
Chapter 5
The Gradient Paradigm: A Conceptual and 
Analytical Framework for Landscape Ecology

Samuel A. Cushman, Kevin Gutzweiler, Jeffrey S. Evans, 
and Kevin McGarigal

5.1 Introduction

Landscape ecology deals fundamentally with how, when, and why patterns of 
environmental factors influence the distribution of organisms and ecological 
processes, and reciprocally, how the actions of organisms and ecological processes 
influence ecological patterns (Urban et al. 1991; Turner 1989). The landscape 
ecologist’s goal is to determine where and when spatial and temporal heterogeneity 
matter, and how they influence processes. A fundamental issue in this effort revolves 
around the choices a researcher makes about how to depict and measure heterogeneity 
(Turner 1989; Wiens 1989). Indeed, observed patterns and their apparent relationships 
with response variables often depend on the scale that is chosen for observation and 
the rules that are adopted for defining and measuring variables (Wiens 1989; Wu 
and Hobbs 2000; Wu and Hobbs 2004). Success in understanding pattern−process 
relationships hinges on accurately characterizing heterogeneity in a manner that is 
relevant to the organism or process under consideration.

To characterize heterogeneity, landscape ecologists have generally adopted a 
single approach – the patch-mosaic model of landscape structure (Forman and 
Godron 1986; Turner 1989; Forman 1995; Turner et al. 1989). In this model a 
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landscape is represented as a collection of discrete patches; major discontinuities 
in underlying environmental variation are depicted as discrete boundaries between 
patches, and all other variation is subsumed by the patches and implicitly assumed 
to be irrelevant. The patch-mosaic model provides a simplifying framework that 
facilitates experimental design, analysis, and management consistent with established 
tools (e.g., FRAGSTATS) and methods (e.g., ANOVA). The patch-mosaic model 
also is the foundation for the major axioms of contemporary landscape ecology 
(e.g., patch structure matters, patch context matters, pattern varies with scale). 
Yet, even the most ardent supporters of this model recognize that categorical repre-
sentation of environmental variables often poorly represents the true heterogeneity 
of the system, which often consists of continuous multi-dimensional gradients of 
environmental attributes. We believe that advances in landscape ecology are 
constrained by the lack of methods and analytical tools for effectively depicting and 
analyzing continuously varying ecological phenomena at the landscape level.

In the sections that follow, we explain the limitations of categorical map analyses 
for landscape ecology and then discuss the gradient paradigm, and explain how it 
can be used to overcome many limitations of the patch-mosaic model. We finish by 
illustrating specific benefits of gradient approaches using real data. The patch-mosaic 
model has great heuristic value, and it is the appropriate model to use under many 
circumstances, such as when natural or anthropogenic forces have created sharp 
environmental discontinuities. But we argue below that a patch-mosaic model of 
landscape structure is prone to large errors and distortion of underlying environmental 
patterns that can obscure true pattern–process relationships and inhibit flexible 
analysis across scales. We also argue that a gradient based representation of landscape 
structure is much more consistent with fundamental ecological theory, and that to 
achieve the full potential of integrating spatial analysis with quantitative ecology 
the categorical patch-mosaic model should take its rightful place as a special case 
within a generalized gradient framework.

5.1.1 Limitations of Categorical Mapping

Many of landscape ecology’s perspectives and techniques have their origins in 
classical cartographic analysis (Forman and Godron 1986). The first step in most 
landscape ecology analsyses is to map the system. It has become traditional in 
geography to abstract the world into non-overlapping regions, or polygons. In terms 
of observational scale, this kind of mapping truncates the intensity of measured 
variables into categories. Quantitative information about how variables vary through 
space and time is lost, leaving rigid, internally homogeneous patches. Though this 
perspective has been useful for many applications, it is important to recognize how 
it influences measurements and analyses.

In categorical mapping, discontinuities are presupposed; the world is assumed to 
be inherently discrete. When quantitative landscape variation is reduced to categories, 
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four important representation and interpretation problems are generated. First, 
subjective decisions of what to characterize and how to define boundaries will 
constrain what patterns can be seen and what relationships can be inferred. Second, 
patch boundaries based on criteria defined by the observer may not be meaningful 
or even perceived by the organism in question. Third, once patches are created, all 
internal variability within and among patches of the same class is eliminated, and 
all interclass differences are reduced to categorical differences. Fourth, categorical 
patches define the regions of assumed homogeneity in a single or composite attribute. 
Once defined, all variability in that attribute not used to define the patch is discarded. 
The cumulative effect of these issues can result in any number of statistical problems 
associated with data aggregation including the Modifiable Ariel Unit Problem 
(Openshaw 1984; Jelinski and Wu 1996; Wu 2007), Ecological Fallacy (Robinson 
1950; Wood and Skole 1998; Wu 2007), and misspecification (Guthrie and 
Sheppard 2001).

Two or more layers of patches can be overlaid and analyzed using map algebra. 
This is the standard approach to analyzing multi-level categorical map patterns. 
However, the boundaries of patches in different layers are often poorly related, as 
they reflect slices through the distributions of independently varying environmental 
attributes and are based on different classification rules. In the traditional patch-based 
model, analyzing many layers of patches results in intractably vast numbers of 
unique map categories. There often are many “sliver” patches resulting from 
poor matching of edges that are not indicative of any ecological process. This 
magnitude of this latter problem increases multiplicatively with additional choro-
pleth layers. When a researcher attempts to predict a response variable, such as the 
habitat suitability for a particular species, as a function of a number of landscape-
level attributes across several categorical data layers, prediction can only be based 
on combinations of categories.

With each combination of categorical data the information loss multiplies, as do 
the errors of misclassification. No such penalty is incurred for combining quantita-
tively scaled variables. If the same response variable is predicted on the basis of 
several layers of quantitative predictor variables, the prediction can be based on how 
the quantitative landscape-level variables covary along dimensions that are related 
to the species or process in question (McGarigal and Cushman 2005). In addition, 
preserving quantitative ecological factors reduces subjectivity. The subjectivity 
of boundary definition is replaced by the subjectivity of measurement resolution, 
which often involves less-restrictive assumptions than do decisions about category 
width and boundary definitions. Retaining the quantitative scale of ecological 
variables also enables one to analyze many response variables simultaneously, with 
each responding individually to multiple landscape gradients.

