
Abstract Despite the development of numerous therapies, heart disease is a major 
source of morbidity, mortality, and economic burden to society worldwide. A better 
understanding of the molecular underpinnings that lead to heart failure are likely to 
facilitate the development of novel therapies. The Krüppel-like factor (KLF) family 
of zinc finger transcription factors play important roles in modulating cellular functions 
in a broad range of mammalian cell types, and accumulating evidence demonstrates 
important roles of these factors in cardiovascular biology. This chapter describes 
our current understanding of the role of the KLF gene family in cardiac biology and 
the potential for these factors to serve as therapeutic targets.

Introduction

Heart disease is a major cause of morbidity and mortality worldwide (Jain and 
Ridker 2005) and a better understanding of the molecular mechanisms underlying its 
pathogenesis is extremely valuable from both scientific and therapeutic standpoints. 
Heart failure is a condition that results from a broad array of insults that impair the 
pump function of the heart, including ischemia, valvular disease, hypertension, and 
diabetes. Accumulating evidence provides that these stressors trigger a complex 
series of signaling cascades that can alter gene programs in both cardiac myocytes 
and interstitial tissues (Braunwald 2008). Ultimately, these alterations in cell signaling 
and gene expression can lead to pathological remodeling of the heart, which is 
characterized by hypertrophic enlargement of myocytes, interstitial fibrosis, elec-
trophysiological abnormalities, contractile dysfunction, altered calcium homeostasis, 
and metabolic derangements. However, the precise molecular mechanisms by 
which these alterations in gene expression occur remain incompletely understood.
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There has been intense interest in the cytosolic and nuclear signaling pathways 
that control cardiac development and remodeling (Heineke and Molkentin 2006), 
and a number of key transcription factors to critical regulators of these processes 
have been shown (Adhikari et al. 2006; Akazawa and Komuro 2003; Epstein and 
Parmacek 2005; Finck and Kelly 2006; Oettgen 2006; Perry and Soreq 2002; 
Puigserver and Spiegelman 2003). Studies from our group and others have recently 
demonstrated a critical role for the Krüppel-like factor (KLF) family of zinc finger 
transcription factors in cardiac biology (Feinberg et al. 2004; Perry and Soreq 2002; 
Suzuki et al. 2005; Wei et al. 2006). This chapter focuses on the emerging role of 
the KLF family of transcription factors in the heart with an emphasis on the patho-
biology of heart failure.

Overview of KLFs in the Heart

Although there has been an explosion of studies on KLFs in a broad variety of tissues 
and disease states, the number of reports describing the role of KLFs in the heart 
are few (Haldar et al. 2007). The published reports describing a role for KLFs in the 
heart are as follows: (1) KLF5 in cardiac fibroblasts (Shindo et al. 2002); (2) KLF15 
in postnatal cardiomyocyte (Fisch et al. 2007) and cardiac fibroblast (Wang et al. 
2008) biology; (3) KLF13 in the developing vertebrate heart (Lavallee et al. 2006); 
and (4) a brief report describing the cardiac phenotype of KLF10 knockout mice 
(Rajamannan et al. 2007). There are also two of reports profiling the expression of 
various KLFs in cultured cardiomyocytes in response to endothelin-1 (ET-1), oxida-
tive stress and cytokines (Clerk et al. 2006; Cullingford et al. 2008). These published 
findings of KLFs in cardiac biology are summarized in Table 1. The remainder of this 
chapter is divided into subsections organized by each KLF family member.

KLF5 in the Heart

KLF5 (also known as BTEB2/IKLF) was cloned as a novel GC box-binding pro-
tein from a human placenta cDNA library and originally identified as a positive 
regulator of SMemb, a gene induced in activated smooth muscle cells (Sogawa et 
al. 1993; Watanabe et al. 1999). Elegant work from the laboratory of Ryozo Nagai 
has delineated the importance of this factor in cardiac and vascular biology (Shindo 
et al. 2002). In the heart, KLF5 is expressed primarily in cardiac fibroblasts and 
serves as a critical effector of angiotensin II signaling in these cells. Angiotensin II 
stimulation induces KLF5 expression in primary cardiac fibroblasts. Moreover, the 
angiotensin II mediated induction of platelet-derived growth factor-A (PDGF-A) is 
dependent on the recruitment of KLF5 to the PDGF-A promoter.

