and the 
active R+ state [29, 30]. When viewed from the intracellular space, the transmem-
brane (TM) domains I–VII of the GPCR are arranged in a clockwise fashion. The 
conformational switch from R− to R+, which is highly conserved among GPCRs 
from different families, involves rotation of TM III relative to TM VI [31]. Full 
agonists induce optimal stabilisation of the R+ state of the GPCR causing the 
equilibrium to shift maximally towards R+ (Fig. 5b). The conformational change 
involved in the isomerisation of R− to R+ enables the GPCR to promote the dissocia-
tion of GDP from G proteins, the initial and rate-limiting step in the G protein cycle 
[32]. Full agonists are very efficient at increasing the basal GDP/GTP exchange rate 
of the Gα subunit of the receptor complex and, thereby, stimulating the down-
stream events of receptor stimulation. Partial agonists are less efficient than full 
agonists at stabilizing the R+ state and, therefore, increase GDP/GTP exchange 
less efficiently. In contrast to, full inverse agonists induce optimal stabilisation 
of the R− state of the GPCR, causing the equilibrium to shift maximally towards 
R− and reducing basal GDP/GTP exchange (Fig. 5c). Partial inverse agonists have 
similar effects, but are less efficient than full inverse agonists. Neutral antagonists 
do not alter the equilibrium between R− and R+ and do not change basal G protein 
activity, but they block both the inhibitory effects of inverse agonists and the 
stimulatory effects of agonists.

Before explaining the concept of constitutive activity, it is pertinent to high-
light the differences between agonist and inverse agonist binding to the receptors. 
Histamine H

1
-inverse agonists bind to different sites on the receptor compared with 

histamine. For example, in contrast to histamine binds which cross-links TM III 
and V to activate the receptor, the inverse agonists, cetirizine and acrivastine, cross-
link amino acids on TM IV and VI to stabilise the receptor in the inactive form 
(Fig. 3). Also, the binding times are quite different. For example, the dissociation 
half-time for levocetirizine, the eutomer of cetirizine, is 142 min [33] compared to 
a few microseconds for histamine. Thus, if a receptor is constitutively active, the 
long duration of binding facilitates its reversal by inverse agonists.

The Concept of Constitutive Activity

While it is well established that GPCRs respond to stimulation by extracellular 
 ligands, the concept that they may remain in the ‘switched on’ state in the absence of 
ligand stimulation, i.e. in a constitutive or spontaneous manner, is relatively new and 
potentially important for the understanding of some disease processes [34–36].

The first evidence for constitutive activity of GPCRs was obtained for the 
δ-opioid receptor [37] and the β

2
-adrenoceptor [38]. Since that time, more than 

60 wild-type GPCRs and several disease-causing GPCR mutants have been found 
to exhibit constitutive activity [34].

Smit and colleagues [36] have recently reviewed the known disease-causing 
GPCR mutants and concluded that single-point mutations of GPCR genes may 
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cause structural changes in the transcribed receptors that may increase or decrease 
their constitutive activity. For example, normal parathyroid hormone-related pep-
tide (PHRP) does not express constitutive activity. However, two-point mutations 
have been reported to be associated with a high level of constitutive activity of the 
mutant receptor resulting in Jansen-type metaphyseal chondrodysplasia, a rare dis-
order that is typically characterised by severe growth plate abnormalities that lead 
to short-limbed dwarfism [39]. Conversely, growth hormone secretagogue receptor-
1a (GHSR-1a) naturally possesses a high level of constitutive activity. However, 
two mis-sense mutations have been reported that selectively reduce the constitutive 
activity of the GHSR while preserving its ligand responsiveness. These mutations 
are associated with short stature due to growth failure [40].

In addition to the human GPCR variants described above, a relatively novel and 
intriguing class of GPCRs, encoded by herpes viruses, exhibit marked constitutive 
activity. The herpes- and poxviruses encode more than 40 GPCRs, most of them 
displaying homology to chemokine receptors known to be implicated in the regula-
tion of the immune response. Although the roles of these viral-encoded receptors 
have not been fully defined, they are believed to subvert the immune system and to 
contribute to virus-induced pathogenesis (reviewed in [36]).

