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1 Introduction

The question of how humans learn, represent and recognize objects has been one 
of the core questions in cognitive research. With the advent of the fi eld of com-
puter vision – most notably through the seminal work of David Marr – it seemed 
that the solution lay in a three-dimensional (3D) reconstruction of the environ-
ment (Marr 1982, see also one of the fi rst computer vision systems built by 
Roberts et al. 1965). The success of this approach, however, was limited both in 
terms of explaining experimental results emerging from cognitive research as 
well as in enabling computer systems to recognize objects with a performance 
similar to humans.

More specifi cally, psychophysical experiments in the early 1990s showed that 
human recognition could be better explained in terms of a view-based account, 
in which object representations consist of snapshot-like views (Bülthoff and 
Edelman 1992) instead of a full, 3D reconstruction of the object. The most 
important result of these experiments is that recognition performance is 
critically dependent on the amount of view-change between learned and 
tested object view. This stands in stark contrast to the predictions from frame-
works using 3D representations such as the often-cited Recognition-By-
Components theory (Biederman 1987) which is based on a 3D alphabet of 
basic geometrical shapes (so-called geons) and predicts a largely view-invariant 
recognition performance. To date, psychophysical and neurophysiological exper-
iments have provided further evidence for the plausibility of the view-based 
approach (see, e.g., Tarr and Bülthoff 1998; Wallis and Bülthoff 2001 for two 
recent reviews).
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In a recent paper, an attempt has been made to reconcile these two ap-
proaches to object processing (Foster and Gilson 2002): a careful study of view-
dependency of novel objects that were created by combining structural properties 
(number of parts) with metric properties (thickness, size of parts) has found that 
both view-dependent and view-independent processing seem to be combined in 
object recognition. Thus, instead of taking the extreme perspective of either 
view-based or view-invariant processing one might envisage a visual processing 
framework in which features are selected according to the current task, where 
the optimality, effi ciency and thus the dependency on viewing parameters of the 
features depend on the amount of visual experience with this particular task.

Robust extraction of structural, view-invariant features from images, however, 
has proved to be diffi cult for computer vision. Therefore, parallel to view-based 
approaches to object recognition in human psychophysics, view-based computer 
vision systems began to be developed. These sometimes surprisingly simple recog-
nition systems were based on two-dimensional representations such as histo-
grams of pixel values (Swain and Ballard 1991), local feature detectors (Schmid 
and Mohr 1997) or on pixel representations of images (Kirby and Sirovich 1990). 
The good performance of these recognition systems using complex images taken 
under natural viewing conditions can be seen as another indicator for the feasibil-
ity of a view-based approach to recognition.

To date, most theories of object recognition as well as most computer vision 
systems have mainly focused on the static domain of object recognition. Visual 
input on the retina, however, consists of dynamic changes due to object- and 
self-motion, non-rigid deformations of objects, articulated object motion as well 
as scene changes such as variations in lighting, occluding and re- and disappearing 
objects, and at any given point in time several of these changes can be interact-
ing. The central question for this chapter will thus be: To what extent do object 
recognition processes rely on dynamic information per se? Several psychophysi-
cal experiments, which will be discussed below, suggest an important role for 
dynamic information, in both learning and recognition of objects. Based on these 
fi ndings, an extension of the current object recognition framework is needed in 
order to arrive at truly spatio-temporal object representations.

