
Chapter 7
Animal Movement Data: GPS Telemetry, 
Autocorrelation and the Need for Path-Level 
Analysis

Samuel A. Cushman

In the previous chapter we presented the idea of a multi-layer, multi-scale, spatially 
referenced data-cube as the foundation for monitoring and for implementing flexible 
modeling of ecological pattern–process relationships in particulate, in context and 
to integrate these across large spatial extents at the grain of the strongest linkage 
between response and driving variables. This approach is powerful for developing 
information about the conditions of multiple ecological attributes continuously 
across the analysis area. However, there are a number of ecological questions that 
involve processes that are not functions of ecological conditions at point locations 
alone. Many of these involve spatial processes and mobile agents, such as the spread 
of disturbances, dispersal of propagules, and the movement of mobile animals. 
The focus of this chapter is on animal movement data.

In mobile animals, movement behavior is used to maximize fitness by maximiz-
ing access to critical resources and minimizing risk of predation. As organisms 
move through spatially complex landscapes, they integrate the distributions and 
conditions of multiple ecological attributes, adopting movement paths that optimize 
fitness benefits while minimizing fitness costs. There is exceptionally rich informa-
tion in intersecting the space–time movement paths organisms follow with the kind 
of multi-variate, spatially explicit ecological data base described in the previous 
chapter. Until recently, however, it was not possible to obtain sufficiently precise 
records of movement paths of sufficient length to meaningfully associate move-
ment behavior with ecological conditions across large and complex landscapes. 
However, that has changed dramatically in the past decade with the advent of 
GPS telemetry technology. It is a classic example of the phenomenon described in 
Chapter 1, of advances in methodology leading to entirely new kinds of data, which 
in turn drive the emergence of new analytical approaches and theoretical paradigm 
shifts. Also, as described in Chapter 1, the often acrimonious and frequently confused 
arguments relating to the statistical properties and proper analyses of such movement 
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data streams reflect to some degree a struggle between an old tradition and its 
procedures, assumptions and a new paradigm.

Location data obtained from radio and satellite telemetry have become very widely 
used in studies of animal space use, habitat selection and behavior (White and Garrott 
1990; Aebisher et al. 1993; Cushman et al. 2005). These new data have both presented 
an unprecedented view into animal movement behavior and an unprecedented chal-
lenge to traditional thinking about statistical analysis of habitat use. Traditionally, 
analysis of habitat use has been based on comparing the habitat characteristics of a 
large number of statistically independent utilized locations with a large number of 
available or not utilized locations with compositional analysis or linear models, such 
as logistic regression. These approaches developed during the time when location 
data were obtained infrequently using VHF telemetry or networks of detection plots, 
such as remote cameras, hair snares or track plates. In the latter method, the investi-
gator can establish a network of sampling stations which yield presence and pseudo-
absence data. These can be effectively independent spatially if the design is carefully 
developed. In the former case, infrequent re-location of individuals through telemetry 
results in a sequence of utilized points which can then be compared to available points 
within some spatial extent, often the animals minimum convex polygon home range. 
These infrequent VHF points may appear to be statistically independent and not show 
significant autocorrelation. However, as Fortin and Dale (2005) note, sparse sampling 
of an autocorrelated data stream does not remove the effect of autocorrelation from the 
data, it only reduces power to detect it.

With the advent of GPS telemetry it is now possible to obtain relocation data as 
frequently as one desires. Sampling frequency of down to 5 min intervals is common. 
Animal movements are inherently highly autocorrelated because an animal’s next 
step has to be to a location available from its current step, leading to a pathway in 
which locations are autocorrelated with previous locations for long time durations. 
This poses a major challenge to traditional point-based approaches which assume 
spatial independence of observations. In point based approaches, temporal auto-
correlation of locations leads to underestimation of home range size and bias in 
predictions of habitat selection, core area, and intensity of resource use (Swihart 
and Slade 1985; Alldredge and Ratti 1986; Thomas and Tylor 1990; White and 
Garrott 1990; Cresswell and Smith 1992; Palomares and Delibes 1992; Litvaitis 
et al. 1994). The magnitude of these errors is proportional to strength of autocor-
relation between observations across time-lags and will vary by species and by 
habitat (Swihart and Slade 1985; Harris et al. 1990). Accordingly, many scientists 
previously recommended that researchers calculate time to independence using 
time–distance curves (Litvaitis et al. 1994).

