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Preface

Visual object recognition has been for years one of the most intensively studied 
subjects in cognitive science. It is only recently, however, that scientists have been 
able to investigate the neuronal processes possibly underlying this basic cognitive 
ability. Recent progress in cognitive/computational neuroscience and visual psy-
chophysics has allowed further understanding of the neuronal and behavioral 
correlates associated with the different forms of object recognition.

This volume provides a comprehensive view of the neuronal and behavioral 
bases of object recognition, taking as its thesis that object recognition involves 
both active attention and coordinated action to adapt to the world. To fully 
understand human object recognition, therefore, we are required to examine its 
concept from the multidisciplinary point of view involving psychophysical 
research as well as cognitive and computational neuroscience of attentional 
mechanisms and action.

The collection of articles in this volume is produced on the basis of talks and 
in-depth discussions at the International Workshop on Object Recognition, 
Attention, and Action, organized by Naoyuki Osaka (Kyoto University, Japan) 
and Ingo Rentschler (University of Munich, Germany), and held at Kyoto Uni-
versity in 2004.

Leading researchers on object recognition believe that a fi rmer understanding 
of this topic is now within our reach because of new evidence from cognitive 
neuroscience, cognitive science, and neuropsychology. Accordingly, the neuronal 
system supporting object recognition seems to be in attentional networks con-
necting the visual brain with temporo-parietal cortex and even the prefrontal 
cortex. Furthermore, the coordination across various brain areas probably serves 
the purpose of binding purposeful action to the recognition task at hand. The 
present volume is to provide a forum for systematic comparison of present 
models and theories of object recognition in the brain. Thus, it aims at encourag-
ing communication between students and researchers from different subdisci-
plines of cognitive science by focusing on explicit, detailed comparisons of current 
major approaches to object recognition theory and modeling. The domains in 
which the present contributors have examined the role of the neuronal basis of 
object recognition include higher brain mechanisms, attention, perception, 
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working memory, binding in the cerebral cortex, neural networks, and voluntary 
action.

As the book covers a wide range of different theoretical perspectives and 
interdisciplinary views, it will be of interest also to researchers and students in 
cognitive science/psychology, cognitive neuroscience, neuropsychology, neurobi-
ology, artifi cial intelligence, and philosophy of the mind.

VI  Preface
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1

An Editorial Overview
Ingo Rentschler, Naoyuki Osaka, and Irving Biederman

1 Introduction

To paraphrase a famous statement by Isaac Newton (Hawking 2002), we stand 
on the shoulders of giants when we seek insights into how humans recognize 
objects within their world. Aristotle showed that objects are assigned to catego-
ries according to attributes they have in common with other occurrences (Russell 
1961). Immanuel Kant contended that the objects of our intuition (German 
Anschauung) are not representations of things as they are in themselves but 
appearances shaped by relations to things unknown to our sensibility. Synthetic 
judgments are needed to bind these appearances together, but these processes 
do not entail cognition per se. According to Kant, the compounds become inte-
grated and understood by their assignment to the categories of pure reason 
(Zöller 2004). Arthur Schopenhauer (1859), however, was willing to accept only 
causality as a category of understanding. To Schopenhauer, causality was condi-
tional for any act of cognition.

Aristotle’s view of object categorization remained unchallenged until Ludwig 
Wittgenstein asked how we are able to identify something as an instance of the 
category of “games.” The philosopher wondered what a game of darts, for 
instance, might have in common with the game of soccer. His concept of “family 
resemblance” (German Familienähnlichkeit) replaced the Aristotelian idea of a 
certain set of attributes being common to all occurrences of a particular class. 
Accordingly, attributes are distributed across the members of a family, or cate-
gory, in a probabilistic fashion. Thus, games, tables, and trees were natural families 
for Wittgenstein, each constituted by a crisscross network of overlapping resem-
blances (Glock 1996).

Wittgenstein’s concept of categorization was seminal for the philosophy of 
science. Indeed, Thomas Kuhn proposed that normal science does not work 
according to certain objective rules. Instead, it rests on the ability of scientifi c 
communities to relate problems to model solutions or paradigms, i.e., class 
descriptions in the sense of technical pattern recognition. Thus, it is conceivable 
that scientifi c revolutions such as the transition from Newtonian to quantum 
mechanics are brought about by changes in paradigms. Familiar demonstrations 
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2  I. Rentschler et al.

of the ambiguities of visual gestalt are suggestive for characterizing such changes. 
Indeed, “what were ducks in the scientist’s world before the revolution are 
rabbits afterwards.” (Kuhn 1970, p.111).

Transitions of paradigms happen in cognitive science in much the same way as 
in any other domain of science. However, as an interdisciplinary science, it is 
plagued by changes that rarely occur in synchrony across its subdisciplines, thus 
causing disparities among these fi elds. The present collection of chapters entitled 
Object Recognition, Attention, and Action aims, therefore, at drawing attention to 
a number of developments that appear to have happened independently in these 
distinct areas of cognitive science. However, it might become clear that their 
consequences are never restricted to just one of these topics, thus indicating the 
existence of a common framework for their integration.

Concerning the relationships of object recognition and action, it has been sug-
gested that these types of functions rely on separate processing streams in the 
brain such as the ventral (“what”) and the dorsal (“where”) pathways in the 
monkey (Ungerleider and Mishkin 1982). Milner and Goodale (1995) confi rmed 
this concept for humans but were led to emphasize the role of the dorsal (“how 
to”) stream in visually guided behavior. They also conjectured that there exist 
areas in the parietal cortex where information from both cortical streams as well 
as other sensory modalities is integrated for the formation of abstract spatial 
representations as are needed, for instance, in understanding maps (Milner and 
Goodale 1995, Sec. 4.5).

More recently, evidence has been accumulated that the posterior parietal 
cortex (PPC) forms multiple spatial maps of the world. In the monkey, PPC 
constructs multiple space representations related to specifi c classes of action 
(Rizzolatti and Arbib 1998; Matelli and Luppino 2001). According to a model by 
Fagg and Arbib (1998), one such representation provides visual descriptions of 
three-dimensional objects, thus “proposing” to one area of the premotor cortex 
several possibilities of grasping. The most appropriate grip is selected based on 
the current position of the hand (so that it is a hand coordinate space rather than 
a viewer-centered coordinate space) and contextual information, and this infor-
mation is sent to another area of the premotor cortex for motor execution. When 
humans select between actions with regard to context, the temporal cortex and 
its prefrontal projections are involved as pathways (Fig. 1) (Passingham and Toni 
2001).

The importance of context, i.e., information gathered at some other place or 
time (Albright 1995), for visual recognition is widely acknowledged. Neverthe-
less, surprisingly little is known about the neuronal mechanisms that mediate 
contextual effects and scene analysis (Bar 2004). Traditionally, context has been 
regarded as an independent source of information facilitating the interpretation 
of visual input information via association (Biederman et al. 1974; Massaro 1979). 
A different view prevails in machine vision, where contextual information has 
been used to build robust pre-processing schemes allowing for reliable extraction 
of features for object recognition and scene analysis (Clowes 1971; Freuder 1986; 
Caelli and Bischof 1997). Recurrent coupling between “world knowledge” and 
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 An Editorial Overview  3

various processing stages is crucial for the latter approach, and there is reason to 
believe it also plays a key role in visual recognition (Lee et al. 1998; Bullier 2001; 
Briscoe 2000; Jüttner et al. 2004).