In this chapter, we therefore want to explore the idea of learning and repre-
senting objects in a spatio-temporal context by developing a computational 
object recognition framework motivated by psychophysical results. Specifi cally, 
we are interested in developing a recognition framework, which can learn and 
recognize objects from natural visual input in a continuous perception-action 
cycle. In the following, we will fi rst briefl y summarize the psychophysical experi-
ments that guided the development of the recognition framework. Subsequently, 
we will present details of the framework together with results from several com-
putational recognition experiments. Finally, we will summarize experiments con-
ducted with a humanoid robot in which the framework was applied to multi-modal 
recognition of objects using proprioceptive and visual input. These experiments 
represent a fi rst step towards a closely coupled perception-action system based 
on and motivated by psychophysical research.
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2 Psychophysical Experiments

2.1 Temporal Continuity for Object Learning
To illustrate the importance of temporal context, consider a view-based object 
recognition system faced with the task of learning object representations. Input 
to this system consists of a series of views that the system acquires. The problem 
for this recognition system is how to link the many views of an object to create 
a consistent and coherent object entity; especially since these views can be very 
different from each other. One solution to this problem is the observation that 
in real life we seldom see only isolated snapshots of objects. Usually novel objects 
are explored either actively through manipulation by our hands or by walking 
around them. This results in a sequence of images that gradually change from 
the initial view of the object to a very different one within a short period of time 
– temporal contiguity. This general observation about natural visual input in a 
continuous perception-action context motivates the following question: Does the 
human visual system use temporal contiguity to build a mental representation of 
the object in order to associate views together? This temporal association hypo-
thesis was investigated in two studies (Wallis and Bülthoff 2001; Wallis 2002), 
which we briefl y review below.

Study 1 – Stimuli: Twelve faces from 3D-laser-scanned female heads were used 
as stimuli. The faces were separated into three training sets of four faces each. 
Using a technique by Blanz and Vetter (1999), 3D morph sequences between all 
possible combinations of face pairs within each set were created. A sequence 
consisted of a left profi le view (−90˚) of an original face A, a −45˚ view of morph 
A→B (the average of face A and B), a frontal view (0˚) of face B, a +45˚ view 
of morph A→B, and fi nally a right profi le (+90˚) of face A (Fig. 1). A backward 

Fig. 1. Illustration of the morph experiment. A morph sequence of two individuals (A 
and B) is shown to participants who fuse the sequence into one coherent identity due to 
the temporal continuity present in the visual input

OBJ_06.indd   91 8/14/2007   2:50:33 PM



92  C. Wallraven and H.H. Bülthoff

sequence showed the same images in reversed order. The training sequence 
consisted of a forward sequence and a backward sequence, followed by the 
forward sequence again and the backward sequence again.

Study 1 – Experimental design: Participants were divided into two groups. In 
the fi rst group, each participant was trained using sequential presentation of the 
sequences. In the second group, training used simultaneous presentation of all 
morph images shown together on the computer screen for the same total time. 
After training, the participants performed a simple image matching task in which 
they had to decide whether two subsequently shown images were different views 
of the same face or not. Half of the trials presented matches, whereas in the other 
trials half of the test face pairs belonged to the same training set (within set, WS) 
and the other half to different training sets (between set, BS). If views of objects 
are associated based on temporal contiguity, then training with sequential pre-
sentation should cause the images grouped in one training sequence to be fused 
together as views of a single object. After such training, participants in the testing 
phase would be expected to confuse faces that were linked together in a training 
sequence (WS) more often than between-faces that were not (BS). Training with 
simultaneous presentation was included to rule out the possibility that the morphs 
alone were suffi cient for the training effect, in which case an effect should appear 
after both training procedures.

Study 1 – Results: The results of the experiment confi rmed that participants 
were more likely to confuse those faces that had been associated temporally in 
a sequence (WS). Thus, participants learned to fuse arbitrary views of different 
faces into one coherent identity without any explicit training. In addition, the 
results from the second group indicated that the presence of morphs among the 
training images alone was not suffi cient to cause the association of two different 
faces with each other.

Study 2 – Stimuli and design: In a follow-up study (see Wallis 2002), the results 
were replicated using two different sets of stimuli for sequential presentation. 
The sequences here consisted of images of different faces instead of morphs thus 
further increasing the visual difference between frames. In the second experi-
ment, training sequences were created by scrambling the poses in the sequence 
such that at most two consecutive images showed a consistent and smooth rota-
tion (of 45˚). The remaining experimental parameters in the two experiments 
closely followed the design of the fi rst study for the morph group. This experi-
ment tested whether temporal association based on temporal contiguity could 
still be detected even when the spatial similarity between consecutive images was 
low.

