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1 Introduction

In humans and mammals with higher cognitive capabilities, the neocortex is a 
very prominent brain structure (Fig. 1). As such it seems to be crucially involved 
in the cognitive processes. The neocortex can be subdivided into a set of func-
tionally different areas (Van Essen et al. 1992), and it communicates with most 
of the other brain systems. It is a structure with a high internal functional com-
plexity and diversity which is involved in most aspects of cerebral processing. 
Various cortical areas represent and process different aspects of the environment 
and the subject’s internal states in a distributed way. In the visual modality for 
example, occipital to temporal regions of the brain are thought to mainly repre-
sent object identity-related sensory information, whereas occipital to parietal 
brain regions are thought to mainly represent and process spatial information 
and aspects preparing motor plans. The former is referred to as the “ventral 
stream” and the latter as the “dorsal stream” (Ungerleider and Haxby 1994). 
Lateral prefrontal areas are thought to store contextual information of the 
present and recent past, which can serve as a reference framework for the behav-
ioral relevance of visual stimuli and motor plans, and can form a basis for deci-
sion-making processes (Leon and Shadlen 1998).

All of these different representations held in different cortical areas need to 
be integrated to form a coherent stream of perception, cognition, and action. 
Instead of a brain area with central executive functions, there is a massive recur-
rent connectivity between cortical brain areas. These connections form the white 
matter, which occupies the largest fraction of the brain volume. It is hypothesized 
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that only one-quarter of all possible connections between areas have been real-
ized in the human brain, and most of these are of recurrent nature (Salin and 
Bullier 1995). Thus, partial representations held in different cortical areas might 
be integrated by mutual cross talk, mediated by inter-areal neural fi bers. When-
ever one brain area provides bottom-up input to another area via inter-areal 
connections, the latter area feeds back top-down biasing signals, presumably to 
facilitate matching of the two different representations.

Further neurophysiological evidence gives rise to the assumption that each 
cortical area is capable of representing a set of alternative hypotheses encoded 
in the activities of alternative cell assemblies. Representations of different con-
fl icting hypotheses inside each area compete with each other for activity and for 
being represented (Desimone and Duncan 1995). However, each area represents 
only part of the environment and / or internal state. In order to arrive at a coher-
ent global representation, different cortical areas bias each others’ internal rep-
resentations by communicating, through inter-areal connections, their current 
state to other areas, thereby favoring certain sets of local hypotheses over others. 
For example, different objects present in the visual fi eld could compete for being 
represented in one brain area. This competition might be resolved by a bias given 
towards one of representation from another area, as obtained from this other 

Fig. 1. Illustration of the human neocortex. Gray-shaded regions group the cortical areas 
by functional similarity, black arrows schematically indicate inter-areal connectivity. 
Adapted from Statter (2002)
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area’s local view – encoding for example the behaviorally relevant location in 
the visual fi eld and favoring thus only the object corresponding to that location 
to be represented in the fi rst area (Rolls and Deco 2002). By recurrently biasing 
each other’s competitive internal dynamics, the global neocortical system dynam-
ically arrives at a global representation in which each area’s state is maximally 
consistent with those of the other areas. This view has been referred to as the 
biased competition hypothesis (Moran and Desimone 1985; Chelazzi et al. 1993; 
Desimone and Duncan 1995; Chelazzi 1998; Reynolds and Desimone 1999).

In parallel to this competition-centered view, a cooperation-centered picture 
of brain operation has been formulated, where global representations fi nd 
their neural correlate in assemblies of co-activated neurons (Hebb 1949). Co-
activation of neurons induces stronger mutual connections between neurons, 
which lead to assembly formation. The concept of neural assemblies was later 
formalized in the framework of statistical physics (Hopfi eld 1982; Amit et al. 
1994; Amit and Brunel 1997b), where assemblies of co-activated neurons form 
attractors in the phase space of the recurrent neural dynamics (patterns of co-
activation can represent fi xed points to which the dynamical system evolves). For 
biologically plausible networks of spiking neurons used in this study, the attractor 
dynamics have been recently investigated by (Amit and Brunel, 1997a; Brunel 
and Wang 2001; Stetter 2002; Deco and Rolls 2003).