When categorical patch mosaics are derived specifically to correspond to the 
scale and sensitivities of a particular organism or ecological process, they may rep-
resent landscape heterogeneity in an ecologically meaningful way. In most cases, 
however, little is known about the scale and resolution of landscape variability 
that are pertinent, and patterns at several scales may simultaneously influence an 
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organism or process. Reducing a continuous ecological surface to a patch mosaic 
causes representation and interpretation problems because of inaccuracies in 
boundary placement and class divisions (Openshaw 1984), or because ecological 
variation is important across several scale ranges (Wu 2007). Even if a constructed 
patch mosaic ideally represents an organism’s ecological landscape, this mosaic 
is not likely to do so in an optimal way for a second or third organism, making 
comparisons between organisms based on a single landscape map questionable 
(Cushman et al. 2007).

5.1.2 Gradient Attributes of Categorical Patterns

Even when categorical data is appropriate, conventional analytical methods 
often fail to produce unbiased assessments of organism responses. Organisms often 
experience categorical environments as pattern gradients. For example, consider a 
species that responds to landscape structure as measured by the density of edges in 
the landscape weighted by their structural contrast. Traditional landscape pattern 
analysis would measure the total contrast-weighted edge density for the entire 
landscape. However, landscape patterns are rarely stationary, and there may be no 
place in the landscape with a contrast-weighted edge density equivalent to that 
calculated for the landscape as a whole. If the landscape is large relative to the 
organism’s home range, the organism is unlikely to even experience the global 
average structure of the landscape. The organism responds to the local structure 
within its immediate perception, within its daily foraging area, and within its home 
range. Thus, a more useful description of landscape pattern would be a location-
specific measure at a scale relevant to the organism or process of interest (Wiens 
2001; Wu 2007). We propose that organisms experience landscape structure as 
pattern gradients that vary through space according to the distance at which a 
particular organism perceives or is influenced by landscape patterns. Therefore, 
instead of analyzing global landscape patterns, it is usually more appropriate to 
quantify the local landscape pattern across the space delimited by an organism’s 
perceptual abilities.

Tools exist to calculate traditional patch based landscape metrics within a 
moving window (e.g. McGarigal et al. 2002). The window size should be selected 
such that it reflects the scale at which the organism perceives or responds to 
pattern. If this is unknown, one can vary the size of the window over several runs 
and empirically determine to which scale of a landscape variable an organism is 
most responsive. The window moves over the landscape one cell at a time, calcu-
lating the selected metric within the window and returning that value to the center 
cell. The result is a continuous surface which reflects how an organism of that 
perceptual ability would perceive the structure of the landscape as measured by that 
metric (Fig. 5.1). The surface then would be available for combination with other 
such surfaces in multivariate models to predict, for example, the distribution and 
abundance of an organism continuously across the landscape.



5 The Gradient Paradigm: A Conceptual and Analytical Framework 87

5.1.3 Gradient Analysis of Continuous Field Variables

When patch mosaics are not clearly appropriate as models of the variability of 
particular environmental factors, there are a number of advantages to modeling 
environmental variation as individually varying gradients. First, it preserves the 
underlying heterogeneity in the values of variables through space and across scales. 
The subjectivity of delimiting boundaries is eliminated. This enables the researcher 
to preserve in the analysis many variables that vary independently, avoiding the 
disadvantages of reducing the set to a categorical description of boundaries defined 
on the basis of one or a few attributes. In addition, the subjectivity of defining 
cut points for categories is eliminated. With gradient data, scale inaccuracy and 
boundary sensitivity are not issues because the quantitative representation of 
environmental variables preserves the entire scale range and the complete gradient. 
The only real subjectivity is the resolution at which to measure variability.

By tailoring the grain, extent, and intensity of the measurements to the hypotheses 
and system under investigation, researchers can develop a less equivocal picture of 
how the system is organized and what mechanisms may be at work. An important 
benefit is that one can directly assess relations between a continuous response 
variable for an organism with spatial and temporal patterns in the environment that 
are continuously scaled. By not truncating patterns of variation in landscape 
variables to a particular scale and set of categories, one can use a single set of 

Fig. 5.1 Comparison of global and neighborhood-based calculation of a landscape metric for a 
categorical map. The Aggregation Index (AI) was calculated for the “forest” class (grey) in the 
binary map on the left for the landscape overall, and within 500-m-radius circular windows 
centered on each pixel. The moving window calculation, shown on the right, produces a surface 
whose height is equal to the neighborhood AI value. There is a border classified as “no data” 
around the edge of the landscape to a depth of the selected neighborhood radius. Higher AI values 
are light, lower values are dark
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predictor variables to simultaneously analyze many response variables, be they 
species responding individually to complex landscape gradients, or ecological 
processes acting at different scales. Comparison between organisms or processes 
is not compromised, because each can be optimally predicted by the surface or 
combinations of surfaces without altering the data in ways that limit its utility for 
predicting other response variables. Importantly, this facilitates efficient multivariate 
analyses involving many response and predictor variables simultaneously to test 
hypotheses about the nature and strength of system control.

5.2 The Gradient Paradigm of Landscape Structure

We propose a conceptual shift in spatial ecology that integrates categorical and 
continuous perspectives. We believe it will be useful for landscape ecologists to 
adopt a gradient perspective, along with a new suite of tools for analyzing 
landscape structure and the linkages of patterns and processes under a gradient 
framework. This framework includes, where appropriate, categorically mapped 
variables as a special case. In the sections that follow we outline how a gradient 
perspective can be valuable in several areas of landscape ecological research.

5.2.1 Evaluating A Categorical Mapping of Canopy Density

In this example we explore the differences between gradient and categorical 
representations of an important ecological variable, canopy density. Canopy density 
is a measure of the amount of canopy photosynthetic material per unit of ground 
surface area, and is correlated with a number of ecological processes of interest, 
including net primary productivity, carbon sequestration rate, and is an important 
habitat attribute for many wildlife species.

5.2.1.1 Mapping Approaches

Lidar

Lidar data was acquired in August of 2006 by Watershed Sciences, Corvallis, 
Oregon using a Leica-ALS50 sensor with a pulse repetition frequency of 80 kHz, 
a nominal point-density of ∼48 points per/m2, and a maximum scan angle of 14°. 
Ground measurements were identified using Multiscale Curvature Classification 
(Evans and Hudak 2007). Canopy density was calculated using the ratio of non-ground 
to ground measurements (Fig. 5.2a) within a 15 m cell size to make it directly 
comparison with VMAP. The ratio of non-ground/ground Lidar measurements 
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accurately represent the amount of light reaching the ground and are directly 
comparable to traditional measures of canopy density. Correlation between Lidar 
derived and field measured canopy cover have been strongly supported (r = 0.97) 
in several studies.

