Chapter 5
Developmental Expression of Kriippel-like
Factors

Yizeng Yang and Jonathan P. Katz

Abstract Kriippel-like factors (KLFs) are members of an emerging family of
DNA-binding transcriptional regulators with critical roles in development, differ-
entiation, and a number of other key cellular processes. The KLF family contains
at least 17 members, many with overlapping patterns of expression and function,
and all linked by a similar DNA-binding element. During development, KLLFs may
function as transcriptional activators or repressors depending on the cell or tissue
context or even the stage of development. Here, we provide a brief introduction
to the expression patterns and established roles of the KLFs in development. By
examining these patterns and functions, we uncover a number of themes that are
explored in detail in ensuing chapters.

Introduction

Members of the KLF family of transcription factors play an essential role during
embryonic development and cell-specific lineage differentiation. In many cases, the
expression of these factors during embryogenesis is spatiotemporally restricted and
regulated. By binding to “CACCC” elements in the regulatory regions of specific
target genes, KLFs control multiple intracellular signaling pathways important for
cellular proliferation and differentiation, organogenesis, and stem cell commitment.
Recently, the role of the KLFs in development has been expanded by the identi-
fication of a function for these factors in somatic cell reprogramming to induced
pluripotent stem (iPS) cells (Jiang et al. 2008; Okita et al. 2007). Many of the
KLFs can be either transcriptional activators or repressors depending on the cell
or tissue context or even the developmental stage. In this review, we provide a
brief introduction to the expression and the established roles of the KLFs during
development (Table 1).
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KLFs in Development

KLF1

KIf1 was first identified as an erythroid lineage-specific zinc finger transcription
factor, named erythroid Kriippel-like factor (EKLF) (Miller and Bieker 1993). Klf1
plays a essential role in the y-hemoglobin to B-hemoglobin switch during fetal
development, and inactivation of KIfI in mice results in defective hematopoiesis
in fetal liver and death from anemia, with a deficit in B-globin expression by E16,
providing a model for B-thalassemia (Miller and Bieker 1993; Nuez et al. 1995;
Perkins et al. 1995). KIfI is expressed in the yolk sac as early as E7.5. Following
the development of the hematopoietic system, KIfI appears in fetal liver and the
mesoderm near the hindgut toward the dorsal aorta at E10.5, and by E14.5 KIf1 is
restricted to the fetal liver. KIf1 is not required for yolk sac hematopoiesis or expan-
sion of erythroid progenitors (Perkins et al. 1995) but is required for the last steps of
erythroid differentiation (Drissen et al. 2005). Interestingly, KIfI is down-regulated
in megakaryocytes and inhibits the formation of megakaryocytes while stimulating
erythroid differentiation (Frontelo et al. 2007).

KLF2

KIf2 is expressed temporally during early embryonic development and plays an
important role in the development of the lungs, blood vessels, T lymphocytes,
and adipocytes (Kuo et al. 1997a, 1997b; Wani et al. 1999; Wu et al. 2005). In
the adult, KIf2 is highly expressed in the lung and thus was initially identified as
lung Kriippel-like factor (LKLF) (Anderson et al. 1995). Expression of KIf2 is first
seen in vascular endothelial cells throughout the developing mouse embryo at E9.5
(Anderson et al. 1995; Kuo et al. 1997a; Wani et al. 1998). KIf2 is expressed at
high levels between E9.5 and E12.5, especially in the umbilical arteries and veins,
a critical time for both angiogenesis and blood vessel wall stabilization. At E14.5,
KIf2 continues to be expressed in the vasculature and appears in the lung buds,
vertebral column, and the bony structures of the head and rib cage. By E18.5, Kif2
is expressed abundantly in the lungs and in blood vessels. Mice with homozygous
deletion of KIf2 exhibit growth retardation and craniofacial abnormalities, and they
die between E11.5 and 14.5 from severe intraamniotic and intraembryonic
hemorrhage (Kuo et al. 1997a). Notably, blood vessels in these mice have an
abnormally thin tunica media. KIf2 null mice also have defects in their lung
development (Wani et al. 1999). In addition, KIf2 is developmentally induced
during single-positive T-lymphocyte maturation, and KIf2-deficient T cells are
spontaneously activated (Kuo et al. 1997b). KIf2 also inhibits adipogenesis by
maintaining a preadipocyte state (Wu et al. 2005).
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KLF3

KLF3, or basic Kriippel-like factor (BKLF), is a highly basic KLF first identified
in murine yolk sac and fetal liver erythroid cells (Crossley et al. 1996). KIf3 is
highly expressed in embryonic hematopoietic tissues, brain, and several other
tissues. It appears in the midbrain and anterior hindbrain at E8.5 and in the ventral
anterior half of the embryo, midbrain—hindbrain junction, ventral midbrain,
diencephalon, and forebrain at E9. At E10.5, expression becomes more widespread,
with some staining of the developing limb buds (Crossley et al. 1996). Kif3-deficient
mice are smaller than their littermates, and adipocyte differentiation is altered
in murine embryonic fibroblasts from KIf3 knockout mice (Sue et al. 2008).
Myeloproliferative disorders and abnormalities in hematopoiesis have also been
reported (Turner and Crossley 1999).