A priori, there is no way to determine what the time to apparent independence 
will be (Harris et al. 1990). Shoener’s (1981) V statistic and Mantel correlograms 
(Cushman et al. 2005) have been recommended to produce correlograms to illustrate 
the structure and duration of autocorrelation. However, filtering data to achieve sta-
tistical independence often incurs heavy costs in terms of information loss. In addi-
tion, the apparent independence achieved may often merely indicate a loss of power 
to detect autocorrelation due to reduced sample size from a globally autocorrelated 
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movement path (Fortin and Dale 2005; Cushman et al. 2005). In addition, many 
researchers have argued that such filtering may not be necessary (Swihart and Slade 
1997; Rooney et al. 1998). For example, Rooney et al. (1998) argue that strict attempts 
to achieve statistical independence by subsampling result in substantial underestima-
tion of range size and rates of movement. It also obliterates fine-scale patterns in habi-
tat use that may be present in the data (Rooney et al. 1998). Also, even long sampling 
intervals do not guarantee independence (Cushman et al. 2005). The correct strategy 
for the best estimation of home range size, intensity of spatial use and quantification 
of fine-scale behavioral decisions may be to use the shortest possible sampling interval 
over the longest possible period (Rooney et al. 1998).

Swihart and Slade (1997) argue that regular sampling intervals resulting in autocor-
related data will not invalidate many estimates of home range size so long as the study 
time frame is adequate. Otis and White (1999) extend this argument and propose that 
the key requirement is to define a specific monitoring time frame appropriate for the 
study question and restrict inferences to the temporal and spatial scope justified by 
that time frame. However, if one uses a point-based analytical approach that assumes 
statistically independent spatial observations this is a conundrum in that the optimal 
estimate of utilization will come from the most frequent possible remeasurement, but 
the severity of violation of statistical assumptions will also increase with increasing 
frequency of observations. This suggests a necessary shift from point-based to path-
based analyses, as discussed in Chapter 19.

Recently, there has been the realization that autocorrelation in many cases isn’t 
a problem to be solved through carefully controlling sampling design, but a critical 
signal about the underlying structure of pattern–process relationships in spatially 
structured environments (Legendre 1993). Indeed, autocorrelation reflects the fact 
that ecological processes occur in a spatial context and their effects are expressed 
partly as functions of spatial location and distance. As we argued in Chapters 1 and 2, 
there is great advantage and enormous potential in addressing spatial com-
plexity and temporal variability directly as critical attributes of ecological systems. 
Autocorrelation of animal movement data is a prime example of this opportunity.

The patterns of temporal and spatial autocorrelation of locations are an important 
part of the information that telemetry data provide (Cushman et al. 2005). Legendre 
(1993) and Legendre and Fortin (1989) argue that spatial autocorrelation is an inform-
ative ecological parameter that reveals scales and patterns of ecological processes 
which are often not resolvable through other methods. In terms of animal movements, 
addressing the details of the strength, scale and patterns of autocorrelation may illustrate 
details about animal use of space and its relationships to changes in the environment in 
response to perturbations, social interactions or seasonality (Cushman et al. 2005). 
In this chapter we review some of the issues relating to GPS telemetry data, investigate 
the structure and range of spatial autocorrelation of sequential relocation points under 
18 different movement rules using simulation modeling, and then compare these to 
the structure and range of spatial autocorrelation in a mobile mammal, the African 
elephant. We use these analyses to argue against traditional point-based analyses of 
movement data, in favor of path-level analysis. This motivates the case study example 
on elephant movement presented in Chapter 19.
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7.1 Methods

7.1.1 Movement Path Simulation

We simulated 18 different movement path varieties, consisting of a two-way fac-
torial of path type and mean turning angle (Table 7.1). We replicated each of the 
18 path varieties ten times. In all cases each path began by heading north, with 
subsequent steps all one unit in length. All paths were simulated to 1,000 steps. 
There were three path types, consisting of correlated random walk, bounded cor-
related random walk, and central place random walk. There were six turning angle 
distributions, each consisting of a normal random distribution with a specified 
mean. The mean turning angles for the six distributions were 1°, 6°, 12°, 24°, 45°, 
and 90°. In the correlated random walk the turning angle for each step from the 
previous step direction was taken from a normal random variable with the mean 
of the turning angle for that normal random distribution. This walk represents an 
unconstrained walk, with the only spatial parameter consisting of the normal random 
turning angle between steps. In the bounded correlated random walk the walk was 
calculated exactly the same, except with the additional constraint that it not exceed 
ten distance units from the origin. This reflects a correlated random walk within a 
fixed circular home range with radius of ten distance units. When a walk reached 
ten units distance from origin the next step was taken directly toward the origin, 
with subsequent steps correlated random walks from that new direction. The central 
place random walk consisted of correlated random walks of 100 steps, followed 
by an azmithal return to the origin in the next 100 steps, with this combination 
repeated five times over the 1,000 steps of the simulation. This simulates correlated 
random foraging paths out from a central place, such as a nest or natal den, fol-
lowed by direct return, such as after capturing prey. Examples of each of these 18 
path varieties are shown in Figs. 7.1–7.3, with Fig 7.1 showing correlated random 
walks, Fig. 7.2 showing bounded random walks, and Fig. 7.3 showing central place 
random walks.

