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1 Introduction

Biological 3D object recognition is restricted to the sensing of 2D projections, or 
images, and is further constrained by the lack of transparency. The most common 
assumption then is that image data are referenced to mental object representa-
tions. Such representations, or object models, must be contrasted with object 
recognition in so far as the latter involves the understanding of image data. This 
distinction is central to recognition-by-components (RBC; Biederman 1987), a 
theory of human image understanding based on the assumption that input images 
are parsed into regions that display nonaccidental properties of edges. These 
properties provide critical constraints on the identity of 3D primitives (“geons”) 
the images come from, e.g., cylinders, blocks, wedges, and cones, and are (rela-
tively) invariant with viewpoint and image degradation.

RBC can be implemented by building structural representations from geons 
linked through explicit categorical relations (Hummel and Biederman 1992). 
This theory predicts that object identifi cation will be fast and accurate if geons 
are readily identifi ed in characteristic arrangements. It also implies that view-
point invariance in 3D object recognition is achieved for all views that activate 
the same geon structural description (GSD; Biederman and Gerhardstein 1993). 
However, viewpoint invariance is not found for stimuli based on irregular blob 
structures (“amoebae”; Edelman and Bülthoff 1992; Bülthoff and Edelman 1992) 
and wire-like objects (“paper-clips”; Bülthoff and Edelman 1992). It has been 
held that the latter result is incompatible with recognition theories involving 3D 
representations. This gave rise to the multiple-views hypothesis, according to 
which a set of views of an object is stored in memory and the object is recognized 
by normalizing the input view to the most nearly compatible among such stored 
views (Tarr and Pinker 1989; Bülthoff and Edelman 1992).
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Given these different perspectives on human object recognition, it is helpful 
to consider the development of object recognition by computer. Early approaches 
to this problem used the concept of generalized cones applied to the domain of 
line drawings of objects and scenes composed of polyhedral or curved parts. The 
understanding of such “engineering” drawings was demonstrated by producing 
a line drawing of the arrangement of parts as it would appear from any desired 
viewpoint. Yet it was clear that the interpretation of “naturalistic” images was 
another matter altogether (see Ballard and Brown 1982, chapter 9). To solve the 
latter type of problem, part-based recognition schemes are now employed in a 
more fl exible way. For instance, the analysis of parts may be initiated by segment-
ing input images into regions that are recognized as parts of objects in the data-
base. If no recognition occurs, the parameters of the initial segmentation are 
varied. Clearly, such approaches do not succeed in one stroke. These processes 
typically involve closed-loop systems where the current interpretation state is 
used to drive the lower level image processing functions. For these reasons, 
“world knowledge” and learning play key roles in second-generation image 
understanding and object recognition by computer (see Caelli and Bischof 1997), 
and the chapter by M. Jüttner, this volume).

The latter development prompted this study of the roles of prior knowledge 
and learning in the recognition by human observers of “structure-only” 3D 
objects composed of identical parts in varying spatial arrangement. As the left-
right categorization of mirror-image forms is a typical feature of visual expertise 
(Johnson and Mervis 1997; Tanaka and Taylor 1991; Rentschler and Jüttner 
2007), the test stimuli included handed objects.

2 Separating Representation and Recognition

Valid conclusions as to the nature of object representations cannot be drawn 
unless their dependence on stimulus information (Liu 1996; Liu et al. 1999) and 
task demands (Tjan and Legge 1998) is taken into account. The latter two studies 
made this point using an ideal observer model based on statistical pattern rec-
ognition. Thereby patterns are classifi ed using sets of extracted features and an 
underlying statistical model for the generation of these patterns (see Haykin 
1999).

Tjan and Legge (1998) showed that viewpoint dependence of recognition is 
low for structurally regular objects, but dependence increases as regularity 
decreases. They were further able to demonstrate a correspondence between the 
predicted view-point complexity (VX) of a recognition task and published human 
data on viewpoint dependence. For instance, they found low VX values for 
simple geometric objects (single geons) and mechanical compositions (distinct 
multiple-geon objects) consistent with the observations by Biederman and 
Gerhardstein (1993). By contrast, wire-like and amoebae objects showed high 
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VX consistent with the fi ndings by Edelman and Bülthoff (1992). Tjan and Legge 
concluded that confusion about the nature of object representations can be 
attributed at least partly to a failure to distinguish betweeen visual processing 
and the type of recognition task including the physical characteristics of test 
objects.