Attention was originally seen as a means of selecting stimulus dimensions or 
attributes (Allport 1980). This view was complemented by the concept of space-
based attention functioning as a “mental spotlight,” which focuses on one region 
of the visual fi eld at a time (Eriksen and Hoffman 1973). More recently, there is 
evidence for biased competition (see the chapter by G. Deco, this volume), where 
at some point between input and response, input objects compete for representa-
tion, analysis, or control. Competition is biased in part by bottom-up mechanisms 
providing spatial and temporal segmentation of objects in a scene and in part by 
top-down mechanisms that select objects relevant for the current behavior. 
Accordingly, attention is not a high-speed device scanning each item in the visual 
fi eld but is an emergent property of slow, competitive interactions working at 
various levels of brain function (Desimone and Duncan 1995). Because attention 
was believed to have a capacity-limited nature, it needed to be allocated in accor-
dance with the executive function of working memory (Osaka et al. 2007).

Another disparity between subdisciplines of cognitive science concerns the 
role of learning in visual recognition. Psychophysicists tend to believe that rec-
ognition is mediated by feature extraction through fi xed and invariant neural 
mechanisms. Accordingly, nothing is learned with respect to these mechanisms 
beyond, perhaps, infancy insofar as critical periods may exist for establishing 
experience-dependent neural connectivity. Others, concerned with the emer-
gence of visual expertise, are inclined to assume that adult learning plays a major 
role in recognition. Nevertheless, recognition performance is assessed by both 
communities using paradigms of stimulus discrimination. Similarly, neural net 
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Fig. 1. Two visual streams connecting action and movement (Adapted with permission 
from Passingham and Toni 2001)
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4  I. Rentschler et al.

models assume that class members share certain features, or feature vectors, and 
that classes can be separated by discriminative functions. Such concepts based on 
Aristotelian categorization are no longer useful when pattern complexity 
increases or patterns are embedded in scenes. For these reasons, artifi cial intelli-
gence developed syntactic pattern recognition, where the similarity of patterns 
and class paradigms is measured using structural similarities as in graph matching 
(Grimson 1990; Bischof and Caelli 1997; Bunke 2000).

Concerning the relationships of object recognition, attention, and action, it has 
long been known that defects of afferent visual pathways, from retina to cortex, 
are instantly noticed by the patient who becomes aware of his or her loss of 
shape-based recognition. That is, the patient becomes aware of the inability to 
recognize people – or even to know that they are people – or objects. Bilateral 
occipital infarction, by contrast, may result in a loss of object recognition com-
bined with a complete loss of visual imagery, visual memory as well as visual 
dreaming. Yet patients may remain unaware of these defi ciencies. Similarly, fol-
lowing focal destruction of other cortical areas, submodalities of visual recogni-
tion may become lost, with the patient being unable to clearly communicate what 
happened. Such clinical observations suggest that the neuronal activity in differ-
ent cortical areas is related to different submodalities of object recognition with 
the possibility of attention being coupled to visual processing (Baumgartner 1990; 
Grüsser and Landis 1991). Objectively, unilateral removal of the anterior tempo-
ral lobe does not result in any noticeable defi cit in object recognition (Biederman 
et al. 1997). Thus, it may be that in humans, the representations mediating visual 
recognition are fully computed in areas posterior to the anterior temporal lobes, 
such as the lateral occipital complex (Malach et al. 1995). The more anterior areas 
of the temporal cortex in humans may be a repository of episodic memories in 
which perceptual representations are bound to particular perspectives and con-
texts. Visual imagery can be regarded as “playing back” these representations 
onto the “screens” of retinotopic areas. Taken together, these observations are 
indicative of the handshaking that can occur between perceptual representations 
and episodic memories.

When objects are compared sequentially, as in category learning, object repre-
sentations must be stored in working memory. This is also the case when the goals 
and intentions of one task are maintained while performing another task. Such 
types of information updating and retention of stimulus-related information can 
be attributed to the function of the frontal lobes of the brain (Fletcher and 
Henson 2001). Moreover, any form of motor activity inevitably changes activa-
tion patterns in the sensory cortex. This results in novel patterns of sensation, 
imagery, and emotional activation, which are communicated to the frontal brain. 
Consequently, knowledge about the world and action towards it can be intimately 
inter-related in the “perception–action” cycle (Fuster 2001, 2003), although 
“couch potato” states, as when watching television with minimal action, may 
constitute the greater portion of human (vs. infra-human) information assimila-
tion. Thus, the extent to which the perception–action cycle is fundamental to 
human cognition and the extent to which it can provide a unifying theme in the 
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cognitive neuroscience of object recognition, attention, and action remain to be 
determined.

2 This Collection of Chapters

The present volume contains 15 chapters written by separate researchers or 
research groups, which focus on object recognition, attention, and action, respec-
tively. Most of the chapters are devoted to human performance and its likely 
neural correlates, but there are also three reports on computational concepts 
(Jüttner; Wallraven and Bülthoff; Deco, Stetter, and Szabo) that help to elucidate 
characteristics of visual processing underlying human performance in object 
recognition.

2.1 Pattern and 3D Object Recognition
Plomp and van Leeuwen discuss the problem of perceptual occlusion that results 
from the projection of a three-dimensional (3D) world onto a two-dimensional 
(2D) surface, the retina. This projection annihilates a large amount of information 
that is important for object recognition. Yet this loss of information can be com-
pensated for, at least partially, by varying the geometry of projection through 
action and using information gathered at some other time and place. Perceptual 
completion is, therefore, an active process that is critically dependent on contex-
tual knowledge and intentional behavior.

By integrating behavioral and brain-imaging data, Schwartz addresses the 
question of how the brain selects information that enables visual recognition 
within a given context. Her results demonstrate that both perceptual learning 
and selective attention may enhance the processing of object information and 
reduce that of non-object information. Contrary to the traditional view of primary 
sensory cortices as hard-wired devices, such processes are observed in the early 
visual cortex. They seem to originate from local interactions of neural mecha-
nisms as well as top-down infl uences refl ecting behavioral strategies.

Strasburger and Rentschler report that the inferiority of visual pattern recogni-
tion in indirect view is only partially explained by variations in spatial resolution 
across the visual fi eld. Assuming a lack of feature integration or structural encod-
ing on indirect view is also insuffi cient. The authors’ recent experiments on 
pattern categorization on direct and indirect view suggest that objects are repre-
sented in the brain at several levels from the sensory to the conceptual, with 
spatial attention operating at an earlier level and object selective attention at a 
later level.