Wild-type GPCRs, i.e. those found in the most common phenotypes in the natural 
population, are the subject of a review by Seifert and Wenzel-Seifert [34]. Included 
in the tabulated list of all the known wild-type GPCRs, which have been shown to 
exhibit constitutive activity are three reports of constitutive activity in H

1
-receptors, 

three in H
2
-receptors, seven in H

3
-receptors and two in H

4
-receptors. Perhaps the 

best explored of these is the H
1
-receptor-dependent constitutive expression of the 

transcription factor NF-κB [41]. Interestingly, their data suggest that both Gαq/11 
and Gβγ subunits play a role in the agonist-induced H

1
-receptor-mediated activa-

tion of NF-κB, but that constitutive NF-κB activation by the H
1
-receptor is prima-

rily mediated through Gβγ-subunits.

Oligomerisation, Domain Swapping and Receptor 
Cooperativity

In almost all diagrams of GPCRs they are depicted as single units. This has led to 
the common belief that they function as discrete monomeric units. However, this 
is not usually the case. GPCRs are gregarious by nature and readily form dimers 
and often higher-order oligomers. When forming dimers, GPCRs may form either 
homodimers or heterodimers, the latter leading potentially to cooperativity. As this 
new and complex field is largely the domain of molecular biologists and computer 
simulation scientists, interested readers are directed to a series of recent reviews for 
further information [42–45]. However, two examples involving histamine receptors 
are given below (Fig. 6).

The first example involves the co-expression of the Gi/o-coupled human 
5-hydroxytryptamine receptor-1B (5-HT

1B
R) and the Gq/11-coupled human 
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H
1
-histamine receptor (H

1
R) [46] (Fig. 6a). Co-expression resulted in an overall 

increase in agonist-independent signalling, which was augmented by 5-HT
1B

R ago-
nists and inhibited by a selective inverse 5-HT

1B
R agonist. Furthermore, inverse H

1
R 

agonists inhibited constitutively H
1
R-mediated as well as 5-HT

1B
R agonist-induced 

signalling in cells co-expressing both receptors. This phenomenon is not solely a 
characteristic of 5-HT

1B
R and H

1
R receptors, but it is also evident with many other 

GPCRs ranging from neurotransmitters to cytokines [46]. Such cross-talk is not 
surprising as, in vivo, cells are co-stimulated simultaneously by a wide variety of 
agonists and must be able to respond to them all in a coordinated manner.

The second example involves domain swapping in the human histamine 
H

1
-receptor. Bakker and colleagues [47] investigated the potential dimerisation of 

the wild-type human H
1
R in the presence and absence of two mutated H

1
R (Fig. 6b). 

The results demonstrated the presence of both monomeric and homodimeric H
1
R 

together dimers in which there was reciprocal exchange of transmembrane domains 
6 and 7 between the receptors present in the dimer. These data suggest that domain 
swapping between heteromeric GPCRs may occur but its clinical relevance is, as 
yet, unclear.

Are Inverse Agonism, Constitutive Expression and Receptor 
Dimerisation Clinically Relevant?

Whenever a new concept is introduced, there is a period of enthusiasm followed by 
a period of doubt and finally a levelling out of its significance at a realistic level. 
With inverse agonism, constitutive expression and receptor dimerisation we are 

a

b

Fig. 6 Dimerisation and domain 
swapping in GPCRs. (a) A sim-
ple heterodimer where the two 
GPCRs are held together by elec-
trostatic bonding (green dotted 
line) between the extracellular 
domain of TM I. (b) A domain 
swapped heterodimer where the 
GPCRs have ‘swapped’ domains 
VI and VII
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clearly in the first phase, enthusiasm. If constitutive activity of GPCRs is clinically 
important, particularly in disease settings, then there is a desperate need for the 
pharmaceutical industry to develop potent and specific ligands and inverse agonists. 
This is well recognised and research in this area is blossoming [48–51]. We have 
yet to go through the period of doubt before we really know the clinical relevance 
of these novel concepts.