To further understand the role of KLF5 in cardiovascular biology, KLF5 was targeted 
systemically in the mouse germline (Shindo et al. 2002). KLF5 homozygous-null 
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Table 1 Function and regulation of KLFs in the heart
Krüppel-like 
factor Function/regulation/observation

KLF2 • Expressed in cultured cardiomyocytes
• Induced by ET-1 and hydrogen peroxide
• Downregulated by TNF-α and IL-1β

KLF3 • Expressed in cultured cardiomyocytes
• Downregulated by ET-1

KLF4 • Expressed in cultured cardiomyocytes
• Induced by ET-1 and hydrogen peroxide

KLF5 • Expressed in cardiac fibroblasts
• Expressed in cultured cardiomyocytes
• Induced by angiotensin II
• Induced by ET-1 and hydrogen peroxide
• Regulates expression of PDGF-A and TGF-β
• Reduced hypertrophic remodeling is seen in response to 

ngiotensin II infusion in KLF5 haplo-insufficient mice
• Interacts with retinoic acid receptor-α

KLF6 • Expressed in cultured cardiomyocytes
• Induced by ET-1 and hydrogen peroxide

KLF9 • Expressed in cultured cardiomyocytes
• Induced by ET-1

KLF10 • Expressed in cultured cardiomyocytes
• Induced by ET-1 and hydrogen peroxide
• Mice with systemic KLF10 deficiency develop spontaneous pathological 

hypertrophy by age 16 months in males but not females
• Regulates expression of pituitary tumor transforming gene (Pttg1); 

however, functional significance of this observation is unknown
KLF11 • Expressed in cultured cardiomyocytes

• Induced by ET-1
KLF13 • Expressed in developing cardiomyocytes

• Can bind and activate the BNP promoter
• Can transactivate multiple cardiac promoters in concert with GATA4
• Interacts with the zinc finger domain of GATA4
• Deficiency of KLF13 in Xenopus leads to cardiac developmental 

abnormalities (atrial septal defects and ventricular hypotrabeculation)
• Cardiac phenotype of KLF13-deficient Xenopus embryos can be rescued 

by GATA4 overexpression
KLF15 • Expressed in cardiomyocytes and cardiac fibroblasts

• Cardiac expression is low in developing heart and dramatically upregu-
lated postnatally

• Downregulated by ET-1 in cultured cardiomyocytes
• Inhibitor of cardiac hypertrophy and fibrosis
• Can inhibit GATA4 and MEF2 DNA binding and transcriptional activity
• Mice with systemic KLF15 deficiency develop severe eccentric hypertro-

phy and exaggerated cardiac fibrosis with pressure overload
• Inhibits TGF-β-induced CTGF expression in cardiac fibroblasts
• Represses Smad3-mediated induction of the CTGF promoter in part via 

its ability to inhibit PCAF recruitment

BNP = brain natriuretic peptide; CTGF = connective tissue growth factor; ET-1 = endothelin-1; 
IL-1β = interleukin-1β; MEF2 = myocyte enhancing factor 2; PCAF = p300/CBP-associated 
factor; PDGF-A = platelet-derived growth factor A; TGF-β = transforming growth factor-β; 
TNF-α = tumor necrosis factor-α



