
Chapter 3
Assessment of Transmission Rates and Routes, 
and the Implications for Management

Peter Caley, Glenn Marion, and Michael R. Hutchings

3.1 Introduction

3.1.1 Preamble

Being able to estimate disease transmission rates and determine the underlying 
mechanisms of transmission is fundamental to the effective management of wildlife 
disease – transmission rates drive disease dynamics and persistence, and thus deter-
mine the level of control or vaccination necessary to achieve disease eradication, or 
predict the likely impact of a biocontrol agent. The mechanisms of transmission 
determine where management efforts can be targeted. Not knowing and not being 
able to estimate transmission rates when trying to manage disease in wildlife is 
analogous to managing overpopulated wildlife without knowing the intrinsic rate of 
population increase. Being able to estimate transmission rates allows us to 
determine whether management actions are achieving their aims. This chapter 
looks at the measures of disease transmission and how they can be calculated. We 
recommend that the non-mathematical readers skim through Section 3.2 without 
trying to follow the mathematics, and refer back to it when needed.

3.1.2 Measures of Transmission

The term disease transmission means many things and can be quantified in different 
ways. Exactly what measure is required will depend on the aims of the investigator/
manager. The following terms are all measures that result from disease transmission:

P. Caley
National Centre for Epidemiology & Population Heath, Australian National University, 
ACT 0200, Australia 

G. Marion
Biomathematics Statistics Scotland, The Kings Buildings, Edinburgh, EH9 3JG, UK

M.R. Hutchings
SAC, West Mains Road, Edinburgh, EH9 3JG, UK

R.J. Delahay et al. (eds.), Management of Disease in Wild Mammals, 31
DOI:10.1007/978-4-431-77134-0_3, © Springer 2009 



32 P. Caley et al.

Force of Infection (l) – the instantaneous per capita rate at which susceptible 
individuals acquire infection. Also called the instantaneous incidence.
Basic Reproduction Number (R

0
) – the expected number of secondary infections 

produced by a typical infected individual over the course of their infectious period 
when among a population where every individual is equally susceptible. Also 
called the basic reproduction ratio and basic reproduction rate.
Effective Reproduction Number (R) – the actual number of secondary infections 
produced by an infectious individual.
Disease Prevalence (p) – the proportion of the population that is infected at a 
given time.
Attack Rate (a) – the proportion of the population infected over the course of an 
epizootic.
Transmission Coefficient (b) – the model-dependent constant that as part of the 
transmission function, determines the rate at which susceptible individuals become 
infected in the population.

Note that despite being related, knowing the value of one measure of transmission 
does not necessarily mean any other is also known. Also, in general, measures such 
as p and l are dependent on the prevailing conditions (e.g. numbers of infectives and 
susceptibles) – they are not fixed parameters. Conversely, R

0
, whilst essentially 

being a fixed parameter that underlies the number of secondary infections an 
infected individual produces (which is a random variable), is often specific to the 
population from which it is estimated, and usually changes with host density or 
numbers. Hence the usefulness of R

0
, for all its laudings, becomes tempered when 

applied to wildlife populations inhabiting different environments and/or locations 
from those used in its estimation. An analogous problem occurs with the intrinsic 
(maximum) rate of increase (r

m
) of a wildlife population, which is specific to the 

particular environment in which it is measured (Caughley and Birch 1971). To get 
any measure of transmission that can be generalised to changed conditions (e.g. 
post-intervention or to a different population) requires that we relate these measures 
to an underlying model of transmission (described by the transmission function) that 
can account for changed conditions. In its most basic form, the transmission function 
describes how transmission scales with population size and/or density and is where 
the transmission coefficient b is found. As such, b is typically the only intrinsic 
measure of transmission. It is also the most difficult to estimate; estimation necessarily 
being achieved via a model. Commonly considered forms of the transmission func-
tion are shown in Table 3.1. Clearly these functions do not accommodate variation 
in transmission relating to factors such as environmental conditions influencing 
pathogen survival, strain-specific differences in transmission, population immunity/
susceptibility or local influences on the spatial arrangement (and hence mixing) of 
hosts. Most of these influences are all subsumed within b, which is typically assumed 
a constant (or if using Bayesian statistics, a distribution expressing belief in it’s 
likely value). Violation of these assumptions may go partway to explaining why 
transmission rates often differ between sites for unknown reasons; underlining the 
simplistic nature of our models in many cases. It should also be stressed that where 
spatial information is available it is possible to infer contact rates within spatial 
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models. Additionally, if a management intervention aims to change the behaviour of 
animals (e.g. increasing mating frequency as reported by Caley and Ramsey (2001)), 
then clearly b will change and can no longer be considered fixed.

3.1.3 Practical Difficulties in Field Measurement

Disease transmission is typically an unobservable event – even if we observed a 
known infected “contacting” a known susceptible, we would be none the wiser as to 
whether transmission occurred. Thus we have to infer transmission from observable data 
such as evidence of prior or current infection (e.g. diagnostic testing) or surrogate markers 
for infection such as the onset of clinical signs or death. Such data usually requires 
that animals can be captured and samples collected, or easily observed. Obtaining 
such data for free-ranging mammals is often problematic, making large-scale replicated 
field experiments difficult and smaller pen studies the only feasible type of experi-
mentation. Considerable difficulties, however, are often experienced when extrapolat-
ing transmission rates estimated from experimental conditions to field conditions 
(McCallum 2000).

Estimating epidemic threshold parameters (e.g. critical host population size N
T
 or 

critical host density K
T
) from whether an introduced pathogen establishes and gives rise 

to a major epizootic as opposed to a minor epizootic is difficult to achieve experimentally 
(Lloyd-Smith et al. 2005b). The reasons being the epizootics are by nature dichotomous 
(either the epizootic is major with many cases or is minor with a trivial number of cases) 

Table 3.1 Proposed forms for the transmission function. Adapted from McCallum et al. (2001) 
and references therein (reproduced with permission)

Number Functiona Comments

1 bsi Density-dependent transmission (also termed mass action)
2 bsi/n Frequency-dependent transmission
3 bspiq Power relationship; constants: 0 < p < 1, 0 < q < 1. 