Fig. 5.2 (a) Lidar derived canopy density 15 m. Colors are ramped, blue (0%) to red (100%) 
using a standard deviation stretch. (b) VMAP derived canopy density. Colors are representative of 
4 classes, blue (0–10%), green (25–59%), yellow (10–24%), and red (60–100%). (c) Standard 
deviation of lidar canopy density by VMAP polygon (d) Non agreement between VMAP and 
Lidar classification (45% error). Red is an error, blue is correct. (e) Maximum Rate of Change, 
Canopy Density 15 m. Colors are ramped, blue (low change) to red (high change) using a standard 
deviation stretch

a

c
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d
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R1-VMAP

The USDA Forest Service Region 1 VMAP project is a vegetation classification 
based on hierarchal image segmentation. Multi-temporal Landsat ETM + 7 spectral 
bands were fused with the panchromatic band (band 8) to create 15 m multispectral 
images. These images were used to create image object polygons using eCogni-
tion. Canopy density was classified into four classes; 1–9%, 10–24%, 25–59%, and 
60–100% (Fig. 5.1b). Validation was conducted using photo-interpretation report-
ing a producer’s accuracy based on omission error (65.4%) and a user’s accuracy 
based on commission error (78.7%).

5.2.1.2 Analysis and Interpretation

Canopy density is an inherently continuous attribute which varies at scales at least 
as fine as the canopy width of individual trees. Continuous representation intuitively 
seems much more appropriate. Lidar effectively represents this continuous variability, 
given its fine sample resolution (∼48 points per/m2) and sensitivity to fine differences 
in measurement scale (continuous values from 0 to 100% in this case). It has 
demonstrated very high accuracy in predicting actual canopy density at a fine 
spatial scale (Leafsky et al. 1999; Means et al. 2000; Hudak et al. 2006). In this 
example, we will treat the 15 m2 lidar canopy density classification as approximate 
truth and evaluate the deviation of the classified map from it.

This example provides a means to test three important questions. First, do the 
patch boundaries delineated in Fig. 5.2b correspond to discontinuities in the actual 
patterns of canopy density. In other words, do the patch boundaries correspond to 
hard boundaries or “breaks” in canopy density. Second, do the patches correspond 
to areas of homogenous canopy closure, such that categorical representation does 
not result in severe loss of information about internal variability. Third, is there a 
strong relationship between the value of canopy density predicted in the VMAP and 
lidar canopy classifications at the pixel level.

The patches in Fig. 5.2b do not strongly correspond to discontinuities in actual 
canopy closure. Visual comparison of Fig. 5.2a and b shows that the patch boundaries 
in 2b are largely artificial and arbitrary truncations of a continuously varying 
phenomenon and do not correspond to natural breaks in the pattern. Figure 5.2e 
further shows that these patches are artificial. The patterns of maximum rate of 
change of canopy closure in this landscape do not in general suggest the existence 
of natural boundaries that could meaningfully describe patches, and certainly do 
not correspond to the patch boundaries shown in Fig. 5.2b

Second, visual inspection of Fig. 5.2a and b also shows that the patches in 2b do 
not correspond to areas of homogeneous canopy density. This was more formally 
evaluated by computing the standard deviation of lidar canopy density by VMAP 
polygon (Fig. 5.2c). The majority of the landscape is covered by patches that have 
standard deviation of internal canopy density over 25%. Given the range of this 
value from 0 to 100%, a 25% standard deviation is very large. Over 15% of the 
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landscape is occupied by patches with standard deviation over 50%. This analysis 
shows that the patches delineated by VMAP for canopy closure do not correspond 
to areas of internal homogeneity, and the internal heterogeneity is so high that the 
patches are largely meaningless.

The third question is the accuracy of the VMAP classification in represent-
ing the degree of canopy closure. In this comparison we evaluate how well the 
truncated ranges in the classified map correspond to the same artificial ranges 
imposed on the lidar map. We have already shown that these truncated ranges 
are artificial and do not represent natural breaks or areas of internal homogene-
ity. But a remaining question is; do they at least match pixel by pixel to the same 
range of values in the lidar map with some accuracy? The Lidar canopy density 
was classified into the same four classes as VMAP. A Boolean equality operation 
was performed in Workstation ArcInfo between the classified Lidar and VMAP. 
We conducted two evaluations of accuracy of VMAP in terms of matching lidar. 
First, a Persons correlation was calculated in R (R Development Core Team 
2007) between the classified Lidar and VMAP adjusting for autocorrelation and 
degrees of freedom (Dutilleul 1993). The value of this correlation was r = 0.329, 
which indicates that only approximately 10% of the variation in truncated canopy 
closure values at the pixel level is explainable VMAP. This indicates that VMAP 
is a very poor predictor of even artificially truncated ranges of canopy closure. 
Second, we computed the error between the classified map and the lidar predic-
tion (Fig. 5.2d), calculated as the proportion of cells incorrectly classified into 
the wrong truncated ranges of canopy closure. This analysis indicated that over 
45% of the cells in the classified map were incorrectly assigned to one of the four 
ranges of canopy density.

The classified map fails each of these three critical questions. The patches do not 
represent discretely bounded discontinuities. Rather, the pattern of canopy density 
is continuous at a fine scale in a way that does not lend itself to the identification 
of discrete patch boundaries. Second, the patches do not represent areas of internal 
homogeneity, but instead subsume a level of heterogeneity that is nearly the same 
as that between putative patches. The bins used to truncate this continuous variable 
are artificial and arbitrary. But even if we assumed them to be meaningful, the 
classified map fails to accurately predict even these artificial truncations, based on 
the cell correlation and classification accuracy.

This analysis is a comparison of one environmental variable between one 
classified map product and one continuous representation. However, the classified 
map product was produced in a multi-million dollar landscape mapping effort using 
the best available classification techniques and imagery. The published validation 
reported a producer’s accuracy based on omission error (65.4%) and a user’s accuracy 
based on commission error (78.7%). This classified map thus can be considered 
representative of the upper end of expected quality among the population of such 
maps available to ecologists and managers. Its failure to represent the important 
attributes of this variables spatial pattern and cell-level value suggests that efforts to 
classify inherently variable ecological attributes into categorical maps are questionable. 
Even if the cell-level classification into truncated bins was highly accurate, it still 
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would not satisfy questions one and two above, resulting in a distortion of pattern 
by artificially defining boundaries in a continuous landscape and obliterating the 
very high degree of internal variability. However, in this case the cell-level accuracy 
was so low that even if the classification levels were ecologically meaningful, the 
result is so inaccurate as to be of questionable value.

