
Chapter 4
Modelling Disease Dynamics and Management 
Scenarios
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4.1 Introduction

Mathematical modelling now plays an important role in developing scientific 
understanding of complex biological processes such as epidemics. Model-based 
risk assessments make such studies relevant to policy makers and resource manag-
ers. However, in providing such advice it is important to ensure that model predic-
tions are robust to alternative plausible assumptions, and also that any predictions 
arising from such models correctly reflect the uncertainty in current knowledge and 
any intrinsic variability of the system under study. To see why this is so, contrast a 
point estimate of the efficacy of a given disease control measure with a prediction 
which gives the probability associated with varying degrees of success, and cru-
cially, failure. The former gives a false sense of confidence, whilst the latter allows 
the decision maker to carry out a more complete risk assessment of the proposed 
strategy. In all cases, model predictions should be interpreted in the light of model 
structure and assumptions.
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In this chapter we are going to look at how modelling should be used to investigate 
disease in wildlife, with a strong focus on using models to make management deci-
sions. We will largely avoid the vast area of purely theoretical modelling and concentrate 
on finding practical solutions to real world problems. Nevertheless, it is worth noting 
that theoretical analysis can, and has, provided profound insights into key aspects of 
system behaviour. One notable and particularly relevant example is the extensive 
range of theoretical results showing the importance of the basic reproduction number 
(R

0
) as a threshold parameter in epidemics, starting with the work of Kermack and 

McKendrick in the 1920s (see Kermack and McKendrick 1991). However, this chapter 
is not about complex mathematics, but about defining the types of models available, 
describing the pros and cons of different approaches, and helping managers to determine 
the strengths and weaknesses of each in  particular circumstances.

The objective of this chapter is not to turn the reader into a modeller, so there 
is no need to have a high level of understanding of mathematics, but to appreciate 
how models should, and should not, be used and interpreted. We will not give 
an exhaustive description of types of models, but concentrate on more com-
monly used approaches. Any model that is used to propose a management decision 
needs to be critically examined and our objective here is to give an understanding 
of modelling terminology, and the tools with which to question the model and 
the modeller.

4.1.1 What Is a Model?

As a matter of definition, no model is right in the philosophical sense of repre-
senting truth, but some models may be useful. All models are a simplification 
of reality. George Box (1979) stated “All models are wrong – but some are useful” 
and Oreskes et al. (1994) wrote “… the establishment that a model accurately 
represents the ‘actual processes occurring in a real system’ is not even a theoretical 
possibility”. Models are simplified logical constructs of what we believe to be 
true, and in the context of this chapter are used to explain disease patterns in 
space or time, and to predict their future patterns. We construct models in our 
minds all the time, for example to assess the likely traffic flow of alternate 
routes on our way home or which queue to join in the supermarket. We know 
that these models only work in limited circumstances, and we should be equally 
willing to accept this as true for mathematical models, which are the focus of 
this chapter. The only real difference with these conceptual models is that math-
ematical models are a formal abstraction of our thought processes expressed in 
terms of a series of equations. Indeed, the act of constructing such a model, 
forces us to consider the problem in detail, and in a logical fashion. 
A mathematical model is simply an extension of a conceptual model into a 
mathematical framework.

Quantitative modelling activities can be broadly categorised into statistical (data 
driven) and mathematical (knowledge driven) models. An assessment of the 
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strength of the inferences that can be drawn from these approaches needs to take this 
into account. Data-driven modelling uses statistical approaches to derive  quantitative 
relationships from datasets. One strength of these models is that they are based on 
directly measurable factors, but this is also a potential weakness as these factors are 
usually proxies for underlying biological processes that cannot be directly measured 
in a field study, although statistical approaches can be used to infer the value of 
unobserved factors indirectly from the available observations. Such models can be 
used to generate knowledge in relation to cause–effect relationships (see Box 3.2), 
but they are not usually dynamic and only predictive in a limited domain deter-
mined by the range of the data used to construct them; extrapolation of statistical 
models is perilous indeed. Mathematical (knowledge driven) models can be 
 analytically tractable or simulation-based. It is often advantageous to express even 
simulation models in terms of a formal mathematical description (e.g. differential 
equations or stochastic processes i.e. processes with a random element) for a 
number of reasons, including clarity in model definition and independence of the 
model from a particular implementation (i.e. easier translation to different simulation 
software, which is useful for model verification). Such models are based on  existing 
understanding of the biological relationships within a system, and in principal, to the 
extent that such knowledge is correct, can be used to extrapolate predictions to novel 
situations. The strength of knowledge-driven modelling lies in the ability to repre-
sent the dynamics of complex biological systems. For an infectious disease this is 
particularly important as propagation of infection is inherently a time-dependent 
phenomenon, in that the number of new infections at a particular time depends on 
the number of infectious and susceptible individuals at preceding points in time. 
It is often possible to identify key factors within such a system. This group of models 
may include factors or quantities that cannot be directly measured, and are defined 
on the basis of measured proxy variables or hypothesised relationships. Such 
 models may also have ‘emergent properties’ that are the unexpected result of the 
interactions between multiple effects represented in the model. Knowledge-based 
models can also be used to test the impact of changes in a system. Some of the 
information included in developing knowledge-driven models is generated through 
data-driven models, and in some cases the distinction is further blurred by the use 
of statistical methods to infer parameters in knowledge-driven models, but such 
models may also include expert opinion. In the rest of this chapter we will  concentrate 
on these knowledge-driven (mathematical) models.

4.1.2 Why Model?

The question ‘why model?’ is important to address. If models are simplifications of 
reality and are always wrong then why bother? The answer hinges on the extent to 
which we understand the disease we are looking at. Models are a reflection of our 
understanding of the ‘real world’ in that they provide a structure in which to  consider 
the complex biological interactions within a disease system. They allow us to explain 
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or predict effects, whether these are the result of interactions of numerous factors or 
emergent properties of a system that evolve over time. Different approaches can be 
used to categorise them, one being to group them into qualitative and quantitative 
models. The models discussed here are all quantitative (knowledge-driven) models. 
Models are needed where mental simulation is not able to represent multiple causal 
links within a system (Lempert et al. 2003). According to Klein (1998) the limit is 
usually reached with three key variables and six transitions from one state to another. 
If we do not have full understanding of the underlying mechanisms and processes of 
disease, then modelling can allow us to investigate how the disease system as a whole 
functions. It can also reveal how weak our understanding is. This can be used to direct 
research to gain knowledge on the disease and the ecology of the host. Conversely, 
when we have more knowledge it can also be used to reveal how the disease system 
will respond to management interventions and to compare different approaches. 
Modelling thus provides either a strategic tool for increasing our understanding of 
disease or a tactical way of dealing with it. From this it should be apparent that we do 
not subscribe to the view that models should not be constructed until all suitable data 
are available. Rather the act of model construction itself forces us to formalise our 
ideas on the processes and mechanisms that we believe occur in the system under 
study; a process which often yields valuable insights.

Here we focus on the development of models that can be used to explore disease 
control strategies. As such, the models should capture the biological processes driv-
ing the disease and be able to simulate some management intervention whether that 
be at the host population level (e.g. population reduction) or the individual host 
level (e.g. restrict animal behaviour to prevent exposure to disease).