Histamine Receptors

The Histamine H
1
-Receptor

Most of the clinical symptoms of allergic disease result from H
1
-histamine receptor 

stimulation. In the nose, H
1
-antihistamines reduce the symptoms of rhinorrhoea, 

itching, sneezing and oedema, the last being one component of nasal blockage [52]. 
The major component of nasal blockage, dilatation of venous capacitance vessels 
resulting from nasal inflammation, is less amenable to H

1
-antihistamine therapy 

[52]. In the eye, stimulation of H
1
-histamine receptors is responsible for the major-

ity of the primary symptoms of seasonal allergic conjunctivitis, namely, lacrimation, 
reddening, itching and chemosis [53]. In the airways, stimulation of H

1
-histamine 

receptors contributes to the contraction of bronchial smooth muscle and stimula-
tion of mucus production. However, the more dominant role of the leukotrienes in 
producing these symptoms means that H

1
-antihistamines are minimally effective in 

reducing the symptoms of asthma [54]. In the skin, histamine H
1
-receptor-mediated 

effects include contraction of post-capillary vein endothelial cells to cause a wheal, 
and sensory nerve stimulation to cause pruritus and a widespread neurogenic flare 
in which neuropeptides, particularly calcitonin gene-related peptide (CGRP), are 
the final mediators of the vasodilatation [55].

The Histamine H
1
-Receptor and Inflammation

H
1
-receptor stimulation may also activate the transcription factor NF-κB [41, 56, 

57] (Fig. 7). NK-κB is a key pro-inflammatory cytokine, which is elevated in 
asthma [58] where it is involved in the production of cytokines, including TNFα, 
and IL-8, and adhesion molecules such as E-selectin, ICAM-1 and VCAM-1 [59]. 
As both the H

1
-receptor and up-regulation of cytokines and adhesion proteins by 

NF-κB are known to be involved in allergic conditions [60], it is attractive to specu-
late that in such disorders the coupling of the H

1
-receptor to the NF-κB pathway 

is of physiological importance [61]. Indeed, the reduction of NF-κB activation by 
H

1
-antihistamines [61–63] may well explain their long-term effects against allergic 

inflammation and nasal blockage [64–66].
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The Paradox of H
1
-Antihistamines and Bradykinin

Bradykinin, a nonapeptide formed by the enzymatic actions of kallikrein on extra-
cellular kininogen, plays a central role in the production of inflammation and pain. 
It is of particular interest in dermatology because of its ability to cause local oedema 
and increased blood flow in the skin and because activation of kinin pathways are 
believed to be involved in angioedema, which occurs in some patients with urti-
caria, particularly those with hereditary angioedema and C1 esterase deficiency.

When injected intradermally, bradykinin produces a wheal-and-flare response 
which is, in appearance, very similar to that produced by histamine and histamine-
releasing agents. However, assessment of extravascular histamine concentrations 
by dermal microdialysis showed that bradykinin released negligible quantities of 
histamine, certainly not sufficient to cause the observed wheal-and-flare response 
[16, 67]. These results are consistent with in vitro studies, which report that human 
skin mast cells do not release histamine in response to bradykinin [15, 68] and with 
the observation that the cutaneous sensation following the intradermal injection of 
bradykinin, a relatively long-lasting ‘burning’ sensation, is quite different from that 
of histamine, suggesting a different mechanism of action [16, 67].

Even though bradykinin releases negligible quantities of histamine, H
1
-anti-

histamines such as mepyramine [69], chlorpheniramine [70], terfenadine [71] and ceti-
rizine [72, 73] are all potent inhibitors of the response. The ability of H

1
-antihistamines 

Histamine

Inflammation

Eosinophils 
Neutrophils

E-Selectin

ICAM-1

VCAM-1

IL-8

GM-CSF

TNFa

NF-kB

NF-kB

a b

Fig. 7 H
1
-receptor activation of the transcription factor NF-κB. Two histamine H

1
-receptors are 

shown activating NF-κB, the left-hand one (a) being stimulated by histamine and the right-hand 
one (b) having constitutive expression in the absence of histamine. Activated NF-κB is transported 
to the cell nucleus where it stimulates the transcription of pro-inflammatory adhesion molecules 
and cytokines 
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to inhibit wheal-and-flare responses to inflammatory mediators, which induce small or 
negligible amounts of histamine is not unique to bradykinin, having been reported also 
for methacholine [74, 75] and platelet-activating factor (PAF) [76, 77]. Interestingly, 
H