Study 2 – Results: The main result from the fi rst experiment was that confusion 
scores in the WS condition were signifi cantly higher than those in the BS condi-
tion indicating that temporal association, indeed, is possible even with more dis-
similar sequences. However, the relative effects of temporal association on the 
two test conditions were reduced compared to that of the morphed sequences in 
the fi rst study. This is an important fi nding as it indicates that association is 
infl uenced by spatial similarity as well as temporal contiguity. In the second 
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experiment, there were no signifi cant main effects for a scrambled presentation 
of images, which destroyed the consistent rotation interpretation but otherwise 
should have left the pure temporal contiguity intact. However, over the course 
of three blocks, a signifi cant trend towards a slow dissociation between the two 
test conditions could be detected. The author interpreted this as a sign that tem-
poral association can take place under such conditions – albeit at a much slower 
rate.

2.2 General Discussion
Summarizing the two studies, one can conclude that the learning of object rep-
resentations is strongly infl uenced by the temporal properties of the visual input. 
One successful strategy of how the brain might solve the task of building consis-
tent object representations – even under considerable changes in viewing condi-
tion – seems to be to assign consecutive images to the same object. This process 
is not only infl uenced by temporal parameters but also to a signifi cant degree by 
the similarity properties of the input. Arbitrary images seem to be much harder 
to learn, suggesting a crucial infl uence of the spatial similarity of visual input. 
These fi ndings therefore are consistent with the extended concept of spatio-
temporal continuity resulting in integration of images that are below a certain 
similarity threshold and that are presented within a certain time window.

The fi ndings of these experiments as well as further psychophysical (most 
notably Stone 1999) and physiological studies (e.g., Miyashita 1988) provide 
strong evidence for an integral role of temporal characteristics of visual input in 
object representations and for their active use in learning and recognizing objects. 
However, the question remains how exactly spatial and temporal information 
can be integrated in object representations. In the next chapter, we propose a 
computational implementation, which provides such an integration as part of the 
recognition and learning procedure.

3 Computational Recognition System

3.1 The Keyframe Framework
The abstract framework shown in Figure 2 consists of several key elements. First, 
and most importantly, the system processes incoming images in a sequential 
manner in order to extract so-called keyframes, which represent an extension of 
the view-concept followed in the view-based approach. Each input frame of an 
image sequence is fi rst processed in order to extract local features (so-called 
interest points), which are then tracked across subsequent frames. Eventually, 
the changes in visual input will be too large and will lead to a loss of tracked 
features. The core idea behind the framework is that keyframes are precisely 
defi ned by that point at which tracking breaks down. If this happens, a new 
keyframe is inserted into the object representation and the process repeats. 
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Keyframes are thus two-dimensional views (snapshots) of the scene, which are 
defi ned by the temporal continuity (in close connection to the psychophysical 
experiments described in the previous section) of the visual input and form a 
connected graph of views (see Fig. 2).

Note that in this abstract form the keyframe approach resembles the concept 
of “aspect graphs” (Koenderink and van Doorn 1979), in which objects are 
defi ned by their aspects, i.e., by visual events, where a sudden change in the 
observed shape of the object occurs. Even though the rigorous mathematical 
formulations were highly appealing to the computer vision community due to 
their geometric interpretations, computational realizations of the aspect graph 
framework for arbitrary objects proved to be diffi cult. One of the core ideas, 
however, namely the representation of objects by visual events remains a power-
ful concept, which our proposed framework retains. Whereas the focus of aspect 
graphs mainly lies in representations of 3D objects by well-defi ned views, we 
want to go one step further with the keyframe concept by representing all kinds 
of dynamic visual input with the help of two-dimensional views.