Jüttner employed part-based strategies from image understanding by com-
puter to resolve the problem of structural pattern recognition in human vision. 
This approach goes beyond the application of standard neural nets or decision 
trees insofar as object attributes are not linked to patterns as wholes but to 
labeled pattern parts. The task of category learning is then to estimate what rela-
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6  I. Rentschler et al.

tions between pattern parts and their attributes best fi t human recognition per-
formance. This research strategy has provided quantitative details about the 
nature of structural representations.

Biederman contrasts feature hierarchies and structural descriptions as accounts 
of object (but not face) representations. The former types of representation are 
pixel-based in the sense that even though the pixels are mapped onto higher-level 
features, such as Gabor kernels or vertices, they can be “played back” to recover 
the pixel values. The latter may encode viewpoint-invariant geometric primitives 
derived from confi gurations of image edges (orientation and depth discontinui-
ties), and their relations. A major argument in favor of structural descriptions is 
that they can mediate object recognition that is invariant to 3D rotations, lighting 
changes, contrast reversal, and partial occlusion. Returning to Wittgenstein’s 
consideration of the nature of concepts, structural descriptions (SDs) offer an 
easy solution of how object categories that bear little visual resemblance to each 
other – such as chairs and lamps – might, nonetheless, be understood by a child. 
We can have multiple SDs per object category so that family resemblance need 
only be computed to the nearest SD, rather than all instances of that class. Recent 
evidence from neurophysiology and psychophysics supports the view that struc-
tural representations play an important role in visual object recognition.

Vuilleumier considers face recognition with the emphasis on identity and 
expression. Using brain imaging, he demonstrated that representations in the 
main brain regions associated with face recognition are neither view-invariant 
nor restricted to encode identity. Even for famous faces, invariant recognition 
involves semantic information from other brain structures, rather than “view-
independent representations” per se. Similarly, there are emotional effects in 
cortical face regions that are generated by amygdala feedback. These fi ndings 
show pars pro toto: higher brain function is the result of large-scale dynamic 
interactions of a number of neuronal populations.

2.2 Object Recognition and Attention
Thoma and Davidoff discuss and further test the performance of a hybrid model 
of visual object recognition and attention combining aspects of “view-based” 
recognition with the use of structural descriptions. Accordingly, object represen-
tations differ depending on whether objects are attended or not. “Holistic” (pixel-
based) representations are formed with and without attention allowing for rapid 
recognition under limited invariance conditions. “Analytical” (structural) repre-
sentations are built for attended objects only, permitting a larger extent of invari-
ance to changes in viewpoint or shape distortion at the expense of processing 
time.

Sogo and Osaka argue that the infl uence of saccadic compression and illusory 
perception of an object location during the perisaccadic period on shape percep-
tion would show that there is an interaction between the “what” and “where” 
pathways. Perception of natural scenes, Glass pattern, and a Kanizsa subjective 
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 An Editorial Overview  7

fi gure are affected by saccadic compression, while perception of a single object 
and an array of elements perceptually grouped in a single object are unaffected. 
Accordingly, saccadic compression originates in the “where” pathway, and thus 
seems to affect perception of object shapes through a feedforward–feedback loop 
between earlier and higher visual areas.

Saiki addresses the binding problem using multiple object permanence track-
ing designed to evaluate visual working memory. They tested whether prestored 
combinations (natural objects) or constant correspondences of shape and color 
facilitate memory for binding. Neither prior knowledge nor constant mapping 
had signifi cant effects on accuracy in task performance, suggesting that limitation 
in binding memory is not an artifact of arbitrary feature combinations. With 
natural objects, people are sensitive to changes in color–shape combination, while 
shape, color, and location independently affect performance during observation 
of geometric fi gures, suggesting possible structural differences in memory 
representations.

Deco, Stetter, and Szabo address the problem of how representations held in 
different cortical areas might be integrated to form a coherent stream of percep-
tion, cognition, and action. They introduce the principle of biased competition 
and cooperation (BCC), allowing the modeling of attentional fi ltering, where 
competition and cooperation occur within a single model brain area. The opera-
tion of BCC across two different brain areas provides a model for visual category 
learning. Deco and co-authors further show how Hebbian synaptic plasticity can 
induce increased performance in a multi-area system.

2.3 Object Recognition and Action
Wallraven and Bülthoff contend that the extraction of structural view-invariant 
primitives may be too expensive computationally for 3D object recognition. 
Motivated by their own research on how observers recognize individuals from 
sequences of faces obtained by 3D laser-scans of heads, they explore the perfor-
mance of machine recognition systems that combine an effi cient pixel-based 
approach with a feature-tracking across time series of object views. The essence 
of such strategies, both in biological and machine vision, is the coupling of data 
from sensation and action, thus implementing perception–action cycles.

Gschwind, Brettel, and Rentschler show that structure-based visual categoriza-
tion may be relatively easy for 3D objects composed of regularly shaped parts. 
However, replacing such parts by spherical parts renders categorization much 
more diffi cult. Indeed, spherical parts have ill-defi ned axes, thus lacking impor-
tant information about macro-geometric object structure. Yet observers can 
resolve the resulting ambiguities concerning 3D structure using contextual infor-
mation from prior active haptic exploration. The question of whether structural 
representations are used for visual object recognition cannot be decided, there-
fore, by analyzing image information only.
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Ashida argues the infl uence of visual motion on perceptual and visuomotor 
performances during target localization. Visual illusions due to motion-related 
positional shifts that suggest visual extrapolation for a moving target were tested. 
Findings that positional shift is more prominent in visuomotor reaching tasks 
rather than in perceptual judgments support the theory of separate visual path-
ways for perception and action.

Tanaka addresses action imitation because imitation plays a critical role in 
human cognition. During action imitation, target actions are recognized visually 
and translated into one’s own body representation, and fi nally imitated actions 
are performed using our own body. Mental representation of actions seems to 
play an important role in recognizing others’ actions. A target action presented 
by another person’s body is an object that we recognize using our own body 
representation. Findings from imaging studies showed different parietal contribu-
tions to fi nger action imitation and hand/arm action imitation.

Miyake, Onishi, and Pöppel introduce synchronization tapping to test the 
anticipatory-timing mechanism under single and dual-task. Findings indicate that 
tapping performance was affected in dual-task under an inter-stimulus interval 
of 1.5 to 3.5 s due to maintenance rehearsal involving the phonological loop of 
verbal working memory.

This collection of chapters will draw the reader’s attention to a number of 
recent developments occurring in these specifi c areas of object recognition, atten-
tion, and action in cognitive neuroscience, cognitive psychology, and cognitive 
science.
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1 Perceptual Completion

At any moment in time, the world presents us with visual information that is 
inherently incomplete. This incompleteness arises to a large extent from the 
projection of a three-dimensional (3D) world onto a two-dimensional (2D) 
surface, the retina. The projected image fails to reveal, among other things, the 
way objects and surfaces extend behind others so that they appear partly occluded. 
From the observer’s point of view anything whatsoever could be hidden behind 
an occluding object, including parts of the object itself; there is no principled way 
to derive what is there. Nonetheless we usually perceive occluded parts as having 
a determinate structure.