5.3 Multi-scale Gradient Concept of Habitat

In the previous example we considered how well categorical maps represent continu-
ous attributes of vegetation structure. As we noted in that discussion, there are a great 
many ecological attributes which vary continuously across multiple spatial scales and 
for which a gradient approach to representing patterns and analyzing pattern-process 
relationships might be appropriate. One of the most important of these is habitat.

Ecological theory suggests that species exhibit a unimodal response to limit-
ing resources in n-dimensional ecological space (Whittaker 1967; ter Braak 1988; 
Cushman et al. 2007b). A species not only requires a certain minimum amount of each 
resource but also cannot tolerate more than a certain maximum amount. Therefore, 
each species performs best near an optimum value of a necessary environmental 
variable and cannot survive when the value diverges beyond its tolerance (Shelford 
1931; Schwerdtfeger 1977). The relationships between species’ performance 
and gradients of critical resources and conditions describe its fundamental niche 
(Hutchinson 1957). The composition of biotic communities changes along bio-
physical gradients because of how the niche relationships of the constituent spe-
cies interact with the spatial structure of the environment and competing species 
(Hutchinson 1957; Whittaker 1967; Austin 1985; Rehfeldt et al. 2006).

Most basically habitat is the resources and conditions necessary to allow 
survival and reproduction of a given organism (Hutchinson 1957). It is organ-
ism specific, and characterized as an n-dimensional function of multiple 
resources and conditions, each operative at particular spatial scales. Habitat 
relationships often change along a continuum of spatial scale reflecting the 
hierarchical nature by which animals select resources (Johnson 1980; Cushman 
and McGarigal 2004). Because relationships at finer scales may reveal mecha-
nisms that are not apparent at broader spatial scales, a multiscaled, hierarchical 
approach is valuable (Cushman and McGarigal 2002). The volume of ecologi-
cal space in which the organism can survive and reproduce defines its “envi-
ronmental niche” (Hutchinson 1957; Rehfeldt et al. 2006).

The environmental gradients comprising the niche are clines in n-dimensional 
ecological space. In geographical space these gradients often form complex 
patterns across a range of scales (Wiens 2001; Wu 2007). The fundamental 
challenge to integrating landscape and community ecology is linking non-spatial 
niche relationships with the complex patterns of how environmental gradients 
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overlay heterogeneous landscapes (Austin 1985; ter Braak and Prentice 1988; 
Cushman et al. 2007). Traditionally there has been a severe disjunction between 
n-dimensional gradient theory of niche structure and spatial analysis of habitat 
patterns (McIntyre and Barrett 1992; McGarigal and Cushman 2005). The majority 
of spatial analyses in habitat ecology have fallen into one of two camps, each of 
which is conceptually divorced in important ways from gradient theory of niche 
and habitat structure.

The first paradigm we call the “island biogeographic model” (See Chapter 4). 
In this model, habitat fragments are viewed as analogues of oceanic islands in an 
inhospitable sea or ecologically neutral matrix. Under this perspective, discrete 
habitat patches (fragments) are seen as embedded in a uniform matrix of non-habitat. 
The key attributes of the model are its representation of the landscape as a binary 
system of habitat and inhospitable matrix, and that, once lost, habitat remains 
matrix in perpetuity.

The static island biogeography paradigm has been the dominant perspective 
since its inception. Its major advantage is simplicity. Given a focal habitat, it 
is quite simple to represent the structure of the landscape in terms of habitat 
patches contrasted sharply against a uniform matrix. Moreover, by considering 
the matrix as ecologically neutral, it invites ecologists to focus on those habitat 
patch attributes, such as size and isolation, that have the strongest effect on 
species persistence at the patch level. A major disadvantage of the strict island 
model is that it assumes a uniform and neutral matrix, which in most real-world 
cases is a drastic over-simplification of how organisms interact with landscape 
patterns.

The second major conceptual paradigm is the landscape mosaic model. In this 
paradigm, landscapes are viewed as spatially complex, heterogeneous assemblages 
of cover types, which can’t be simplified into a dichotomy of habitat and matrix 
(Wiens et al. 1993; With 2000). Connectivity is assessed by the extent to which 
movement is facilitated or impeded through different land cover types across the 
landscape. In this model, connectivity is an emergent property of landscapes result-
ing from the interaction of organisms with landscape structure.

Niether the island biogeographic nor the landscape mosaic model of habitat is 
consistent with the basic theory that habitat is organism specific, multiple scaled 
and characterized by a zone in n-dimensional environmental space that consists of 
resources and conditions necessary and sufficient for the survival and reproduction 
of the species. Conceptually, patch based models of habitat are Clementsian, in 
that patches are proposed as discrete entities, analogous to super-organism habitat 
types (Clements 1916). It seems ironic that modern landscape ecology has adopted 
this categorical, super-organismal patch based model, when gradient perspectives 
on species–environment relationships have been dominant in plant and community 
ecology for nearly 100 years (Gleason 1926; Whittaker 1967). This example 
will explore several attributes of this inconsistency. We will begin presenting an 
evaluation of the sufficiency of island biogeographic and patch mosaic represen-
tations of habitat for breeding birds in a forest environment. From this analysis 
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we will argue that habitat quality is a continuous attribute that varies as a func-
tion of multiple resources and conditions, across a range of spatial scales, and 
representations that cast habitat as a categorical attribute in a patch mosaic risk 
serious error. We then will contrast a categorical representation of habitat with 
an alternative model in which habitat is represented as a continuous function of 
multiple variables at several spatial scales, and conclude that a gradient approach 
is consistent with basic ecological theory and less likely to result in spurious and 
misleading inferences about habitat amounts and patterns and their relationships 
with population processes.

The island biogeographic and landscape mosaic approaches implicitly assume 
that the environmental variation that is important to a species can be accurately 
represented as a mosaic of categorical patches. The analysis proceeds by proposing 
a series of landscape element types that are believed to comprise “habitat” for a spe-
cies. In practice, these are usually represented as vegetation types. These are then 
classified into “habitat” vs. “nonhabitat” in the island biogeographic perspective, 
or are left as a mosaic of multiple cover types in the landscape mosaic perspective. 
We believe this categorical representation of habitat is fundamentally inconsistent 
with basic ecological theory in that it does not reflect species specific responses 
to multiple gradients of critical resources or conditions. All variability in environ-
mental attributes is subsumed into a mosaic of patches that may or may not reflect 
attributes of importance to a species. Importantly, casting habitat as a categorical 
mosaic makes it very difficult to use the multi-variate and multi-scale methods that 
have been developed to construct niche-habitat models. This conceptual disjunction 
provides a major obstacle to linking the methods and theories of niche-relationships 
to spatial analysis of habitat pattern and its implications to population processes 
(Urban et al. 2002).