Table 7.1 Factorial of the 18 path varieties simulated. They are a combination of three path types 
across six distributions of turning angle. The path types are unconstrained correlated random walk 
(UCW), random walks constrained to remain within ten step lengths of the origin by reflecting off 
the edge (BCW) and correlated random walks beginning at the origin and returning along the back 
azmuth at 100 steps (CCW). The six distributions of turning angle are obtained from normal random 
variables with mean of 1°, 6°, 12°, 23°, 45°, and 90°

1° 6° 12° 23° 45° 90°

Unconstrained correlated random 
walk

UCW1 UCW6 UCW12 UCW23 UCW45 UCW90

Bounded correlated random walk BCW1 BCW6 BCW12 BCW23 BCW45 BCW90
Central place correlated random 

walk
CCW1 CCW6 CCW12 CCW23 CCW45 CCW90
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7.1.2 Autocorrelation Analysis

We produced Mantel correlograms for each of the 180 movement paths using 
the Ecodist library in R (R-development team 2008). The Mantel test tests the 
degree of association between two distance matrices (Mantel 1967). In ecological 
research these distance matrices describe the pairwise dissimilarity or ecological 
distance between each pair of samples. Because any number of variables describ-
ing each sample can be included in the calculation of these distance matrices, the 
Mantel test is a multivariate test of the association between two data sets. When 
one of the distance matrices is coded as distance classes it is possible to construct 
a multivariate correlogram (Oden and Sokal 1986; Sokal 1986). The resulting 
correlogram shows the strength of correlation between the two multivariate distance 
mat rices across a range of lags between them. As discussed in Cushman et al. 
(2005), this is conceptually similar to univariate correlograms produced using 
Moran’s I or Geary’s C (Legendre and Legendre 1998), except that Mantel cor-
relograms produce description of how multivariate correlations vary across several 
classes of lag-distance whereas univariate correlograms describe the relationships 
between one response variable and one lag variable across several classes of 
lagdistance.

In this study we create correlograms comparing the distance between organ-
isms in geographical space with distance between them in time. Cushman et al. 
(2005) noted that the Mantel correlogram has a number of advantages over 
alternative ways of computing autocorrelograms for animal movement analysis. 
First, correlograms of the V statistic (Schoener 1981) do not have a significance 
test, and assume a bounded and elliptical home range. In contrast, the Mantel 
correlogram does not assume a fixed and elliptical home range and has both 
an asymptotically correct analytical significance test, and is readily tested non-
parametrically with Monte-Carlo methods (Legendre and Legendre 1998).

These correlograms record the mantel correlation between distances between 
points across lag distances (e.g. Cushman et al 2005). The lag distances used 
in this analysis were 5, 15, 25,… 995, for a total of 99 lag distance classes. 
We calculated significance of mantel correlation at each lag distance using 
Monte Carlo permutation with 1,000 randomizations, for a point-wise signifi-
cance level of 0.001. Our analysis included plotting the ten replicate correlo-
grams for each of the 18 path varieties and overlaying the confidence intervals 
for statistically significant autocorrelation to determine the time to spatial 
independence, if any, for each path. This analysis provides a relatively compre-
hensive assessment of the structure, range and variability of autocorrelation 
in three common path types across a reasonably broad range of turning angle 
behavior. Such evaluation of simulated paths generated with known and con-
trolled spatial processes is essential for evaluating autocorrelation in empirical 
movement paths.
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7.1.3  Empirical Analysis of Autocorrelation 
of Elephant Movement

We also calculated Mantel correlograms for three elephants (Loxodonta africana) col-
lared in Botswana (Cushman et al. 2005). Prior to analysis we preformed several data 
filtering tasks to retain the most accurate and least biased movement data. This reduc-
tion resulted in a final set of 709 locations for herd 55, 713 locations were retained for 
herd 56, 699 locations for herd 57 (Cushman et al. 2005). Next, we broke the three 
data sets into overlapping windows in time, to allow us to evaluate changes in auto-
correlation patterns through seasons, and to reduce the effects of non-stationarity. We 
selected time windows of 60 days, and slid these across the 345 day sampling period, 
with 15 day time steps between the start of successive periods. This resulted in 20 
overlapping time periods retained for the analysis; each 60 days long and beginning 
15 days apart. For each of these windows we created two distance matrices for use 
in the Mantel correlogram analyses. First, we computed the geographical distances 
along the curvature of the earth between all pairs of points in each movement data-
base. Next, we computed distance matrices for the same movement data, but for 
distance between points in time rather than in space. These time distance matrices 
were then recoded into distance class matrices, containing 120 distance classes each, 
corresponding to the number of 12 h periods over the 60 day sampling windows.