Occlusion is not the only problem resulting from a 2D projection of the 3D 
world. Another such problem is the size-distance invariance relation; when two 
objects project onto roughly the same area of the retina, this could mean that 
they are similar in size, but also that the larger one is further away. In principle, 
there is a continuity of possible solutions that meet the proportionality of dis-
tance and size. Yet, our visual system normally provides us with a defi nite, single, 
preferred solution.

The size-distance and occlusion problems share, it seems, an important char-
acteristic: intrinsic uncertainties are quickly and quietly resolved by our visual 
system. It has been proposed that the visual system is selectively tuned to proper-
ties such as binocular disparity, relative size, familiar size and shading patterns 
that offer cues for resolving the size-depth invariance. For completing an occluded 
image, contour extrapolations, symmetry, similarity, proximity, and good volume 
continuation or complete mergeability (Tse 1999a, b) could be proposed as 
potentially relevant static cues.
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Importantly, additional information about the 3D world is provided by the way 
the environment changes with the continuous movement of our eyes, head, and 
body (Gibson 1972). We are able to detect and anticipate the dynamic properties 
of our environment by interacting with it. Size-distance invariance is broken 
when we move towards an object, quickly revealing its proportions. Even if we 
do not actually move, we have an expectation of what will happen when we do. 
We may consider the possibility that such anticipation has a special role in how 
our visual system decides perceived object size for us. Likewise, completion 
processes may be understood as anticipation of what happens when a momentary 
occluded object is disclosed, through parallax motion or relative displacement of 
the occluded and occluding objects, for instance.

Dynamic interaction of self and environmental, however, cannot entirely undo 
the inherent uncertainty in perception. Retinal expansion of an approaching 
object could, in principle, still be understood as an effect of that object growing 
in size while remaining equidistant. Disclosure of an occluded part can be con-
sidered, alternatively, as an un-occluded object growing a new part. These 
alternative solutions are very unlikely but a non question-begging account of 
perception will have to explain why the visual system discards them. Such a 
theory is still wanting. Advances can only be made on the basis of an appropriate 
description of the problem.

In the present chapter, we will elaborate the description of perceptual 
completion. We will do so in reference to the proposal that anticipated dis-
closure plays a role in how the occluded object is perceived. Such a description 
requires that completion is an active process, infl uenced by our experiences and 
expectations in a given context (see the Chapter by M. Gschwind, H. Brettel and 
I. Rentschler, this volume). At the same time, the visual system is understood 
to operate as a hard-wired, intrinsic mechanism that leaves little room for 
expectancy, context, and suchlike. We will therefore evaluate our description 
against the backdrop of what is known about the workings of the visual cortex, 
the phenomenology of completion as well as the experimental work in the 
fi eld.

2 Genealogy of Completion

Perceptual completion is an umbrella term for all phenomena in which incom-
plete information is perceptually completed. Although the members within this 
family are related (Pessoa and de Weerd 2003), distinctions can be made based 
on the nature of the incompleteness they solve.

A particularly well-known example of perceptual completion is the fi lling-in 
of the blind spot, the retinal region from which no information can be relayed 
to the brain. This missing information is perceptually completed with the per-
ceptual properties of its surround (Lettvin 1976; Pessoa et al. 1998; Ramachan-
dran and Gregory 1991). This is a unique type of completion because it remedies 
incompleteness resulting from the wiring of the retina. In what follows we will 
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concentrate on completion that arises from the presence of objects or shapes 
in the environment. In these cases anticipated disclosure may be of greater 
importance.

2.1 Amodal and Modal Completion
There are different ways of completing missing information from the light that 
reaches the retina and “disclosure anticipation” does not play a role in all of 
them. A distinction is traditionally made between amodal and modal completion. 
Amodal completion was fi rst characterized by the observation that when a 
moving object disappears in a tube that lies on its trajectory and subsequently 
reappears, its trajectory nevertheless seems continuous and uniform. Because 
this perceptual experience is not accompanied by visual sensation of the missing 
information, it was called amodal (Michotte and Burke 1951; Michotte et al. 
1964). This observation generalizes to static images in which the presence 
of an occluded region is experienced without the sensory qualities of normal 
vision.

With modal completion, visual experiences of brightness, color or contours 
arise that are not locally supported by spectral properties of the refl ected light. 
Typical examples of these are the well-known Kanizsa fi gures, in which a set of 
arranged cut-out circles conveys the impression that there is a surface connecting 
them (see Fig. 1). Here, the completed parts are present in consciousness; their 
sensory properties, such as the increased brightness inside of the illusory bound-
ary, can be commented upon. These perceptions are, however, illusory. They 
cannot be verifi ed by other senses and are most strongly evoked by pictorial 
displays. In modal completion the visual system mistakenly treats the stimulus 
as incomplete; there is no outside source for it.

2.2 Useful and Absurd Completion
Whereas modal completion can be categorized as illusory, amodal completion is 
systematically supported by the environment. In natural environments, objects 
rarely end where they cease to be visible and therefore disclosure often follows 
momentary occlusion. The function of amodal completion may be to correctly 
anticipate this so that action can be guided accordingly.

To correctly anticipate disclosure can be an important asset for survival. It is 
therefore not surprising that amodal completion can be demonstrated in a variety 
of animals ranging from young chicks (Regolin et al. 2004; Regolin and Vallor-
tigara 1995), and rodents (Kanizsa et al. 1993) to primates (Deruelle et al. 2000; 
Fujita 2001; Yamada et al. 1993). These observations suggest that at least part of 
the ability to represent occluded objects may be hardwired as the product of 
evolution.

Perceived completions can be at odds with what we know about the world. 
Perceptual completion may give rise to very unlikely interpretations in pictorial 
displays such as the one in Figure 2 (Kanizsa and Gerbino 1982).
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Fig. 1. Modal and amodal completion. Here a triangle seems to partly occlude three 
circles and another triangle, the fi rst triangle is an example of modal completion, the other 
fi gures are amodally completed, after (Kanizsa 1955). We experience this surface as a 
region of enhanced brightness, compared to its ground. The illusory contrast produces the 
impression of a distinct, triangular shape on a darker ground. In these fi gures the com-
pleted part displays sensory attributes just like the rest of the fi gure; both are said to be 
in the same mode

Fig. 2. The power of perceptual processes in amodal completion. Despite the favorable 
context, a very unlikely scooter is seen to continue behind the occluder (from Kanizsa 
and Gerbino 1982)
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We must, therefore, be careful not to confuse the notion that the visual system 
anticipates disclosure of an object with the view that this anticipation is based 
on veridical reasoning. Kanizsa’s illustration tells us that completion can only be 
explained in terms of expectancies in a very narrow sense. The knowledge avail-
able to the visual system in anticipating a complete fi gure is limited, almost cer-
tainly excluding certain aspects of the semantics of the picture. Evolutionary 
explanations for these restrictions may involve speed constraints; perception 
needs to be fast as well as reliable. As a result, the way these solutions are 
obtained is likely to be hardwired in the architecture of the visual system.