Phenomenological. Sometimes considered to account 
for spatial effects such as local depletion of susceptibles

4 bi(n − 1/q) Constant: 0 < q < 1. Embodies a refuge effect (q = proportion 
of population potentially susceptible)
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term F(s,i) which may be any of Functions 1–5 above. If 
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If ε = 1, contacts are independent of n
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Asymptotic transmission where c is a constant

ai is the density of infected hosts, s is the density of susceptible hosts, and n is the total host 
density. b is the transmission coefficient. Other parameters are described where necessary under 
comments.
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and stochastic (an epidemic may not take off despite R
0
 > 1). Many experiments may 

therefore be required to estimate where the threshold may lie with any kind of precision. 
The result is that many researchers are forced to undertake observational experiments 
of host/pathogen systems as a means of quantifying disease transmission.

Exactly what measure of disease transmission is estimated will depend on the aims 
of the investigation and logistical constraints. If the aim is simply to determine 
whether a management intervention is reducing transmission or whether a particular 
pathway of transmission occurs (a hypothesis testing question), then bias may not be 
problem and precision more important. Fitting more parsimonious models is a way 
of achieving this (though increasing bias). For example, ignoring the effect of disease-
induced mortality when modelling age-prevalence data biases estimates of the force 
of infection downwards, though it facilitates straightforward model fitting (Caley and 
Hone 2002). If the bias of an estimator is consistent across experimental treatments, 
then such an estimator may suffice for estimating relative changes in underlying 
transmission. If the purpose of the investigation is to identify risk factors contributing 
to disease transmission (as typically measured by either the prevalence or time to 
infection), then robust statistical frameworks such as logistic regression (e.g. Joly and 
Messier 2004) or Cox’s proportional hazards model (e.g. Calvete et al. 2004b) will 
suffice. Such models typically do not explicitly include a transmission component 
and hence cannot be used to estimate rates of transmission. Conversely, if the aim is 
to investigate predicted changes to the host(s)/pathogen system of a mechanistic 
nature (e.g. introducing vaccination), then unbiased estimates of transmission coef-
ficients will be required along with knowledge of the correct underlying transmission 
function, and models will need to be specified accordingly.

3.2  Estimating Transmission Rates for Directly Transmitted 
Pathogens

Quantifying disease transmission is simplest for directly transmitted pathogens, 
particularly if only one or two hosts are involved, and this is the focus of this section.

3.2.1 Estimating the Force of Infection (l)

The force of infection experienced by a susceptible individual will depend on the 
infection status of other individuals that the susceptible mixes with (as quantified 
by prevalence of infection or density of infectives), and the form of the transmission 
function. For this reason, estimates of l in isolation are of little use for quantifying 
underlying transmission rates. However, relating l via a model to host density and 
the relative abundance of susceptibles and infecteds, in combination with other 
demographic parameters, is a practical approach for estimating parameters (e.g. b) 
that determine transmission rates (McCallum et al. 2001).

Using Age-Prevalence Data In general, methods to estimate disease transmission 
rates from age-prevalence data assume steady-state (c.f. epizootic) conditions. 
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This is a strong assumption that needs to be applied with care, as it is difficult to dis-
tinguish between age-dependent and time-dependent variation in disease incidence. 
Most models developed for analysing age-specific prevalence data were developed 
for diseases of humans, and assume that mortality due to infection can be ignored 
(e.g. Farrington et al. 2001). This is less often the case with wildlife diseases, and 
accounting for disease-induced mortality introduces additional complications. 
Disease-induced mortality tends to flatten age-prevalence curves (Heisey et al. 
2006) as does loss of evidence of prior infection (or recovery from infection for 
chronic diseases), resulting in the force of infection being underestimated if ignored. 
This may not be a problem in a hypothesis testing application (e.g. answering “does 
the intervention significantly reduce transmission?”), but will be an issue if estimation 
is the main aim of the investigation (Caley and Hone 2002).

If disease-induced mortality can be ignored, and the system is in equilibrium, 
then the modelled probability of an individual being infected (or showing signs of 
past infection) at age a when subjected to age-dependent force of infection l(a) is

 
=

=

⎛ ⎞= − − ∫⎜ ⎟⎝ ⎠0

( ) 1 exp ( )
t a

t

p a t dtl   (3.1)

The form of l(a) may be as simple or complex (data willing) as the scientific 
investigation requires, and may change as a function of age, time and other covariates. 
The underlying form chosen for l(a) may be flexible (e.g. Grenfell and Anderson 
1985; Heisey et al. 2006) or consistent with how transmission is known or hypothesised 
to occur (e.g. Caley and Hone 2002 and see Box 3.1). For simple forms of l(a) it is 
often possible to express Eq. (3.1) as a generalised linear model and obtain estimates 
of l and factors influencing it directly (see Box 3.2). For more complex forms of l(a) 
and if additional demographic parameters are included, analytical solutions for the 
prevalence usually do not exist and numerical methods are used, although the param-
eters may still be estimated via standard maximum likelihood techniques. For n 
samples of individuals of ages a

j
 (j = 1, …, n) where each sample contains N

j
 individuals 

of which I
j
 are infected (or shows signs of previous infection), the likelihood assuming 

that the probability of infection for a given age is binomially distributed is

 ( ) ( )( ) −

=

= −∏
1

1
j j

j
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j j
j

L p a p a  (3.2)

Maximum likelihood estimates of the parameters are obtained by minimising the 
negative of the log-likelihood function with respect to the parameters that deter-
mine p(a):