In this chapter, we introduce the unifying principle of biased competition and 
cooperation (BCC) for neurocognitive modeling of higher neocortical functions. 
Section 2 presents the BCC modeling framework by summarizing a set of under-
lying working hypotheses and relating these hypotheses to experimental evi-
dence. Section 3 summarizes a neurocognitive model study of attentional fi ltering. 
It shows how biased competition and cooperation operate within a single model 
brain area. Section 4, fi nally, introduces a bi-areal BCC model for learning visual 
categorization. It demonstrates how BCC operates across two different brain 
areas and shows how Hebbian synaptic plasticity can change the multi-areal 
attractor dynamics towards increased performance of the multi-areal system.

2 Biased Competition and Cooperation Models

2.1 Coupled Attractor Network View
The most dominant feature of the neocortex is the dense and recurrent intra-
areal and inter-areal connectivity. At present, there are no clear data-derived 
criteria related to signal propagation time, synaptic transmission effi cacy, or 
axonal penetrance of the target tissue that would allow clear separation of intra-
areal from inter-areal connectivity. Hence, there are two alternative conceptual 
models for neocortical operation in the framework of recurrent network theory: 
(i) The fi rst model considers the whole neocortex as a giant attractor network; 
its connectivity is determined by the neuroanatomical features of both the intra- 
and inter-areal connections. (ii) The second model treats each cortical area or 
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even smaller sub-structures (such as a hypercolumn) as an attractor network. 
These smaller attractor networks are linked by recurrent long-range inter-areal 
connections. By these latter connections, the local attractor dynamics become 
linked to each other, and affect each other in such a way that a global attractor 
is fi nally formed. Because of the anatomical and functional subdivision of the 
neo-cortex, it seems more reasonable to adopt the second view of linked attractor 
networks for large-scale brain modeling. The modular architecture has the advan-
tage that it reduces the model complexity and facilitates exploratory research.

2.2 Structural Aspects of Model Brain Area
Despite the high functional diversity, different cortical areas are remarkably 
uniform in their anatomical structure (Kandel et al. 1991). About 80% of neurons 
are excitatory pyramidal neurons (Abeles 1991), that communicate via glutama-
tergic AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and 
NMDA (N-methyl-D-aspartate) synapses. These neurons locally collect signals 
over a large fraction of cortical depth and laterally spread dense local excitation 
across a diameter of about 200 mm. Longer-range collateral axon fi bers laterally 
spread excitation up to several millimeters, dependent on the species. A very 
constant feature across different areas and species is their patchy appearance 
(Lund et al. 1994; Bosking et al. 1997; Kisvarday et al. 1997; Somogyi et al. 1998), 
when viewed from the cortical surface. These patches seem to preferentially link 
the neurons in one area to neuron populations with similar response properties 
(Malach et al. 1993; Kisvarday et al. 1997). Pyramidal neurons are also the source 
of long-range inter-areal connectivity. A smaller amount of about 20% of cortical 
neurons are GABA-ergic (gamma-aminobutyric acid) and inhibitory in effect. 
They are highly diverse in morphology, but one prominent type of GABAergic 
neurons seem to be basket cells, which laterally spread inhibition through about 
600–800 mm. GABAergic neurons do not directly communicate across areas (for 
further details see Stetter 2002, and references therein). To properly describe the 
dynamic aspects of neural cognitive processes, we constructed the BCC models 
as networks of integrated and fi ring neurons with detailed synaptic dynamics (as 
introduced by Brunel and Wang 2001). The recurrent excitatory postsynaptic 
currents (EPSCs) are modeled to have two components, mediated by AMPA 
(fast) and NMDA (slow) receptors. External EPSCs imposed onto the network 
from outside are assumed to be driven only by AMPA receptors. The shunting 
inhibitory GABAergic synapses inject inhibitory PSCs (IPSCs) into both pyra-
midal cells and interneurons. Furthermore, in these Models, we maintained the 
proportion 80% excitatory neurons and 20% inhibitory neurons, consistent with 
experimental data (Abeles 1991).