KLF4

KLF4 is highly expressed in postproliferative epithelial cells of the gut and the
epidermis and was thus named gut-enriched Kriippel-like factor (GKLF) and
epithelial zinc finger (EZF) when it was initially characterized by two independent
groups (Garrett-Sinha et al. 1996; Shields et al. 1996). KIf4 mRNA is found in the
epidermal layer of the skin and in epithelial cells in the tongue, palate, esophagus,
stomach, and colon of newborn and adult mice; and it is enriched in epithelial cells
of the middle to upper colonic crypts, a region of cellular differentiation (Ton-That
et al. 1997). KIf4 transcript is initially low in the whole embryo but begins to rise
around E13, peaking on E17, the period in which the intestinal epithelium undergoes
major transition from a pseudostratified to a columnar epithelium, before decreas-
ing prior to birth. KIf4 is seen in mesenchymal cells of the nasal prominence and
first branchial arch, mesenchymal cells surrounding the cartilaginous primordia of
the skeleton, and the metanephric kidney at E11.5, and it is upregulated in thymus
epithelium at E18 (Garrett-Sinha et al. 1996; Panigada et al. 1999). Strong Klf4
expression is also seen in postmeiotic germ cells undergoing final differentiation into
sperm cells in postnatal mouse testis (Behr and Kaestner 2002). Mice homozygous
for a null allele of KIf4 die shortly after birth due to apparent failure to establish
proper skin barrier function and have a 90% decrease in the number of goblet
cells in the colon (Katz et al. 2002; Segre et al. 1999). KIf4 has been identified as
a critical regulator of pluripotency in embryonic stem cells and recently has been
utilized, along with several other factors, to reprogram mouse and human somatic
cells directly into pluripotent cells (induced pluripotent stem cells, or iPS cells)
(Li et al. 2005b; Okita et al. 2007; Takahashi et al. 2007). This function in stem
cells appears to be distinct from the role of KLF4 in a number of adult tissues and
cell types (McConnell et al. 2007).
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KLF5

KLF5 (BTEB2) was initially cloned from a human placenta cDNA library using rat
BTEB cDNA as a probe (Sogawa et al. 1993). Later, the murine homologue was
identified and named intestinal-enriched Kriippel-like factor (IKLF) for its high
level of expression in intestinal epithelia (Conkright et al. 1999). Temporal changes
of KIf5 expression during embryogenesis indicate that this gene is developmentally
regulated (Ohnishi et al. 2000). KIf5 transcript is abundant in the embryo at E7
(Conkright et al. 1999) and is seen in the developing gastrointestinal tract by E10.5
(Conkright et al. 1999; Ohnishi et al. 2000). KIf5 mRNA is also detected in the
E15.5 meninges, E16.5 epithelia of the trachea and bronchi, and the outer layer of
the tongue, as well as in the developing epidermis. Progressively, KIf5 expression
in the skin and gastrointestinal tract becomes localized to the proliferative
compartments, such as the basal layer of the epidermis and the small intestinal
crypts (Ohnishi et al. 2000). KLF5 is also abundantly expressed in embryonic
vascular smooth muscles and is downregulated in adult vessels (Ogata et al. 2000).
Homozygous null mice for KIf5 die before E8.5, indicating an essential but unclear
role for KIf5 in early embryonic development (Shindo et al. 2002). Heterozygotes
appear grossly normal, but the arteries exhibit diminished levels of arterial wall
thickening, angiogenesis, cardiac hypertrophy, and interstitial fibrosis in response
to external stress. In addition, neonatal mice heterozygous for KIf5 deletion exhibit
a marked deficiency in white adipose tissue (Oishi et al. 2005) and show skel-
etal growth retardation with impaired cartilage matrix degradation (Shinoda et
al. 2008). KIf5 also appears to be involved in the maintenance of self-renewal in
embryonic stem cells and is expressed in mouse embryonic stem cells, blastocysts,
and primordial germ cells (Parisi et al. 2008).