The fi ndings of Tjan and Legge would seem to be consistent with reports from 
object recognition by computer (see Dickinson 1993). On the one hand, 2D 
indexing primitives, i.e., image structures that are matched to stored object 
models, are useful for small object databases. The reason for this limitation is 
increasing search complexity and reliance on verifi cation with decreasing com-
plexity of primitives. On the other hand, the reliable recovery of 3D indexing 
primitives from input images is a very diffi cult problem. Nevertheless, due to a 
concomitant decrease in search complexity for matching, 3D indexing primitives 
may be more successful than 2D indexing primitives for large databases.

Against the conclusions from ideal observer models, it might be held that these 
models rely on traditional pattern recognition, where classifi cation is achieved 
by partitioning feature space into regions associated with different pattern classes. 
However, there are many recognition problems that cannot be solved this way. 
For instance, the effi ciency of object recognition systems may be judged using 
the criterion of “stability and sensitivity” (Marr and Nishihara 1978, p. 272). 
Accordingly, descriptions must refl ect the similarity of objects thus enabling 
generalization. At the same time subtle differences need to be preserved to allow 
discrimination. Stable information representing global aspects of object shape 
must be decoupled, therefore, from information representing fi ner details. This 
can be achieved by relying on prominent pattern components for similarity 
judgments, whereas full pattern representations are used for discrimination 
(Rentschler et al. 1996).

More generally, traditional pattern recognition works well for simple isolated 
patterns but is inadequate for complex patterns and objects embedded in scenes. 
Image interpretation by computer therefore relies on the extraction of features 
of image parts and features of part relations that are linked together to form 
structural descriptions. Sets of hierarchically organized rules (“graphs”) are 
then generated for classifi cation to the extent needed for solving a given recog-
nition problem. Classifi cation performance can be improved further by feed-
ing back results from rule evaluation to earlier stages of the rule generation 
system. Such methodologies of syntactic pattern recognition (see Caelli and 
Bischof 1997) have been adapted to the analysis of human image understanding 
(Rentschler and Jüttner 2007; see also the chapter by M. Jüttner, this volume) 
and object recognition (Osman et al. 2000). That approach would seem to be 
particularly appropriate for implementing cognitive functions as it integrates 
bottom-up and top-down processing characteristics. However, the various de-
grees of freedom of implementing such systems warrant further experimental 
research into the roles of prior knowledge and learning in human 3D object 
recognition.
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We therefore sought to distinguish representations and recognition using a 
psychophysical paradigm of category learning involving priming. Priming is a 
technique from memory research using the benefi cial infl uence of pre-exposure 
to a stimulus in the absence of explicit instructions to remember the stimulus 
(Biederman and Cooper 1991; Cooper et al. 1992). When used in combination 
with an invariant procedure of recognition involving fi xed stimulus sets, any 
effect of priming must be attributed to object memory, i.e., representation.

3 Learning 3D Structure from Images

Our recognition paradigm used two sets of 3D objects consisting of one bilater-
ally symmetric object and one pair of handed (left and right) objects each (Fig. 
1). Following priming (Fig. 2), participants were trained to classify a set of 22 
learning views (Fig. 3). Upon reaching 90% correct, participants classifi ed 83 test 
views (64 novel views, 19 learned views). Classifi cation performance was meas-
ured in terms of signal detection accuracy (d prime; see Rentschler et al. 2004) 
and response time.

In the fi rst experiment (Gschwind et al. 2004), we used objects built from 
spheres termed spheres. Resulting views were poor in ordered feature elements 

object 1 object 2 object 3

Fig. 1. Test sets of one bilaterally symmetric 3D object and one pair of handed (mirror 
symmetric) 3D objects. Each object was composed of four spheres (top) or cubes con-
nected by rods (bottom). Three object parts formed an isosceles rectangular triangle, 
while the fourth one was placed perpendicularly above the centre of one of the base parts. 
Objects were generated both as physical models and virtual models. Physical models were 
constructed of polystyrene balls (6 cm diameter) or wooden cubes (3 cm sides) and rods 
(3 cm long, 1.2 cm diameter). Virtual models were generated and displayed as perspective 
2D projections by the Open InventorTM (Silicon Graphics, Inc.) 3D developer’s toolkit. 
A lighting model of mixed directed and diffuse illumination and a lack of cast shadows 
was used

OBJ_07.indd   108 8/14/2007   2:51:02 PM



 7. Prior Knowledge and Learning  109

and connectivity of parts. This raised a question regarding the extent to which 
priming effects depended on stimulus information. We sought to answer this 
question in the second experiment using a set of modifi ed stimuli termed cubes. 
The latter set had the same macrogeometric structure as spheres but textured 
cubes and rods as parts (see Fig. 1). The conditions of generating learning and 
test views, priming, as well as category learning and generalization were identical 
for both experiments.