These observations may seem to further constrain the role of experience in 
completion. The observed properties of the visual cortex, however, suggest that 
context can strongly modulate how occluded fi gures are processed (Albright 
1995; Assad and Maunsell 1995). Even early visual areas may be reconfi gured by 
experience and the current state of the perceiver (Ahissar et al. 1992; Ahissar 
and Hochstein 1993). The processing of image features on the neural level is 
sensitive to context (Albright and Stoner 2002), and so are the response proper-
ties of primary visual cortex (Lee et al. 2002). A crucial question for our under-
standing of completion, therefore, is, in what way it is sensitive to context. But 
before we turn to the process of completion a description is needed of what 
completion does.

3 Completion Creates Wholes

Partly occluded fi gures are represented as wholes (Gerbino and Salmaso 1987). 
When completion is based on an anticipation of an object, we cannot determine 
the nature of the complete object directly from the visible stimulus properties. 
Instead, we must understand it from the properties of the whole object.

The fi rst evidence for the role of whole object structure came from the effect 
of Goodness on completion (Buffart and Leeuwenberg 1981; Buffart et al. 1983). 
In a matching experiment, a geometrical shape was partly occluded and two or 
more un-occluded alternatives were presented, from which one had to be chosen. 
Participants preferred completions that were based on measures of the fi gural 
Goodness of the completed fi gure. The preference for Goodness is generally 
considered as intrinsic to the perceptual system (Leeuwenberg 1971; van der 
Helm and Leeuwenberg 1996). This squares with the notion that an innate per-
ceptual architecture can completely account for amodal completion.

3.1 Local and Global Factors
Goodness factors that may contribute to completion include symmetry, similar-
ity, proximity, and good volume continuation or complete mergeability (Tse 
1999a, b). We will distinguish between local and global factors. An example of 
a local factor is good continuation. Good continuation can be achieved by inter-
polating contours behind an occluder. This can sometimes be suffi cient to explain 
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amodal completion (Kanizsa and Gerbino 1982; Kellman and Shipley 1991; 
Shipley and Kellman 2003). Local completions of line segments, curves and edges 
can be processed in primary visual cortex as the continuation of lines at T-
junctions and grouping based on proximity of parts (Dresp and Grossberg 1997; 
Field et al. 1993; Kovacs and Julesz 1993).

Local accounts can deal with only a subset of completion phenomena. Comple-
tions can also be derived from global properties of the occluded fi gure (Buffart 
and Leeuwenberg 1981; Buffart et al. 1983; Sekuler 1994; van Lier et al. 1995). 
Global effects in occlusion are related to the Gestalt principles of symmetry and 
closure.

Global representations can also be arrived at in primary visual areas. These 
areas display sensitivity to non-local properties of the visual structure quickly 
after stimulus onset (Altmann et al. 2003; Kamitani and Shimojo 2004; Nikolaev 
and van Leeuwen 2004). Global processing may be realized through lateral inter-
actions in the visual cortex, in particular in area V2 (Peterhans and von der Heydt 
1989).

In cases such as in Figure 3, both local and global completions are possible for 
the same pattern (Buffart et al. 1983). Such occluded fi gures prime both of their 
alternative completion interpretations (van Lier et al. 1995). This result suggests 
the possibility that both alternative completions were made when the occlu-
sion was presented. To evaluate this possibility, we consider completion as a 
process.

Fig. 3. Local and global completions. The occluded fi gure on the left can have a local 
completion based on good continuation (top-right), and a global interpretation based on 
optimized symmetry (bottom-right)
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3.2 The Process of Completion

Amodal completion is a process of variable duration (Guttman et al. 2003; 
Murray et al. 2001). The smallest estimate of completion time to date is 75 ms, 
obtained in a psychophysical task in which participants judged whether a partly 
occluded square was higher than its width (Murray et al. 2001). The largest esti-
mate comes from an experiment in which participants viewed a prime (circles or 
squares) that was either occluded by another object, or shown in plain view. 
Immediately thereafter, they judged whether two simultaneously presented 
fi gures were same or different. Occluded fi gures facilitated responses to their 
whole, un-occluded counterpart only when they were presented longer than 
200 ms (Sekuler and Palmer 1992).

Two factors systematically infl uence completion time. The fi rst is the amount 
of depth cues present in the stimulus display (Bruno et al. 1997). The second is 
the size of the occluded parts; the larger occlusions take more time to be com-
pleted (Rensink and Enns 1998; Shore and Enns 1997).

Size-dependency of completion times has been confi rmed by a visual search 
study (Rauschenberger and Yantis 2001). Subjects searched for truncated fi gures 
that could lay adjacent to squares. Search for truncated fi gures would have been 
easy, had the perceiver been able to suppress their completion (He and Nakayama 
1992; Rensink and Enns 1995). This search was ineffi cient for long presentation 
times; in that case the fi gures were amodally completed. The results therefore 
suggest that the completion process is mandatory. The presentation times needed 
for this ineffi ciency to arise depended on the amount of apparent occlusion. 
When Rauschenberger and Yantis (2001) masked the search display briefl y after 
presentation, search became effi cient again. They suggested that the completion 
process did not develop far enough to preempt access to a mosaic-like interpreta-
tion of the target fi gure.

Can we distinguish stages in the process that lead to completion? Sekuler and 
Palmer (1992) only observed priming effects for whole, completed fi gures when 
the occluded prime was presented longer than 200 ms. For brief presentations 
(50 ms), however, the occluded shapes primed truncated fi gures. This result sug-
gests that there is a stage prior to completion, in which an occluded fi gure is 
transiently represented as a 2D mosaic.

The two-stage view of completion was supported by results from a shape-
discrimination task (Ringach and Shapley 1996). The existence of a mosaic stage 
cannot always be confi rmed, however. In experiments with enhanced 3D cues, 
the mosaic-stage was either absent or passed very quickly (Bruno et al. 1997). It 
may still be, however, that a mosaic representation is computed in parallel, at 
least in part, with completion. At present, the existence of a separate the mosaic-
stage is controversial (Plomp et al. 2006).

What is important for our current discussion is that multiple interpretations of 
the same fi gure can be generated. The time it takes to arrive at an interpretation 
suggests that the process goes beyond elementary visual operations; the effects 
of higher-level infl uence on primary visual areas start at approximately 100 ms 
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(Vanni et al. 2001; Zipser et al. 1996). Given the variability in completion times 
we may consider the process a fl exible and active one. This means it is leaving 
enough room for contextual modulation, in line with the description of comple-
tion as an anticipated disclosure serving future action. In the following we will 
specify in what ways amodal completion may depend on the sate of the environ-
ment and the state of the observer.

4 The Role of Context

Context may be defi ned as the temporal and spatial circumstance in which per-
ception occurs, encompassing the history of the perceiver as well as the immedi-
ately available information in the environment. The notion of context thus 
emphasizes the current state of the perceiver and its environment.