We can also use the output of models to inform field research. From the results 
of sensitivity analysis (see Section 4.4) we can extract those parameters that have 
a large influence on the output. In particular, we should differentiate between 
parameters that have known variability, and those that have uncertainty. Once we 
have identified the important uncertain parameters with significant influence on the 
system, we can then use this list to decide on research priorities for further data 
collection. This is discussed further in Section 4.4.

4.2 Basic Approaches

The modelling process usually starts with a question and is followed by the devel-
opment of the underlying biological framework, mathematical model development, 
model testing and ultimately, predictive modelling to answer the question.

4.2.1 Approaches to Modelling

If a model is analogous to a scientific experiment, then the original question to be 
asked of the model is analogous to the hypothesis to be tested. There are three basic 
steps in constructing any model. These steps are so basic we often overlook the first 
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two. But only after answering all three can we start to choose what sort of model 
would be most useful.

1. What is the question we wish to answer and are we aiming to increase our under-
standing of disease or develop methods for control?

2. What is the scope of the problem we wish to include?
3. What is our understanding about the mechanisms under study?

The first question we have to answer is what are we modelling for? Do we wish to 
use modelling conceptually or strategically, to increase our understanding about the 
underlying disease, or do we want a practical or tactical model for disease manage-
ment. Emerging diseases such as the recent introduction of bluetongue virus to 
Northern Europe are a good example of where we might want to use modelling to 
investigate the potential spread of disease among wild and domestic ruminants, or 
identify key factors in the disease process that we do not understand in its ‘new 
context’. Investigating the dynamics of bluetongue and its interaction with its vector 
species in the north European countryside with a strategic model would be a first 
step to understanding the magnitude of the problem for Northern European 
 countries. Recent models have highlighted the possibility of bluetongue spread in 
northern Europe by climatic matching of vector species (Culicoides midges) with 
recent records of disease (Purse et al. 2007), demonstrating the potential involve-
ment of novel midge vectors. Where we have greater understanding of the disease 
process, such as in rabies in wildlife, or bovine tuberculosis, then a tactical model-
ling approach would be more appropriate. In most cases the strategic versus tactical 
argument is easily defined at the outset, usually on the basis of our underlying 
knowledge of the disease.

It is impossible to undertake modelling without a context. This is fundamental to 
producing a useful model, and we will look at rabies in wildlife to illustrate the process. 
A request to “model the dynamics of rabies in wildlife” may be interpreted differently 
by almost every modeller. In this simplified example, no particular output is requested; 
so one person may model genetic changes to the virus over each viral generation, 
while another may construct a multi-species model of the evolution of rabies over 
centuries. The question needs to be carefully constructed, and a good modeller will 
help the manager to define the question. Even extending the question to “what is the 
best way to eradicate rabies from a focal outbreak in a naive population of red foxes?” 
does not precisely define the question. Do we mean the quickest, or most cost effec-
tive? Clearly by now we must realise that the question needs to be asked in such a 
way that it specifies the answer we expect to get from the model.

We move now to the second point, which is one of scale. In an isolated  population, 
such as red foxes (Vulpes vulpes) in Britain, geographical scale has a maximum 
bound imposed by the surrounding sea. But should we model all the foxes in 
Britain, or just those within some distance of the outbreak? There are an estimated 
240,000 foxes in Britain (Harris et al. 1995), so at this scale we could probably 
assume the population is infinite. But if in the case of an outbreak of rabies in the 
Ethiopian wolf (Canis simensis) with an estimated total world population of 500 
individuals (Randall et al. 2004), then the issue of low numbers and chance events 
arises. Also, we need to examine the temporal scope of a question. For example, we 
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may wish to ensure the survival of the Ethiopian wolf over decades or centuries. 
Consequently, with respect to the threat of rabies, the only way to ensure this is to 
eliminate the disease completely from the domestic dogs (Canis lupus familiaris) 
in the surrounding area.

Lastly we need to specify the mechanism we are interested in, and indeed what 
mechanisms we are not interested in. Biological systems are effectively hierarchical. 
At the lowest level we have underpinning biochemical processes such as the level 
at which individual drugs act in a veterinary context (e.g. Acetylcholinesterase 
inhibitors). Above this we have whole organ responses (e.g. renal failure) and 
above this whole animal responses at the level of the individual (e.g. alterations in 
behaviour, morbidity and mortality). Going higher still we come to inter-individual 
interactions (e.g. disease transmission) and to population level behaviour where we 
come into the realms of epidemiology. At even higher levels we have multi-species 
epidemiology and then the effect on food webs and biodiversity. Clearly, it is not 
practical to model at all levels in this biological hierarchy, so whilst we might be 
interested in looking at developing a model system to investigate the spread of 
bluetongue or rabies, we would not want to be involved with modelling the  biochemistry 
of the immunological response to exposure to the infective agent. One could argue 
that a key component in the historic success of modelling in epidemiology is the 
assumption that the complex processes occurring within an individual whose 
immune system has been challenged by a pathogen can often be adequately (e.g. 
for the purpose of population and community epidemiology) summarised by a 
series of transitions between a small number of distinct states (e.g. Susceptible, 
Exposed, Infected and Recovered: SEIR), despite the true internal state of the 
 individual being more precisely described by something closer to a continuous 
range. However, if the key concern is the behaviour of a diagnostic test applied to 
individuals then a model of within-organism response may be more appropriate. In the 
context of rabies spread we are interested in inter-animal transmission and 
 subsequent impacts on disease spread. In most cases, we would not model  individual 
animal behaviour and we might not need to consider age or the sex of the animal 
(or just consider females). But how sure are we on issues such as sex- or age-biased 
infection? Generally we should only add model components (e.g. age or sex) when 
there is evidence that they impact on disease dynamics either directly, or indirectly. 
Note however, that they may impact on the management of disease even if they 
have no significant impact on (unmanaged) disease dynamics.

When constructing a model it is necessary to choose what to incorporate, and 
crucially what to leave out. Some elements of the model are dictated by the goal 
of the study, for example understanding the dynamics of sexually transmitted 
diseases is likely to require modelling both sexes! However, decisions whether 
or not to treat certain aspects come down to pragmatic considerations including 
current knowledge, resources and the data available for the project. As a gen-
eral rule,  models should be as simple as possible to describe the phenomena of 
interest (but not too simple). A commonly encountered problem when modelling 
biological systems is the explosion of model complexity, leading to poorly 
understood model behaviour and potentially low predictive ability due to 
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over-fitting of the available data. In statistical models information theoretic 
approaches (e.g. AIC) are widely used to formally control the growth of model 
complexity. Pragmatically, model complexity can be limited by developing 
models for a particular purpose and incorporating only those features that are 
critical to that end. Like a map, models are an abstraction of reality and are at 
their best when they incorporate the appropriate level of detail, as too much 
detail can obscure the most important features. Of course, not enough detail 
means that the model may not be able to achieve the  original goal, but this may 
just be an accurate reflection of current knowledge.

Thus, having defined the question, the scope, and our understanding of the 
 system, we now need to decide how to model it. In mechanistic terms models can 
be classified in different ways on the basis of how they are constructed  mathematically. 
Again we have three decisions to make. Should the model be continuous or discrete 
in time, spatial or non-spatial, and deterministic or stochastic.