1
-antihistamines do not block bradykinin-induced responses in the nose [78] and 

only weakly reverse them in the lung [79].
The mechanism(s) by which H

1
-antihistamines abrogate bradykinin-induced 

responses in the skin is not clear. It is tempting to speculate, therefore, that het-
erodimerization of histamine H

1
-receptors for bradykinin B

2
-receptors, M

3
-receptors 

for methacholine and PAF-R for platelet-activating factor may be responsible for 
the ability of H

1
-antihistamines to inhibit the effects of all four stimuli. Indeed, 

it has already been reported that the bradykinin B
2
-receptor has the capability of 

forming both homodimers and heterodimers, which lead to changes in its respon-
siveness upon stimulation [80]. However, no direct experimental evidence is cur-
rently available to support this hypothesis.

Central Nervous Effects Mediated by the Histamine 
H

1
-Receptor

Histamine is sometimes referred to as a ‘waking amine’ in that it is significantly 
increased during awake or light periods during which time it plays a neuroregula-
tory role. In laboratory animals, specific H

1
-receptor agonists increase wakefulness 

while specific H
1
-antihistamines produce opposite effects [81]. Clearly, the ability 

of H
1
-antihistamines to cause sedation is of great clinical importance and is dealt 

with in the chapter on antihistamines.

Molecular Aspects and Intracellular Signal Transduction

Histamine H
1
-receptors cloned from different species show a wide diversity of 

structure [82–84]. For example, the third intracellular domain of the guinea pig 
H

1
-receptor, the predicted binding site for the GTP-binding protein, showed only 

50% identity with those of the rat [84], explaining the diversity of histamine action 
between these species. However, within each species, there appears to be only a 
 single receptor protein, the human histamine H

1
-receptor gene on chromosome 

3p25 [85, 86] encoding for a 487 amino acid protein with a molecular mass of 
55.8 kDa [85, 87]. Furthermore, the absence of introns in the H

1
-receptor gene indi-

cates that a single mRNA will be transcribed with no splice variants [87].
The histamine H

1
-receptor belongs to the Gq/11 subtype of GPCR and is a 

so-called Ca2+ mobilizing receptor [46] (Fig. 8). Mobilisation of the Gqα subunit 
following activation of the H

1
-receptor stimulates membrane-associated phospholi-

pase Cβ (PLCβ) to catalyse the hydrolysis of the membrane-associated inositide 
phospholipid, phosphatidyl 4,5-biphosphate, to form inositol 1,4,5-triphosphate 
(IP

3
) and 1,2-diacylglycerol (DAG). The IP

3
 binds to ligand-gated Ca2+ channels on 
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internal membranes, leading to an influx of calcium ions into the cytoplasm where 
they bind to the calcium modulatory protein, calmodulin. The subsequent activation 
of calmodulin-dependent kinase leads to production of the physiological response 
[18, 88, 89].

In addition to stimulating the classical effects, histamine H
1
-receptor-mediated 

effects, histamine acting through the H
1
-receptor may also induce the transcription 

of NK-κB as mentioned above (Fig. 8). Biochemically, this involves the activation 
of PKC by calcium and diacylglycerol and the stimulation of NF-κB transcription. 
Recently, Bakker et al. [41] explored the H

1
-receptor-mediated activation NF-κB 

in COS-7 cells transfected with the human H
1
-receptor. They showed that both 

Gαq/11 and Gβγ subunits play a role in agonist-mediated NF-κB activation, but 
that constitutive NF-κB activation by the H

1
-receptor is mediated primarily through 

Gβγ subunits.

The Histamine H
2
-Receptor

The histamine H
2
-receptor is a Gs-coupled GPCR, which modulates cell function 

by elevating cyclic AMP. It was initially defined pharmacologically by Sir James 

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

PLC

PIP2

IP3

q/11
g

b a

DAG

PKC

Inflammation

NF-kB

Histamine

Fig. 8 Activation–secretion coupling of the histamine H
1
-receptor. Mobilisation of the Gαq 

subunit stimulates membrane-associated phospholipase C (PLC) to catalyse the hydrolysis of the 
membrane-associated inositide phospholipid, phosphatidyl 4,5-biphosphate, (PIP