4.1 Spatial Context
Dinnerstein and Wertheimer (1957) provided an early demonstration of the role 
of spatial context on completion. In Figure 4, the surrounding context seriously 
attenuates the completion of a partly occluded square. The effect is based on the 
rivaling symmetry of the four L-shaped fi gures.

In a visual search study (Rauschenberger et al. 2004), the authors take a new 
look at some of their earlier fi ndings (Rauschenberger and Yantis 2001). In the 
earlier study the ineffi cient search for truncated shapes was attributed to manda-
tory completion that resulted in occlusion interpretations of these shapes. In that 

Fig. 4. The surrounding context can weaken amodal completion (Dinnerstein and Wert-
heimer 1957)
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study, however, the fi gures surrounding the target fi gure were compatible with 
occlusion interpretations. These surrounding non-targets may have induced 
the completion interpretations of the targets (Peterson and Hochberg 1983). 
Rauschenberger et al. (2004) demonstrated that non-targets in the search display 
do infl uence the interpretation of the targeted fi gure. In this study search for a 
partly occluded circle was impeded when the surrounding fi gures were notched 
circles, as in Figure 4. This provides evidence for the infl uence of spatial context 
on completion.

4.2 Temporal Context
The effect of temporal context is that of prior exposure. The effect of prior 
exposure on completion was demonstrated by presenting subjects with vertical 
bars of different lengths that were subsequently occluded (Joseph and Nakayama 
1999). After occlusion, the un-occluded parts of the bars could induce either 
vertical or horizontal motion. Although the occlusion displays were the same for 
short and long occluded bars, perceiver’s history affected how the bars were 
completed, resulting in differences in the perceived motion.

Temporal context may also act to override the initial interpretation of occluded 
fi gures. Stimulus confi gurations that at fi rst viewing do not give rise to amodal 
completion may do so after a congruent interpretation has been presented to 
suggest this. In this way, even disparate fragments can appear amodally com-
pleted behind an occluder (Zemel et al. 2002).

Repeated prior exposure leads to increased familiarity. We previously showed 
how familiarity affects completion (Plomp et al. 2004). In two experiments we 
measured eye movements of subjects who were engaged in a visual search for 
target fi gures that could sometimes be partly occluded. Gaze durations on these 
fi gures were taken as a measure of the time needed to complete them. The famil-
iarity of the target fi gure was found to be the factor that determined gaze dura-
tions when they were partly occluded; familiar completions were performed 
faster than unfamiliar ones. These results can be interpreted as long-term effects 
of repeated exposure on completion.

4.3 Context Affects Visual Processes
The above demonstrations leave open the question of how context effects arise 
in completion, whether they affect visual processes or post-perceptual ones. To 
answer this question we looked at the effects of prior exposure in an extended 
primed-matching paradigm (Plomp 2005). In these experiments, subjects were 
presented two primes before the test pair; one was an occluded fi gure and the 
other could be compatible or incompatible with it. These fi gures were called 
compatible when they resembled the local or global completion of the occluded 
fi gure, or a mosaic interpretation of it.

We studied the combined effect of the primes on the RT to the task. The 
results showed a super-additive interaction between the two primes; when the 
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second prime was an occluded fi gure and the fi rst one was compatible with it 
their combined effect was larger than the effect of each of the two primes sepa-
rately. This indicates that the interpretation of the second, occluded fi gure was 
biased by the preceding fi gure. All three interpretations showed such an effect, 
suggesting that both completion interpretations and the mosaic one are present 
in the completion process. The interaction between the two primes demonstrates 
the effect of prior exposure on the processing of an occlusion. The effect was 
restricted to short presentations of the occluded fi gure and was dependent on 
the temporal order of the two fi gures. The results showed that preceding context 
serves to bias possible interpretations during the process of completion. However, 
as soon as the completion process is fi nished, the representation became immune 
to the effect of prior exposure. Thus it is unlikely that post-perceptual decision 
processes are responsible for the effects of prior context.

5 Conclusions

The problem of amodal completion can be stated as how the brain arrives at an 
actable interpretation of the current 3D environment from its limited 2D projec-
tion. The interpretation not only goes beyond the available information, but 
often also beyond what can be inferred based on simple interpolation processes. 
Multiple completions of the same fi gures are made in parallel, although they may 
fi nish at different rates. The process of completion can be characterized as a 
fl exible and active one: context infl uences on this process play a role prior to 
completion, generating expectancy, during completion, facilitating certain com-
pletions, as well as afterwards, in deciding which of possible alternatives is pre-
ferred. Understanding its fl exibility will be of crucial importance if the process 
of occlusion is to be disclosed.
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1 Introduction

In everyday life, our visual system is continuously fl ooded with information from 
the environment. However, the visual system has a limited processing capacity. 
Hence, we perceive only a fraction of this information, which typically forms the 
objects of our visual experience. In other words, because of the limited processing 
resources, information or objects that are simultaneously present in the visual 
fi eld will compete for neural representation. How does our visual system select 
what is relevant to us at any given time and in any given context stands as a fun-
damental question in visual neurosciences.

In recent years, functional magnetic resonance imaging (fMRI) has proven 
very useful to study visual selection and competition in the human brain (e.g., 
Kastner and Ungerleider 2000). Here I review three fMRI studies showing that 
perceptual learning and voluntary attention can bias visual selection and modu-
late neuronal response in adult human visual cortex. By enhancing the visual 
processing of relevant information and reducing the processing of ignored stimuli, 
both learning and attention shape the landscape of our present and future visual 
experiences.

The studies reported here indicate that substantial neural plasticity may occur 
at the earliest cortical stage of visual processing, i.e., within the primary visual 
cortex (V1). More generally, these recent functional neuroimaging data indicate 
that the infl uence of learning and attention on early vision is mediated by subtle 
interactions between excitatory and inhibitory neural mechanisms. They also 
exemplify the successful integration of behavioral and brain imaging data, shed-
ding new light on the ever-changing and adaptive nature of our brains and 
minds.
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2 Perceptual Learning Modifi es Long-Term Retinotopic 
Response in Primary Visual Cortex

One fundamental property of brain systems is to adapt their functions in response 
to environmental changes. Recent neurophysiological studies in adult monkeys 
show that such experience-dependent neural changes may occur as early as in 
the primary visual cortex (V1), where single-neuron responses can be perma-
nently affected by exposure to novel visual stimuli (for reviews, see Gilbert et al. 
2001; Tsodyks and Gilbert 2004). Also suggestive of V1 contribution in visual 
learning, psychophysical improvements after visual discrimination learning in 
adult humans are often restricted to the trained stimulus confi guration, such as 
the orientation of stimulus elements, location in the visual fi eld, and training of 
the eye (Karni and Sagi 1991; Crist et al. 2001). Experience-dependent changes 
might thus take place at early processing stages in the visual system where eye-
specifi city, orientation information, and retinotopic location of visual inputs are 
mapped with the highest resolution. Based on these cellular and behavioral data, 
we designed an experiment to test for learning-related changes in V1 of adult 
humans.