Motivated by the observation of cortical columns in the striate cortex, we 
hypothesize that cortical neurons can be grouped by the similarity of inter-areal 
and local input. Following the concept of population coding we adopted a spiking 
network structured into distinct populations of neurons. Three types of popula-
tions are defi ned: a specifi c population gathers excitatory neurons having a 
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specifi c behavioral function; a non-specifi c population groups all other excitatory 
neurons in the modeled brain area; and an inhibitory population groups all local 
inhibitory neurons in the modeled brain area. The latter regulates the overall 
activity and implements competition in the network by spreading a global inhibi-
tion signal. Within each population, neurons are mutually connected by stronger 
than average synaptic weights with a mean strength w+ (Fig. 2). These corre-
spond to local pyramidal axonal fi bers. Different populations i and j are laterally 
connected by weaker than average connections with mean synaptic strengths 
wij. The collection of all weights determines the attractor landscape and the func-
tion carried out by the model. We then introduce the following simplifying 
assumption, which is convenient but not a necessary ingredient to the model: 
Populations that represent features associated with each other are linked by 
stronger than average weights, wij = w0. The strengthening could be the result of 
coactivation followed by Hebbian learning. On stimulation with one of the fea-
tures, the corresponding associated populations tend to be co-activated through 
the recurrent intra-areal dynamics. Thus, the weights w0 implement cooperation 
and underlie the formation of Hebbian cell assemblies in the model. However, 
populations that represent unrelated or anticorrelated features, are linked by 
weaker than average weights, wij = w−. The dominant connectivity between such 
populations is propagated laterally through the model GABAergic neurons and 
is inhibitory in effect. Neuron populations for different cell assemblies attempt 
to shut down each other’s activity. Thus, the weak weights w− implement com-
petition for activation.

Fig. 2. Sketch of a general purpose model cortical area
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2.3 Inter-Areal Connectivity
Fast myelinated long-range axons of pyramidal neurons connect different cortical 
areas. They connect to spatially restricted parts of the target-area and follow some 
topographic order (Zeki and Shipp 1988). In most of the cases, feedforward con-
nectivity to a target area is complemented by feedback-connectivity to the origi-
nal one. The neurons feeding back from a higher area preferentially address 
neurons in the lower area that drives them. When an area receives input from a 
lower area characterized by a less abstract representation, the input is referred to 
as bottom-up driving input. Feedback input from a higher area, characterized by 
a more abstract representation, is referred to as top-down biasing input. Whereas 
bottom-up input is thought to activate a set of “hypotheses” consistent with the 
lower level (e.g., sensory) features, top-down biasing input is thought to back-
propagate higher order (e.g., more global) information and thereby to contribute 
the selection of one activation pattern among several possible patterns.

However, although we conceptually follow this view, there is no anatomic 
dynamic difference between bottom-up and top-down signals in our proposed 
model: both form small, additive input to a given cortical area from other areas. 
As a consequence, a multi-areal biased competition and cooperation model 
consists of a recurrent network of recurrent attractor networks.

2.4 Dynamic Operation
In most cortical areas and at any time, about 99% of neurons are on average 
only spontaneously active at a rate of about 3 Hz (Wilson et al. 1994; Koch and 
Fuster 1989). About 1% of neurons are on average active with higher than spon-
taneous rates, typically some tens of Hz. Based on these numbers it becomes 
obvious that each area is mostly driven by strong background current from the 
ocean of spontaneously active neurons throughout the neocortex. Specifi c input 
currents are only small perturbations on top of this background current, in the 
range of a few percent. Hence it is the task of the recurrent areal circuitry to 
amplify these small inputs in a way that is useful for signal processing. Finally, 
cortical spike dynamics are very irregular, introducing considerable fl uctuations 
to the synaptic currents by which the neurons communicate.