2
) to form inosi-

tol 1,4,5-triphosphate (IP
3
) and 1,2-diacylglycerol (DAG). The IP

3
 binds to ligand-gated Ca2+ 

channels on internal membranes, leading to an influx of calcium ions and production of the 
physiological response. Activation of protein kinase C (PKC) by DAG in the presence of calcium 
leads to NF-κB activation
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Black and colleagues [90] following the synthesis of the ‘antagonists’ burimamide 
and cimetidine. Subsequently, H

2
-receptor antagonists became blockbuster drugs 

for the control of gastric acid secretion in the treatment of gastric and duodenal 
ulcers and Zollinger–Ellison syndrome (Fig. 9). More recently, they have been 
largely superseded by proton pump inhibitors.

The use of highly selective H
2
-receptor agonists, such as 4-(S)-methylhistamine, 

dimaprit, amthamine and impromidine, and antagonists such as ranitidine, tiotidine 
and famotidine, has suggested a wider spectrum of biological actions regulated 
by this receptor. Possible physiological actions included in a review by Del Valle 
and Gantz [91] are relaxation of airway and vascular smooth muscle; regulation of 
chronotropic and inotropic effects in right atrial and ventricular muscle respectively; 
inhibition of basophil chemotactic responsiveness; inhibition of mitogen-mediated 
immunocyte proliferation via induction of suppressor T cells; and differentiation of 
promyelocytic leukemic cells to mature granulocytes.

For allergists, probably the most interesting H
2
-receptor-mediated effects are 

those on the immune system. It has been demonstrated [92] that histamine enhances 
Th1-type responses by acting on the H

1
-receptor, which is predominantly expressed 

in the Th1 cells, whereas histamine suppresses both Th responses by acting on 
the H

2
-receptor. By these and other mechanisms, histamine interferes with the 

peripheral tolerance induced during specific immunotherapy. By actions on the 
H

2
-receptor, histamine induces the production of IL-10 by dendritic cells, induces 

IL-10 production but suppresses IL-4 and IL-13 production by Th2 cells, and 
enhances the suppressive activity of transforming growth factor β on T cells [93]. 
These observations suggest that the H

2
-receptor might participate in peripheral 

tolerance or active suppression of inflammatory-immune responses [93]. This is 
supported by the finding that premedication with the H

1
-antihistamine, terfenadine, 

Parietal Cell

Enterochromaffin
-like cell

Gastrin

G Cell

Histamine

H2-Receptor

Acid

Gastric Lumen

Fig. 9 Stimulation of gastric acid release from the gastric parietal cell stimulated by histamine 
acting at the histamine H

2
-receptor
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during rush immunotherapy with honeybee venom, enhanced long-term immune 
protection [94].

The immunoregulatory effects of histamine on antigen-presenting cells, such 
as dendritic cells and monocytes, have been reviewed recently [95]. In mono-
cytes stimulated with Toll-like receptor-triggering bacterial products, histamine, 
acting through histamine H

2
-receptor stimulation inhibits the production of 

 pro-inflammatory IL-1-like activity, TNFα, IL-12 and IL-18, but enhances IL-10 
secretion. Histamine H

2
-receptor stimulation also down-regulates CD14 expression 

on human monocytes through the regulation of ICAM-1 and B7.1 expression, lead-
ing to the reduction of innate immune responses stimulated by lipopolysaccharide. 
In maturing dendritic cells, histamine enhances intracellular cyclic AMP levels and 
stimulates IL-10 secretion, while inhibiting the production of IL-12. Finally, it has 
been demonstrated recently that histamine H

2
-receptor stimulation reduces mono-

cytes apoptosis, thus prolonging their life span and their ability to infiltrate to the 
site of inflammation. This process has been suggested to contribute to the establish-
ment of chronic allergic disorders, such as atopic dermatitis [96].

Molecular Aspects and Intracellular Signal Transduction

Although it was initially defined pharmacologically in 1972, it was not until nearly 
20 years later that the gene for the H

2
-receptor, encoded on chromosome 5 q, was 

cloned [97]. Although long and short splice variants of the resultant protein have 
been isolated, they appear to have similar binding with ligands and similar constitu-
tive activity [98].