The first is often a matter of personal choice. Continuous time models are usu-
ally differential models or stochastic processes, which are generally preferred by 
mathematicians, while discrete time models are difference equation models, which 
are generally preferred by biologists. Indeed there are often clear biological reasons 
for choosing a discrete-time model, for example in modelling  populations with 
highly synchronous (e.g. annual) reproduction. However, it is important to note that 
time related parameter values (e.g. for birth and  survival: are rates in continuous 
models and probabilities in discrete time  models) need to change between these two 
models. A mortality rate/probability (s) in a discrete time model of interval length 
t, is related to the continuous-time differential equation mortality rate (m) by

 
 = ln( )/  s tμ −

 
(4.1)

where discrete time models are chosen it is important to consider the time step used. 
This is generally set to one of the shortest events that occur in the system. With 
simple models (e.g. numerical solutions to differential equations) it may be possible 
to check that the time step is adequately short by making it shorter and checking 
that no differences occur in the output. However, this is not practical for most 
models. A simple way to determine if the time step is too long is if too many 
competing events occur within one step (e.g. if both primary and secondary infec-
tions could occur within one step). For example, in discrete-time models of rabies 
dynamics, the time step is often about one month (the average incubation period of 
rabies) on the assumption that the period of infectiousness (a few days) is regarded 
as an instantaneous event. However, in this case the number of individuals which 
are rabid on any one date will not be recorded since infectiousness is always 
 followed by death and thus these individuals will be removed from the model. Such 
considerations typically do not arise in continuous time models, although algo-
rithms used for numerical solution of differential equations will typically determine 
a short time-step to be used, this is relatively automatic and does not require any 
reformulation of the model. It is often the case that continuous-time models are 
structurally simpler, and thus conceptual whilst discrete event models are more 
 complex and designed to be more practical. However, even most moderately realistic 
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continuous-time models are not solvable using present-day mathematics, but 
nonetheless there are a range of approximate mathematical approaches that can 
provide valuable insights into model behaviour.

Another crucial, yet often over looked aspect of modelling disease dynamics is 
the issue of waiting time distributions. Consider an individual that becomes infected 
with say a virus, the latent period is the time it takes for the virus to become estab-
lished and the individual to become infective i.e. to start shedding the virus. The 
latent period will vary between individuals, but across the population is described 
by a latent (waiting) time distribution. Particular waiting time distributions typically 
describe other transitions e.g. from infected to recovered or susceptible. The details 
of such waiting times are crucial in determining disease dynamics, for example at 
the start of an epidemic, particularly for emerging diseases, uncertainty about the 
latent period can result in large uncertainty in the predicted size of an outbreak: HIV-
AIDS and variant CJD being two notable examples in humans. Models may fail to 
account correctly for waiting times due to a lack of information, but also because 
widely used mathematical formalisms such as deterministic ordinary  differential 
equations, and stochastic Markov processes are based on exponential waiting times. 
However, such shortcomings can be addressed and, for example using individual-
based stochastic methods, it is relatively easy to account for any required waiting 
time distribution.

It is essential to be aware that models should strive to capture the key  ecological 
processes that drive disease dynamics, and be capable of including proposed man-
agement options.

4.2.2 Deterministic or Stochastic

Most of the early mathematical modelling of disease in human, livestock and 
wildlife populations was undertaken with continuous time – differential models. 
These modelling approaches were based on calculus, originally developed by Isaac 
Newton. This approach is deterministic in the sense that, for any set of inputs to the 
series of equations used in the model, the output is determined and fixed. This 
approach was used to predict the motions of the planets around the sun. However, 
one of the most obvious features of biological systems is that they show inherent, 
but often unexplained variation. Many biological systems, including epidemics, 
exhibit a high degree of variability. For example, the introduction of a single 
infected animal into a population may or may not result in a disease outbreak, and 
the size of any resultant outbreak will likely vary between populations. This leads 
to the adoption of stochastic modelling methods in which there is randomly induced 
variation between different model-runs (even where all parameters are held 
 constant). In theory, the output of such models is represented by a probability 
 distribution, which can be estimated from simulation, as a histogram across many 
model runs. Therefore stochastic models are more computationally demanding than 
deterministic models. However, a key advantage of this approach is that it represents 
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variability parsimoniously with relatively few parameters and without  necessarily 
increasing the number of variables needed to represent the state of the system. 
Since for every iteration, model output will be different, many (hundreds or thou-
sands of) iterations are required for stochastic models to produce a  representative 
distribution of possible outcomes. A major advantage of stochastic  models is that 
they are able to capture emergent properties of a system arising from  stochastic or 
rare events. This ability may be considered especially useful when quantifying the 
effects of population reduction as a means of disease control. Box 4.1 describes an 
example where the use of population reduction is explored as a means of paratuber-
culosis control in rabbits (Oryctolagus cuniculus). The  observation that the success 
of single one-off population reduction events comes largely, not from the probabil-
ity of removing all of the infected individuals in the population, but from the failure 
of the disease to spread from the infected animals that remain, highlights one 
advantage of stochastic over deterministic models.

Deterministic models are therefore best used early in any biological  investigation, 
to improve our understanding of the processes being modelled. They can lead to use-
ful insights, but generally stochastic models are more valuable if the objective is to 
make a management decision. It is important to realise that the introduction of sto-
chastic effects into a previously deterministic model can alter predicted outcomes 
both quantitatively and qualitatively. For example, with low levels of stochasticity 
model outputs are typically distributed around a mean value corresponding to the 
deterministic model prediction (the stochastic model predicts system mean and 
 variability). At intermediate levels of stochasticity the mean prediction of the model 
is typically different to the deterministic case, and where stochastic effects dominate 
they can drive a transition not observed in the  deterministic model (e.g. stochastically 
induced disease extinction where the deterministic model predicts disease persistence). 
Stochastic effects are typically most important for relatively small populations (or 
sub-populations), however heterogeneity can also amplify stochastic effects.

4.2.3 Non-Spatial Models

Non-spatial models were the first to be developed, and generally treat the whole 
population as homogeneous: without having to consider space or any social 
 interactions, they are relatively simple. Such homogeneous mixing models based 
on differential equations are relatively amenable to mathematical analysis, although 
typically most recent models are not solvable mathematically. Nonetheless, 
 mathematical analysis of such models has led to important insights into system 
dynamics and this is where many of the theoretical developments in epidemiology 
have been produced. These developments have included insights based on R

0
, the 

average number of new infections that a single infectious animal will produce  during 
its “infectious lifetime” when placed in a completely susceptible population (see Box 
3.3 on estimating R

0
). This ratio depends on the density (and other factors, such as 

spatial organisation and behaviour which are essentially ignored in non-spatial 
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Box 4.1 Modelling population reduction to control wildlife disease: rabbits 
and paratuberculosis