Our example evaluates the sufficiency of categorical representations of 
habitat patches in comparison to a multi-scale, multivariate approach. It is 
based on a multi-scale analysis of the habitat relationships of forest birds in 
the Oregon Coast Range (Cushman and McGarigal 2002, 2004; Cushman et 
al. 2007). The major question is whether categorical representation of habitat 
attributes as a patch mosaic is appropriate. For a patch mosaic of vegetation 
types to serve as an effective proxy for species abundance, Cushman et al. 
(2007) propose that several conditions must be met simultaneously. The most 
crucial are: (1) habitat is a proxy for population abundance, and (2) mapped 
vegetation types provide a proxy for the habitat of multiple species. The first 
assumption requires that species population sizes are strongly associated with 
environmental conditions, such that environmental conditions alone are a suffi-
cient proxy for population status and trend. The second assumption states that 
broadly defined vegetation types provide an effective surrogate for the habitat 
requirements of each species.

Cushman et al. (2007) assessed habitat relationships across a range of organi-
zational levels, including plot-level measurement of vegetation composition 
and structure, and the composition and configuration of a classified landscape 
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mosaic of patches representing vegetation cover types and seral stages. They 
found that the sufficiency of vegetation community types as proxies for habitat 
was highly dependent on the classification attributes and spatial scales at which 
communities were defined, and varied greatly among species. Their multi-scale 
analysis revealed that a large proportion of the variance in species abundance 
could not be explained by mapped community types, no matter how they were 
defined, and that fine-scale measurements of abiotic conditions and vegeta-
tion composition and structure were essential predictors of species abundance 
(Cushman and McGarigal 2004; Cushman et al. 2007). This suggests that the 
patch mosaic model, in addition to being conceptually distant from fundamental 
theories of the factors that drive species–environment relationships, also fails in 
practice to provide a strong predictor of habitat quality. This is primarily because 
of two factors. First, habitat is a multi-dimensional attribute, uniquely defined 
for each species, based on the resources it requires and conditions it can tolerate. 
Second, each of these critical resources or conditions may affect a species at a 
particular characteristic set of spatial scales. A categorical mosaic is inappropri-
ate for both of these considerations. It is difficult to represent an n-dimensional 
function of environmental variation as a categorical mosaic. It is likewise difficult 
to define a unique patch mosaic from the habitat perspective of each individual 
organism. In addition, it is challenging to integrate environmental variation at 
several spatial scales into a single categorical representation of habitat quality 
(McGarigal and Cushman 2005).

The fundamental challenge to integrating the niche theory of habitat with spatial 
ecology lies in linking non-spatial niche relationships with the complex patterns 
of how environmental gradients overlay heterogeneous landscapes (Austin 1985; 
McIntyre and Barrett 1992; Urban et al. 2002; Manning et al 2004; Cushman et al. 
2007b). By establishing species optima and tolerances along environmental gra-
dients, researchers can quantify the characteristics of each species’ environmental 
niche. The resulting statistical model can be used to predict the biophysical suitabil-
ity of each location on a landscape for each species (Rehfeldt et al. 2006; Evans and 
Cushman 2009) (Fig. 5.3). This mapping of niche suitability onto complex land-
scapes is the fundamental task required to predict individualistic species responses 
to complexes of environmental conditions across landscapes. Importantly, it is 
fundamentally a gradient modelling exercise and the results are predictions of 
expected probability of occurrence, relative density or some other measure of habi-
tat quality as continuous functions of multiple resources measured at one to many 
spatial scales. The insufficiency of patch-based representations of environmental 
structure as surrogates for species habitat relationships and the essential informa-
tion provided by fine-scale vegetation and abiotic factors (Cushman et al. 2007a), 
implies that spatial representations of habitat should represent the environmental 
factors that most strongly predict organism abundance or performance. These fac-
tors will likely act across a range of scales, from within stand vegetation structure 
and composition, to local and landscape biophysical gradients of temperature, 
water and energy (Cushman et al. 2007b).
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Fig. 5.3 The habitat niche of an given species describes the range of resources and conditions over 
which the species can survive and reproduce. The niche is characterized as an n-dimensional hyper-
ellipsoid (a) in which the species performs optimally within a certain restricted zone (blue core 
ellipsoids above), and can tolerate a certain wider range (mesh ellipsoids). The factors that com-
prise the axes of the habitat niche may represent any critical resource or condition, many of which 
will likely best be described by continous environmental gradients, and may reflect environmental 
factors from a number of different spatial scales. Given the habitat relationship described by the 
niche model, it is possible in principle to evaluate the habitat quality each location in a complex 
landscape, by assessing where the complex of environmental conditions at that location reside 
within the habitat niche space of the organism (b). The map at bottom shows a hypothetical exam-
ple where habitat quality is a continuous function of multiple environmental attributes. The map 
shows a grey scale gradient of habitat quality from very low (white) to very high (black)
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5.4  Binary Compared to Multi-scale Gradient 
Representation of Habitat Quality

In this example we compare a typical categorical representation of habitat based 
on vegetation seral stage with a multi-variate and multi-scale gradient representa-
tion. The example is based on habitat suitability for a hypothetical organism that is 
associated with mature forests and high elevations, and avoids areas of fragmented 
forest with high edge density. A typical way to represent habitat for this species in 
the island biogeographic perspective is as a binary map of habitat vs. nonhabitat 
(Fig. 5.4a). In this map white areas are mapped late seral forest patches and black 
areas are covered by various conditions of non-forest and younger seral stages. In 
this map all locations in late seral forest are given equal quality (1) regardless of their 
context with respect to edges, elevation or other environmental conditions. Habitat is 
categorical. Likewise, all locations in non-habitat are given equal value (0) regardless 

Fig. 5.4 (a) Binary representation of habitat (white) and non-habitat (black) for a late-seral 
dependent organism. (b) Gradient representation of habitat quality for the same organism, including 
multiple environmental attributes at a range of scales. (c) Pixel differences between the two maps, 
calculated as (b)–(a). Assuming that the gradient representation more faithfully represents the pat-
terns of habitat suitability, negative values in (c) correspond to areas where the binary map overpre-
dicts habitat quality. In the map these are shown as a color ramp from yellow to red. Positive values 
in (c) are areas where the binary map underpredicts habitat quality, and are shown in a scale from 
dark blue to light blue, with dark blue representing areas with the least difference between the two 
maps. (d) Histogram showing the frequency distribution of differences between the two maps. The 
histogram shows both extensive areas where habitat quality is over predicted by the binary map 
(positive values) and extensive areas where habitat quality is underpredicted (negative values)
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of whether they are bare rock, young forest or mature forest, or whether they are 
surrounded by non-habitat or a small island surrounded by quality habitat.