 ( ) ( )( ) ( ) ( )( )
=

⎡ ⎤− = − + − −⎣ ⎦∑
1

ln ln ln 1 .
n

j j j j j
j

L I p a N I p a  (3.3)

This is usually achieved numerically by a standard numerical algorithm. Likelihood 
theory also enables estimation of the precision of these estimates, and comparison 
of models via likelihood ratio tests or information-theoretic methods (e.g. Akaike’s 
Information Criterion). Alternatively, the likelihood function may be used within a 
Bayesian estimation framework (e.g. Markov Chain Monte Carlo) to obtain posterior 
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Box 3.1 Estimating the rates of rabbit to rabbit transmission of Mycobacterium 
avium subspecies paratuberculosis (Map)

European rabbits (Oryctolagus cunniculus) have been increasingly linked to the 
persistence of Mycobacterium avium subspecies paratuberculosis (Map) 
(Johne’s disease) in domestic ruminants in the UK. Quantifying the routes of 
rabbit to rabbit transmission of Map is a key step to establishing whether rab-
bits are a persistent source of infection (i.e. a reservoir). Judge et al. (2006) 
fitted an SI (Susceptible-Infected) epidemiological model to field data to esti-
mate the probabilities of vertical (vertical + pseudo-vertical) and horizontal 
transmission. Map was isolated from various tissues and excreta from a study 
site in Scotland suggesting the potential for vertical, pseudo-vertical and hori-
zontal rabbit-to-rabbit transmission routes. The overall prevalence of Map in 
rabbits was high at both sites studied, with an average of 39.7%.

Estimating rates of transmission: A maximum likelihood fitting procedure 
was used to fit the SI model to the data on the proportion of infected rabbits 
per age group (2 month blocks) from the random sample to derive probabilities 
of vertical/pseudo-vertical and horizontal transmission (Fig. 3.1).

In order to model the variation of the mean infection prevalence with age, 
Judge et al. (2006) assumed that both the number of individuals at any given age 
and the number of infected individuals at any given age remain constant at least 
on the time scale of an individual’s lifetime. This was consistent with the finding 
that the overall prevalence of infection in rabbits did not increase across the 
years of sampling (Judge et al. 2005a). Given this assumption it was then possible 
to pool the prevalence data taken on each visit and treat the inferred prevalence 

Fig. 3.1 Fitted prevalence of Map infection in rabbits as a function of age. Data are cate-
gorised in age ranges of two months (from Judge et al. 2006)
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for each age as being equal to the prevalence that would be measured if it were 
possible to track a cohort of individuals from birth to death, measuring the 
prevalence in that cohort. A model for the spread of disease over time in a group 
of individuals exposed to a constant level of infection could therefore be used.

The model was constructed by assuming a two-stage infection process; indi-
viduals are exposed only to vertical and pseudo-vertical infection up until time t

0
, 

when all vertical/pseudo-vertical infection ceases and they become exposed to 
horizontal infection by infected rabbits they are in contact with. The absence of 
sufficient data from pre-weaned individuals prevented using a detailed model of 
the vertical processes, so the combined effect of vertical and pseudo-vertical trans-
mission was represented by a single probability P

v
 that individuals are infected at 

age t
0
. The horizontal infection process was modelled as a homogeneous Poisson 

process (representing the simplest mathematical form for horizontal infection 
within a homogeneously mixing social group of rabbits, see below for group size) 
with a constant infection rate in which I is the (constant) number of infected indi-
viduals in the population as a whole and l

0
 is the per capita rate of infection.

 0 Il b=  (3.17)

In a homogeneous Poisson process with rate parameter l
0
, the probability that 

an event occurs in the time interval (0, τ) is

 01 .e l t−−  (3.18)

Including the effect of vertical transmission there are two ways that an indi-
vidual could be infected at time τ – by being infected vertically/pseudo-verti-
cally from its mother, or horizontally, with a combined probability

 ( )( )01 1vP P e l t
n

−+ − −  (3.19)

whereas, in order to escape infection up to time τ an individual must avoid 
infection through both routes, leading to a probability of being uninfected

 ( )( )01 .P e l t
n

−−  (3.20)

Combining these probabilities with the data, the likelihood
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∏
 (3.21)

is formed which was maximised numerically in order to obtain maximum 
likelihood estimates of the parameters l

0
 and P

v
. Note that in practice it is the 

negative of the logarithm of the likelihood that is minimized. The data consist 

(continued)
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of the infection status y
i
 (y

i
 = 1 corresponds to infection and y

i
 = 0 to susceptible) 

of I = 1, N individuals and their estimated ages t
i.
 I[..] denotes the indicator 

function which is unity if the expression in square brackets is true and zero 
otherwise. The first line of Eq. (3.21) corresponds to the probability that sus-
ceptibles become infected, whilst the second line represents the probability 
that susceptibles escape infection.

Maximum likelihood estimates were l
0
 = 0.037 and P

v
 = 0.14 when using a 

weaning age of t
0
 = 1 month. These values can be expressed in terms of the 

underlying transmission probabilities. This per capita rate of horizontal infec-
tion per month (l

0
) is specific to the study site and will vary depending on the 

number of infectious (I) and susceptible animals in regular contact. The generic 
horizontal transmission coefficient per month (b ) can be estimated as

 
l b b
b l

= =
=

0

0 ,

I Np

Np
 (3.22)

where p is the overall prevalence and N is the total population size.
Adult rabbit social group sizes at the study site were conservatively estimated 

at between 2 and 7 individuals, equating to a conservative b value range of 0.013 
to 0.046. The proportion of individuals entering the population after weaning (at 
1 month old), which were infected via vertical and/or pseudo-vertical transmis-
sion (P

v
), estimated from the maximum likelihood procedure, was 0.14. As only 

offspring from infected does can be infected vertically or pseudo-vertically, the 
probability of transmission via these routes can be calculated from the propor-
tion of infected juveniles entering the population after weaning and the propor-
tion of infected females of reproductive age. There was no significant difference 
in the prevalence of Map between sexes at either site therefore it was assumed 
that equal percentages of males and females were infected with Map. For adults 
of reproductive age (i.e. >6 months), 42.9% (85/198) were Map positive. 
Assuming that there is no effect of Map infection on either reproductive output 
or juvenile survival, this gives a probability of infection via vertical and/or pseu-
do-vertical transmission of up to 0.326 (14% of young infected when entering 
the population at 1 month /42.9% of infected females of reproductive age). These 
estimates of rabbit-to-rabbit routes of Map transmission were subsequently used 
in a modelling study to show that infection is highly persistent in rabbit popula-
tions (Judge et al. 2007) a critical step in understanding the role of rabbits in the 
epidemiology of paratuberculosis within the host community as a whole.