Reduction of wildlife population density is a common method used to control 
wildlife disease. Given the financial and logistical difficulties in experimen-
tally testing the efficacy of wildlife control programmes, modelling is often 
employed to explore wildlife population reduction as a means of disease con-
trol. Here, stochastic modelling offers a significant advantage over determin-
istic modelling as it can capture both the likelihood of the  population reduction 
event removing all the infected animals and also the probability that stochastic 
fluctuations prevent the persistence and subsequent recovery of the infected 
population following population reduction. This was  demonstrated by 
Davidson et al. (2008) when modelling the control of paratuberculosis 
(Mycobacterium avium subsp. paratuberculosis; Map) in rabbit (Oryctolagus 
cuniculus) populations. They used a spatially-explicit stochastic simulation 
model of Map dynamics in rabbit populations to quantify the effects of rabbit 
population control on disease persistence. The model was parameterized from 
empirical studies on rabbit population dynamics and on rabbit-to-rabbit Map 
transmission. Single population reduction events targeting up to 96% of all 
individual animals did not result in any noticeable chance of disease extinc-
tion, while culls at the (even more) unrealistically high levels of 98% and 99% 
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ately after a cull event. Gaussian curves have been fitted to the data points. Three levels of 
culling are shown – 96%, 98% and 99% (from Davidson et al. 2008)
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homogeneous-mixing models) of the host population. If the value is above unity then 
the disease will probably produce an epizootic, whereas a value of less than one 
means that the disease will die out, although stochastic factors may mean that a 
 relatively large number of animals will become infected beforehand.

Other important insights include estimating the threshold density at which the 
disease will die out (i.e. when R drops below unity), or the proportion of a  population 
that needs to be vaccinated to eliminate the disease (i.e. an alternative way for R to 
drop below unity). A large literature exists which presents the mathematics of disease 
dynamics (see for example Anderson and May 1991) and simple disease modelling 
is mentioned in most ecological texts. Whilst these models have generic value in 
understanding disease dynamics in systems that are adequately captured by the free-
mixing assumption, they are less useful where the animal-pathogen system shows 
heterogeneity. This heterogeneity can occur at different levels which range from 
 differences in the susceptibility of individual animals to disease, variations in the 
pathogen, or more commonly, heterogeneity that arises from the distribution of hosts 
in time and space and determines levels of population mixing (e.g. territoriality in 
some wild mammals). In addition, animal behaviour may change as population 
 density is reduced through interventions such as culling (Chapter 7), which gives rise 
to the more correct concept of a threshold contact rate, rather than a threshold density 
(Sterner and Smith 2006). Early non-spatial homogeneous mixing models assumed 
linear density dependence in transmission as density is reduced (often referred to as 
βSI). A refinement assumed instead a fixed contact rate between individuals regard-
less of density (referred to as βS(I/N) ), such as may occur with sexual contacts, since 

of the population yield disease extinction probabilities of just 0.08 and 0.34 
respectively. These results can also be seen in Fig. 4.1, where the  distribution 
of the number of infected animals among simulations immediately after a pop-
ulation reduction event is shown. Although no simulations were disease-free 
straight away, even with the 98% and 99% culls, many simulations were left 
with a small number of infected individuals (e.g. a mean of 11 infected indi-
viduals in the case of a 99% cull), which resulted in chance eradication in the 
subsequent recovery period due to small populations being more susceptible to 
stochastic effects.

The study demonstrated that high rabbit population reduction levels 
(greater than 96%) are necessary if a one-off rabbit cull strategy is to have 
even a small probability of eradicating the disease. At these high reduction 
levels the main contribution to this small eradication probability emerges not 
from the probability of removing all infected individuals at the cull (which is 
highly unlikely), but from subsequent fluctuations while the disease remains 
for a short time with a reduced incidence brought about by the cull i.e. the 
failure of the infection to spread post-cull. This effect can only be captured 
with a stochastic model.
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these do not normally scale with density. However, empirical evidence often suggests 
a non-linear response with density (Caley et al. 1998; Ramsey et al. 2002). These 
relationships are shown in Fig. 4.2.

Non-spatial models have come a long way since simple linear relationships, 
and can now adequately model spatial heterogeneity (e.g. Barlow 2000), although 
the mechanism causing this non-linear relationship is not specified. However, by 
using a simple model, Keeling et al. (2000) showed that such non-linear relation-
ships could be interpreted as the effects of spatial heterogeneity. Box 4.2  illustrates 
a widely used approach in which a deterministic model is constructed (using a 
technique known as closure) as an approximation to a fully stochastic and spatial 
model in a manner that captures some spatial effects. The accuracy of such 
pseudo-spatial models should be tested, but they are typically an improvement on 
non-spatial homogeneous-mixing models also illustrated in Box 4.2. Closure-type 
approximations of this type have been used to capture spatial effects in a compu-
tationally efficient manner, for example to model the UK 2001 Foot-and-mouth 
epidemic (Ferguson et al. 2001b). It is also worth noting that it is often possible to 
identify cases, e.g. high rates of migration or cross-infection, where deterministic 
homogeneous mixing models, moment-closure type approximations, and stochastic 
spatial models coincide. Such limits are useful both in developing understanding 
and in verifying correct implementation of models.
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Fig. 4.2 A variety of relationships have been hypothesised between (susceptible) host density and 
the transmission rate. The earliest (line 1) is linear density dependence (βSI), which gave rise to 
the idea of a threshold density (K

T
) below which the disease will die out since R

0
 declines to below 

unity. Alternative relationships include frequency dependence (line 2), which technically cannot 
be a constant since the relationship must go through the origin, convex up (line 3) and convex 
down (line 4). Line 5 represents social perturbation discussed in detail in Chapter 7. From these 
lines it can be seen that K

T
 should be replaced by a critical contact threshold (C

T
), although this is 

much harder to measure
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Box 4.2 Assessing the importance of stochastic and spatial effects in deter-
mining disease risk exposure in grazing systems

Many of the most pervasive disease challenges to livestock, and other herbiv-
ores, are transmitted via the faecal-oral route, from mycobacterial pathogens 
such as Mycobacterium avium subspecies paratuberculosis (the causative 
agent of Johne’s disease) (Judge et al. 2005a), to nematode parasite infections 
such as Haemonchus contortus and Teladorsagia circumcincta (Hutchings 
et al. 2003). Marion et al. (2005, 2008) developed an agent-based modelling 
framework, based on a series of empirically observed rules of thumb, govern-
ing the grazing and faecal avoidance behaviour of grazing animals, which can 
be used to assess disease risk to livestock from faecal contacts. The key features 
captured by the model are (i) animals only have limited local knowledge e.g. 
they can visually assess swards from some distance but only smell faecal 
contamination at short ranges; and (ii) there is a trade-off between faecal 
avoidance and the desire to maximise intake which controls the risk of exposure 
to faecally transmitted disease.