An alternative representation of habitat quality using a multi-scale gradient 
representation is shown in Fig. 5.4b. In this representation, the organism is also 
primarily related to late successional forest, but habitat quality is also affected 
by several other environmental attributes. For example, habitat quality is affected 
by elevation, with quality decreasing in a Gaussian manner away from a peak at 
1,800 m in elevation. Additionally, not all “matrix” patch types are equivalent. 
Some, such as bare rock and snow, have a 0 quality value, but others, such as young 
and mature forest, have some habitat value. Further, this organism is sensitive to the 
density of high contrast edges at the scale of its home range (630 m radius). This 
example combines categorical, gradient, and neighborhood attributes of habitat 
quality. In combination these factors produce a surface of hypothetical habitat quality 
that is continuously varying, without many hard edges (except those around the 
few patch types with 0 quality), which includes factors from several spatial scales. 
While this is a hypothetical example, it shows how the gradient perspective allows 
multi-variate combination of several environmental attributes measured at correct 
spatial scales with respect to the organism of interest.

A comparison of these two maps will illustrate several points which may be of 
general value. Figure 5.4c shows the pixel-by-pixel difference between the expected 
habitat quality (expressed as Binary – Gradient) of the two maps. The color scheme 
represents the relative deviation of the binary map from the gradient map. Blue 
colors represent areas where the binary map predicted lower habitat quality than 
the gradient map. Conversely, yellow to red areas are those in which the binary map 
over predicted habitat quality. There are two main patterns of interest. First, areas 
predicted as non-habitat in the binary map are often predicted as suboptimal, but 
not, nonhabitat in the gradient representation, and the degree of suboptimality var-
ies as function of the vegetation type, elevation and landscape context (with respect 
to high contrast edges). Second, areas predicted as habitat in the binary map are of 
varying quality in the gradient map, such that the quality of habitat is overpredicted 
by the binary map for most locations, particularly those in which there are many 
high contrast edges and those at relatively lower elevations. This pattern of binary 
maps systematically over predicting the quality of habitat pixels and under predict-
ing the quality of non-habitat is a general property of categorical patch mosaic 
representations of habitat and has important implications for assessing effects of 
landscape patterns on population processes (Fig. 5.4d).

Perhaps the most important implication of the difference between the two maps 
is how closely they predict habitat quality. If in either case the same general 
conclusion is reached about habitat amount and pattern then there would be little 
cost incurred for using a simple binary representation versus a more sophisticated 
multi-variate, and multi-scale approach. How similar are these two maps in their 
prediction of habitat quality? A basic measure of this is the pixel-by-pixel correlation 
between the two maps. The Pearson correlation between the maps is 0.358, which 
means that only about 13% of variance is shared between them. In other words, 
87% of the information in the gradient map cannot be accounted for by the binary 
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map, even though they are both based on the major influence of late succesional 
forest on habitat quality. Using one versus the other therefore in evaluating amounts 
and patterns of quality habitat would yield drastically different results.

5.5 Gradient Concept of Population Connectivity

Our final illustration of the gradient concept of landscape analysis centers on the 
question of population connectivity. One of the more immediate consequences of 
habitat fragmentation is the disruption of movement patterns and the resulting iso-
lation of individuals and local populations. In the patch mosaic model of landscape 
structure, as habitat is fragmented, it is broken up into remnants that are isolated to 
varying degrees. If movement among habitat patches is significantly impeded, then 
individuals in remnant habitat patches may become reproductively isolated. In the 
patch mosaic model of categorical landscape structure, connectivity is assessed 
by the size and proximity of habitat patches and whether they are physically con-
nected via habitat corridors. Patch edges may act as a filter or barrier that impedes 
or prevents movement, thereby disrupting emigration and dispersal from the patch 
(Wiens et al. 1985). In addition, the distance from remnant habitat patches to other 
neighboring habitat patches may influence the likelihood of successful movement 
of individuals among habitat patches.

However, in the previous example we argued that habitat often should not be 
represented as categorical patches due to the manner in which multiple environ-
mental attributes combine across scale to influence site quality. Likewise, the fac-
tors that impede or facilitate movement may not best be represented as patch edges 
and inter patch distances. The influences of environmental structure on organism 
movement and population connectivity are species specific, and reliable inferences 
about population connectivity in complex landscapes requires assessing relation-
ships between organism movement patterns and multiple environmental features 
across a range of spatial scales, rather than simplistic representation of habitat patch 
interiors, edges and inter-patch distances (Cushman 2006).

In practice it has been problematic to develop reliable inferences regarding how 
multiple environmental features influence movement of organisms across several 
spatial scales. The two traditional approaches to study animal movement have been 
mark-recapture and radio-telemetry (Cushman 2006). By quantifying movement 
rates, distances and routes of dispersing juveniles through complex environments 
researchers can describe species specific responses to environmental conditions. 
These methods are suited for incorporation in manipulative field experiments 
which provide the most reliable inferences about relationships between survival 
rates, movement and ecological conditions (McGarigal and Cushman 2002). Both 
of these methods are limited by logistical challenges that reduce their ability to 
test interactive effects of multiple landscape attributes on organism movements. 
The challenge in these studies is one of cost and sample sizes. It is very difficult 
to obtain a large sample size of individuals and then track their movements across 
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many combinations of environmental conditions to provide data to infer patterns of 
movement in relation to landscape features.