162 D. Kawanami et al.

mice die near embryonic day 8.5 (E8.5), although the precise developmental defect 
in these mice has not been well characterized. KLF5+/− mice are viable into adulthood 
and demonstrate resistance to angiotensin-mediated cardiac remodeling. Mice with 
KLF5 haplo-insufficiency showed a blunted hypertrophic response to angiotensin II 
infusion with reduced cardiac mass, wall thickness, cardiac fibrosis, and PDGF-A 
expression (Fig. 1A) (Shindo et al. 2002). Furthermore, angiotensin II mediated 
induction of transforming growth factor-β (TGF-β) and collagen type IV were also 
blunted in KLF5 haplo-insufficient hearts. Interestingly, the investigators show 
that KLF5 is able to interact with the retinoic acid receptor-α (RARα), suggesting 
that RARα activation regulates KLF5 function. Taken together, these observations 
indicate that KLF5 plays an important role in cardiac remodeling and expands 
the repertoire of angiotensin-responsive transcription factors in the cardiovascular 
system (Shindo et al. 2002).

KLF15 in the Heart

KLF15 is expressed in multiple tissues, including liver, white and brown adipose, 
kidney, heart, and skeletal muscle (Gray et al. 2002). KLF15 has been implicated as 
a critical regulator of adipogenesis (Mori et al. 2005) and hepatic gluconeogenesis 
(Gray et al. 2007). Recently, studies from our group demonstrated that KLF15 is a 
novel negative regulator of cardiac hypertrophy (Fisch et al. 2007) and fibrosis (Fisch 
et al. 2007; Wang et al. 2008).

KLF15 expression in the developing heart is minimal and is detectable only at very 
low levels during the early postnatal period. However, cardiac KLF15 expression is 
robustly induced within the first several weeks postnatally. Interestingly, this period 
is a time when ANF, BNP, and cyclin-A are downregulated (Fisch et al. 2007). KLF15 
levels are reduced dramatically by pressure overload in murine models and in human 
hearts with left ventricular hypertrophy (LVH) due to valvular aortic stenosis (Fisch 
et al. 2007). Consistent with this observation, various pro-hypertrophic neurohor-
monal agonists such as phenylephrine and ET-1 also reduce KLF15 expression in 
cultured cardiac myocytes (Fisch et al. 2007).

show exaggerated pathological remodeling in response to left ventricular 
(LV) pressure overload. Hearts from KLF15 knockout mice show eccentric hypertrophy (left 
panels). M-mode echocardiography shows severe LV dilation and systolic dysfunction (middle 
panels). Isolated KLF15−/− cardiomyocytes are enlarged compared to those of the wild-type 
controls (right panels). (Adapted from Fisch et al. 2007, with permission. © National Academy 
of Sciences, 2007.) c KLF15 knockout mice show exaggerated collagen deposition after 1 week 
of ascending aortic constriction. LV sections are stained by Masson’s trichrome. (From Wang et 
al. 2008, with permission from Elsevier.) d KLF13 knockdown in Xenopus embryo causes atrial 
septal abnormalities and defects in ventricular trabeculation. (From Lavallee et al 2006, with 
permission from Macmillan Publishers.)

Fig. 1 (continued)
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Fig. 1 Krüppel-like factors (KLFs) are important regulators of cardiac biology. a KLF5 haplo-
insufficient mice show reduced perivascular fibrosis in response to angiotensin II infusion. (From 
Shindo et al. 2002, with permission from Macmillan Publishers, © 2002.) b KLF15 knock out mice 
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We performed gain- and loss-of-function studies to understand the detailed role 
of KLF15 in the heart (Fisch et al. 2007). Overexpression of KLF15 in neonatal rat 
ventricular myocytes (NRVMs) inhibits the cardinal features of cardiomyocyte hyper-
trophy, such as cell growth, protein synthesis, and fetal gene expression. To understand 
the role of KLF15 in vivo, we generated systemic KLF15 knockout mice. These 
KLF15 homozygous null mice are viable and fertile. No overt cardiac decompensation 
was observed in KLF15 knockout mice at in the baseline state (age 8–12 weeks), how-
ever, these animals show exaggerated hypertrophic remodeling in response to pressure 
overload. Hearts from KLF15 knockout mice after aortic constriction showed cavity 
enlargement, impaired systolic function, and exaggerated fetal gene expression (Fig. 1B). 
Furthermore, cardiac myocytes from these animals were large and elongated, which is 
suggestive of eccentric hypertrophic remodeling (Fig. 1B).