The H
2
-receptor was initially defined pharmacologically as a Gs-coupled 

GPCR which modulates cell function by stimulating adenylyl cyclase. However, 
subsequent studies with the cloned H

2
-receptor have shown that it can also couple 

to phosphoinositide second messenger systems via a Gq subunit [99] (Fig. 10). 
Further studies demonstrated that there is differential coupling between the Gs and 
Gq subunits and the second and third intra-cytoplasmic loops of the GPCR [100]. 
Dual coupling of H

2
-receptors to Gs and Gq in cardiac myocytes is suggested to 

represent a novel mechanism to augment positive inotropic effects by simultane-
ous activation of two different signalling pathways via one receptor, the activation 
of the Gs-stimulated cyclic AMP–PKA pathway to promote Ca2+ influx through 
phosphorylation of L-type Ca2+ channels together with the Gq-stimulated increase 
in phosphoinositide turnover and Ca2+ release from intracellular stores [101].

The Histamine H
3
-Receptor

The histamine H
3
-receptor is a Gi/o-coupled GPCR, which serves primarily as a 

presynaptic receptor for histamine on nerves and is expressed almost exclusively 



344 M.K. Church

in the brain (Fig. 11). The presence of H
3
 receptors in the brain was suggested in 

1983 by Jean-Charles Schwartz and his co-workers [102] while investigating the 
ability of histamine to inhibit its own neuronal synthesis and release from depo-
larised slices of rat cortex via presynaptic feedback mechanisms. The existence of 
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g
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Fig. 10 Activation–secretion coupling of the histamine H
2
-receptor Mobilisation of the Gαs 

subunit stimulates the synthesis of cyclic AMP by membrane-associated adenylyl cyclase (AC) 
leading to increased activation of protein kinase A (PKA) and production of the physiological 
response. Also, mobilisation of the Gαq/11 subunit stimulates PLC to form PIP

2
 and IP

3
 and 

mobilise calcium as seen in the H
1
-receptor

Histamine

H3-Receptor

Neuropeptides

Fig. 11 The histamine 
H

3
-receptor acting as an 

inhibitory presynaptic recep-
tor for histamine on a nerve
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the H
3
-receptor was confirmed pharmacologically in 1987 following the synthesis 

of the agonist R-α-methylhistamine and the antagonist, thioperamide [103] and 
cloned in 1999 [104]. Autoradiographic showed that the H3R is primarily in the 
brain, predominantly in basal ganglia, hippocampus and cortical areas – the parts 
of the brain that are associated with cognition [105].

Histamine H
3
-receptor ligands and antagonists have been the subject of intense 

research within the pharmaceutical industry over the last decade. Several reviews 
[106–108] have examined the properties of H

3
-receptor antagonists and inverse 

agonists and suggest that the most promising areas of research are in narcolepsy, 
cognitive disorders, Alzheimer’s disease, obesity, attention impairment and neuro-
pathic pain.

Molecular Aspects and Intracellular Signal Transduction

The human histamine H
3
-receptor is a Gi/o-coupled GPCR encoded on chromosome 

20 q. The H
3
-receptor gene has been reported to contain three exons and two introns 

[109, 110]. The presence of introns within a gene allows alternative splicing of its 
products. Indeed, at least 20 isoforms of the human H

3
-receptor have been identi-

fied to date [111], all of which have the potential of different organ  disposition and 
signal transduction capabilities. Preliminary information on organ disposition indi-
cates that the full length receptor (hH3R-445) is found almost exclusively in the 
brain, particularly in the thalamus, caudate nucleus, putamen and cerebellum with a 
lower signal in the amygdala and a faint signal in the substantia nigra, hippocampus 
and cerebral cortex. No signal was observed in the corpus callosum, spinal cord or 
in peripheral tissues [109]. In contrast, splice variants hH3R-329 and hH3R-326 
showed a high level of expression in the amygdala, substantia nigra, cerebral cortex 
and hypothalamus, while hH3R-373/365 isoforms are expressed at a high level in 
the stomach and the hypothalamus [109, 112].

The activation–secretion coupling of the H
3
-receptor (Fig. 12) has been the sub-

ject of a recent review by Bongers and colleagues [111].