distributions for the parameters of interest, and incorporate prior belief regarding 
parameters (if available). Such models can be compared using the Bayesian 
Information Criterion (BIC) or deviance information criterion (DIC) as appropriate.
Using Longitudinal Data Estimating the force of infection from prospective studies 
of individuals (i.e. susceptible individuals are followed and their time to infection 

Box 3.1 (continued)
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Box 3.2 Mycobacterium bovis (bTB) in wild pigs – testing for treatment 
effects

The study data under consideration (Table 3.2 and Fig. 3.2) come from the 
Northern Territory, Australia, and estimate the proportion of wild pigs (Sus 
scrofa) with visible lesions typical of bovine tuberculosis (caused by M. 
bovis) during two territory-wide surveys. The first survey during the early 
1970s (Corner et al. 1981), occurred at a time when bovine tuberculosis was 
highly prevalent in sympatric populations of wild cattle (Bos spp.) and water 
buffalo (Bubalus bubalis). The high prevalence observed in pigs was hypoth-
esised to be a result of their association with these infected bovid populations. 
Subsequently, the populations of cattle and buffalo were dramatically reduced 
as part of the Brucellosis & Tuberculosis Eradication Campaign (BTEC). The 
second survey was undertaken in 1992, with the aim of determining whether 

Table 3.2 Prevalence of wild pigs with lesions resembling bovine tuberculosis 
by age (in years). Adapted from McInerney et al. (1995)

Survey Age Sampled Lesioned

1 0.5 128 21
1 1.5 132 59
1 2.5 117 55
1 3.5 83 47
1 4.5 105 66
1 5.5 82 56
1 6.5 45 35
2 0.5 251 8
2 1.5 227 9
2 2.5 131 10
2 3.5 113 13
2 4.5 38 2
2 5.5 16 4
2 6.5 14 3

Age (years)

P
r(

Le
si

on
)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0
Pre−removal

Post−removal

Fig. 3.2 Prevalence of lesions typical of bovine tuberculosis in wild pigs before (pre-
removal) and after (post-removal) culling of sympatric cattle and buffalo populations 
known to be infected

(continued)
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Box 3.2 (continued)

BTEC had indeed reduced the level of disease in wild pigs as predicted 
(McInerney et al. 1995).

There appears to be a difference in the age-specific prevalence of lesions 
between the two surveys (Table 3.2). How do we quantify this difference in 
terms of an underlying model that accounts for this data? This model is deter-
mined by how the age-specific prevalence relates to the force of infection. 
Assuming that animals are exposed to a constant force of infection from birth, 
then the prevalence (p) at a given age (a) is

 
( ) 1 ap a e l−= −

 
(3.23)

This equation can be linearised with several simple algebraic operations:

 ( )( )( ) ( ) ( )ln ln 1 ln lnp a al− − = +  (3.24)

This equation is straightforward to fit as a generalised linear model (see 
Crawley 2005 for details). The left hand side of this equation is what is known 
as a complementary log-log transformation of p. Hence the link function 
within the GLM is specified as complementary log-log. The age-dependent 
probability of infection (p(a)) is binomially distributed – so the error structure 
is specified as binomial. By specifying ln(a) as an offset (equivalent to fixing 
its slope to 1), we can directly assess the effect of factors and other explana-
tory variables on ln(l). The steps to fitting this model are

1. Specify the proportion infected as the response variable.
2. Specify the error structure as binomial.
3. Specify the link function as complementary log-log.
4. Specify ln(a) as an offset.
5. Fit the model.

Two models are fitted, the first without any treatment effect, and the second 
including the factor “Survey” (which is a proxy variable for the removal of Tb 
positive buffalo & cattle). The inclusion of “Survey” is highly significant 
based on a likelihood ratio test (χ2 = 266.9, d.f. =1, P < 0.001). It is, however, 
the parameter estimates that are of most interest (Table 3.3).

Table 3.3 Parameter estimates and their standard errors

Parameter Estimate Standard error Z value Pr(>|z|)

Intercept −1.37 0.06 −23.75 <2e − 16
Survey −2.03 0.15 −13.19 <2e − 16
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Note that the parameter estimates in Table 3.3 are on a logarithmic scale. 
That is

 λ = e–1.37 = 0.26 / Year (Survey 1 - Pre-removal)

 λ = e–1.37–203 = 0.033 / Year (Survey 1 - Pre-removal)

That is, force of infection post bovid removal was about 13% of that in pre 
bovid removal times – a substantial and statistically significant reduction 
(note though the lack of an experimental control in this simple before-after 
experimental design).

This basic exponential model fitted in this way can be expanded to include 
further factors and covariates. However, if for example, the mortality rate of 
animals increases as a result of being diseased, then the new expression for 
the prevalence of infection is intrinsically non-linear and unable to be fitted 
as a GLM. It can still, however, be fitted by standard maximum likelihood 
techniques (see Caley and Hone 2002 and Heisey et al. 2006 for details).

measured, or their infection status after a known length of time is determined) is 
similar to modelling age-prevalence data, only with the exposure time substituted 
for age (e.g. Ramsey 2007). A rich family of models exists for analysing this type 
of data centred on Cox’s proportional hazards model (Cox 1972) and variants 
thereof. Note, however, that Cox’s model is primarily concerned with estimating 
the proportional effects of different factors on the force of infection, rather than the 
baseline force of infection, which is sometimes the variable of intrinsic interest.