Marion et al. (2005) demonstrated how to develop an analogous non-spa-
tial deterministic model which ignores both spatial and stochastic effects. In 
the limiting case of large movement rates these models give equivalent 
 predictions. However, their comparison is useful in quantifying the impor-
tance of stochastic and spatial aspects of the model. Not only is this useful in 
developing a better understanding of the system at hand but for example, if 
the two models agree then it would make more sense to use the deterministic 
version which is  simpler, quicker to run and potentially more amenable to 
analysis. In general, deterministic models can be thought of as differential 
equations for the mean value of quantities in the stochastic case. However, a 
formal mathematical derivation of equations for such mean values shows that 
they depend on higher-order statistics of the stochastic model like variances 
and co-variances, which are simply ignored in deterministic models. The only 
exception to this is a completely linear model, but biologically plausible models 
will usually  contain some non-linearity in which case the deterministic model 
is not guaranteed to match the mean of the stochastic model. Unfortunately, 
although it can usually be easily simulated on a computer it is typically not 
possible to solve the stochastic model analytically, although various approxi-
mate methods are available. For example, so-called closure approximations 
that attempt to model both mean values and some higher-order statistics, such 
as variances and co-variances, have been widely applied in epidemiology. 
Figure 4.3 shows the total intake rate across all animals for continuously 
occupied pasture versus the density of animals (stocking rate) for each of the 
three model formulations: deterministic; stochastic  spatial; and moment-
closure based. The peak-value identifies the optimal  stocking density and 
comparison of the three curves shows that both the  deterministic and moment-
closure models  underestimate the optimal stocking density and overestimate 
the associated intake rate, in  comparison with the stochastic spatial model.

(continued)
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Box 4.2 (continued)

Fig. 4.4 Effect of wildlife faecal defecation pattern (‘1 patch’ corresponding to a latrine 
& ‘150 patches’ to dispersed faecal distributions) and search distance (global and local, or 
NN) on the number of bites taken by cattle from wildlife faecal contaminated patches 
(mean over 10 realisations +/−1 standard deviation for the stochastic model). The deter-
ministic model outputs relate to the case of dispersed wildlife faeces as indicated. The scale 
on the right refers to the daily bite rate on livestock faecally contaminated patches (with 
standard errors omitted for the stochastic outputs) (taken from Marion et al. 2008)

Fig. 4.3 Total intake rate across all animals versus stocking density for non-spatial deter-
ministic (solid curve), stochastic and spatial (black dots), and moment-closure based (dot-
dashed curve) models (taken from Marion et al. 2005)
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Marion et al. (2008) extended the original model to explore the risk of 
exposure to faecally mediated disease, now comparing the spatial stochastic 
version of the model to a non-spatial deterministic model parameterised to  
represent a set-stocked scenario in a temperate beef herd. Figure 4.4 shows 
the bite rate from dispersed and highly clumped (representative of wildlife 
latrines) distributions of wildlife faeces, and from a dispersed distribution of 
livestock faeces for the first 100 days after cattle are turned out into the pas-
ture. The search distance of herbivores is currently unknown and difficult to 
measure (Phillips 1993), and therefore the robustness of their conclusion to 
this poorly determined parameter was assessed. For the case of dispersed 
patterns of wildlife faeces, Fig. 4.4 contrasts strictly local searching, and 
global searching in which moves are simulated (at least potentially) across the 
entire pasture. Similar robustness to search distance was observed for both 
wildlife latrines and livestock faeces. In addition the results show that the 
non-spatial deterministic version of the model initially underestimated disease 
risk and crucially predicts the peak in risk much too late (the deterministic 
model predicts a peak well after the 100 days shown in the figure).

4.2.4 Spatial and Network Models

It has been a useful starting point to model disease spread within a population by 
assuming that all individuals within it mix evenly with each other (variously known as 
mean-field, mass action, homogeneous or complete mixing). However, spatial hetero-
geneity in wild mammal populations is an important  determinant of contact patterns 
between individuals, with potentially profound implications for disease dynamics 
(Chapter 2). Hence, the introduction of heterogeneity in modelled contact structures 
typically produces a more realistic model. The impact of spatial heterogeneity, where 
contact patterns between individuals is a function of the distance that separates them, 
has been studied extensively. Another scenario of spatially heterogeneous contacts is 
where individuals mix uniformly with others in some localities (e.g. within a group 
territory), but only occasionally make longer-range contacts (e.g. with residents of 
other territories). Where further information is available it is sometimes possible to 
develop more detailed models of the network of contacts between individuals (e.g. 
social and sexual contacts: see Box 2.3), and indeed spatial contact processes themselves 
can also be thought of as a special class of contact networks. This duality is most 
simply demonstrated by a lattice where hosts are placed at the nodes and connections 
are allowed only to the four nearest neighbours; a structure can be viewed as a spatial 
neighbourhood model and a network. The mathematical study of networks is a rapidly 
developing field with recent results demonstrating the profound impact that different 
contact network structures have on disease dynamics (Chapter 2). For example, Pastor-
Satorras and Vespignani (2001, 2002) showed that for a contact network with a power-
law distribution (i.e. a few individuals have very many contacts) there is no critical 
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threshold density below which the disease will be eradicated. However, in such cir-
cumstances targeting highly connected individuals is an effective strategy. Durrett 
(2007) however, suggested that such extreme power-law contact networks are rarely 
observed in practice. Nonetheless, given the possibility for such profound effects, it is 
important not only to study the effect of observed network structures, but also to 
explore the robustness of any results obtained with respect to uncertainties in such 
contact structures. There is a growing literature on the estimation of  complete contact 
networks from (inevitably) partial observations. Where data such as the mean observed 
number of contacts, or higher-order network statistics, are available, likelihoods can be 
constructed for so-called exponential random graph, or p*, models (Frank and Straus 
1986), and then computational statistical methods can then be used to generate com-
plete networks consistent with available data (Handcock and Jones 2004). Closure type 
approximations have also been applied to epidemics on networks (Boots and Sasaki 
1999; Keeling 1999) and can make direct use of measured network statistics without 
the need to model the network directly (Keeling and Eames 2005).

Models can be further refined by introducing variation between individuals, or 
across space, for example by specifying variation in the susceptibility of  individuals. 
Intuitively, such heterogeneity and variability tends to sub-divide the population 
into smaller, partially connected clusters, enhancing the importance of stochastic 
effects in the spread of disease. Even in cases where there is no intrinsic or initial 
difference between sites or individuals, such heterogeneity in contacts interacts 
with stochasticity to generate heterogeneity within the system, often resulting in 
qualitative differences compared to the analogous homogeneous deterministic 
model. Such differences are typically smaller in situations where the contact 
 network is highly connected and the population relatively homogeneous in nature.

The extent to which space is important as a modelled feature depends to a large 
extent on the mechanisms of disease transmission, how animals are distributed, or 
interact within it and the scale at which you model. If we are interested in investi-
gating the dynamics of disease in a herd of dairy cattle then the animals can be 
considered to be homogeneously mixed, and to frequently come into close contact. 
In these cases the time domain for inter-animal contact is short relative to that of 
the transmission process. Disease spread under these conditions would not need to 
incorporate a spatial component. On the other hand, if we were interested in the 
spread of infection between herds and across farm holdings then space might be 
important. However, if two competing strains of disease were present, then space 
may even be important in the first example, since the homogeneity may be disrupted 
by the presence of the second outbreak. However, it is not certain if herds of wild 
mammals will mix homogeneously within any particular time frame.

Spatial models often provide a tactical context for managing disease. They can 
be used to simulate explicit/hierarchical contact networks between individuals, 
groups or sub-populations, even in specific geographical regions. In these models 
specific spatial locations are required, which may or may not be linked through 
Geographical Information System (GIS) software.