Fig. 2. Abstract description of the keyframe framework. Local feature tracking is used to 
extract visual events (“keyframes”) from an image sequence, resulting in a view-based, 
connected object representation
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Furthermore, learning and recognition are not separated in our framework 
with new keyframes constantly being compared against the learned library. This 
means that the system continuously learns new data that can be used to augment 
existing object representations or form new ones. This is a crucial pre-requisite 
for any cognitive system, as it is embedded in a dynamic sensory environment 
and thus constantly receives new input that has to be evaluated and categorized 
in order to create appropriate (re-)actions.

This embedding of object learning and recognition in a temporal context is 
reminiscent of the “active vision” paradigm that was developed in the 1980s in 
computer vision (for example, Aloimonos et al. 1987). Most of the research in 
active vision was focused on how to control the optics and mechanical struc-
ture of vision sensors to simplify the processing for computer vision. Here, we 
go one step further by endowing object representations themselves with a tem-
poral component through tracking of features and the graph-like keyframe 
representation.

3.2 Properties of the Framework
As indicated in the introduction, learning and recognition of objects certainly 
seems possible using only the static dimension – one of the key questions then 
of course becomes: What – apart from psychophysical motivations – is the advan-
tage of using the temporal dimension in the framework?

Keyframes: In the most extreme case of a view-based framework, learning 
would involve storing all input images. This strategy is certainly not feasible for 
any reasonable amount of learning data due to storage constraints. In addition, 
it also represents a severe problem for recognition as the time it takes to index 
into the representation becomes prohibitively large. The question thus is: which 
views to select for learning? Here the keyframe concept provides an intuitive 
answer to that question: select the views in which an important visual event 
occurs. In order for this strategy to be successful, one needs to make the assump-
tion that the visual input is, on average, slowly changing, which, given the psy-
chophysical evidence presented above, certainly seems to be valid. Furthermore, 
the keyframes are organized in a directed graph structure, which allows for pre-
activation of frames during recognition of image sequences. If two connected 
keyframes in a row could be recognized, chances are good that the next incom-
ing keyframe will be the next node in the graph. This strategy thus dramati-
cally reduces the search time during recognition of known sequences or 
sequence-parts.

Visual features: We chose to include local features in the framework in order 
to focus on locally informative visual aspects of each frame (see Fig. 2). These 
local features consist of simple image fragments (much in the spirit of Ullman et 
al. 2002) extracted around interest points that are detected in the image at several 
scales. Whereas of course the exact nature of these features is open to further 
experimentation (for example, Krieger et al. 2000; Lowe 2004 for other ap -
proaches), already these relatively simple image fragments are effective in 
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compressing image data. In addition, the most important contribution of the 
tracking that is used to determine the keyframes is that it allows access to feature 
trajectories. In our framework, the trajectories follow features from one key-
frame to the next. The larger the visual difference between keyframes, the more 
discriminative these feature trajectories are – this is because the chances of false 
matches are reduced, the longer a feature can reliably be tracked (see also 
Tomasi and Kanade 1991). More importantly, the trajectories describe the trans-
formation of each feature from one keyframe to another and thus can be used 
to generate priors for matching feature sets. Consider, for example, a sequence 
of a rotating object for which the feature trajectories between keyframes will 
have a shape that is specifi ed by the direction of the (3D) rotation. For recogni-
tion, a matching prior can now be derived directly from the trajectories by con-
straining feature matches to that very direction. Whereas this strategy obviously 
works only for some simpler cases of object motion, it nevertheless will provide 
a much more robust feature matching. In addition, we want to stress that our 
focus on visual features and their transformations between visual events is a 
much broader concept not restricted to object motion alone. Going beyond a 
simple matching prior, this information can also be used to explicitly model 
generic object or category transformations (Graf 2002), which expands the key-
frame framework into a general learning concept for any dynamic visual data.