In the presence of fl uctuations, intra-areal attractor dynamics can be very vola-
tile, and can respond in dramatically different ways to small changes in driving 
or biasing inputs. It might be that this volatility and potential instability underlies 
important cognitive processes such as decision making, spontaneous thoughts 
and creativity.

3 Attentional Filtering

Selective attention may be defi ned as a process, in which the perception of certain 
stimuli in the environment is enhanced relative to other concurrent stimuli of 
less importance. A remarkable phenomenon of selective attention, known as 
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inattentional blindness, has been described for human vision (for a review see 
Simons 2000). The inattentional blindness refers to an absence of awareness 
regarding a certain visual event when attention is focused on another event.

Recently, Everling et al. (2002), investigated the underlying mechanisms of the 
referred effect by measuring the activity level of the prefrontal cortex (PFC) 
neurons in awake behaving monkeys performing a focused attention task. In this 
experiment, a monkey, after being cued to attend one of two visual hemifi elds 
(left or right eye-fi eld), had to watch a series of visual stimuli conjointly exposed 
in both hemifi elds consisting of different pairs of objects. The animal was to react 
with a saccade (rapid intermittent eye movement occurring when eyes fi x on one 
point after another) if and only if a predefi ned target object appeared in the cued 
hemifi eld. In order to correctly perform this cognitive task, the monkey had to 
ignore any object in the uncued hemifi eld and to concentrate (focus his attention) 
on the cued location. The experimental results showed that some PFC neurons 
discriminate between a previously learned target and a non-target, but that this 
discrimination disappears when objects are presented in the unattended visual 
hemifi eld. We refer to this effect as attentional fi ltering. In other words, attention 
acts in a multiplicative way upon the sensory driven neuronal response, and 
consequently these neurons seem to code for behavioral relevance of a stimulus 
rather than for its identity. Only a task-relevant stimulus (i.e., target in the cued 
hemifi eld) is gated by the context and allowed to be represented. This attentional 
fi ltering effect of an object’s representation for the unattended hemifi eld is com-
plete and might be the neuronal substrate of the referred selective attention 
effect studied in humans, possibly explaining blindness to ignored inputs.

Neurodynamical models developed within the framework introduced in the 
second section, have been proven to successfully account for different aspects of 
visual attention (Rolls and Deco 2002; Corchs et al. 2003) and working memory 
context-dependent tasks (Deco and Rolls 2003; Deco et al. 2004; Almeida et al. 
2004). Here, we review a biologically relevant minimal model (Szabo et al. 2004) 
for analyzing the underlying neuronal substrate of the visual attentional fi ltering 
effect. We observed that the mechanism of biased competition alone cannot 
account for the experimental results and show that biased competition and 
cooperation between stimulus selective neurons are, in combination, required 
conditions for reproducing the referred effect.

We implemented a network of excitatory and inhibitory integrate-and-fi re 
neurons, modeling a small part of the PFC, which are fully connected (Fig. 3). 
The model (Fig. 3) consists of populations of neurons that show the same selec-
tivities as found in the experimental results (Everling et al. 2002). Under a non-
attentive control task, they encode information about the object identity (“T” 
for target, “O” for other) and spatial location (“L” for left, “R” for right hemi-
fi eld). Therefore, we showed four interconnected selective populations coding 
for target with preferred location left (TL), target with preferred location right 
(TR), non-target (other) left (OL) and non-target (other) right (OR).