Using fMRI, we measured neural activity 24 hours after participants were 
intensively trained in visual texture discrimination, when the task was performed 
with one eye and within one visual quadrant (Fig. 1c; Schwartz et al. 2002; Walker 
et al. 2005). In this task, participants were asked to determine the orientation of 
a peripheral target-texture, while simultaneously monitoring the identity of a 
central letter (Fig. 1a). Performance is known to improve only for the trained 
location and the trained eye (Karni and Sagi 1991). As targets were always pre-
sented in the upper-left visual quadrant, the corresponding response in the visual 
cortex occurred in the same retinotopic regions of visual cortex, and varied only 
as a function of the learning status of the tested eye (i.e., trained or untrained). 
We could thus directly compare brain activity associated with performing the 
task with either the trained or the untrained eye (Fig. 1b), and test for any learn-
ing-dependent changes in the BOLD (blood oxygenation level-dependent) 
response 24-hours after training.

Individual performance assessed 24-hours after training confi rmed a selective 
improvement at discriminating the peripheral target with the trained eye as 
compared to the untrained eye. Whole-brain fMRI data were analyzed using 
SPM (http://www.fi l.ion.ucl.ac.uk/spm/). At the group level, the comparison 
“trained > untrained eye” demonstrated a single region of increased activity 
located in the lower bank of the right calcarine sulcus, which corresponded pre-
cisely to the retinotopic projection of the stimulated upper left quadrant onto 
the V1 (Fig. 1d, e). There was no other signifi cant fMRI increase detected 
throughout the brain for either the same comparison or for the reverse compari-
son (untrained > trained condition).

Retinotopic increase in BOLD response 24 hours after visual learning provides 
important empirical support for recent theoretical models in which perceptual 
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Fig. 1. a Stimulus display. On each trial, participants had to identify a rotated central letter 
(L or T) and the orientation of a target-texture, i.e., three diagonal elements next to each 
otehr (horizontal texture) or on top of each other (vertical texture). b Stimuli were always 
shown in the upper left quadrant of the visual fi eld, i.e., were projected to the lower part 
of the right visual cortex both when seen with the trained eye (solid white line) or the 
untrained eye (dashed line). c Training was performed 24-hours before scanning, using one 
eye only. During scanning, 24 fi xation blocks (black), each followed by one task block of 
6 visual discrimination trials, were presented to the trained (white) and untrained (shaded) 
eye in alternation. d Increased MRI signal in the lower bank of the right calcarine sulcus 
(right lingual gyrus) in the learned condition (trained eye) as compared to the new condi-
tion (untrained eye), within the retinotopic projection of the upper-left quadrant. Group 
results superimposed onto the mean normalized anatomical brain of participants. e Group-
averaged MRI response in the right occipital peak, for the trained (solid white line) and 
untrained (dashed line) conditions, demonstrating an enhanced response for the trained 
eye as compared to the untrained eye. Adapted from Schwartz et al. (2002)
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learning favors inhibitory activity in the visual cortex in order to increase the 
discrimination of trained targets from background fl ankers (Herzog and Fahle 
1998; Tsodyks and Gilbert 2004). Furthermore, learning-dependent increases in 
V1 responsiveness to a trained visual confi guration may result from changing 
contextual infl uences exerted by stimuli outside the classical receptive fi eld 
(Gilbert et al. 2001; Grossberg and Williamson 2001; Hupe et al. 2001). In the 
present study, contextual tuning would enhance the visual segregation of contigu-
ous diagonal lines from a homogeneous background of horizontal lines (Fig. 1a). 
The recruitment of larger assemblies of interconnected neurons after learn-
ing could then produce a higher total neural response to the target-texture, 
associated with increased, regionally-specifi c BOLD response (Logothetis et al. 
2001).

In conclusion, this fi rst fMRI study provides evidence for retinotopically-
specifi c increased activity in V1 after training on a fi ne discrimination task per-
formed within one visual-quadrant. Our fi ndings thus demonstrate that perceptual 
experience may trigger lasting functional reorganization within the early visual 
cortex of adult humans (see also Furmanski et al. 2004).

However, spatial attention can also infl uence early visual responses in a reti-
notopic way (e.g., Tootell et al. 1998; Somers et al. 1999). (Note that, in the fi rst 
study reported above, all stimuli were shown within the upper-left quadrant 
for both the trained and untrained conditions, thus controlling for any effect of 
spatial attention.) Much like visual discrimination learning, attention might 
provide important constraints on the processing of visual inputs, refl ected by a 
nonhomogeneous distribution of neural activity in retinotopically-organized 
visual cortices. In the next section, we report a second study that tested whether 
attention involves an interaction between excitatory and inhibitory infl uences 
that would strengthen the processing of information at the attended location 
but suppress the processing of information from areas surrounding the focus of 
attention.

3 Attention Modulates Neural Activity for Task-Irrelevant 
Peripheral Visual Stimuli

Previous fMRI studies have shown that attention can enhance the fMRI signal 
at early cortical stages of visual processing, including the primary visual cortex 
(Tootell et al. 1998; Somers et al. 1999). Recent theories of attention suggest, 
however, that spatial attention does not only enhances processing at attended 
locations but may also selectively suppress processing at non-attended locations 
(see Lavie and Tsal 1994; Lavie 2005). Increased “attentional load” at central 
fi xation (e.g., a more diffi cult task at fi xation) would thus cause less processing 
of the peripheral fi eld (and hence less interference from distractors). High atten-
tional load for central targets might therefore lead to a reduction of neural activ-
ity triggered by unattended inputs (see Rees et al. 1997; Smith et al. 2000; Pinsk 
et al. 2004). However, the topography of selective suppression remains contro-
versial. Increased attentional load at fi xation might either produce so-called 
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“tunnel vision” (more eccentric locations being the most affected; Ikeda and 
Takeuchi 1975; Chan and Courtney 1998), or an effect of “surround suppression” 
(locations closer to the attended location being the most affected; Bahcall and 
Kowler 1999; Plainis et al. 2001), or a uniform reduction in peripheral processing 
across all eccentricities in the fi eld (Holmes et al. 1977; Williams 1984).

To formally test these hypotheses, we designed an fMRI experiment in which 
we varied attentional load (low or high load) in a central task, while presenting 
fl ickering checkerboards as task-irrelevant stimuli in the peripheral visual fi eld 
(Fig. 2a; Schwartz et al. 2004). During the main fMRI experiment, a group of 
healthy participants performed a visual detection task on a continuous rapid 
stream of colored T-shaped stimuli shown with different orientations (upright or 
upside-down) at fi xation (Fig. 2b). Participants were required to monitor for the 
occurrence of infrequent pre-specifi ed targets: during the easy/low-load condi-
tion, the targets were red Ts irrespective of their orientation; during the diffi cult/
high-load condition, the targets were any upright yellow T or upside-down green 
T (both types of conjunction targets had to be monitored throughout this task). 

a

b

c

Fig. 2. a The four visual conditions included blocks of 20 sec with fl ickering checkerboards 
presented to either the right, the left, or to both hemifi elds or none. b A rapid continuous 
stream of colored T shapes appeared at central fi xation during all conditions. In the low-
load task, participants had to detect any red shape; in the high-load task, they had to 
detect yellow upright or green inverted Ts. c Blocks with irrelevant checkerboard stimula-
tion in either hemifi eld (none, unilateral left or right, and bilateral) alternated during both 
task conditions. Adapted from Schwartz et al. (2004)
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The central target stream was shown continuously but presented either alone, or 
accompanied by peripheral fl ickering checkerboards that could appear in either 
the right, the left, or both visual fi elds, in randomly ordered blocks of 20s-
duration each (Fig. 2a, c). Importantly the central stimuli were equivalent in all 
respects across the two task conditions (Fig. 2b); only the task instructions dis-
tinguished the high-load and low-load conditions for the central task. Each task 
was performed twice during 160-sec periods, each separated by a 20-sec display 
that presented instructions for the next task (high-load or low-load; Fig. 2c).