3.3 Computational Experiments
In the following, we will briefl y present results from computational experiments, 
in which we tested the performance of the keyframe implementation on a highly 
controlled database (for details of the implementation as well as additional 
experiments also including real-world video sequences, see Wallraven and Bül-
thoff 2001).

Stimuli: The database consisted of 60 sequences of faces taken from the MPI 
face-database (Troje and Bülthoff 1996). This database contains highly realistic 
3D laser-scans of faces and allows full control of all aspects of rendering (pose, 
lighting, shadows, scene, etc.) for benchmarking recognition algorithms. Each 
sequence showed a face turning from −90˚ (left) profi le view to +90˚ (right) profi le 
view consisting of 61 frames at pose intervals of 3 degrees. All faces were ren-
dered from a viewing distance of 1.3 m on a black background using a frontal 
point-light source. Our test sets consisted of images from the same sequences in 
addition to novel images containing pose variations of +/−15˚ (upwards and 
downwards) as well as two different illumination directions.

Keyframes: Using the local feature tracking algorithm described above, the 
system found 7 keyframes for each of the 60 sequences (Fig. 3a shows 
some example keyframes and their average poses). Furthermore, the angular 
distance between subsequent keyframes is smallest for the frontal poses 
(between keyframes 3 and 5). This is due to the fact that a rotation around the 
frontal view causes larger variations in features (such as ears disappearing and 
appearing) leading to an earlier termination of tracking. Note also that even 
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though the framework itself has no prior knowledge about the object class or 
the object motion, similar views are selected as keyframes. This is a demonstra-
tion that our framework is able to generate consistent representations provided 
the input also exhibits consistent characteristics. Finally, the representation 
of each image sequence consists of a number of keyframes containing local 
features, resulting in a signifi cant, size reduction. This is an essential property 
for any view-based system working with dynamic data since otherwise huge 
amounts of data would have to be stored. To calculate the size reduction of 
the representation, we compared the size of the fi nal sequence models to the 
raw pixel data and determined a reduction of 99.1% (7 keyframes compared 
to 61 original frames corresponds to a reduction of ∼90%; each keyframe con-
tains ∼200 local features, each of which consists of 5 × 5 pixels. Given the ori-
ginal image size of 256 × 256 pixels, this results in a reduction of ∼92% per 
keyframe).

a

b

Fig. 3. a Examples of keyframes extracted from image sequences of rotating faces. The 
bottom fi gures list the average pose in degrees found across the whole database. b Match-
ing scores for 6 “novel” faces. Note that the target face has a much higher matching score 
than the fi ve other distractors
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Recognition results: Our fi rst recognition experiment concerned a validation 
of whether the resulting keyframe representation could support recognition of 
intermediate views of the original sequences. We therefore tested all keyframe 
representations with the remaining (61 − 7) * 30 = 1620 frames not included 
in the keyframe representation, which resulted in a total recognition rate of 
100%. To illustrate the robust matching, Figure 3b shows the matching scores 
for a set of keyframes with one target image and 5 distractor images, all of which 
show the same view. First of all, one can see that the target has a much higher 
matching score than the distractors. Interestingly, the highest match score for the 
distractors is almost exclusively achieved for the correct pose. In addition, all 
curves show a consistent view-based behaviour with a fall-off around the best 
matching keyframe. Recognition rates in the second experiment testing novel 
views under pose and illumination variation were 98.6% and 89.4%, respectively. 
Although pose variation is tolerated well by the system, changes in illumination 
clearly show the limits of the simple matching scheme. Taking the amount of 
compression into account, however, we think that these results demonstrate the 
feasibility and robustness of our approach (see also Wallraven and Bülthoff 
2001).

4 Multi-Modal Keyframes

So far, the keyframe framework has been treated as a framework for recognition 
of objects in the visual modality. The general idea of spatio-temporal object 
representations, however, can of course be extended to other modalities as well. 
In the following, we will introduce such a multi-modal object representation 
combining visual with proprioceptive information, which was successfully imple-
mented on a robot-setup and subsequently tested in object learning and recogni-
tion scenarios.