On top of the spontaneous background input received by each neuron in 
the network, the four selective populations are driven by object-specifi c and 
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unilateral inputs, assumed to originate from lower sensory areas which process 
the visual scene to provide these signals. Besides the specifi c afferent bottom-up 
input, the selective populations are also biased by two kinds of top down inputs. 
The fi rst top-down signal biases neurons that are selective for the target object. 
The origin of this signal is not explicitly modeled, but it might originate from a 
working-memory module that encodes and memorizes context in terms of rules. 
The second top-down signal, the attention bias, facilitates neurons that have the 
cued location as a preferred location. The origin of this bias, which might be sent 
from a spatial working memory area, is not modeled explicitly here. The network 
is fully connected, but weights can differ depending on the populations being 
connected. We model the prefrontal cortex of a monkey that has already been 
trained and do not explicitly model the learning process itself. The weights 
between the populations were intuitively chosen such as to match Hebbian learn-
ing. Between the populations encoding the same object identity, cooperation is 
implemented through stronger than average weight (w′). Competition is imple-
mented through a smaller than average weight (w−), as depicted in Figure 3. 
For more details on network implementation and parameters, see Szabo et al. 
(2005a).

Explicit simulations were carried out in the framework of the architecture 
presented in Figure 3, by applying each of the four different stimulus combina-

Selective Pools
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selective
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Fig. 3. Architecture of the prefrontal cortical module. The four sensory populations cor-
respond to target and non-target selective neurons with a preferred location left or right. 
Adapted from Szabo et al. (2004)

OBJ_12.indd   194 8/14/2007   2:53:24 PM



 12. Biased Competition and Cooperation  195

tions used in Everling et al. (2002) and calculating the population-averaged spike 
rate of the target specifi c right preferred TR population. Under this condition, 
the attention bias set to the right preferred neurons corresponds to the condition 
“preferred location attended”, a left bias corresponds to the “non-preferred 
location attended” condition. Simulation results are presented in Figure 4 
(columns 2–4).

The left column of Figure 4 (Fig. 4, column 1) displays the experimental mea-
surements recorded from the PFC of awake behaving monkeys (Everling et al. 
2002) in the case of four stimulus combinations illustrated as insets. The black 
lines correspond to attention directed to the preferred location and the grey lines 

a

b

c

d

Fig. 4. Experimental results (column 1) and model simulation (columns 2–4) for focused 
attention task. Black lines: Attention focused to the preferred location (right), grey lines: 
attention focused to the non-preferred location of the measured neurons and model-
neurons, respectively. a Both target stimuli. b Target in preferred location only. c Target 
in non-preferred location. d both non-target stimuli. Column 2: simulation with coopera-
tion and competition . Column 3: simulation with competition only. Column 4: simulation 
with cooperation only. Adapted from Szabo et al. (2004)
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correspond to attention directed to the non-preferred location. In the second 
from left column (Fig. 4, column 2), the population-averaged responses of the 
model “target right selective” (TR) neurons for the same stimulus conditions and 
attentional states as the experimental results are shown, using both mechanisms 
of biased competition and cooperation. From the simulation results (Fig. 4, 
column 2) it can be observed that with this simple network, the obtained atten-
tional fi ltering effect is the same as that in the experimental results (Fig. 4, 
column 1).

Attentional fi ltering consists of four different phenomena which can be assigned 
to the four stimulus conditions: (i) When both hemifi elds contain target stimuli, 
the response refl ects whether the attended stimulus is in the preferred or non-
preferred location (Fig. 4, column 1a, column 2a). (ii) When a target appears in 
the preferred location only, the response is completely shut down (gray line), as 
soon as attention is shifted away from the target-stimulated side (Fig. 4, column 
1b, column 2b). We refer to this effect as attentional suppression. (iii) In contrast, 
when a target appears in the non-preferred location, the neural response is 
increased (gray line), as soon as attention is shifted towards it (Fig. 4, column 1c, 
column 2c). We refer to this effect as attentional facilitation. (iv) Finally, when 
both hemifi elds are stimulated with non-targets, the response remains low, 
refl ecting the target-selectivity of the neurons (Fig. 4, column 1d, column 2d). In 
combination of these effects, the neurons in both the experiment and the model 
encode only the contents of the attended hemifi eld (compare black lines in Fig. 
4, column 1, column 2 a and b with c and d, compare the grey lines in Fig. 4, 
column 1, column 2 a and c with b and d) and ignore the contents of the non-
attended hemifi eld (compare black lines in Fig. 4, column 1, column 2 a with b 
and c with d, compare the grey lines in Fig. 4, column 1, column 2 a with c and 
b with d). The content of the non-attended hemifi eld is not encoded in the 
responses.