From a mechanistic standpoint, KLF15 can attenuate transcriptional activity of 
MEF2 and GATA4 (Fisch et al. 2007), transcription factors that are critical hyper-
trophic effectors (Czubryt and Olson 2004; Pikkarainen et al. 2004), in large part 
via their ability to bind and transactivate promoters of key pro-hypertrophic genes. 
KLF15 is able to inhibit the ability of these factors to bind target promoters; and 
further study is underway to elucidate the precise molecular mechanism underlying 
the inhibitory effect of KLF15 on MEF2 and GATA4.

Interestingly, KLF15 knockout mice have cardiac phenotypes similar to those 
of transgenic mice overexpressing both MEF2 or GATA4 in the heart. Transgenic 
overexpression of MEF2A and MEF2C in the heart causes dilated cardiomyopathy 
in a dose-dependent manner in response to pressure overload (Xu et al. 2006). 
Cardiomyocytes from these MEF2-transgenic hearts have large, elongated myo-
cytes (Xu et al. 2006), similar to the cardiomyocytes derived from KLF15 knockout 
mice (Fisch et al. 2007). High-level overexpression of GATA4 in the heart results 
in severe cardiomyopathy and premature death (Liang et al. 2001). A spontane-
ous cardiomyopathy (increased heart mass and hypertrophic gene expression) is 
observed even with modest GATA4 overexpression (Liang et al. 2001). Taken 
together, it is likely that these two factors are activated in the absence of KLF15 
and cause exaggerated cardiac remodeling in response to stress in KLF15-deficient 
mice. As described before, KLF15 has an intriguing expression pattern—notably its 
dramatic postnatal induction. Molkentin and colleagues (Molkentin and Markham 
1993) showed an increase in MEF2 binding and activity during the postnatal period. 
As such, the inhibitory effect of KLF15 for MEF2 raises the possibility that KLF15 
plays a regulatory role in postnatal cardiac maturation (Fisch et al. 2007).

Our group has also recently identified a role for KLF15 in the cardiac fibrob-
last as a negative regulator of connective tissue growth factor (CTGF) signaling. 
CTGF is expressed in both cardiomyocytes and cardiac fibroblasts (Chen et al. 
2000) and plays an important role in the development of fibrosis in disease states 
such as atherosclerosis (Oemar et al. 1997) and heart failure (Chen et al. 2000). 
TGF-β1 is a major regulator of CTGF expression (Chen et al. 2000). The TGF-β 
receptor is a serine/threonine kinase transmembrane heteromeric type I and type 
II receptor complex that signals through Smad family transcription factors upon 
receptor activation. Smad proteins can be divided into three groups: receptor-activated 
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type (Smads 1, 2, 3, 5, and 8), co-mediator type (Smads 4 and 10), and inhibitory type 
(Smads 6 and 7) (Khan and Sheppard, 2006). Among them, Smad3 has been 
shown to bind to a consensus element in the CTGF promoter by TGF-β1 stimulation 
(Chen et al. 2002; Grotendorst et al. 1996).