Recent research in neuroscience has led to a paradigm shift from cleanly sepa-
rable processing streams for each modality towards a more integrative picture 
consisting of multi-modal object representations. Such cross-modal integration 
of data from different modalities was also shown, for example, to play an impor-
tant role for haptic and visual modalities during object recognition. In a recent 
psychophysical experiment (see Newell et al. 2001), participants had to learn 
views of four simple, 3D objects made of stacked LEGOTM bricks either through 
the haptic modality (when they were blind-folded) or through the visual modality 
(without being able to touch the objects). Testing was then done using an old-new 
recognition paradigm with four different conditions: two within-modality condi-
tions, in which participants were trained and tested in either the haptic or the 
visual domain and two between-modality conditions, in which information from 
the learned modality had to be transferred to other modalities in order to solve 
the recognition task. For each condition, in addition, either the same viewpoint 
or a viewpoint rotated 180˚ around the vertical axis was presented in order to 
test the viewpoint-dependence of object recognition.

OBJ_06.indd   98 8/14/2007   2:50:34 PM



 6. Object Recognition in Humans and Machines  99

The recognition results for the four conditions showed fi rst of all that cross-
modal recognition occurred at levels well above chance. Not surprisingly, recog-
nition of rotated objects in the within-modality condition was severely affected 
by rotation in both modalities. This shows that not only visual recognition is 
highly view-dependent but also that haptic recognition performance is directly 
affected by different viewing parameters. One could thus extend the concept of 
view-based representations of objects also to the haptic modality. Another inter-
esting fi nding of this study is that recognition performance in the haptic-to-visual 
condition increased with rotation. The authors assumed that this was an example 
of a true cross-modal transfer effect – the reason for such a transfer lies in the 
fact that during learning the haptic information extracted by participants was 
mainly derived from the back of the object. When presented with a rotated object 
in the visual modality, this haptic information was now visible, which enabled 
easier recognition. The results from this experiment thus support the view that 
haptic recognition is also mediated by view-based processes – although the exact 
dependence on viewing angle remains to be investigated. In addition, the authors 
shed light on how information from the haptic modality can be used to enable 
easier recognition in the visual modality. Taken together with the spatio-
temporal framework outlined above, this cross-modal transfer might be an 
important reason for the excellent visual performance of human object recogni-
tion – after all, it is known that infants learn extensively by grasping and touching 
objects, which thus could provide a “database” of object representations for 
visual recognition.

4.1 Multi-Modal Keyframes – the View-Transition Map
Taking these psychophysical experiments as inspiration, we now want to describe 
how visual and proprioceptive input can be combined to create and test a multi-
modal keyframe representation.1

Let us consider a person who is examining an object by holding it in their hand 
and turning it around – the sensory information that is available in this situation 
consists of not only dynamic visual data but also dynamic haptic information. 
More specifi cally, we will focus on the proprioceptive information as a subset of 
the haptic information, which consists of the 3D confi guration of the hand (such 
as the exact confi guration of the fi ngers holding the object) as well as that of the 
wrist. How could this information be of use for learning and recognition?

First of all, proprioceptive information about the 3D confi guration of the hand 
could actually be used in a similar manner as in the psychophysical experiment 
described in the previous section. Since it is three-dimensional, it can for example 
generate a 3D viewing space in which keyframes (derived from the visual infor-

1 The multi-modal representation, as well as the experiments were developed in 
collaboration with Sajit Rao, Lorenzo Natale, and Giulio Sandini at the Dipartimento di 
Informatica, Sistemistica e Telematica at the University of Genoa.
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mation of the image sequence) can be anchored at proprioceptive coordinates. 
This would link the visual appearance from the keyframe with the hand position 
and confi guration and thus provide a proprioceptively anchored visual space. 
Returning to Figure 2, we see that one of the inherent disadvantages of the key-
frame framework is that the real-world topology of the keyframe graph is unde-
fi ned – only the outgoing and incoming links for each keyframe are known. 
Although this provides enough information to resolve recognition tasks (see 
previous section), being able to convert the viewer-centered keyframe graph into 
an object-centred keyframe graph would provide additional constraints for 
matching visual appearances since such a representation would be more closely 
integrated into a perception-action loop.