When the network is dominated by competition (Fig. 4, column 3), the com-
petition causes complete attentional suppression of unattended stimuli (Fig. 4, 
column 3b), however, there is no attentional facilitation (see the zero activity in 
Fig. 4, column 3c). This is the case, because in the present model the facilitation 
effect is caused by a lateral propagation of activity from the stimulated TL popu-
lation to the nonstimulated TR population over recurrent connections. Because 
these connections are too weak in the competition only setting (i.e., w′ is too 
small), facilitation does not occur. When the network is dominated by coopera-
tion (Fig. 4, column 4), activities between attended and non-attended conditions 
are equalized, and as a consequence attentional effects are diminished (compare 
black with grey lines in Fig. 4, column 4). In particular, attentional suppression 
is no longer observed.

In summary, competition, mediated by a small weight w−, implements atten-
tional suppression, and cooperation, mediated by a strong weight w′, implements 
attentional facilitation. When both mechanisms act together, our model shows a 
strong, all-or-none attentional fi ltering effect, which results from the effects of 
weak top-down biases.
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4 Learning to Attend

In a recent experiment performed on behaving monkeys, Sigala and Logothetis 
have studied how selectivity to stimulus features of infero-temporal cortical 
(ITC) neurons is affected by learning a visual categorization task (Sigala 
and Logothetis 2002). The visual stimuli (schematic images of faces, see Fig. 5 
bottom-right) were characterized by several features (eye height, eye separation, 
nose length and mouth height), and only some of these (eye height and eye 

Fig. 5. a Experimental results adapted from Sigala and Logothetis when different com-
binations of features were presented (Sigala and Logothetis 2002). Shown are the average 
spiking rates of all recorded visually responsive neurons, grouped according to their best 
(black lines) and worst (gray lines) responses to the levels of diagnostic feature “Eye 
height” (a1) and non-diagnostic feature “Nose length” (a2). b Schematic representation 
of the network architecture and the expectations after successful learning of the visual 
categorization task. The connections between the diagnostic populations and the corre-
sponding categories are potentiated (thick arrows), the connections between the diagnos-
tic populations and the non-corresponding categories are depressed (dotted arrows), and 
the connections to and from the non-diagnostic neurons remain at an intermediate value 
(dashed arrows). Network activities for the particular stimulus presentation characterized 
by “high eyes” and “long nose” are depicted by the gray levels of the populations (dark 
gray: high activity; light gray: low activity). The relevant information that the presented 
stimulus has “high eyes” will bias, through the feed-forward interlayer connections, the 
competition in the category model layer towards the “Left” population. This population, 
in turn, generates through feedback interlayer connections, the tuning of the diagnostic 
feature “Eye height”. The categorization process does not infl uence the tuning of the 
non-diagnostic feature

OBJ_12.indd   197 8/14/2007   2:53:24 PM



198  G. Deco et al.

separation – named diagnostic features) were relevant for the categorization 
task.

The experimental results showed an enhancement in neuronal tuning for the 
values of the diagnostic features (Fig. 5a, top). Responses to non-diagnostic fea-
tures, in contrast, were poorly tuned (Fig. 5a, middle). Hence ITC activity not 
only encodes the presence and properties of visual stimuli but is also tuned to 
their behavioral relevance.