7.2 Results

7.2.1  Structure, Range and Variability of Autocorrelation 
Within Simulated Movement Paths

Each path variety had a characteristic autocorrelation structure (Figs. 7.4–7.6). 
Correlated random walks showed clines of increasing negative spatial autocorrela-
tion between locations as time distance between them increased, with this pattern 
consistent across all six turn angle distributions. The six turn angle distributions 
were primarily related to variability among replicate correlograms, with variability 
increasing with larger mean turning angles. This is exactly as one would expect 
with correlated random walks. Importantly, for all turning angle distributions these 
correlograms indicate a global cline in autocorrelation such that there is never a lag 
distance at which points become spatially independent.

Bounded random walks all showed the same basic pattern of initial high posi-
tive autocorrelation of location, followed by a drop to negative autocorrelation and 
subsequent fluctuation between positive and negative autocorrelation. This fluctua-
tion between positive and negative autocorrelation was highly sensitive to mean 
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turning angle. For example, when mean turning angle was very small, such as 1°, 
this resulted in very strong periodic autocorrelation as the path zigzagged back and 
forth across the home range, bouncing off the frontier, with relatively little change 
in direction between. This periodic autocorrelation became more damped as the 
mean turning angle increased, but persisted in a detectable form up to at least a 
mean turning angle of 45°, and arguably all the way to a mean turning angle of 
90°. As in the case of the unconstrained correlated random walks discussed above, 
variability among path correlograms increased with increasing mean turning angle. 
Also, as in the case of unconstrained correlated random walks, but perhaps surpris-
ingly, there was no time to independence for bounded walks in any combination 
with turning angle distribution. This is surprising because random utilization of a 
fixed home range is held as the ideal and perhaps only case when there is an expec-
tation of a time to spatial independence among sequential locations (Cushman et 
al. 2005). In this case, across all lag distances, there remained highly significant 
autocorrelation among locations. This is because a correlated random walk within 
a bounded home range does not equate to random utilization of a fixed home range. 
The utilization modeled here is a correlated random walk. This imparts random-
ness in turning angle, but not randomness in sequential location, as each location 
is contrained to be one step length from the previous and in a direction correlated 
to the previous step length. All real movement paths of actual organisms have this 
kind of constraint. This constraint results in very persistent and complex patterns 
of autocorrelation across very long time lags.

Central place random walks all shared a common basic form, characterized 
by repeated cycles between strong positive and strong negative autocorrelation 
with a period equal to 200 steps, or the time to complete a full cycle of foraging 
 correlated random walk and azmithal return to the central place. As in the cases of 
unconstrained and bounded correlated random walks, increasing mean turn angle 
increased variability among replicate correlograms and damped the strength of the 
general pattern. Like the previous cases, there is no time lag sufficient to ensure 
spatial independence of locations. The periodic pattern of return to the central 
place burns in a cyclic pattern of positive to negative to positive autocorrelation 
that extends indefinitely.

7.2.2 Autocorrelation of Elephant Movement

Cushman et al. (2005) report long-term, spatially complex and seasonally vari-
able patterns of autocorrelation among these elephants. Figures 7.7–7.9 show the 
correlogram surfaces for each collared elephant. The simulation analyses reported 
above provide a highly useful framework for understanding the structure of these 
empirical correlogram surfaces. This comparison indicates that across the year 
the pattern of autocorrelation of movement for each elephant show a full range of 
forms from smooth clines, strongly periodic use of central place, and occasional 
bounded correlated random use of temporarily fixed home ranges (Cushman 
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Fig. 7.7 Autocorrelation surface for elephant herd 55

et al. 2005). Interestingly, while the autocorrelogram surfaces for each elephant 
are highly complex, there is a strong degree of agreement between them, which 
in turn is related to the pattern of rainfall through the year (Cushman et al. 2005). 
This indicates that the structure of movement correlograms for these elephants 
provides highly interpretable information about movement behavior in relation 
to temporal changes in environmental conditions. During dry periods with little 
rain the elephants exhibit strongly periodic movement behavior corresponding 
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Fig. 7.8 Autocorrelation surface for elephant herd 56

to repeated visits to one or several permanent water holes interspersed with long 
foraging excursions away from the heavily over-grazed proximity of these water 
sources. During the rainy season when water is relatively continuously distributed, 
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Fig. 7.9 Autocorrelation surface for elephant herd 57

the elephants fluctuation between unbounded correlated random walks, indicated 
by smooth clines in the correlogram surfaces, and random walks in temporarily 
bounded home ranges, as indicated by rapid drop to near zero followed by minor 
fluctuations around zero in the correlogram surfaces.
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7.3 Discussion