3.2.2 Estimating b

Since b is dependent on the underlying transmission function, for it to be estimated 
requires that the relevant variables (e.g. densities of the different infective classes) 
and/or parameters are also known or estimable.

Estimating b Directly from Trajectory of Prevalence or Cases There are several 
approaches to estimating transmission coefficients from such data, which typically 
includes additional data on temporal changes in the population size. Often enough 
simplifying assumptions can be made to enable the model to be fitted as a generalised 
linear model and coefficients estimated directly, with the response variables being 
either the prevalence of infection (e.g. Caley and Ramsey 2001) or the density of infec-
tious classes (e.g. Begon et al. 1999). If the model cannot be solved analytically, then 
typically the series of differential equations that describe the host/pathogen dynamics 
will be solved numerically to yield the fitted number and/or density of animals in the 
relevant disease classes at the times of observation. If prevalence is chosen as the 
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response variable then the model may be fitted by minimising the binomial negative 
log likelihood where estimable parameters enter into the likelihood through the fitted 
prevalence (e.g. Arthur et al. 2005). Likewise, Miller et al. (2006) modelled temporal 
changes in the number (or cumulative number) of cases of chronic wasting disease in 
elk (Cervus elaphus) as a means of estimating disease transmission rates.

Estimating b from the Force of Infection If the underlying transmission function 
is known (or assumed), then estimates of l in conjunction with other variables 
enables estimation of b. For example, under density-dependent transmission for a 
single-species model, and assuming the area occupied by the study populations is 
constant over time (Begon et al. 2002), the rate of conversion from susceptibles to 
infecteds (di/dt) must equate with the term bsi, where i is the density of infectious 
animals. That is, ls = bsi, hence l = bi where b has the units “potentially infectious 
contacts per infectious individual per unit area per unit time”. Under frequency 
dependent transmission, infecteds are created at rate bsi/n where n is the density of 
all individuals. The rationale is that there are bi potentially infectious contacts per 
unit area of which a proportion s/n will be with a susceptible individual and hence 
lead to transmission. Caley and Ramsey (2001) apply both transmission models to 
leptospirosis infection of brushtail possum (Trichosurus vulpecula) populations.

Where a host species may be infected from several sources, the observed force 
of infection is the summation of the contribution of the different sources of infection. 
In the case where both intra- and inter-species transmission is density-dependent, 
the force of infection experienced by the jth species is the sum of the products of the 
inter-specific transmission coefficients and their densities

 
=

= ∑
1

n

j jk k
k

il b  (3.4)

In Eq. (3.4), n is the number of species, i
k
 is the density of infectious individuals of 

species k, and b
jk
 is the transmission coefficient from species k to species j (this 

follows the notation order of Dobson and Foufopoulos (2001) ). Where there are 
independent estimates of l

j
 and i

k
, then estimates of b

jk
 can be obtained by regres-

sion. An application of this model to a two host (possum, ferret) one pathogen (M. 
bovis) system is given by Caley and Hone (2005). Clearly one could have a mix of 
frequency-dependent & density-dependent transmission processes occurring in a 
multi-host system.

3.2.3 Estimating R
0

Estimating R
0
 from l or b Anderson and May (1991) provide a number of steady-

state solutions for the basic disease reproductive number. Under Type I mortality 
(death rate consistently low until the older age classes) and assuming a constant 
force of infection, they derive the following expression:

 l

l
−=

−0 ,
1 L

L
R

e
 (3.5)
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where L is the life expectancy (clearly disease-induced mortality is assumed to be 
negligible). However, under Type II mortality, where life expectancy declines expo-
nentially with increasing age, they obtain (again under steady-state assumption and 
with negligible disease-induced mortality):

 = +0 1 .R Ll  (3.6)

As under these conditions l is simply the reciprocal of the mean age of first infec-
tion (A), Eq. (3.6) can be rewritten in terms of L and A:

 0 1 .
L

R
A

= +  (3.7)

Anderson and May (1991) also provide a general argument relating R
0
 for a micro-

parasite in a homogeneously mixed host population to the overall fraction who are 
susceptible at equilibrium (x*) (Eq. (3.8) ). The parameter p is the proportion of 
hosts that are infectious. Note that x* = S*/N*, where S* and N* are equilibrium densi-
ties of the susceptible and total population respectively.
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Applications of these estimators for estimating R
0
 in wildlife are hard to find, and 

note that they are inappropriate for making inference on host status as they are 
greater than or equal to one for all non-negative values of l, L, A, or p. This is 
because these estimators for R

0
 assume the system is in a steady-state with a non-

zero prevalence – clearly the disease must be persisting, and hence R
0
 must be unity 

or greater.
Assuming that the rate of conversion from the susceptible to the infected class 

is described by density-dependent transmission, bsi, with horizontal transmission 
only, a more general estimate of the basic reproduction number of the disease is 
given by Anderson et al. (1981):

 0 ,
S

R
b

b
d g

=
+ +

 (3.9)

where b is the transmission coefficient, b is the natural mortality rate, S equals the 
number of susceptible animals (that can be replaced by the density s), g is the rate 
of disease recovery, and d is the rate of disease-induced mortality. The latent period 
is assumed equal to zero. Host population dynamics assume exponential population 
growth, with the exponential rate of increase r = a–b, where a and b are the instan-
taneous per capita birth and death rates respectively. Many studies have estimated 
R

0
 using Eq. (3.9) or variants of it. If host population growth follows the simple 

logistic model, the solution for R
0
 is essentially the same, although S may be 
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replaced by K (population carrying capacity), and a replaces b, and a disease 
latency period (1/σ) incorporated if required (e.g. Anderson et al. 1981; Pech and 
Hone 1988). Anderson and Trewhella (1985) used Eq. (3.9) to estimate the R

0
 of 

Mycobacterium bovis infection in badgers (Meles meles) assuming generalised 
logistic growth. Equation (3.9) can be interpreted as one infected animal, equivalent 
to population density I = 1/H (where H is the home-range area), making bs/H infec-
tious contacts per unit area per unit time for its infectious life expectancy 1/(d + b + g), 
over an area H. This term for life expectancy (whilst diseased) assumes d, b and g 
are additive.