Recent studies (Freedman et al. 2003; Tomita et al. 1999) suggested that top-
down signals from PFC to ITC might infl uence neuronal responses in ITC. Szabo 
et al. (M. Szabo et al., 2005) hypothesized that neuronal responses in ITC could 
be modulated, in a behavioral context, by top-down signals originating from 
category encoding neurons, possibly residing in the prefrontal cortex, PFC. They 
proposed a two-layer neurodynamic computational model developed in a frame-
work of biased competition and cooperation.

The model predicted the interaction of two small connected areas in the brain, 
thus characterizing the stimulus-esponsive units from the ITC and the category-
encoding neurons from the PFC that we will review in this section. The schematic 
architecture is presented in Figure 5b.

In this minimal model, it is assumed that the presented stimuli are character-
ized by only two features, “Eye height” and “Nose length”, each with two dis-
crete values, and that the two categories are determined exclusively only by one 
feature: the diagnostic feature “Eye height”. Thus, there are four specifi c popula-
tions in the ITC layer, denoted according to the specifi c input that they receive. 
The specifi c populations in the PFC model layer encode two learned categories 
associated with the two actions: press left lever (“Left” population, or C1) and 
press right lever (“Right” population, or C2). The stimuli with the diagnostic 
feature in the fi rst state, “high eyes”, belong to category 1 and the those with 
diagnostic feature in the second state, “low eyes”, belong to category 2, irrespec-
tive of the value of the non-diagnostic feature “Nose length”.

Each individual neuron is driven by a background external input. The neurons 
in the four specifi c populations from the ITC layer additionally receive external 
inputs encoding stimulus specifi c information assumed to have on average the 
same strength. The network is fully connected within layers by excitatory and 
inhibitory synapses. Between the two layers, only specifi c neurons are fully con-
nected by excitatory synapses.

In our approach we assume, for simplicity, that intra-layer connections are 
already formed, e.g., by earlier self organization mechanisms. In the ITC model 
layer, cooperation takes place between specifi c populations, implemented by 
uniform lateral connectivity. They encode the same type of stimulus and are dif-
ferentiated only by their specifi c preferences to the feature values of the stimuli. 
The neural activity of the PFC model layer is designed to refl ect the category to 
which the presented stimulus corresponded. Competition is implemented between 
the category encoding populations.

Connections between the ITC and PFC are modeled as plastic synapses. Their 
absolute strengths are learned using a reward-based Hebbian learning algorithm. 
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After every trial the synaptic weights are changed according to the resulting 
reward signal and pre- and post-synaptic population activities, until convergence 
to a stable confi guration is reached. For more details on network structure, 
parameters and learning algorithms see (M. Szabo et al., 2005).

When a stimulus is presented to the trained network, after successful learning 
(as depicted in Fig. 5b), the sensory inputs (coming from lower visual processing 
areas) activate the ITC neurons and are propagated through feed-forward con-
nections to the PFC. This bottom up input from ITC biases the competition 
between category encoding populations. The winning category infl uences the 
activity of the neurons in the ITC layer such that they become selective for some 
of the presented features. Thus, in contrast to the last section, the attentional 
biases needed to guide the competition are produced autonomously in the 
model.

Simulation results presented in Figure 6 depict average network activities 
(over 50 consecutive trials) in three moments of the learning process: at the 
beginning of learning, at an intermediate point (after 200 trials) and after the 
convergence of synaptic parameters following 1500 trials. The plots in the fi rst 
row were obtained by performing the same calculations as for the experimental 
data (Fig. 5a). For each specifi c neuron in the ITC model layer, the spiking rates 
for all 50 consecutive trials were grouped based on the presented stimulus values 
and were averaged. Each specifi c neuron has a different response level to the 
two values of each feature. The highest responses for the diagnostic feature of 
all specifi c neurons in the ITC model area were averaged producing the “best 
Diagnostic” response. The lowest responses for the diagnostic feature of all spe-
cifi c neurons in the ITC model area were averaged to generate the “worst Diag-
nostic” response. Similar calculations were done for the non-diagnostic feature.