KLF6

KLF6, also known as ZF9 or CPBP, was originally isolated from a cDNA library
of human placenta (Koritschoner et al. 1997). Human KLF6 is expressed ubiqui-
tously with a high level in the placenta and adult liver, lung, intestine, and prostate
(Blanchon et al. 2001; Narla et al. 2001; Ratziu et al. 1998). KLF6 is also seen in
the developing cornea of the 7-week-old fetus, mostly in the cytoplasm, becoming
more nuclear after birth (Nakamura et al. 2007). In the mouse, KIf6 is expressed in
extraembryonic tissues at E10.5 and in undifferentiated mesenchyme surrounding
the neural tube and brain vesicles by E11.5, with strong expression in the nervous
system by E12.5 and low levels in the heart, ureteric bud, and lung buds (Fischer
et al. 2001; Laub et al. 2001b). By E14.5, KIf6 is nearly undetectable except in
the ventral horn at the level of the forelimbs. Subsequently, very strong KIf6
expression is seen between E16.5 and E18.5 in the intestinal mucosa and in the
fetal liver between E14 and E20 (Laub et al. 2001b; Ratziu et al. 1998). Like some
of the other KLFs, expression of KLF6 plays a role in preadipocyte differentiation,
in this case promoting differentiation by inhibiting delta-like 1 (Li et al. 2005a).
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Homozygous null mice for KIf6 die by E12.5; they are small and pale with no
obvious liver, have thin, poorly organized yolk sacs, and show significant defects
in hematopoiesis (Matsumoto et al. 2006).

KLF7

KLF7 was initially cloned from human vascular endothelial cells by the polymerase
chain reaction (PCR) using degenerate oligonucleotides corresponding to the
DNA-binding domain of KLF1 (Matsumoto et al. 1998). Given its broad, low-level
expression in adult tissues, KLF7 was termed ubiquitous Kriippel-like factor (UKLF).
However, the predominant developmental expression of mouse KIf7 is in postmitotic
neuroblasts of the developing central and peripheral nervous systems (Laub et al.
2001a). KIf5 mRNA is first seen at E9.5 and is maximum around E11.5, with intense
expression in the forebrain, midbrain, and hindbrain; the eye; and the trigeminal,
geniculate, vestibulocochlear, petrosal, superior, jugular, nodose, accessory, and
dorsal root ganglia. KIf7 expression is maintained in the dorsal root ganglia from
E11.5 to E18.5, whereas expression declines in the neural tube and low levels of
expression are seen diffusely throughout the embryo. KIf7 is also expressed in
the olfactory epithelium at E16.5 and the neural retina at E17.5. Postnatally, KIf7
expression is observed in a few regions of the brain but is later confined to the adult
cerebellum, olfactory system, and dorsal root ganglia (Laub et al. 2001a). Loss of
KIf7 in mice leads to neonatal lethality, with 98.5% of pups dying within 3 days
of birth (Laub et al. 2005). KIf7 null mice have hypoplastic olfactory bulbs, with
defects of axonal projections in the olfactory and visual systems, cerebral cortex,
and hippocampus, as well as abnormalities of dendritic organization.

KLF8

Human KLF8 (ZNF741) was first cloned by PCR from K562 cells, a human
hematopoietic cell line (van Vliet et al. 2000). KLF8 is broadly expressed in human
tissues, with greatest expression in kidney, heart, and placenta. Multiple KLF8
transcripts have been identified, and the relative levels of transcript expression appear
to be similar in the various tissues. Little is known to date about KIf8 expression
during development, and a KIf8 knockout has not been described.

KLF9

KIf9 (BTEB) was initially isolated from a rat liver cDNA library (Imataka et al.
1992). KIf9 is widely expressed throughout mouse embryonic development, at
least as early as E8 (Martin et al. 2001). By E11, KIf9 is highly expressed in the
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cephalic mesenchyme of the developing brain, the epithelia and smooth muscle of
the gut and bladder, and the skin epidermis. At E16, high levels of KIf9 are also
observed in the thymus and vertebrae cartilage primordia. In the developing cere-
bral hemispheres, KIf9 is undetectable from E16 until birth and then rises dramati-
cally into adulthood, suggesting a possible role in neurite outgrowth (Denver et
al. 1999). In addition, in mice, KIf9 expression increases dramatically in Purkinje
cells of the cerebellum and in the pyramidal cells of the hippocampus at postnatal
day 7, a time when synapses in the brain begin to form (Morita et al. 2003). KIf9
null mice show a normal lifespan, are fertile, and exhibit no overt pathological
defects; their general behavioral activities are unaffected (Morita et al. 2003).
However, KIf9 null mice do show impairments in specific behavioral testing, such
as rotorod tests and contextual fear conditioning tests. Ablation of KIf9 in female
mice results in uterine hypoplasia, reduced litter size, and increased incidence of
neonatal deaths in offspring, with parturition defects involving the progesterone
receptor (Simmen et al. 2004; Zeng et al. 2008). In addition, KIf9 loss results in
an intestinal phenotype, with short small intestinal villi, reduced crypt cell pro-
liferation, decreased migration along the villi, and altered cell lineage allocation
(Simmen et al. 2007).