Recent advances in landscape genetics have greatly facilitated developing 
rigorous, species-specific, and multi-variate characterizations of habitat con-
nectivity for animal species (Manel et al. 2003; Holderegger and Wagner 2006; 
Storfer et al. 2007). Landscape genetic approaches largely mitigate the logistical 
and financial costs of extensive mark-recapture studies. To data, many population 
and landscape genetic studies have used F-statistics (Wright 1943) or assignment 
tests (Pritchard et al. 2000; Corander et al. 2003; François et al. 2006) to relate 
genetic differences among well-defined subpopulations to; distance relation-
ships (Michels et al. 2001), putative movement barriers (Manni et al. 2004; Funk 
et al. 2005) or correlations with landscape features (Spear et al. 2005). This is an 
explicitly island-biogeographic perspective in which populations are assumed to 
be discretely bounded and relatively isolated, with no internal structure. Genetic 
differences are assumed to be a function of group membership entirely, with no 
effect of internal population structure, or the effects of distance or movement cost 
between populations.

Once discrete subpopulations have been identified, post hoc analyses are 
performed, correlating observed genetic patterns with interpopulation dis-
tance or putative movement barriers (e.g., Proctor et al. 2005). Populations, 
however, often have substantial internal structure (Wright 1943), and it is 
often difficult to rigorously define discrete boundaries between populations. 
In terrestrial landscapes it is more common to have species that are either 
continuously distributed or patchily distributed with low densities between 
populations (Cushman et al. 2006). Thus, in many situations, population 
structure is better defined as a gradient phenomenon than as a categorical, 
patch-based entity.

By sampling genetic material from a large number of organisms distributed 
across large and complex landscapes researchers can quantify neutral genetic 
variability among individuals (Storfer et al. 2007). Spatial patterns in this neu-
tral variability are indicators of relative connectivity of the population across 
space (Holderegger and Wagner 2006; Cushman et al. 2006; Storfer et al. 2007). 
Individual-based analyses that associate genetic distances with alternative models 
of landscape resistance to gene flow offer a direct and powerful means to assess the 
affects of multiple landscape features across spatial scales on population connectivity. 
By comparing the least cost distances among individuals across alternative resist-
ance hypotheses (Fig. 5.5) to genetic distances it is possible to evaluate alternative 
hypotheses, such as isolation by distance, barriers or landscape resistance gradients 
(Cushman et al. 2006; Storfer et al. 2007).

For example, Cushman et al. (2006) used least cost path analysis and causal 
modelling on resemblance matrices to test 110 alternative models of landscape 
resistance for American black bear (Ursus americanus). The approach framed 
landscape resistance as a gradient phenomenon whose total effect is a weighted 
combination of multiple landscape factors across a range of spatial scales. Importantly, 
the analysis framework provided an explicit test of isolation by population patches, 
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isolation by geographical distance and isolation by landscape resistance gradients. 
The results indicated that isolation-by-barrier and isolation-by-distance models 
are poorly supported in comparison to isolation by landscape-resistance gradients. 
Evaluating multiple competing hypotheses identified land cover and elevation as 
the dominant factors associated with genetic structure. Gene flow in this black bear 
population appears to be facilitated by forest cover at middle elevations, inhibited 
by nonforest land cover, and not influenced by topographical slope. The most 
supported model produced a map of resistance to gene flow when applied to the 
landscape (Fig. 5.6). This map shows that landscape connectivity is not a binary 
function of habitat and matrix, but is best characterized as a gradient of cell-level 
resistance as a function of several environmental variables.

Most population genetic studies have considered populations to be mutually 
isolated and internally panmictic. This is often an unrealistic model that imposes 
an artificial structure on analysis and can distort results. Actual populations usu-
ally exhibit continuous gradients of divergence across space and in relation to 
the resistance of landscape features (e.g. Cushman et al. 2006). Thus, it is often 
preferable to represent population structure as a gradient phenomenon rather than 
a categorical, patch-based entity. Representing the population structure in this 
way preserves internal information about how genetic characteristics vary across 
space, which would be lost in traditional closed-panmictic population analysis. 

Fig. 5.5 Example of computing least cost paths to derive cost distances between individuals 
across a resistance hypothesis. (a) landscape resistance is a continuous spatial variable ranging 
from 1 (black) to approximately 65 (white). The locations of five individual animals are indicated 
by red dots. (b) least cost distance from the upper left individual across the costsurface (a). The 
least cost paths between the upper left individual and the other four animals are shown as yellow 
lines. Computing cost distances between all pairs of animals on this resistance models will create 
an independent variable matrix that can be associated with the genetic distances between all pairs 
of animals. By testing the degree of support for multiple alternative resistance models it is possible 
to identify the factors that facilitate or inhibit gene flow across complex landscapes
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Also, by representing population structure as a gradient phenomenon it is 
possible to compare population gradients with landscape resistance gradients. By 
representing both the genetic dependent variables and the landscape resistance 
variables as continuous gradients it is possible to test competing hypotheses of 
the effects of landscape structure on gene flow, in comparison to isolation by 
distance and putative barriers in one synthetic analysis. This would not be possible 
is populations were represented as categorical entities.

5.6 Gradient-Based Measures of Landscape Structure

Landscape ecologists often compare the structure of different landscapes, or the 
structure of the same landscape over time, and relate observed differences to some 
process of interest. When categorical maps are appropriate, conventional landscape 
metrics based on the patch-mosaic model are effective, and many metrics for this 
purpose exist (e.g., Baker and Cai 1992; McGarigal and Cushman 2002). However, 
when environmental variation is better represented as continuous gradients, it is not 
as simple to summarize the structure of each landscape in a metric because each 
landscape is represented as a continuous surface, or several surfaces corresponding 
to different environmental attributes.

The two fundamental attributes of a surface are its height and slope. The patterns 
in a landscape surface that are of interest to landscape ecologists are emergent 
properties of particular combinations of surface heights and slopes across the study 
area. The challenge is to develop metrics that characterize these aspects of surface 
patterns and that are effective predictors of organismic and ecological processes.

Fig. 5.6 Continuous landscape resistance map for black bears from Cushman et al. (2006). 
The most supported model of landscape structure indicated that resistance to gene flow was 
a continuous function of elevation and landcover. This map represents resistance to gene flow as 
a color ramp from white (high resistance) to black (low resistance)
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Geostatistical techniques can be used to summarize the spatial autocorrela-
tion of such a surface (Webster and Oliver 2001). Measures such as Moran’s I 
and semi-variance, for example, indicate the degree of spatial correlation in the 
quantitative variable (i.e., the height of the surface) at a specific lag distance 
(i.e., distance between points). These statistics are plotted against a range of lag 
distances to summarize the spatial autocorrelation structure of the landscape. 
The correlogram and semi-variogram can provide useful indices to quantita-
tively compare the intensity and extent of autocorrelation in quantitative vari-
ables among landscapes. Though these statistics can provide information on the 
distance at which the measured variable becomes statistically independent, and 
reveal the scales of repeated patterns in the variable, they do little to describe 
other important aspects of the surface. For example, the degree of relief, density 
of troughs or ridges, and steepness of slopes are not measured. Fortunately, 
a number of gradient-based metrics that summarize these and other important 
properties of continuous surfaces have been developed in the physical sciences 
for analyzing three-dimensional surface structures (Stout et al. 1994; Barbato 
et al. 1995, Villarrubia 1997). In the past 10 years, researchers in microscopy 
and molecular physics have made tremendous progress in this area, creating the 
field of surface metrology (Barbato et al. 1995).