Figure 4 shows the effects of priming in terms of classifi cation performance in 
the fi rst unit of category learning. With spheres, priming did not signifi cantly 
affect the accuracy for object 1, perhaps because subjects were already at ceiling. 
Yet motor priming signifi cantly improved classifi cation of the handed objects 2 
and 3 (Fig. 4, top left). For cubes (Fig. 4, top right), both motor and vision priming 
were equally effective in inducing classifi cation, with the induction effect being 
most pronounced for non-handed object 1. Response times tended to be increased 
by vision and motor priming for the classifi cation of spheres (Fig. 4, bottom left), 
although signifi cance was only reached with motor priming for non-handed object 

Fig. 2. For vision priming (top), participants watched one after the other computergraphic 
projections of the 3D objects successively rotating around the three principal axes. Two 
cycles of exposure of 90 s and 10 s per axis were used. For motor priming (bottom), the 
blindfolded subjects manipulated the physical models without restriction. No instructions 
other than the invitation to familiarize themselves with the objects were given. Priming 
lasted for 5 min and was followed by category learning
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a

b

Fig. 3. a Supervised category learning was partitioned into a series of learning units, each 
consisting of a learning phase and a test phase. For learning, subjects saw in random 
sequence each of the learning views followed by the corresponding object label. For 
testing, they saw the learning views again but had to indicate the object labels by pressing 
a key on the computer keyboard. b Learning sets of 22 views (6 different views for object 
1, 8 for each of the objects 2 and 3) obtained by sampling the viewing sphere in steps of 
60˚. In addition, a random rotation angle around the (virtual) camera axis was employed. 
Test sets of 83 views (21 different views for object 1 and 31 different views for each of 
the objects 2 and 3) were obtained by sampling the viewing sphere in steps of 30˚. 19 of 
the test views were already used during category learning (5 for object 1 and 7 each for 
objects 2 and 3). Sixty-four test views were from novel viewpoints (16 for object 1, and 
24 each for objects 2 and 3)
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1. For cubes, an increase in response times was obtained by vision and motor 
priming for the handed objects 2 and 3 only (Fig. 4, bottom right).

Category learning continued until observers reached a criterion of 90% correct. 
For spheres, the number of learning units to criterion was not signifi cantly 
dependent on experimental conditions (N = 25.7 ± 6.3 control, N = 33.1 ± 6.9 
vision, N = 16.2 ± 4.3 motor). For cubes, both types of priming strongly enhanced 
category learning (N = 25.4 ± 5.8 control, N = 8.6 ± 4.0 vision, N = 3.8 ± 1.0 
motor).

4 Generalization to Novel Viewpoints

The experiments continued with measuring generalization to novel viewpoints 
and re-classifi cation of learned views (Fig. 5). With spheres, the accuracies for 
non-handed object 1 were found to be relatively high and virtually unaffected by 
priming (Fig. 5, top left). The accuracies for handed objects 2 and 3 were poor 
under the conditions of control and vision. Motor priming, however, strongly 
improved accuracies to yield values equal to those. Except for the performance 
involving the non-handed object under the conditions of control and vision 
priming, accuracies for spheres were signifi cantly better for the learned views 
than for the novel views. Motor priming caused longer response times for both 
types of object but there was no signifi cant difference in response times between 
novel and learned objects across priming conditions. With cubes (Fig. 5, right), 
maximum accuracies were obtained for both object types and there was no 
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Fig. 4. Effects of priming on object recognition. Priming conditions were control, vision, 
and motor both for spheres (fi lled circles, left) and cubes stimuli (fi lled squares, right). 
Classifi cation accuracies (d prime, top) and response times (RT, bottom) obtained from 
the fi rst learning unit. 10 subjects entered category learning for each condition but only 
7 control subjects reached criterion. Error bars: ± 1 S.E. (N = 7 * 6 control/object1, N = 7 
* 8 control/object23; N = 10 * 6 object1, N = 10 * 8 object23 for vision and motor)
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signifi cant effect of priming conditions nor a signifi cant difference between 
learned and novel views. That is, with cubes there occurred no differences in 
recognition performance between object types, priming conditions, or learned 
and novel views.