The use of spatial models has led to a number of findings that illustrate the impor-
tance of space in disease dynamics. Non-spatial badger (Meles meles)-TB models 
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predicted substantial population reduction when the disease was present (Anderson 
and Trewhella 1985). The development of spatial models, along with a thorough 
analysis of the data (Delahay et al. 2000a), has allowed the simulations to become 
more accurate with a relatively small population reduction and a poor relationship 
between population size and prevalence (Smith et al. 1997). These effects appear to 
arise because the disease moves slowly between social groups, which themselves 
change in size, and thus the disease never reaches equilibrium in all groups. This has 
demonstrated the importance of territoriality for disease spread in wildlife. Early 
non-spatial models of rabies in foxes suggested that approximately 70% of the popu-
lation needed to be vaccinated to eliminate rabies (Anderson et al. 1981), and this 
has been taken as the target level ever since. However, spatial modelling indicated 
that this threshold density may be too high (Eisinger and Thulke 2008), because 
local remnants of rabies infection are unable to spread in the vaccinated population 
and so die out. For infected foxes the probability of encountering a susceptible host 
is less than that predicted from the overall density because spatial structure results 
in less susceptible animals in their contact neighbourhood. Since disease spread is a 
local phenomenon, many of the local foxes will already have been infected.

Spatial models are often run on a grid (x, y coordinates) with each cell repre-
senting a unit area, or a territory. Animals are then assigned to each cell as 
required. Such grids have received some discussion, since in a square grid each 
cell may be considered to have either four (called a Von Neumann neighbourhood) 
or eight (a Moore neighbourhood) neighbours. In reality, territorial animals often 
have an average of about six neighbouring territories. The original reason for using 
simple grids was related to the limitations in computing power. However, it is now 
easy to combine small cells to produce territories (e.g. Smith and Harris 1991), or 
to utilise a modelling framework based on the underlying geographical structure 
(using a GIS). This not only allows spatial heterogeneity in territory size and 
shape, but has recently been shown to remove significant potential bias related to 
movement of individuals, disease or other information in regular model landscapes 
(Holland et al. 2007).

4.3 Parameterising Models

An area of considerable importance is the parameterisation of dynamic knowledge-
driven models (see McCallum 2000). A given dynamic model often exhibits a 
range of interesting and plausible behaviours, which can be explored via analysis 
where possible, but more commonly via numerical simulation and sensitivity 
analysis. It is usually necessary to determine parameter values in order to apply the 
model to a particular system, and this is critical if the model is to be used tactically 
for quantitative risk analysis or management purposes.

The parameters in dynamic models are typically biologically meaningful and 
therefore have often been measured directly or inferred from empirical studies. 
The values of such parameters are often quoted as a mean and standard deviation, 
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or in some cases as a distribution of values. If the parameter distribution is 
skewed (i.e. not symmetrical: e.g. lognormal) then quoting a mean and standard 
deviation can be misleading. In addition, inherent variability, for example 
between regions, sites, or even between times at the same site, often leads to 
apparently inconsistent parameter estimates between different studies. It is 
important to differentiate between inherent variation and uncertainty in parameter 
estimates. Mortality rates may be regarded as variable (between years or places), 
if a number of measurements are available. Disease transmission rates are often 
uncertain, since few studies have attempted to estimate or measure them, and they 
are often inferred.

Thus, there is usually uncertainty in our knowledge about some parameter 
values, which can be expressed as a range or probability distribution of possible 
values. In order for model outputs to reflect variation and uncertainty it is possible to 
randomly sample values for each parameter (independently) and then run the model 
for each set of parameter values thus generated. This builds up a histogram of 
model outputs reflecting the uncertainty. The computational cost of such a scheme 
can be reduced by employing an intelligent sampling scheme such as Latin 
Hypercube sampling (Vose 2001). However, since we typically know nothing about 
the correlation between model parameters, many parameter sets generated contain 
combinations of values that are unlikely. However, if system response data (e.g. the 
number of clinical cases observed over time during an epidemic) are available, a 
relatively limited, but rapidly developing, set of tools allows statistical parameter 
inference (i.e. unknown or poorly determined parameters can be estimated from 
data). Methods of Bayesian statistics can be used to combine both top-down system 
level data and bottom-up data on parameters, in which the distributions for each 
parameter are used. This process results in parameter distributions from which 
means, variances and correlations between different parameters can be deduced. 
Parameter combinations for which the model predictions are far from the observed 
data receive a correspondingly small probability.

In order to apply such methods it is necessary to define a likelihood, which, 
conditional on the model itself, determines the probability that the observed data 
was generated for each possible set of parameter values. In the case of stochastic 
models the true likelihood follows from the definition of the model and any 
assumptions about the accuracy of the observations e.g. Gaussian errors. Such an 
approach is arguably the most statistically rigorous, but is often difficult to imple-
ment and requires computationally intensive methods such as Markov chain Monte 
Carlo (MCMC). For example, Streftaris and Gibson (2004) use MCMC in a 
Bayesian framework to fit stochastic models for the transmission dynamics of a 
certain type of Foot and Mouth disease (FMD) virus to data from an experimental 
setting. These authors illustrate a key benefit of such an approach by not only infer-
ring parameter values, but also missing data in the form of the hidden transmission 
history of the epidemic. Such techniques can be used to infer contacts in a real 
epidemic (Demiris and O’Neill 2005). In the case of deterministic models, param-
eters are typically determined by least-squares which implicitly assumes Gaussian 
measurement errors and ignores correlations in time.
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What happens if we cannot agree on a single structure for a model? For many 
exotic diseases we may not even have enough information to decide what the mode 
of transmission is (for exotic vector-borne diseases we may have no evidence for 
how effective local vector species are). In such cases we can build two or more 
alternative models. Then, as more data becomes available we may be able to 
exclude (invalidate) some models. Where the models are relatively simple we may 
be able to choose between them using a multi-model inference approach 
(Burnham and Anderson 2002). Alternatively information theoretic criteria can be 
used to select between models sequentially (Spiegelhalter et al. 2002). If the alter-
native models are more complex we can still use any data (“patterns”) at hand to 
qualify the good and the bad representations according to their ability to reproduce 
all the information simultaneously (for example after specifying the latent phase in 
our model, one could compare the resulting temporal epidemic curve emerging 
from different assumptions (fixed time vs. fixed rate) to field data on an outbreak. 
While the data may only show the temporal trend of virus positives, in the model 
we can manipulate the inputs and observe the outputs to compare it with the avail-
able data. Another approach is to produce one model that includes all structures and 
iterate the model repeatedly, with the number of iterations of each structure depend-
ing on the weight of evidence for that structure (see Smith et al. 2008). However, 
this approach is generally not possible if different research groups produce the 
models. Where no one model can be identified as significantly better than all others 
it is appropriate to employ a model averaging approach; each model is run and a 
 combined output is formed by weighting the output of each model by some measure 
of our prior belief in the model combined with a measure of the extent to which it 
accounts for the available data. In such cases, uncertainty in model structure is 
combined with uncertainty in parameters and any intrinsic variation in the model to 
produce probabilistic outputs reflecting all these sources of uncertainty.