We demonstrated that KLF15 knockout mice show exaggerated collagen depo-
sition and excess induction of CTGF (trichrome staining, Fig. 1C) in response to 
pressure overload (Wang et al. 2008). Furthermore, adenoviral overexpression of 
KLF15 inhibits CTGF induction by TGF-β1 in neonatal rat ventricular fibroblasts 
(NRVFs), and this repressive effect occurs at the promoter level. The electro-
phoretic mobility shift assay (EMSA) showed that this repressive effect was not due 
to inhibition of Smad3 binding to the CTGF promoter. As the protein P/CAF has 
been implicated as an important transcriptional co-activator of Smad3 target genes, 
we hypothesized that KLF15 may inhibit CTGF promoter activity via an inhibi-
tory effect on P/CAF recruitment. Indeed, a co-immunoprecipitation assay dem-
onstrated that KLF15 interacts with P/CAF, and a chromatin immunoprecipitation 
assay revealed that KLF15 overexpression inhibited recruitment of P/CAF to CTGF 
promoter. Moreover, repression of the CTGF promoter by KLF15 is rescued by P/
CAF overexpression (Wang et al. 2008). These observations suggest that KLF15 is 
a negative regulator of CTGF expression in cardiac fibroblasts, in part via its ability 
to inhibit P/CAF–Smad3 signaling at the CTGF promoter.

KLF13 in the Heart

Expression of KLF13 (also known as FKLF-2/BTEB3) is restricted to erythroid 
cells, T lymphocytes, heart, and skeletal muscle (Asano et al. 2000; Song et al. 
1999). KLF13 is detectable at low levels by reverse transcription-polymerase chain 
reaction (RT-PCR) in other adult mouse tissues (Scohy et al. 2000). Developmental 
expression of KLF13 is seen in the heart, cephalic mesenchyme, dermis, and epithe-
lial layers of the gut and urinary bladder in the mouse embryo (Martin et al. 2001). 
Previous studies demonstrated that KLF13 plays an important role in regulation of 
erythroid gene expression (Feng and Kan 2005) and plays critical role in RANTES 
induction in activated T lymphocytes (Ahn et al. 2007; Song et al. 1999).

Nemer and colleagues demonstrated a role for KLF13 in the embryonic myo-
cardium in studies of BNP gene regulation and Xenopus development (Lavallee 
et al. 2006). The investigators previously reported a proximal BNP promoter that 
can induce cardiac transcription maximally (Grepin et al. 1994). An essential KLF 
consensus site (CACCC) is located nearby GATA sites of this proximal BNP pro-
moter and was shown to be essential for promoter activity. KLF13 was able to bind 
the CACCC element in the proximal BNP promoter, as demonstrated by electro-
phoretic mobility shift assay (EMSA). The authors further demostrated that KLF13 
syngerizes with GATA4 to transactivate multiple cardiac promoters (BNP, ANF, 
β-MHC, cardiac α-actin). In addition, KLF13 was shown to be able to interact with 
the N-terminal zinc finger of GATA4 (Lavallee et al. 2006).
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To gain a better understanding of the role of KLF13 in heart development, the 
expression pattern of KLF13 in the mouse embryonic heart was studied. Cardiac 
expression of KLF13 was first detected at E9.5. Subsequently, expression of KLF13 
was seen in the developing atrial myocardium, ventricular trabeculae, atrioventricular 
(AV) cushions, and the truncus arteriosus. Postnatally, KLF13 expression was 
reduced in the heart and was restricted to the valves and interventricular septum. 
KLF13 knockdown in the Xenopus embryo was used to explore the role of KLF13 
in heart development. KLF13-deficient embryos showed atrial septal defects and 
ventricular hypotrabeculation (Fig. 1D). This observation is consistent with the 
phenotype of humans with GATA4 mutation and mice with GATA4 deficiency 
(Epstein and Parmacek 2005). There was no correlation between this hypoplastic 
phenotype and increased apoptosis, suggesting that KLF13 may be involved in 
regulating cardioblast proliferation. Interestingly, GATA4 overexpression in these 
embryos could rescue these cardiac defects in a dose-dependent manner, suggesting 
that KLF13 and GATA4 are factors that can work synergistically in heart develop-
ment. These findings using Xenopus as a model system indicate that KLF13 may 
be a novel candidate gene for human congenital heart disease.

However, we noted that the role of KLF13 in mammalian systems may be 
more complex. KLF13 knockout mice were recently developed in the Krensky 
Laboratory (Zhou et al. 2007) and were found to be viable. These investigators 
identified defects in T-lymphocyte survival. However, the role of KLF13 in cardiac 
biology has not been reported to date, .