One of the problems with the idea of proprioceptive space, however, is that 
absolute coordinates in such a space make little sense from the perspective of 
recognition. Although it might be the case that objects suggest a canonical grasp 
(in much the same manner as they might suggest an affordance in the Gibsonian 
sense), usually it is possible to pick up and hold an object in a number of ways – 
all of which will change the absolute proprioceptive coordinates to which key-
frames will be attached. Our solution is to interpret the proprioceptive space in 
a similar manner as the keyframe graph: as a representation based on changes 
in its underlying modality. Thus, rather than using an absolute frame of refer-
ence, each generated keyframe could be attached to a relative change in proprio-
ceptive coordinates. One way to implement such a multi-modal representation 
is as a lookup table, in which each entry can be accessed via its relative change 
in proprioceptive space – this change can, for example, be simply the difference 
between the proprioceptive state vectors of the hand (including wrist angles, 
fi nger positions, etc.). This novel representation – which we call a view transition 
map – would for n visual keyframes consist of n(n − 1) entries for all possible 
proprioceptive transitions between keyframes.

How could one use this view-transition map to recognize objects? First of all, 
a keyframe representation of an object is learned in an active exploration stage 
using a pre-learned motor program, which for example grasps an object and turns 
it around. Each new keyframe is entered into the transition map at a position 
specifi ed by the relative change in proprioceptive state from the previous key-
frame. In addition, the transition map is enlarged by adding transitions from this 
keyframe to all previous ones. In a second step, a test object is picked up and 
keyframes are extracted again while the same motor program is executed. In 
order to recognize this object using the transition map, the fi rst keyframe that 
was generated from the test sequence is matched against all of the keyframes of 
the training sequence using visual similarity (in our implementation, similarity 
consisted of simple Euclidean distance – using local feature matching would 
further increase the robustness of the system). Once this match has been estab-
lished, the transition map can be used to quickly fi nd neighboring keyframes by 
looking for the most similar proprioceptive transition from the keyframe that 
matches the current change in the proprioceptive state. With this strategy one 
could expect to recognize objects in a much more effi cient manner as indexing 
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proprioceptive transitions allows for direct matches in an object-centered refer-
ence frame.

4.2 Computational Recognition Experiment
The proposed view transition map representation was tested in a computational 
experiment in which we explored its use for object recognition.

Experimental setup: Figure 4a shows the robot setup from the Dipartimento 
di Informatica, Sistemistica e Telematica at the University of Genoa that was 
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Fig. 4. a The robot setup (Metta et al. 2000) that was used in the multi-modal keyframe 
experiments b the objects used in the learning and recognition experiments. c–f Example 
results from the object recognition experiment showing the increase in discriminability 
when using multi-modal representations. The bright bars show matching using the view 
transition map, the dark bars show visual matching only
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used in this experiment (Metta et al. 2000). The important components of the 
setup for this experiment consist of an actively foveating stereo camera head 
(using space-variant image sensors mimicking the human retinal structure) and 
an anthropomorphic robotic arm with a fully controllable hand. The camera head 
was pre-programmed to fi xate on the location of the hand in order to track the 
hand during all movements. In addition, a trajectory for the hand movement was 
defi ned, which consisted of the hand rotating fi rst around the axis defi ned by the 
arm (“turning the hand”) and then around a second axis resulting in an up-and-
down movement of the hand. This exploratory motion sequence ensured an 
adequate visual coverage of any grasped object. The test objects for the experi-
ments consisted of 9 household and toy objects and are depicted in Figure 4b – 
note that some of the objects are rather similar in terms of their visual 
appearance.