4.4 Quality Control

After constructing a model we then need to interrogate it. We should bear in mind 
that strategic models should be used to answer questions on improving our under-
standing, and tactical models should be used to answer questions of the form “what 
if”. When deciding whether to consider model outcomes for policy development, 
the aim should be to determine whether a model is good enough rather than whether 
it is correct. But how do we assess the quality of the output and how do we deal 
with individual objections? There are three main objections used against models: 
(1) the “I don’t believe it” approach, (2) “the model is not validated!” and (3) the 
model is “too complex” or “does not include some critical component”, for example 
it only includes one sex. The first objection stems from a lack of understanding of 
the formal structure of modelling. In some cases unbelievable results will stem 
from errors in the coding, or structure, of a model. However, since the objective of 
a model is to gain new insights, we should not be surprised by unexpected results. 
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If the criticism can be more specific than “I don’t like the answer”, then it moves 
into the second objection category. If not, then this objection is irrational.

When considering the use of model outputs for informing policy development, 
it is crucial to evaluate their uncertainty (precision, random error) and validity 
(bias, systematic error). For knowledge-driven models, assessing the validity of 
outputs can be complex, since models are typically based on quantitative  relationships, 
which have usually been derived from different studies, or may even be based on 
expert opinion. Validity is usually assessed by comparing model behaviour with the 
behaviour of the observed ‘real world’. Since often ‘real world’ data does not exist, 
or the available study has been used to parameterise the model, it is often necessary 
to consider the plausibility of quantitative outcomes resulting from varying inputs. 
It should be emphasised that this is not the same as a full sensitivity analysis.

Usually the validity will have to be assessed in a qualitative fashion, whereas 
uncertainty can be quantified. Validity is therefore particularly difficult to assess, 
requires a good understanding of the biological system being studied and the meth-
ods used to study it. The uncertainty is a reflection of the natural variability in the 
‘real world’ system and of lack of knowledge with respect to causal relationships. 
Both uncertainty effects are often difficult to separate or measure, but clearly any 
model prediction should also include an estimate of the uncertainty associated with 
the predicted outcomes. Policy makers may perceive scientific enquiry as a means 
for reducing the uncertainty associated with decision-making. However, this may 
not always be the case as research leading to the advancement of knowledge often 
results in the realisation that uncertainty has actually increased. Pielke (2003) 
wrote: “Ignorance is bliss because it is accompanied by a lack of uncertainty”.

The question of model validity is a important one. By definition, no model can 
be valid for all circumstances. As we stated at the beginning of this chapter, all 
models are wrong. Equally, no model can be truly validated – like hypothesis 
 testing, model validation can continue until a model is falsified, and even then it 
could remain useful in some circumstances. A model that predicts well in the 
short-term may predict badly in the medium to long term, but we should still con-
sider it valid for short-term predictions. However, some important steps can and 
should be taken before using the results of a model. Firstly, a model should be 
verified. This means that its structure should be tested to ensure that the processes 
are modelled logically and that the output of interest changes in a plausible man-
ner when input values are adjusted. A model should not generate results that are 
unfeasible, although judging what is feasible is not always straightforward. 
Nevertheless, there is clearly a problem if model outputs are negative when they 
should be positive or if it generates numbers that are larger than the total number 
of atoms in the universe! It is important to distinguish errors of logic from errors 
of coding. For this purpose it is useful to have a hierarchy of models based on dif-
ferent mathematical approaches e.g. deterministic non-spatial homogeneous mixing 
to stochastic and spatial, within which results can be compared. For nationally 
important management decisions, two similar models could be constructed by 
different teams using the same data and agreed mechanistic processes. From this, 
verification can occur by cross-model analysis of output.
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For discrete-time models there is an additional verification step; examination of 
all processes (subroutines) that can occur within a single time step. The order of all 
subroutines within a time step should be clearly stated. One misguided approach 
that has been taken is to randomise the order of subroutines in each time step. 
However, all subroutines are either continuous (e.g. mortality) or effectively 
instantaneous (e.g. changing age categories, disease transmission), and the latter 
should usually all occur together either at the start, or the end, of each time step, 
and the order of all subroutines should be checked for logical consistency. If we can 
assume that the model is logical and verified, and there are no coding errors, then 
there are two other key processes that have to be considered before it can be used 
in anger, namely sensitivity analysis and model validation.

Sensitivity analysis assesses how sensitive the model is to its input parameters. 
There are a number of ways of assessing model sensitivity. The most common 
approaches include adjusting each parameter by a fixed value (say ±10%), or 
adjusting each parameter to its maximum and minimum bound, and re-running 
the model. The former approach is often called local sensitivity analysis and is a 
form of model verification that tests the sensitivity of the model structure to 
change. The latter, tests the sensitivity of the uncertainty or variation in the system 
under study and is used to determine the most important drivers of a system. As 
an example, a model of population control of a fossorial mammal may indicate 
that a 10% increase in mortality of young (i.e. pre-emergence from their under-
ground lair) reduces the population more than a 10% increase in mortality of 
adults. However, the cost of increasing juvenile mortality by 10% may include 
finding and digging into the lair, whereas a 10% increase in adult mortality could 
be achieved for far less effort. Thus, from a management perspective the ‘best’ 
management option may be to increase adult mortality rates. Thus, local sensitivity 
analysis by changing values by a fixed percentage should not be used to inform 
management decisions. It is also important to distinguish between parameters 
that have large natural variability (e.g. juvenile mortality) and those that are rela-
tively unknown (e.g. disease transmission rates or their surrogate, individual 
contact rates). A key feature of sensitivity analysis is to provide insights into 
which features of the model have the greatest effect on the output. This is important 
particularly if there is any imprecision or over-simplification of fundamental 
processes within the model. The sensitivity analysis is then used to identify areas 
where the model requires more precise data. This can be of considerable signifi-
cance in modelling disease spread because key processes such as transmission are 
often poorly understood or  quantified. This approach can be used to identify 
those parameters or processes that have the greatest influence on the outcome, 
and if amenable to human influence, provides insight into management and control. 
Sensitivity analysis is also useful for identifying parameters or processes that 
have limited impact on the model outputs. If a model is insensitive to a variable 
or a process that is incorporated in the model then it is quite legitimate to remove 
the process from the model completely.

Model validation is the next step in model assessment. During this process, the 
outputs of the model are compared with real data. These data should come from a 
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system different to that which was used to create the parameters used as inputs in the 
model. In effect the modeller is attempting to replicate what happened in another 
system. Models may also be validated against secondary predictions, in other words 
with data not used during model parameterisation, but nevertheless taken from the 
same system. If the verification, sensitivity analysis or validation fails in some 
respect, then the model has to be redesigned, or refined, until it passes the tests. 
Once it has ‘passed’ the tests it could then be used to inform management decisions. 
Ideally, the requirements for model validation should be specified in advance, since 
it is often easy to find some aspect of model output that does not fit well with the 
available data, or belief.

4.5 Using Models to Inform Policy Decisions

If we therefore assume that we have a model that has been subjected to verification 
and validation, and has not failed these tests, it can be used to help make manage-
ment decisions. However, it should be noted that models do not produce decisions, 
but simply extrapolate under a number of “what if” scenarios. The consequences of 
these management options need to be considered in a wider context. Pielke et al. 
(1999) stated “Predictions must be generated primarily with the needs of the user 
in mind. For stakeholders to participate usefully in this process, they must work 
closely and persistently with the scientists to communicate their needs and problems”. 
Thus there should ideally be constant dialogue between the modeller(s) and the user 
(decision maker), although in our experience this is rare.