For the frequency-dependent approximation of the transmission process, the 
initial maintenance of disease is independent of the population size because the 
density of susceptibles is assumed to be equivalent to the population density, and 
occurs (May and Anderson 1979) when b′ > (d + b + g). It follows that the basic 
reproduction number may be calculated (Roberts and Heesterbeek 1993; Heesterbeek 
and Roberts 1995) as:

 0 .R
b

b¢
d g

=
+ +

  (3.10)

A heuristic explanation of Eq. (3.10) is an infective individual meeting b′ suscepti-
ble individuals per unit of time, and it does this for a period of 1/(d + b + g) 
(Heesterbeek and Roberts 1995). Assuming local population density does not vary 
(and hence affect the contact rate), this expression for R

0
 is considered to be inde-

pendent of population size (De Jong et al. 1995). This is also the case if local popu-
lation density does vary; however, individuals have a fixed number of infectious 
contacts per unit time (as may be the case for sexually transmitted diseases).

Estimating R
0
 from Case Notifications If T

G
, the mean serial interval between 

infections or the generation length is known and the rate of increase (r) of cases in 
the epizootic can be estimated, then the effective reproduction number during the 
course of the epizootic may be estimated as

 ( )( ) ,Gr t TR t e≈  (3.11)

providing there are not substantial heterogeneities in transmission. An estimate of 
R

0
 can be obtained during the early phase of epidemic growth when depletion of 

susceptibles is insignificant. It is commonly assumed that T
G
 is simply the recipro-

cal of the recovery rate added to the latent period (defined as infected but not 
infectious). This assumes that infectivity is constant throughout the infectious 
period whose length is distributed exponentially – unlikely in practice but difficult 
to measure. A more realistic pattern, particularly of directly transmitted infectious 
diseases of animals, is for infectivity to peak early during the infectious period. 
Unfortunately, estimates of transmission rates and hence R

0
 are highly sensitive to 

the assumed shape of the infectivity function and the associated serial interval – 
overestimating the serial interval overestimates R

0
 and vice versa. If the form of 

the infectiousness function b(x) is known then R
0
 may be obtained by solving 

Lotka’s equation (here modified to include the proportion of the population that is 
susceptible (s)
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If the form of the infectiousness function is known or can be reasonably assumed, 
there have been recent advances in using case notifications to estimate the effective 
reproduction number of the course of a completely observed (Wallinga and Teunis 
2004) or truncated (Cauchemez et al. 2006) epizootic. The method of Wallinga and 
Teunis (2004) is reasonably robust to substantial under-reporting of cases (see 
Caley et al. 2008), which will inevitably be the case except in captive populations 
of wildlife (e.g. see Miller et al. 2006). Where there is a prolonged though variable 
delay between infection and case diagnosis, methods of back-calculation may be 
used to reconstruct the infection curve and thus estimate disease transmission rates 
(e.g. Isham 1989).

Estimating R
0
 from Epizootic Attack Rates If an epizootic occurs over a period of 

time short enough for births and deaths to be considered negligible and the popula-
tion is reasonably well mixed, the final size equation (Diekmann and Heesterbeek 
2000) describes the relationship between the attack rate (a – the overall proportion 
of the population infected), the initial proportion of the population that is susceptible 
(s

0
) (not to be confused with the initial density of susceptibles s(0)), and R

0
:

 a = s
0
(1– e–aR0)  (3.13)

For known values of R
0
 and s

0
, an estimate of α is obtained numerically – predicting 

α may be of interest where a pathogen is being deliberately introduced into a popu-
lation (e.g. bio-control). Alternatively, when estimation of transmission rates are of 
interest, rearranging Eq. (3.13) gives an expression for R

0
:

 ( )0
0

ln 1 s
R

a
a
−

= −  (3.14)

where a and s
0
 are estimated with error (as will often be the case), the variance of 

the estimate can be approximated using the delta method. The final size equation for 
α has been shown to be robust to quite a range of spatial contact structures includ-
ing spatially isolated patches of susceptibles (Ma and Earn 2006), although it 
breaks down if inter-patch coupling (movement of infectious individuals) is insuf-
ficient. A stochastic equivalent of the final size equation (Becker 1989; Yip 1989) 
has been applied to wildlife disease modelling (Hone et al. 1992), and has the added 
 attraction of enabling straightforward estimation of the variance:
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where X is the initial number of susceptibles and Z is the final number of individu-
als infected. The attraction of both approaches is their simplicity (see Box 3.3). The 
attack rate may be measured by the observed proportion of animals that die (in 
diseases with high case fatality rates or if the case fatality rate is known) or the 
proportion with serological or clinical (e.g. scars) evidence of infection at the com-
pletion of the epizootic. Estimating the proportion of animals that die is difficult in 
many situations as animals are cryptic at the best of times and carcasses are often 
difficult to locate. Where the attack rate is very high (near one), as was the case for 
some populations of European harbour seals (Phoca vitulina) during the phocine 
distemper virus epizootic in 1988 (Swinton et al. 1998), the precision of the esti-
mated R

0
 is poor.