These average activities over all ITC specifi c neurons are presented for three 
points in time in Figure 6, top row. At the beginning of learning, there is no bias 
in the input to the PFC layer, the “Left” (C1) and “Right” (C2) populations are 
activated randomly with the same probability (Fig. 6a, bottom). Thus there is no 
difference between the tuning of the diagnostic and non-diagnostic features (Fig. 
6a, top). As learning progresses and the synaptic weights evolve, the network 
now correctly resolves the categorization task (Fig. 6b, bottom). At the same 
time, we notice the beginning of the tuning process that will be enhanced in time 
(Fig. 6b, top). After convergence, selectivity for the level of the diagnostic feature 
is enhanced, as compared to the non-diagnostic feature (Fig. 6c, top). The activi-
ties for the best and worst diagnostic feature values are more separated than 
those for the best and worst non-diagnostic feature values. This result is in good 
qualitative agreement with the experimental results (Fig. 5a).

The middle and bottom rows in Figure 6 show average spiking rates of specifi c 
populations in two layers for selected trials among the 50 successive trials where 
the presented stimulus was characterized by “low eyes” and “long nose” (popula-
tions D2 and O1 stimulated). Since there is no structure in the model ITC layer, 
enhancement of selectivity emerges due to the top-down input from the PFC 
layer, which encodes the previously learned stimulus categories. The rightmost 
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column, Figure 6c, corresponding to the point in the learning process, where the 
weights converged to a stable confi guration, is in agreement with the expectations 
after learning depicted in Figure 5b. From the time when the stimulus is pre-
sented to the network (time = 0 ms in Fig. 6), the selectivity of the category spe-
cifi c populations (Fig. 6c, bottom row) emerges through the competition biased 
by feed-forward inputs (ITC → PFC) from the specifi c populations of the ITC 
layer. Through the feedback modulatory inputs (PFC → ITC), this selectivity is 
transmitted afterwards to the feature-specifi c populations in the ITC (Fig. 6c, 

Fig. 6. Simulation results for a spiking network averaged over 50 successive trials at three 
points in the learning process: a at the beginning of learning; b an intermediate point 
during learning (after 200 steps); c after the weights converged to a stable confi guration 
(1,500 steps). The top row shows average spiking rates of stimulus responsive neurons, 
grouped according to their best and worst responses to the levels of diagnostic and non-
diagnostic features. The middle and bottom rows show the average spiking rates of specifi c 
populations in the ITC layer (D1, D2, O1, O2) and the PFC layer (C1, C2), respectively, 
for trials where the presented stimulus was characterized by: low eyes and long nose 
(external input to the populations D2 and O1) among 50 successive trials. Adapted from 
Szabo et al. (2006)
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middle). It can be seen that in the fi rst 100 ms after stimulus onset, the D1 and 
O1 (stimulated) or D2 and O2 (non-stimulated) populations do not differ in 
activity. Hence there is no diagnostic tuning. Only after the correct category 
population acquires activity, the diagnostic tuning builds up.

Summarizing the results of our simulations, we consider that the enhancement 
of selectivity for behaviorally relevant features could result from a constructed 
reward-based Hebbian learning scheme. The latter scheme robustly modifi es the 
connections between the feature encoding layer (ITC) and the category encoding 
layer (PFC) to a setting where the neurons activated by the level of a feature 
determinant for categorization are strongly connected to the associated category 
and weakly connected to the other category, and the neurons that receive input 
specifi c for a task-irrelevant feature, are connected to the category neurons with 
an average weight, not signifi cantly changed during training. In summary, the 
network successfully develops both a forward IT→PFC synaptic structure able 
to support correct classifi cation, and a backward PFC→IT synaptic structure 
producing a task-dependent modulation of IT response, providing evidence of a 
qualitative agreement with the fi ndings of Sigala and Logothetis.
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