KLF10

KLF10 was identified by differential display PCR from normal human fetal
osteoblasts following transforming growth factor-f (TGF-) treatment and thus
is also called TGF-B-inducible early gene 1 (TIEG1) (Subramaniam et al. 1995).
Human KLF10 is expressed in keratinocytes; epithelial cells of the placenta, breast,
and uterus; osteoblasts and other cells of the bone marrow and cerebellum; skeletal
muscle; and pancreas with some cells showing cytoplasmic staining and others a
nuclear localization (Subramaniam et al. 1995, 1998). Mouse KIf10, also called
mGIF, is widely distributed in the adult with high levels in kidney, lung, brain, liver,
heart, and testis (Yajima et al. 1997). During development, murine KIf70 is broadly
expressed, including in the cerebral cortex, cerebellar primordium, kidney, intestine,
liver, lung, bones, and the differentiating mesenchyme surrounding the nasal cavity
and some of the skull (Yajima et al. 1997). KIf10 null mice initially appeared to be
phenotypically normal, with no evidence of alterations in bone formation despite
an increase in the number of osteoblasts (Subramaniam et al. 2005). These KIf10
null osteoblasts display reduced expression of key differentiation markers and a
decreased ability to support osteoclast differentiation in vitro. Subsequent analyses
revealed that loss of KIf10 results in severe osteopenia in female animals only, with
reduced cancellous and cortical bone and reduced bone strength (Hawse et al. 2008).
Conversely, male but not female KIf/0 null mice develop cardiac hypertrophy at
16 months of age (Rajamannan et al. 2007). KIf10 null mice also show defects in
the mechanical properties and healing potential of tendons (Bensamoun et al. 2006;
Tsubone et al. 2006).
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KLF11

Human KLF11 was first described as TIEG2, another TGF-B-inducible gene that
inhibits growth in cultured cells (Cook et al. 1998). Another homologue, FKLF, was
cloned from fetal globin-expressing human fetal erythroid cells (Asano et al. 1999).
KLF11 is ubiquitously expressed in adult human tissues, with the highest levels
in the pancreas and skeletal muscle (Cook et al. 1998). KLF11 is also enriched in
erythroid cells, with much higher expression in fetal liver than adult bone marrow
(Asano et al. 1999). KIf11 null mice appear normal at all stages of development, are
fertile, and show no abnormalities of hematopoiesis (Song et al. 2005).

KLFI2

KIf12, formerly named AP-2rep, is a transcriptional repressor of the AP-2a gene
identified by screening a mouse brain cDNA library (Imhof et al. 1999). Overall,
KIfI2 is seen in the adult kidney and at very low levels in the adult liver and lung
but not in most other adult and embryonic tissues. Some KIfI12 transcripts are
seen in brain and kidney at E15.5 and E19.5 (Imhof et al. 1999), and KifI2
expression in the developing kidney rises at postnatal day 15 (Suda et al. 2006).
A knockout mouse for KIf12 has not been reported.

KLF13

KLF13 (RFLAT-1) was identified as an activator of RANTES (regulated upon
activation normal T-cell expressed and secreted), a chemokine for T-cell activation
(Song et al. 1999). KLF13 is ubiquitously expressed in human tissues, with two distinct
transcripts, and the greatest abundance is seen in peripheral blood lymphocytes
and thymus. In the mouse, KIf13 is widely distributed in adults (Scohy et al. 2000)
and embryos (Martin et al. 2001), beginning by at least E8. KIf13 is expressed in
primitive heart at E§ and in atria and ventricles of the developing heart at E11;
it is seen less prominently at E13 and E16. KIf13 is also expressed at high levels
in the cephalic mesenchyme of the developing brain, the thymus, vertebrae cartilage
primordia, gut, bladder, and epidermis. Whereas KIfI3 in the gut and bladder
are expressed throughout the muscle and epithelia at E11 and E13, by E16 the
expression is localized to the epithelia. Inactivation of KIfI3 in mice results in
decreased viability by 3 weeks after birth, with reduced numbers of circulating
erythrocytes, an increase in less mature erythroblasts, prolonged survival of thymocytes
due to decreased apoptosis, splenomegaly, and an enlarged thymus (Gordon et al.
2008; Zhou et al. 2007). KIf13 null mice also show a trend toward reduced numbers
of granulocytes and monocytes, suggesting abnormalities in pathways affecting
differentiation or survival of hematopoietic cells (Gordon et al. 2008). Although
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one report indicates an increase in the number of thymocytes, another reports a 30%
decrease in thymocyte numbers (Gordon et al. 2008; Zhou et al. 2007). Knockdown
of KIf13 in Xenopus embryos leads to atrial septal defects and hypotrabeculation
(Lavallee et al., 2006).