In order for the robot to learn an object, it was placed into the robot’s hand 
and the exploratory motion sequence was initiated. The visual input from the 
foveated cameras was then used to track local features in real-time using the 
keyframe framework as described in the previous section. Each time the system 
found a keyframe, the proprioceptive transition leading from the last to the 
current keyframe was used as an index into a matrix where each entry stored the 
visual information of the frame (in this case simply consisting of the whole frame 
rather than its local feature representation). In addition, each incoming keyframe 
was matched against all existing keyframes using the view-transition map match-
ing procedure outlined above. If a match of suitable strength was found, the 
keyframe was discarded, otherwise the keyframe was inserted into the represen-
tation. A total of 9 objects were learned in this manner; in addition two control 
conditions were recorded, which simply showed a sequence of empty hand 
moving.

Recognition results: To test recognition performance, six of the objects were 
given again to the robot and the same movements were executed. Each new 
keyframe was then compared against all learned transition maps using the match-
ing procedure described above and the amount of matches in each transition map 
was added up to a fi nal matching score. If the sequence would be identical, all 
keyframes would be found in the map and therefore the matching score would 
be 1. To provide a baseline, visual-only matching was also run in addition to the 
multi-modal matching procedure. Figure 4c–f shows histograms of the matching 
scores for the two matching procedures for four test-objects. For the “box” 
object, both procedures correctly predict the right category; the multi-modal 
matching, however, has a much higher discriminability compared to the visual-
only matching. The same is true for the “bricks1” and “gun” object. Finally, the 
“toy” object is an example of an object, which is not correctly recognized by 
visual-only but is recognized by the multi-modal matching.

Summary: The results of these initial computational experiments are very 
encouraging. Through a straightforward extension of the keyframe approach to 
include proprioceptive information, we have shown how multi-modal object 
representations can be learned as well as how such representations can help to 
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increase the discriminability of object recognition. Since our representation is in 
part three-dimensional (i.e., coupled to proprioceptive coordinates), some of the 
robustness actually comes from 3D information in a viewer-/manipulator-centred 
coordinate system. It would be interesting to see how such a representation might 
capture the results in the chapter by Gschwind et al. (this volume) on exploration 
of 3D shapes.

Among several extensions that can be envisioned, adding more sophisticated 
local feature matching, better classifi cation schemes as well as different cue com-
bination approaches should further improve the performance of the framework. 
Another interesting property of the transition map is that it enables execution 
of specifi c motor actions based on visual input. Consider, for example, a situation 
in which an object has to be manipulated in order to insert it into a slot. The 
inverse of the transition map would allow such a task to be solved by executing 
motor commands that trace out a valid motor path to the desired view based on 
the current view. In a similar manner, the transition map could also be used for 
effi cient imitation learning based on visual input and for executing mental rota-
tions. The key to all of these applications is that the transition map provides a 
strong coupling between proprioceptive data (action) and visual data (percep-
tion) and in this manner facilitates representation of a perception-action loop in 
an effective and effi cient way.

5 Conclusion

In this chapter, we proposed an abstract framework for learning and recognition 
of objects that is inspired by recent psychophysical results which have shown that 
object representations in the human brain are inherently spatio-temporal. In 
addition, we have also presented results from a computational implementation 
of this keyframe framework, which demonstrate that such a system can reliably 
recognize objects under a variety of conditions. Finally, experiments with multi-
modal keyframes have shown that by integrating non-visual cues, object learning 
and recognition becomes more effi cient and effective. We believe that this frame-
work can represent a signifi cant step in designing and implementing a truly cogni-
tive system, which is embedded in a constantly changing environment and thus 
has to constantly analyze and learn in order to plan its (re-)actions.
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