Box 3.3 Classical swine fever (CSF) in wild boar – comparing estimators

The data set used (Inayatullah 1973) documents the number of wild boar (Sus 
scrofa) found dead on each day following the reported release of a single wild 
boar inoculated with CSF into a population inhabiting a forest plantation in 
Pakistan (Table 3.4). Prior to release, the number of wild boar in the popula-
tion was estimated by a drive count at 465. In the days following the release, 
a total of 77 wild boar were found dead (Table 3.4). However, approximately 
6 months later the population was estimated at 87. There is uncertainty as to 
whether as many as 379 (= 465 + 1 − 87) boar died from CSF during the epi-
zootic, or whether the wild boar unaccounted for had simply moved out of the 
area (quite possible considering the forest plantation was only 44.6 km2). 
Suitable methods for estimating R

0
 using the data include the final size equa-

tion (Eq. (3.14)), the method of Wallinga and Teunis (2004) (assuming the 
time from infection to death has little variance) and trajectory matching.

Using the stochastic version of the final size equation, and assuming a case 
fatality rate of 90% (i.e. 9 in 10 wild boar that became infected died), then R

0
 

is estimated to be 1.1 ± 0.2 assuming 77 wild boar died, and 2.7 ± 0.2 assum-
ing 379 boar died. In contrast, if we assume that the inoculated boar died 20 
days following inoculation and the CSF infectiousness function is uniformly 
distributed between 5 and 20 days following infection (after Hone et al. 1992), 
then applying the method of Wallinga and Teunis (2004) estimates the effec-
tive reproduction number (R) of the early cases (what appears to be the1st 
generation) of the epizootic to be about 4 (Fig. 3.3). We would expect that at 
this stage the depletion of the susceptible population of wild boars would be 
minimal, and hence this estimate of the effective reproduction number would 
be close to R

0
. The serial interval is uncertain, and if shortened would lead to 

a lower estimate of R
0
, however, this would be inconsistent with the observed 

temporal distribution of cases.
All methods have strengths and weaknesses. The method of Wallinga and 

Teunis (2004) is independent of the epizootic attack rate and robust to consistent 
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under-reporting of cases, but is heavily influenced by the assumed serial 
interval. Methods based on the attack rate are independent of nearly all param-
eters, but are strongly influenced by the assumption of the population being 
well mixed and the estimated attack rate being accurate. In this case the attack 
rate was based on the expected high case-fatality rate; doubts exist however, 

Table 3.4 Observed deaths of wild boar in the days following 
the introduction of a single boar inoculated with classical 
swine fever. Adapted from Hone et al. (1992) (permission 
granted)

Days Deaths

31 6
32 3
33 1
43 5
44 6
45 2
46 2
47 7
48 7
49 1
51 13
52 2
53 4
54 2
58 5
61 3
62 2
63 2
69 4

Time since first boar inoculated (days)
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Fig. 3.3 Relationship between the estimated effective disease reproduction number and 
the day of carcass discovery for wild boars inoculated with classical swine fever

(continued)
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3.3 Dealing with Uncertainty

In a perfect world, different methods of estimating transmission rates should produce 
the same results. In practice this is rarely the case, and worse still, estimates using 
one method often lie outside reasonably wide confidence intervals estimated using 
another. Why? Because nearly all estimators are conditional on an assumed underly-
ing model of how the host/pathogen system operates – and this is often subject to 
considerable uncertainty (we take a “leap of faith” across this lack of knowledge 
(McCallum 1995) by making assumptions). The estimation of the dynamics and rate 
of transmission of classical swine fever (CSF) in wild pigs (Sus scrofa) is a good 
example (see Box 3.3). As we try and fit more realistic disease transmission models 
containing a greater number of parameters, it will become imperative to incorporate 
as much prior information as possible to ease the burden on the likelihood functions. 
Hence Bayesian style model fitting that incorporate stochasticity will become the 
more common. Indeed, the use of stochastic models opens up alternative statistically 
rigorous options for parameter estimation and inference of unobserved features of 
the epidemic. If every event type represented in a stochastic model (e.g. infection, 
recovery etc.) were to be observed in a real epidemic, then it would be possible to 
construct a complete likelihood (based on this complete set of observations) from the 
definition of the model, and from which parameter values could be estimated as 
described in the examples above. However, in reality we typically have access to 
rather limited data; for example describing the prevalence or reported cases over 
time, and therefore we must infer not only the parameter values but also the missing 
infection (and other) events. Fortunately, it is possible to frame this problem in a 
Bayesian framework in such a way that the so-called posterior distribution of model 
parameters and missing events is known up to a normalising constant. Modern 

whether CSF causes uniformly high mortality in wild boar populations 
(Kramer-Schadt et al. 2007). Underestimating the attack rate will underesti-
mate R and vice versa.

In summary, there is considerable uncertainty in our estimates of the R
0
 

of classical swine fever in wild boar – the method of Wallinga and Teunis 
(2004) strongly suggests a value of about 4, whereas methods based on the 
epizootic attack rate suggest an upper limit somewhere around 2. Can we 
reconcile the estimates? Yes, if we recognise that the wild boar population 
is structured into family groups with limited mixing between them, then it 
is quite possible for R

0
 to be about 4, yet at a broader population level 

observe an attack rate consistent with a much lower value. It may well be 
that our assumption of homogeneous mixing is playing havoc with our esti-
mation, reflecting uncertainty in how the system under study operates.

Box 3.3 (continued)
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stochastic integration techniques such as Markov Chain Monte Carlo (MCMC) can 
then be employed to generate true samples from the posterior for increasingly com-
plex models. The Bayesian framework also allows (and requires to some extent) 
prior information about the value, or possible range, of parameter values obtained 
from the literature or particular empirical studies, to be taken into account. The 
samples generated from the posterior allow the calculation of essentially any statistic 
of interest based on the parameters, and/or the missing events. For example, 
Streftaris and Gibson (2004) employed such methods to fit non-Markovian stochas-
tic models for the transmission dynamics of a particular strain of foot-and-mouth 
disease (FMD) virus to data from a controlled experiment. In addition to transmis-
sion rates they inferred the hidden transmission history of the epidemic. Cook et al. 
(2007) used such techniques to estimate multiple transmissions rates within and 
between crop species in a spatial context, using information theoretic measures of 
deviance to show that the best–fitting model requires a fully parameterized transmission 
rate matrix; that is different transmission rates from species A to B and vice versa.