KLF10 in the Heart

Role of KLF10/TIEG1 in the heart is not well understood. KLF10 was initially 
reported as a TGF-β inducible early gene 1 (TIEG-1) in osteoblasts (Subramaniam 
et al. 1995). Spelsberg and colleagues have shown that KLF10 plays an impor-
tant role in the regulation of bone mineralization (Subramaniam et al. 2005), 
osteoclast differentiation (Subramaniam et al. 2005), and epithelial proliferation 
(Subramaniam et al. 1998; Tachibana et al. 1997). KLF10 regulates Smad signaling 
in osteoblasts, and KLF10 deficiency leads to osteopenia (Bensamoun et al. 2006) 
and impaired tendon healing (Tsubone et al. 2006).

KLF10 has been shown to be expressed in the adult heart at low levels, but its 
distribution within the myocardium is unknown (Subramaniam et al. 1995). In 
addition, its expression levels in the developing heart are not known. Spelsberg and 
colleagues reported the cardiac phenotype of KLF10 null mice (Rajamannan et al. 
2007). These investigators observed spontaneous pathological cardiac hypertrophy 
in male (but not female) KLF10 knockout mice at 16 months of the age. Affected 
mice have increased heart mass, wall thickness, fibrosis, and myocyte disarray with 
preservation of LV systolic function. The exact timing of onset of this phenotype 
is not yet known. From a mechanistic standpoint, analysis of hypertrophic KLF10 
knockout hearts revealed that KLF10 may regulate the pituitary tumor transforming 
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gene (Pttg1), but the significance of this finding is unclear. There are several 
questions remaining questions regarding KLF10’s role in the heart: (1) Is KLF10 
expressed in cardiomyocytes, cardiac fibroblasts, or both? (2) Is KLF10 expres-
sion altered with mechanical or neurohormonal stress? (3) What are KLF10 target 
genes in the heart, and what mechanisms explain the pathology seen in KLF10-null 
hearts? Indeed, future studies will continue to elucidate the importance of KLF10 
in cardiac remodeling.

Regulation of KLFs by Hypertrophic and Apoptotic Stimuli

Recent expression-profiling studies have reported differential regulation of KLFs 
in cultured cardiomyocytes in response to pharmacological stimuli and oxidative 
stress. Clerk and colleagues reported expression profiles of KLFs in response to 
endothelin (ET-1) stimulation in neonatal rat cardiomyocytes. Quantitative PCR 
analysis revealed that expressions of KLFs 2, 4, 5, 6, 9, and 10 are induced rapidly 
and transiently by ET-1, whereas expressions of KLFs 3, 11, and 15 are down-
regulated. As oxidative stress and cytokine stimulation are implicated in cardiac 
myocyte apoptosis, these investigators also examined the effects of hydrogen 
peroxide and inflammatory cytokines on the expression of KLFs. Hydrogen per-
oxide upregulated KLFs 2, 4, 5, 6, and 10 mRNA expression levels and reduced 
KLF15 expression in cultured cardiomyocytes (Clerk et al. 2006; Cullingford et al. 
2008). In addition, KLF2 is downregulated by tumor necrosis factor-α (TNF-α) 
and interleukin-1β (IL-1β) (Cullingford et al. 2008). Although the physiological 
relevance of these findings is not yet known, these observations raise the possibility 
that KLFs other than KLFs 5, 10, 13, and 15 may be involved in regulating cardiac 
growth and the response to stress.

Future Directions

Although the accumulating evidence demonstrates that KLFs play an important 
role in cardiac development and remodeling, there are significant questions remain-
ing that must be addressed. First, little is known about expression profiles of KLFs 
in the developing and postnatal heart. In addition, distribution of KLF expression 
among the multiple cellular subsets that comprise the myocardium (cardiomyo-
cytes, fibroblasts, endothelial cells, vascular smooth muscle cells, immune cells) 
must be defined. The relative function of KLFs in these various cell types of the 
heart are of great interest and will undoubtedly be important in understanding the 
interplay between these tissues in heart disease. Tissue- and cell-type-specific gain- 
or loss-of-function approaches will be necessary to address these questions.