5 Inverse Problems and Spatial Transformations

Non-discrimination of handed objects is predicted by structural recognition 
models using non-directed part relations (e.g., Hummel 2001) and by view-based 
recognition models (e.g., Riesenhuber and Poggio 1999). Moreover, with spheres 
we found performance to be view-dependent consistent with the predictions of 
view-based recognition models. This would seem to support the “rotation-for-
handedness” hypothesis (Tarr and Pinker 1989; Tarr 1995; Gauthier et al. 2002), 
according to which humans rely for recognition on refl ection-invariant mecha-
nisms in the brain and use mental rotation (Shepard and Metzler 1971) to dis-
ambiguate handedness.
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Fig. 5. Generalization to novel viewpoints for spheres (left) and cubes (right). Accuracies 
(d prime) cumulated over views, classifi cation decisions, and observers at the top, corre-
sponding response times at the bottom. Closed symbols denote generalization perform-
ance from novel viewpoints, open symbols from learned viewpoints. Each view was 
presented three times. Error bars: ± 1 S.E. (novel viewpoints: N = 7 * 3 * 16 control/object1, 
N = 7 * 3 * 24 control/objects23, N = 10 * 3 * 16 vision/motor/object1, N = 10 * 3 * 24 vision/
motor/objects23; learned viewpoints: N = 7 * 3 * 5 control/object1, N = 7 * 3 * 7 control/
objects23, N = 10 * 3 * 5 vision/motor/object1, N = 10 * 3 * 7 vision/motor/objects23). No 
error bars are given for the classifi cation accuracies for cubes stimuli because of deviation 
from normal distribution
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The latter hypothesis, however, meets two diffi culties when applied to the 
results of our experiments. First, images are generally ambiguous with regard to 
the 3D structures they are derived from. The solution for such inverse problems 
critically depends upon the operation of constraints, i.e., prior object knowledge 
(Pizlo 2001). This is why in previous studies on mental rotation subjects were 
given “a great deal of feedback about the 3D structure of each object” 
(Tarr 1995, p. 61). Our observers had no prior object knowledge under the 
control condition and were found to be completely unable, both for spheres 
and cubes, to disambiguate handedness early in practice (Fig. 4, top). Second, 
we used 2D views generated by conjointly varying the three Euler angles of rota-
tion (see Korn and Korn 1968, Section 14.10). To reliably recover these angles 
from a given 2D view is impossible, and the rotation of the image plane was an 
additional source of uncertainty for the matching process. On these grounds, we 
reject the rotation-for-handedness hypothesis according to which our observers 
could have achieved disambiguation of handedness by employing con-
tinuous rotations around specifi c axes in 3D. Instead, for both non-handed and 
handed objects, they must have iteratively used combinations of spatial 
transformations.

Consistent with the latter conclusion, subjects with motor priming needed for 
the recognition of both non-handed and handed spheres prolonged response 
times, typically moved their hands during classifi cation, and spontaneously 
reported having mentally rotated the candidate models for classifi cation. The 
retardation of response times would seem to refl ect, therefore, the times needed 
for generating internalized candidate models, transforming them during the 
matching process, and executing additional transformations to align mirror sym-
metric counterparts. This implies that, for spheres with motor priming, our rec-
ognition paradigm could not be separated into one of recognizing the non-handed 
object and one of discriminating handedness. Indeed, the improvement of cate-
gory learning through motor priming was most pronounced for non-handed 
object 1. The signal detection analysis of data from the generalization phase 
demonstrated that this resulted at least partly from a reduction of the misclassi-
fi cation of views of the handed objects as views of the non-handed object.