The primary function of this G• αi/o-coupled GPCR is the inhibition of adenylyl 
cyclase, which causes a decrease in intracellular cyclic AMP and a subsequent 
reduction of protein kinase A (PKA) activity. This pathway shows considerably 
constitutive activity, which may be inhibited by H

3
-receptor inverse agonists.

The H• 
3
-receptor-mediated activation of phospholipase A

2
 is also dependent on 

Gαi/o-proteins. This pathway, which has high constitutive activity, leads to the 
release of arachidonic acid, which has been suggested to be important in the 
H

3
-receptor-mediated relaxation of the guinea pig epithelium [113].

Besides H• 
3
-receptor-mediated signalling through Gαi/o-proteins, Gβγ subunits 

are known to activate signal transduction pathways such as the MAP kinase 
pathway. MAP kinases are known to have pronounced effects on cellular growth, 
differentiation and survival, as well as to be important in neuronal plasticity and 
memory processes [114].
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Akt/GSK-3• β kinases have also been shown to be activated by the H
3
-receptor, 

again an activation pathway, which shows high constitutive activity. In the cen-
tral nervous system (CNS), the Akt/GSK-3b axis plays a prominent role in brain 
function and has been implicated in neuronal migration, protection against neu-
ronal apoptosis and is believed to be altered in Alzheimer’s disease, neurological 
disorders and schizophrenia.
H• 

3
-receptor activation reduces the K+-induced mobilization of intracellular 

calcium. This signal transduction mechanism has been linked to inhibitory 
effect of the H

3
-receptor on norepinephrine exocytosis in cardiac synaptosomes 

[115].
Activation of the H• 

3
-receptor has been shown to diminish neuronal Na+ H+ 

exchanger activity. Inhibition of this exchanger is essential for the restoration 
of intracellular physiological pH and preventing acidification during ischemia. 
It is by this mechanism that H

3
-receptor ligands inhibit the excessive release of 

norepinephrine and the precipitation of cardiac arrhythmias during protracted 
myocardial ischemia [116].

While the studies of the above pathways have contributed greatly to our knowledge 
of activation–secretion coupling of the H

3
-receptor what is not yet clear is whether 

they are stimulated preferentially by different isoforms and what is the extent of 
their clinical relevance.
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Fig. 12 Activation–secretion coupling of the histamine H
3
-receptor The primary function of this 

Gαi/o subunit is the inhibition of adenylyl cyclase (AC) to cause a decrease in intracellular cyclic 
AMP and a subsequent reduction of protein kinase A (PKA) activity. The H

3
-receptor-mediated 

activation of phospholipase A
2
 (PLA

2
) leading to the release of arachidonic acid (AA) is also 

dependent on Gαi/o-proteins. H
3
-receptor-mediated signalling through Gβγ-subunits activates the 

MAP kinase (MAPK) pathway, Akt/GSK-3β kinases and calcium mobilisation
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The Histamine H
4
-Receptor

Unlike other histamine receptors, the gene for the H
4
-receptor was discov-

ered using knowledge of the human genome and sequence information of the 
H

3
-receptor [117, 118]. Conclusive demonstration of which cell types express 

the H
4
-receptor has been difficult because of its low level of expression and the 

fact that its expression appears to be controlled by inflammatory stimuli [119]. 
However, H

4
-receptor expression has been shown in the bone marrow and spleen, 

and on eosinophils and mast cells [120–122].
Ligand-binding studies have shown similarities between the H

3
- and H

4
-receptors 

in the binding of the agonist, R-(alpha)-methylhistamine [117] and other H
3
-agonists 

and antagonists, albeit with a different rank order of affinity/potency than at the 
H

3
-receptor [120]. One study suggests that H

4
-receptors do not bind conventional 

H
1
- and H

2
-antihistamines such as diphenhydramine, loratadine, ranitidine and 

cimetidine [120]. However, competition-binding studies have shown that some H
1
, 

H
2
 and H

3
 ligands also show binding at H

4
-receptors [123]. The highest affinities 

were for the tricyclic antidepressants, amitriptyline and chlorpromazine, which 
also have a high affinity for the H

1
-receptor. The other H

1
 ligands, which displayed 

high affinity for H
4
-receptors are promethazine, doxepin, indicated for depressive 

illness, particularly where sedation is required and pruritus in eczema, and cin-
narizine, which is indicated for motion sickness and vestibular disorders, such as 
vertigo, tinnitus, nausea and vomiting in Ménière’s disease. The other compounds, 
which displayed binding were imetit (H

3
-selective agonist), imaprit (H

2
-selective 

agonist), mianserin (H
1
- and H

2
-antagonist), cyproheptadine (nonselective hista-

mine/serotonin antagonist) and clozapine (an atypical antipsychotic drug with high 
affinity for a large number of receptors) [123].