Models generally assume that all parameters remain constant (or for stochastic 
models that the variation does not change with time), except for the parameter 
being changed (e.g. the management option). In many cases however we expect 
that some aspects of the model assumptions may change with time (e.g. landowner 
behaviour), thus, model ‘predictions’ need to be interpreted in the light of our 
expected changes in the system.

It is also critical that the user understands the uncertainties in the model, and 
how they may affect the outcome of different policy options. Lempert et al. (2003) 
describe the use of quantitative models in policy development as follows:

Under conditions of deep uncertainty, we suggest that analysts use computer simulations 
to generate a large ensemble of plausible scenarios about the future. … The goal is to 
discover near-term policy options that are robust over a wide range of futures when 
assessed with a wide range of values.

When using models to provide management advice it is desirable to take account 
of uncertainty in our knowledge of, as well as the intrinsic variability in, the system 
under study. As discussed above, variability can be accounted for by introducing a 
stochastic element into the behaviour of the model, and uncertainty in knowledge 
may be accounted for by using statistical approaches. For example, the estimation 
of parameter values from data is uncertain, and statistical methods provide a distri-
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bution of estimates or at the least a mean and standard deviation. It is often the case 
that a range of models are available and there is therefore uncertainty associated 
with the choice of model. Accounting for either, or both, system variability and 
uncertainty in our knowledge about the system leads to a probability distribution 
across the predicted response of the system. This profoundly changes the advice 
arising from the model from unequivocal, to for example the relative probabilities 
that a given disease reduction strategy will be successful or fail (by some criteria). 
In addition to such quantifiable uncertainty it is also critical to communicate the 
qualitative limitations of different model formulations as these are likely to be criti-
cal to interpreting results.

A recent UK government review into infectious diseases concluded that useful 
models would in the future need to include stochasticity, individual and population 
level heterogeneity and spatial structure. It stated “Combining these refinements 
into ever more complex … models provides a better chance of accurate prediction. 
This will be invaluable in … deciding on control options.” Further, the report 
suggested how models could be used to assess new technologies: “The development 
of rapid tests to detect infection earlier could, in theory, help isolate infectious 
individuals and stop disease spread. However, a model is needed to estimate the 
potential of such diagnostics and to show [how] they might best be deployed” and 
also pointed to a new area for consideration in modelling “To be really useful, however, 
future models must embody more understanding of human behaviour”.

Modellers need to understand that the results of their model will not be used 
without being put into a policy context, and users need to understand that model 
results should not be used without critical interpretation. How models have devel-
oped over time, for the UK wildlife rabies contingency plans, are shown in Box 4.3. 
This development is also instructive in informing policy makers, or budget holders, 
where to direct further research.

4.6 Model Limitations

All models are subject to a number of assumptions. Much like for statistical tests, 
some assumptions can be broken without affecting the validity of the answer, and 
there is no clear definition of which assumptions are of over-riding importance. For 
example, many models that do not include sex, or age, or season, can result in 
robust results. In any written presentation, a list of model assumptions should be 
given, including those that seem obvious to the modeller. Indeed it is worth noting 
that important caveats concerning the model can easily be lost when crossing 
between one discipline (epidemiology) and another (policy-making). It is only by 
examining a list of model assumptions that model output can be interpreted 
correctly. The failure to provide an adequate list of assumptions often leads to 
‘overselling’ the model.

One of the most important limitations for wildlife disease models is that the disease 
transmission rate can rarely be measured directly. This is such an important parameter 
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Box 4.3 The development of rabies modelling for contingency planning in 
the UK

The simplest mathematical model of rabies spread in red foxes (Vulpes 
vulpes) was a deterministic non-spatial model (Anderson et al. 1981). 
Although not designed or parameterised for the UK, this simple model could 
be used to calculate the level of culling (or vaccination) required to eliminate 
a rabies outbreak, as a function of fox density. Although structurally overly 
simple, the model relied on assumptions about the threshold density below 
which fox rabies does not persist (i.e. R

0
 < 1), which was estimated at one fox 

per square kilometre. However, rabies is known to persist in foxes in Canada 
at far lower densities (Voigt and Macdonald 1984), so the generality of this 
assumption is uncertain. This model was then parameterised for the UK and a 
spatial dimension was added in the form of a diffusion term, which assumed 
that disease spread was caused only by the itinerant movement of rabid foxes 
(Murray et al. 1986). A map of fox density in England and Wales was then 
used, on which the equations were numerically solved, producing time series 
pictures of rabies spread in England and Wales. In a first attempt to utilise a 
model to evaluate the local introduction, spread and control of rabies, an 
existing simulation model (the ‘Ontario Rabies Model’: Voigt et al. 1985) 
utilised a grid where each cell represented a fox home range (Smith and Harris 
1989). This model simulated a large range of fox densities, and being stochas-
tic, could evaluate the probability of disease elimination for any given level of 
control. It permitted disease spread by neighbour-to-neighbour contact and fox 
dispersal, and the threshold for disease persistence was an emerging function 
of biological parameters, and was not pre-determined. This latter model also 
demonstrated that low levels of fox culling would result in extending the 
duration of the epidemic. However, it was known that fox density in local 
areas of English cities could exceed nine foxes per square kilometre (Harris 
1981), whereas in nearby rural areas it was likely to be less than one fox per 
square kilometre (Macdonald et al. 1981). Therefore, a revised simulation 
model was constructed based on 500× 500 m grid cells, which were combined 
to form fox home ranges of different sizes (Smith and Harris 1991). This not 
only permitted the incorporation of heterogeneity in fox density, but had the 
added advantage of removing the bias inherent in regular geometric simula-
tion models (Holland et al. 2007). Refinements of this model were used to 
investigate fox vaccination (Smith 1995) and fertility control (Smith and 
Wilkinson 2003), and the model was integrated within the UK contingency 
plan for dealing with an outbreak of wildlife rabies (Smith and Fooks 2006).

in the models that we dedicated a whole chapter to estimating it (Chapter 3). However, 
this is not an insurmountable problem, since, if the structure of the model is correct, and 
a prevalence estimate has been measured in the field, a limited range of transmission 
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rates will produce this output. This is similar to having one unknown in an equation 
– only one value (of the transmission rate) will make the equation balance. In two-
species models there are four transmission rates (two within-species and two between-
species rates), which makes estimating these values with limited field data difficult. 
Few attempts have been made to formally parameterise two-species disease models for 
practical use (but see Morgan et al. 2006). Some theoretical work has been done in this 
area (Dobson 2004), particularly with parasite/parasitoid models (e.g. Preedy et al. 
2007). With three-species models there will be nine transmission rates, thus making 
accurate estimation nigh impossible.

Given that modelling outcomes will always be associated with varying degrees 
of uncertainty and validity, the decision to use them for informing policy making 
will have to be based on opinion and judgment. One recent advance is the inclusion 
of the economic dimension within computer models to help managers to make 
informed decisions.