KLF14

KIf14 was identified together with mouse KIfI3 using the sequence of the Sp1 zinc
finger DNA-binding domain as a probe to screen a mouse EST database (Scohy
et al. 2000). KlIf14 is ubiquitously expressed in adult tissues. Human KLFI4 has
been described as an imprinted gene with monoallelic maternal expression in all
embryonic and extraembryonic tissues studied in humans and the mouse (Parker-
Katiraee et al. 2007). Expression is seen in placenta and fetal heart, liver, lung, and
colon, as well as adult skeletal muscle, colon, stomach, and brain but not the liver
or lymphoblasts. A gene knockout of KLF14 has not been described.

KLF15

KLF15 was cloned from a human kidney cDNA library as kidney Kriippel-like
factor (KKLF) (Uchida et al. 2000). In human and rat tissues, KLF15 is expressed
most abundantly in liver, with moderate levels in kidneys, heart, and skeletal muscle
and no expression in bone marrow or lymphoid tissues. KIf15 is highly expressed in
adipocytes and myocytes in vivo and is induced when preadipocytes differentiate
into adipocytes (Gray et al. 2002). KIfl5 shows minimal cardiac expression during
embryonic development and is barely detectable in the rat heart at postnatal day
3 but reaches adult levels by postnatal day 30 (Fisch et al. 2007). KIf15 null mice
are viable, fertile, and born in expected Mendelian ratios. In response to pressure
overload, KIf15 null mice develop cardiac fibrosis and an eccentric form of cardiac
hypertrophy (Fisch et al. 2007; Wang et al. 2008). KIfl5 null mice also develop
severe fasting hypoglycemia (Gray et al. 2007).

KLF16

KLF16, also known as dopamine receptor regulating factor (DRRF), was initially
cloned from a mouse neuroblastoma cell line (Hwang et al. 2001). In mice, KIf16
is expressed in multiple adult tissues, including brain, heart, spleen, lung, liver,
kidney, and testis. The highest levels of Kifl6 are seen in multiple regions of the
brain, including the olfactory tubercle, olfactory bulb, nucleus accumbens, striatum,
hippocampal CAl region, cerebral cortex, dentate gyrus, and amygdala (Hwang
et al. 2001). During embryogenesis, the pattern of KI[f/6 in brain overlaps that
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found in the adult and with the expression profile of dopamine receptors (Hwang et
al. 2001). KIf16 is expressed at E12 in regions of the brain and skull and in muscles
of the tongue and tail, with moderate expression in the heart and liver (D’Souza
et al. 2002). At E14, KLF16 is highly expressed in the olfactory lobe and other
regions of the brain, moderately expressed in the liver, and minimally expressed
in the lung. At E16, KLF16 expression is seen in the brain, thymus, duodenum,
and kidney, with lesser expression in the liver, heart, bladder, and lung. A KLF16
knockout has not yet been described.

KLF17

Human KLF17 is a recently described member of the KLF family, which appears to
be the human orthologue of the mouse gene Zfp393 (van Vliet et al. 2006; Yan et al.,
2002). Human KLF17 and murine Zfp393 have 54.8% identity at the protein level
but have significantly higher similarity in their zinc finger regions (81.5% similar-
ity). Zfp393 is expressed exclusively in the testis and ovary, with specific expression
in steps 3-8 spermatids and growing oocytes (Yan et al. 2002). The expression of
human KLF17 has not been extensively studied, but based on the sources of human
KLF17 ESTs it appears to be present in testis, brain, and bone, although likely at low
levels (van Vliet et al. 2006). A knockout of KIf17 has not been reported.

Conclusion

The expression patterns of the individual KLFs vary during development and
adulthood. A careful examination of the overlapping patterns of expression
and function suggest a number of themes for the members of the KLF family.
These themes, involving processes such as adipogenesis, cardiac hypertrophy,
hematopoiesis, and the pluripotency of stem cells, are explored thoroughly in the
ensuing chapters.
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