Functional studies of the H
4
-receptor are in their infancy. However, this recep-

tor has been suggested it to be involved in eosinophil chemotaxis and shape 
change [124–126], in mast cell chemotaxis [121] and in neutrophil chemotaxis 
by  stimulating LTB

4
 production [127]. In vivo studies with H

4
-receptor-deficient 

mice and mice treated with H
4
-receptor antagonists showed decreased allergic 

lung inflammation, with decreases in infiltrating lung eosinophils and lym-
phocytes and decreases in Th2 responses [128]. Ex vivo restimulation of T cells 
from those animals showed reductions in IL-4, IL-5, IL-13, IL-6 and IL-17 
levels. The authors postulate that H

4
-receptor blockade on dendritic cells leads to 

decreases in cytokine and chemokine production and limits their ability to induce 
Th2 responses.

The expression of histamine H
4
-receptors in human synovial cells obtained from 

patients suffering from rheumatoid arthritis [129, 130], in inflammatory bowel 
disease [131], in nasal polyposis [132] and in the human placenta in diabetes-
complicated pregnancy [133] suggest a widespread role for this receptor in inflam-
mation. Furthermore, its expression on mast cells and eosinophils suggests that 
the histamine H

4
-receptor may represent a therapeutic target for the regulation of 

immune function, particularly with respect to allergy and asthma.
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Molecular Aspects and Intracellular Signal Transduction

The histamine H
4
-receptor gene is encoded on chromosome 18q11.2 [117, 123, 

134] and has a similar structure to that of the H
3
-receptor gene, having three exons 

and two introns [119]. At the protein level, the human H
4
-receptor has a sequence 

identity of 54% in the transmembrane domains and an overall sequence identity of 
31% compared with the H

3
-receptor [135]. Only recently have splice variants been 

reported and that is only in the patent literature [136].
The H

4
-receptor is coupled mainly to Gi/o proteins stimulation of which leads to 

a pertussis-toxin-sensitive decrease in the production of cyclic AMP and the inhibi-
tion of downstream events such as cyclic AMP responsive element-binding protein 
(CREB)-dependent gene transcription [135] (Fig. 13). As with most Gi/o-coupled 
GPCRs, H

4
-receptor activation increases [35S]GTPγS binding [137]. The obser-

vation of high basal levels of [35S]GTPγS in cells transfected with H
4
-receptors 

indicates that the H
4
-receptor is constitutively active [135]. This is confirmed by 

the ability of the inverse agonist, thioperamide, to decrease the basal binding of 
[35S] GTPγS to H

4
-receptors in the absence of ligand [137].

Histamine-mediated activation of endogenous H
4
-receptors in mast cells results 

in a clear Ca2+ response, which is sensitive to both pertussis toxin and the phospholi-
pase C inhibitor U73122 [121]. These observations indicate that phospholipase C is 
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Fig. 13 Activation–secretion coupling of the histamine H4
3
-receptor Like the H

3
-receptor the 

H
4
-receptor is coupled mainly to Gi/o proteins, stimulation of which leads to a decrease in the 

production of cyclic AMP. Also, the Gβγ subunits that dissociate from Gi/o proteins following 
H

4
-receptor stimulation in mast cells stimulate the PLC/PIP

2
/IP

3
 pathway to raise intracellular 

calcium
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activated via Gβγ subunits that dissociate from Gi/o proteins following H
4
-receptor 

stimulation in mast cells [135]. This Ca2+ response, which is likely to be linked to 
chemotaxis, has also been demonstrated in eosinophils [125].

While the functional histamine H
4
-receptors have been demonstrated on mast 

cells and eosinophils, their effects on cell activation and their clinical importance 
compared with cytokines and chemokines are as yet unknown (Fig. 14).
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