We then turn to the question of how motor priming facilitated the classifi cation 
of stimuli built from spheres. Clearly, such type of priming drew the attention of 
subjects to the third stimulus dimension. This enabled them to explicitly generate 
relational 3D representations (Thoma et al. 2004). Participants may have solved 
the inverse problem for spheres by encoding temporal sequences of exploratory 
fi nger and hand movements along the physical object models. As object palpation 
directly evokes mental imagery (Critchley 1953, chap. IV), it seems that some 
sort of kinetic object traces were stored in multimodal representations (e.g., 
Zangaladze et al. 1999). Subjects may then have inferred the connectivity of 
sphere parts, i.e., 3D structure, from linking object parts exposed in 2D views to 
such internalized representations. Conversely, we suggest that the type of prior 
knowledge provided by vision priming did not allow the solution of the inverse 
problem for spheres. Indeed, during vision priming subjects noted ambiguous 
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rotation-in-depth of the spheres objects. These effects were caused by uncertain-
ties of correspondence between object views displayed during motion.

6 Role of Image Understanding in Invariant Recognition

From the equivalence of vision and motor priming for classifying cubes (Fig. 5), 
we conclude that the clear connectivity between parts and the related ordering 
of feature elements helped the solution of the inverse problem right from the 
visual stimulus. Moreover, the parallel contours of cube parts facilitated match-
ing thus supporting the verifi cation of candidate 3D object models. Therefore, 
the classifi cation of cubes would seem to be an instance of fast and accurate rec-
ognition that is viewpoint invariant as predicted by RBC. Indeed, for cubes we 
found recognition performance to be view-invariant. Furthermore, the classifi ca-
tion of handed objects built from cubes entailed prolonged response times, thus 
indicating the need of aligning internalized object models to an external refer-
ence system.

In case of objects built from spheres, the extraction of part relations from 2D 
views was diffi cult. The parts as such left the axes of connectivity between them 
completely unspecifi ed. The image understanding of the observers therefore 
benefi ted greatly from structural cues obtained from motor memory, thus pre-
sumably using 2D representations augmented by 3D information from motor 
memory (see Liu et al. 1995). The matching of such reduced object models to 
input data, however, entailed an increase in search complexity, i.e., the amount 
of spatial transformations and matching needed for categorization. As a result, 
the response times for classifying both types of objects built from spheres, non-
handed and handed, were prolonged.

These fi ndings emphasize the role of image understanding in object recogni-
tion. The two sets of objects had identical structural characteristics relevant for 
classifi cation, and their respective members were readily decomposed into identi-
cal parts. Object recognition relied, therefore, entirely on the ability to recover 
part relations from 2D views.

7 Conclusions

We have shown that early in practice, humans were virtually blind to structural 
differences of 3D objects composed of identical sphere-shaped parts. Category 
learning improved recognition but more for non-handed objects than for handed 
objects. Prior knowledge from passively inspecting 2D views of depth-rotating 
objects did not affect recognition, whereas active haptic exploration of physical 
3D models enabled equally accurate but view-dependent recognition of both 
non-handed and handed objects. Using objects with the same macrogeometrical 
features but clear connectivity of cube-shaped parts yielded very different results. 
Recognition was fast and accurate early in practice for the non-handed object. 
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Yet, with both types of prior knowledge, category learning enabled equally 
accurate and view-independent recognition for both non-handed and handed 
objects.

These results demonstrate, on the one hand, that there is no absolute differ-
ence between stimuli that allow distinct structural descriptions for 3D object 
recognition and stimuli that do not (e.g., Biederman and Gerhardstein 1993). 
Prior knowledge and learning play an important role in determining the extent 
to which image regions and their relations can be referenced to mental object 
representations. On the other hand, the structure-based recognition of 3D objects 
is not accommodated by the multiple-views theory of recognition (e.g., Bülthoff 
and Edelman 1992). These observations would seem to be consistent with the 
conclusions by Christou and Bülthoff (2000), according to whom the nature of 
object representations depends on whether there is enough stimulus information 
for the recognition task at hand.

We therefore propose that observers build 3D representations for object rec-
ognition as long as suffi cient stimulus information and prior knowledge are avail-
able. Yet internalized 3D models may be too similar to allow their disambiguation 
concerning class membership, a situation typically encountered in classifi cation 
at the subordinate level. Alternatively, observers may fail early in practice to 
extract from input images view-invariant geometric primitives in distinct rela-
tions. Category learning might then enable them to derive such structural descrip-
tions. Otherwise, they would resort to the use of object representations in image 
format and corresponding matching behavior, thus increasing classifi cation per-
formance for learned views at the expense of decreased performance in gener-
alization to novel views.
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