Recent studies have highlighted the importance of coupled cardiac angiogenesis 
as an adaptive feature of compensated cardiac hypertrophy (Sano et al. 2007). 
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A number of KLFs have already been implicated in the angiogenic response. 
For example, KLF2 is implicated as an antiangiogenic factor in endothelial cell 
biology (Bhattacharya et al. 2005). It is highly likely that this family of transcrip-
tion factors has broad roles in regulating this process in the myocardium under 
hypertrophic and ischemic conditions.

Another area in which the KLFs are likely to play an important role is in the 
context of cardiac metabolism. There is certainly increasing appreciation that 
alterations in cardiac fatty acid and glucose utilization can affect the heart’s 
response to stress, particularly in disease states such as diabetes or obesity. Recent 
studies have identified several members of the KLF family as important regulators 
of adipogenesis, glucose homeostasis, and energy metabolism. Among the KLFs 
implicated in cardiac biology, KLF5 and KLF15 have been shown to alter cellular 
metabolism. For example, KLF5 regulates genes involved in skeletal muscle lipid 
oxidation and energy coupling such as UCP and CPT1—genes that certainly affect 
cardiac energetics. Intriguingly, Oishi and colleagues showed that this regulation 
occurs in cooperation with PPARδ—a nuclear receptor that has been shown to 
regulate cardiac fatty acid and glucose utilization (Burkart et al. 2007; Oishi et al. 
2008). KLF15 has been shown to critically regulate systemic glucose homeostasis 
through effects on hepatic amino acid catabolism, which certainly raises the possi-
bility that this factor has an important role in cardiac metabolism (Gray et al. 2007). 
Indeed, it is exciting to postulate that cooperative interactions between KLFs and 
PPARs—two major transcription factor families—may critically regulate cardiac 
substrate utilization and consequently cardiac function.

Finally, it is of utmost importance to identify compounds that regulate KLFs or 
interact with KLFs in the heart. For example, KLF5’s function in the heart can be 
modulated by RARα antagonists (Shindo et al. 2002). Furthermore, clear interplay 
between statins and KLF2 has been demonstrated in endothelial biology (Sen-
Banerjee et al. 2005). Neurohormonal antagonists that are currently used in heart 
failure therapy may regulate KLFs (e.g., KLF5, KLF15) in the heart. As is the case 
with statins and KLF2 in the endothelium, it is possible that KLFs can mediate 
favorable myocardial effects of drugs such as β-blockers, angiotensin-converting 
enzyme (ACE) blockers, and angiotensin-II receptor (AT

1
) blockers. These studies 

have important implications for the treatment of cardiomyopathic conditions.
Another critical issue is the delineation of overlapping and restricted roles of 

the multiple KLFs that are co-expressed in the heart. For example, KLF13 and 
KLF15 modulate GATA4 activity oppositely. KLF13 synergizes with GATA4 
to activate multiple promoters (Lavallee et al. 2006), whereas KLF15 inhibits 
induction of these promoters by GATA4 (Fisch et al. 2007). These facts raise the 
possibility that KLF15 may regulate GATA4 activity in part through inhibition of 
KLF13’s function. As has been shown in other tissues, it is likely that KLFs family 
members regulate the expression and function of each other in the same cell type 
(Funnell et al. 2007). Another example of potential interplay is between KLF5 
and KLF15. Both are expressed in cardiac fibroblasts: KLF5 promotes fibrosis, and 
KLF15 inhibits it. It is possible that a tight balance of relative expression/activity 
of KLFs influences the heart’s response to physiological and pathological stimuli. 
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Hence, it is important to identify common target genes or interacting proteins 
for KLFs that are co-expressed in the heart to better define their overlapping or 
divergent roles.
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