3.4 Assessing Host Status

Once the known host range of a disease has been established or extended there is a 
need to assess the role of these new hosts in the wider epidemiology of the disease. 
Assessing the host status in the epidemiology of a disease is crucial to its control 
(Caley and Hone 2005). Top of the agenda is determining whether the disease per-
sists within a host population since all self-sustaining/persistent sources of infec-
tion (e.g. reservoirs) should be considered as part of a disease control strategy. 
Identification and quantification of transmission routes is often central to character-
ising the persistence of infection in wildlife populations. For example, the known 
host range of M. avium subspecies paratuberculosis has recently been extended to 
include a number of non-ruminant wildlife species (Daniels et al. 2003b). Of these 
new host species the European rabbit (Oryctolagus cuniculus) was identified as 
posing the greatest risk to sympatric livestock as rabbits are often abundant on 
livestock farms, they excrete high numbers of bacteria in their faeces and grazing 
livestock show no avoidance of rabbit faeces resulting in high exposure rates (Judge 
et al. 2005a). Given that paratuberculosis is a widespread and difficult disease to 
control in livestock populations and also has possible links to Crohn’s disease in 
humans, the identification of a persistent wildlife source of infection would greatly 
impact on our understanding of current livestock control strategies. Judge et al. 
(2007) used a combination of field studies to quantify the rates of rabbit-to-rabbit 
transmission of paratuberculosis and mathematical modelling to show that infection 
can persist in rabbit populations for extended periods (see Box 3.4). This finding 
may go some way to explaining the persistent nature of the disease in livestock 
populations, and rabbits are now included in farmer led disease control strategies in 
the UK (e.g. The Premium Cattle Health Scheme).
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Box 3.4 Persistence of Mycobacterium avium subspecies paratuberculosis 
(Map) in rabbit populations

European rabbits (Oryctolagus cuniculus) have recently been identified as a 
key wildlife species in terms of paratuberculosis transmission to the wider 
host community. Judge et al. (2007) tested the hypothesis that Map can persist 
in rabbit populations for extended periods of time. A spatially-explicit sto-
chastic simulation model of a generic host-disease interaction was developed 
to quantify the inter-play between vertical and horizontal routes of transmis-
sion, needed for the persistence of Map in rabbit populations and to test the 
hypothesis. The model was parameterised based on empirical studies on rab-
bit population dynamics and on rabbit-to-rabbit routes of Map transmission. 
Predictions from the model suggest that Map persists in rabbit populations at 
all values of the horizontal and vertical transmission parameters in the range 
estimated from the field data (taken from Judge et al. 2006; see Box 3.1), and 
in many cases at all values within 95% confidence intervals around this range 
(Fig. 3.4). The persistence of Map infection in rabbit populations in the 
absence of external sources of infection suggests that they may act as a reser-
voir of infection for sympatric livestock. These findings, in combination with 
the ubiquitous distribution of rabbits in the United Kingdom and elsewhere, 
suggests that if Map becomes established in rabbit populations, they are likely 

Fig. 3.4 Isopleths of equilibrium prevalence at differing vertical (P
v
) and horizontal (r

h
) 

transmission rates for a rabbit population approaching carrying capacity (dotted horizontal 
line is the estimated range of r

h
 values along the vertical transmission rate from field data). 

Ellipses represent 95% confidence intervals around the lower, and upper b estimates (from 
Judge et al. 2007)
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3.5 Implications for Management

Being able to quantify disease transmission and identify contributing factors is 
critical to not only evaluating management, but also designing management actions 
in the first place. Estimates of disease transmission coefficients are critically 
dependent on the assumed underlying model of transmission, and it is here that the 
greatest uncertainty is introduced. Where the mechanisms of transmission cannot 
be observed, or reasonably inferred by alternative means (e.g. disease pathology), 
data-based inference on the underlying mechanisms of transmission will need to be 
employed. This could take the form of critical experiments to identify routes of 
transmission. For example, Ramsey (2007) clearly demonstrated the importance of 
sexual transmission of leptospirosis (caused by Leptospira interrogans) in brushtail 
possums in a longitudinal experiment entailing castrating male possums to stop 
their sexual contacts. Likewise, Palmer et al. (2004) demonstrated the ability of M. 
bovis to be transmitted between white-tailed deer (Odocoileus virginianus) via 
contaminated feed. In doing so they overthrew the respiratory only paradigm of 
tuberculosis transmission in true reservoir hosts (Caley 2006).

Critical experiments needed to quantify the routes of transmission of wildlife 
diseases are typically difficult to undertake once let alone adequately replicate. 
Where critical experiments have not been undertaken, or are difficult to do, model 
selection techniques as applied to observational “experiments” may be the only 
way of (1) making inference on the underlying mechanism of transmission, and (2) 
estimating transmission parameters given a chosen model of transmission. Caley 
and Hone (2002) demonstrated how information-theoretic model selection tech-
niques may be used to make inference on transmission routes by identifying how 
age-specific prevalence will vary as a function of age under different hypotheses. 
Miller et al. (2006) similarly used model selection techniques to demonstrate that a 
model that included indirect transmission of chronic wasting disease (CWD) 
amongst mule deer (Odocoileus hemionus) was the most supported model of trans-
mission. These and other similar studies have greatly increased our understanding 
of the transmission of wildlife disease.

to provide widespread and persistent environmental sources of infection, and 
thus a disease risk to livestock and potentially humans. Judge et al. (2007) 
conclude that where local rabbit populations are infected they should be 
included in any future paratuberculosis control strategies.