Surface Metrology – In surface metrology, several families of surface-pattern 
metrics have become widely used. These have been implemented in the software 
package SPIP (2001). One such family of metrics quantifies measures of surface 
amplitude in terms of its overall roughness, skewness and kurtosis, and total and 
relative amplitude. Another family records attributes of surfaces that combine 
amplitude and spatial characteristics, such as the curvature of local peaks. Together, 
these families of metrics quantify important aspects of the texture and complexity of 
a surface. A third family measures certain spatial attributes of the surface associated 
with the orientation of the dominant texture. The final family of metrics are based 
on the surface bearing area ratio curve, also called the Abbott curve (SPIP 2001). 
The Abbott curve is computed by inversion of the cumulative height-distribution 
histogram. A number of indices that describe structural attributes of a surface have 
been developed from the proportions of this curve (SPIP 2001).

Many classic metrics for analyzing categorical landscape structure have ready 
analogs in surface metrology. For example, the major compositional metrics such as 
patch density, percent of landscape, and largest patch index correspond respectively 
to peak density, surface volume, and maximum peak height. Major configuration 
metrics such as edge density, nearest neighbor index, and fractal dimension index 
correspond respectively to mean slope, mean nearest maximum index, and surface 
fractal dimension. Many of the surface metrology metrics, however, measure 
attributes that are conceptually quite foreign to conventional landscape pattern 
analysis. Landscape ecologists have not yet explored the behavior and meaning of 
these new metrics; it remains for them to demonstrate the utility of these metrics, or 
develop new surface metrics better suited for landscape ecological questions.

Fractal Analysis – Fractal analysis provides a vast set of tools to quantify the shape 
complexity of surfaces. There are many algorithms in existence that can measure 
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the fractal dimension of any surface profile, surface, or volume (Mandelbrot 1982; 
Pentland 1984; Barnsely et al. 1988). One such index that is implemented in SPIP cal-
culates the fractal dimension along profiles of the surface from 0° to 180°. A number 
of other fractal algorithms are available for calculating the overall fractal dimension of 
the surface, rather than for particular profile directions. Variations on these approaches 
will yield metrics that quantify important attributes of surface structure for compari-
son between landscapes, between regions within a landscape, and for use as inde-
pendent variables in modeling and prediction of ecological processes.

In addition, there are surface equivalents to lacunarity analysis of categorical 
fractal patterns. Lacunarity measures the gapiness of a fractal pattern (Plotnick et al. 
1993). Several structures with the same fractal dimension can look very different 
because of differences in their lacunarities. The calculation of measures of surface 
lacunarity is a topic that deserves considerable attention. It seems to us that surface 
lacunarity, which would measure the ‘gapiness’ in the distribution of peaks and 
valleys in a surface rather than holes in the distribution of a categorical patch type, 
would be a useful index of surface structure.

Spectral and Wavelet Analysis – Spectral analysis and wavelet analysis are 
ideally suited for analyzing surface patterns. The spectral analysis technique of 
Fourier decomposition of surfaces could find a number of interesting applications 
in landscape surface analysis. Fourier spectral decomposition breaks up the overall 
surface patterns into sets of high, medium and low frequency patterns (Kahane and 
Lemarie 1995). The strength of patterns at different frequencies, and the overall 
success of such spectral decompositions can tell us a great deal about the nature 
of the surface patterns and what kinds of processes may be acting and interacting 
to create those patterns. They also provide potential indices for comparing among 
landscapes and for deriving variables that describe surface structure at different 
frequency scales that could be used for prediction and modeling (Kahane and 
Lemarie 1995; Cho and Chon 2006).

Similarly, wavelet analysis is a family of techniques that has many potential 
applications in landscape surface analysis (Bradshaw and Spies 1992; Chui 1992; 
Kaiser 1994; Cohen 1995). Traditional wavelet analysis is conducted on transect 
data, but the method is easily extended to two-dimensional surface data. Major 
advances in wavelet applications have occurred in the past several years, with many 
software packages now available for one- and two-dimensional wavelet analysis. For 
example, comprehensive wavelet toolboxes are available for R, S-Plus, MATLAB 
and MathCad. Wavelet analysis has the advantage that it preserves hierarchical 
information about the structure of a surface pattern while allowing for pattern 
decomposition (Bradshaw and Spies 1992). It is ideally suited for decomposing and 
modeling signals and images, and it is useful in capturing, identifying, and analyzing 
local, multiscale, and nonstationary processes. Because wavelet analyses score a 
range of kernels they area a robust tool for building multi-scale information directly 
into an analysis. It can be used to identify trends, break points, discontinuities, and 
self-similarity (Chui 1992; Kaiser 1994). In addition, the calculation of the wavelet 
variance enables comparison of the dominant scales of pattern among landscape 
surfaces or between different parts of a single surface (Bradshaw and Spies 1992). 
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Thus, wavelet decomposition and wavelet variance have great potential as sources 
of new surface-pattern landscape metrics and novel approaches to analyzing 
landscape surfaces.

5.7 Conclusions

The patch-mosaic model of landscape structure has provided a valuable operating 
framework for spatial ecologists, and it has facilitated rapid advances in quantita-
tive landscape ecology, but further advances in spatial ecology are constrained 
by its limitations. We advocate a gradient-based paradigm of landscape structure 
that reflects continuously varying heterogeneity and that subsumes the patch-
mosaic model as a special case. The gradient paradigm does not presuppose 
discrete structures, but it will identify them if they exist; it facilitates multi-scale 
and multivariate analyses of ecological relationships, and provides a flexible 
framework for conducting organism- or process-centered analyses. Through these 
advantages, the gradient paradigm of landscape structure will enable ecologists 
to represent landscape heterogeneity more flexibly in analyses of pattern–process 
relationships.
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