7.3.1 Deep Autocorrelation in Animal Movement

Both simulation of movement paths with known process characteristics and analysis 
of empirical movement paths of a large and mobile mammal have clearly shown 
that autocorrelation is a fundamental attribute of movement data. In no simulated 
case did analyses show a meaningful time to independence. Even in the case of 
correlated random walks bounded within a fixed home range we found persistent 
periodic fluctuations between negative and positive autocorrelation as a result of 
the constraint that each step be within one step length of the previous one and in 
a direction to some degree correlated with the previous direction. No amount of 
subsampling of the data would remove the autocorrelation effects. In unconstrained 
correlated random walks and central place correlated random walks there are very 
strong patterns of autocorrelation that do not diminish appreciably over the full 
span of the walk. Subsampling data to a point where autocorrelation is no longer 
detected in such a case produces only an illusion of independence. It is conceptu-
ally similar to sampling a single point on the line. That point carries no information 
about the linear process that produced it, but it is entirely dependent on that process. 
Similarly, correlograms produced on subsampled or sparsely collected data on 
highly correlated pathway likely will show no significant long-range pattern of 
autocorrelation, even though there is underlying strong autocorrelation at every 
point and time lag.

7.3.2 Movement Paths Are Rich Source of Information

The consistent identification of persistent and often spatially complex patterns of 
autocorrelation in both controlled simulations and empirical analysis suggests that 
it will rarely be possible to satisfy assumptions of spatial independence among 
points for methods of analysis that require it. As mentioned in the introduction, this 
suggests the need for a change in focus from utilization points which are assumed 
to be a random sample of the full utilization distribution independent of sequential 
autocorrelation effects, to an explicit focus on the sequential, continuous nature 
of the movement paths themselves. The sequential spatial process of movement 
through complex landscapes contains rich information about the behavioral proc-
esses of foraging, resting, hiding, mating, defending territory, migrating and many 
other important behaviors in relation to underlying ecological gradients across a 
range of spatial scales. This linkage has largely been neglected, although some 
Markov chain approaches have begun to investigate it. In Chapter 20 we present 
an alternative approach, focusing on path-randomization and comparison of the 
ecological conditions encountered along utilized paths with those which would be 
encountered along potentially available paths of identical length and topology.
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In addition, the strong and consistent structure of correlograms resulting from 
paths generated using different known spatial processes show that correlograms 
themselves can be highly useful tools to explore movement behavior and identify 
dominant movement processes, which then can be used to generate ecological and 
behavioral hypotheses. For example, the simulation results presented here clearly 
show three distinct correlogram shapes. The identification of one of these shapes 
in correlograms produced from empirical data will invalidate hypotheses about 
the existence of the process that would generate one of the other two correlogram 
forms. For example, if we hypothesize that an organism will exhibit random use 
of a fixed home range, and discover that its movement path produces a cline or 
periodic shaped correlogram we would be able to safely reject that hypothesis. 
Correlograms have some use, but less certainty, in confirming dominant underly-
ing processes. For example, if we propose that an organism has an unconstrained 
correlated random walk, and discover its path produces a cline shaped correlogram, 
this is consistent with that explanation, but does not fully demonstrate its truth. 
This is a variety of the issue of affirming the consequent discussed in the first and 
second chapters. In this case, while a cline shaped correlogram is consistent with 
an unconstrained correlated random walk it may also be possible to obtain a similar 
cline shaped correlogram from other spatial processes, such as any walk in which 
locations tend to get farther away from each other in space as they become farther 
apart in time. Similarly, if one proposes a central place movement behavior and 
observes a strongly periodic correlogram, this observation is consistent with the 
hypothesis but does not prove it to be true. There are several ways one can obtain 
a similar periodic correlogram, including cyclic repeat of a similar route through a 
home range, or cyclic return to several foraging or resting locations. However, the 
form of correlograms are diagnostic for rejecting inconsistent movement hypoth-
eses and are useful in determining the degree of support for alternative explanations 
of movement process.
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