A standard fMRI retinotopy protocol followed the visual-load experiment 
during the same scanning session (Sereno et al. 1995; DeYoe et al. 1996; Engel 
et al. 1997; Fig. 3a, b). The visual stimuli used there (wedge and annulus) covered 
the same extent of the visual fi eld that had been stimulated by the full, task-
irrelevant peripheral checkerboards in the load experiment.

As assessed behaviorally (reaction-times and hit rates), the task was indeed 
harder for the high- than the low-load condition in all participants, confi rming 
that central attentional load was successfully varied by our task assignments. The 
fMRI results for functionally-defi ned retinotopic areas mapped in 6 of the par-
ticipants (12 hemispheres) revealed a reduction of cortical activation for the 
peripheral visual stimuli during higher attentional load at central fi xation which 
occurred throughout the visual cortex (including V1) but was most pronounced 
in higher-level extrastriate areas (Fig. 3c).

We also delimited separate “eccentricity bins” for the peripheral visual fi eld 
within individual cortical areas (Fig. 3b) to test whether increased attentional 
load in the central task might differentially affect visual fi eld locations of differing 
eccentricity. Indeed, higher load in the central task produced a larger reduction 
of the response to a contralateral stimulus for voxels representing the “inner” 
(2–8˚) visual fi eld than for those representing the “outer” (8–14˚) fi eld further 
away from the attended central stream (main effect of eccentricity for low-load 
minus high-load conditions, P < 0.05 for both unilateral/contralateral and bilat-
eral stimulation but there was no eccentricity effect for ipsilateral or absent 
peripheral stimulation; Fig. 3d).

These data therefore suggest that when more attentional capacity is allocated 
at central fi xation, cortical activation for task-irrelevant peripheral stimulation is 
reduced primarily for the representation of adjacent central portions of the visual 
fi eld (consistent with “surround-suppression” proposals, see Bahcall and Kowler 
1999; Plainis et al. 2001), but less so for the more eccentric locations that are 
further away from the central stimuli. Moreover, suppressive effects of a high 
central load were larger in the presence of checkerboard stimuli in the contra-
lateral hemifi eld across all visual areas, but particularly for V1. This suggests that 
load-related reduction in early visual areas may primarily affect stimulus-driven 
responses to peripheral distractors, as predicted by research on perceptual load 
(Lavie and Tsal 1994; Lavie 2005; O’Connor et al. 2002).

While attention can modulate activity in early visual areas in a retinotopic 
manner for stimuli at attended locations (e.g., Brefczynski and DeYoe 1999; 
Gandhi et al. 1999) or even in the absence of stimuli (Kastner et al. 1999), our 
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a b

c d

Fig. 3. a Three-dimensional reconstruction of the medial occipital cortex of one partici-
pant showing voxels assigned to distinct visual areas (V1, V2, V3, ventral V4) that resulted 
from retinotopic mapping procedure (CS = calcarine sulcus; POS = parieto-occipital 
sulcus; asterisk = projection of the foveal region). b Eccentricity map for the same partici-
pant showing voxels corresponding to the inner and outer (peripheral) regions of the 
visual fi eld. c Activity in visual areas from 12 hemispheres of six participants delimited by 
the retinotopic mapping procedure. Mean MRI activity (+/− SE) for each area under low 
(light grey) and high (dark grey) task load -averaged over these conditions with checker-
boards in the contralateral hemifi eld showing a progressive effect of load from V1 to V4. 
d Effects of central load at central and more peripheral locations in the retinotopic cortex. 
Mean MRI activity (+/− SE) in the cortex representing the “inner” (∼2–8˚) or “outer” 
(∼8–14˚) parts of the central visual fi eld (pooled across all areas). During contralateral and 
bilateral stimulation, higher load reduced neural responses at inner locations more than 
at outer locations. This pattern was found in each visual area. Adapted from Schwartz 
et al. (2004)
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fi ndings fi rmly establish that attention can also affect neural activity in the visual 
cortex corresponding to stimulation at irrelevant locations. This second fMRI 
study thus provides new insight into the top-down infl uence on the processing of 
both attended and unattended visual information. The goal of the experiments 
described in the next section is to refi ne our understanding of how such atten-
tional processes at encoding might also affect subsequent memory for visual 
information.

4 Long-Term Modulation of Memory and Neural Activity 
for Previously Attended and Ignored Stimuli

While inattention to visual stimuli at the encoding phase can abolish later rec-
ognition in direct explicit tests (Rock and Guttman 1981), residual visual process-
ing still occurs without attention, as demonstrated by indirect tests such as 
repetition priming, word-stem completion, or degraded picture identifi cation 
(Parkin et al. 1990; Szymanski and MacLeod 1996; Merikle et al. 2001). Our 
previous work also demonstrated that neglect in patients with parietal damage 
and spatial-attention defi cits may exhibit delayed priming effects for objects ini-
tially presented on the affected side, even when these were not consciously 
reported at exposure nor explicitly remembered (Vuilleumier et al. 2001; Vuil-
leumier et al. 2002b). This suggests that some degree of processing can still take 
place for unattended visual objects, despite the absence of explicit memory.

Attention can selectively privilege the visual processing of some stimuli and 
suppress other, irrelevant stimuli, when these are positioned at separate spatial 
locations (see above), but also when both attended and unattended stimuli 
overlap at the same location (O’Craven et al. 1999; Rees et al. 1999). Such modu-
lation may occur at many stages along the visual pathways, including the primary 
cortex, but is typically more pronounced at higher levels (Kastner and Unger-
leider 2000; Driver and Frackowiak 2001). Conversely, it has been proposed that 
visual processing of ignored stimuli might be restricted to early perceptual stages 
in the visual system where objects are coded in a view-specifi c rather than view-
independent manner (Grill-Spector et al. 1999; Vuilleumier et al. 2002a), although 
semantic priming effects may still occur for unattended visual stimuli (Merikle 
et al. 2001).

Here we used pairs of overlapping line-drawings of objects as shown in Figure 
4a, and asked participants to selectively attend to the objects drawn in one color 
and not to those in the other color (see Vuilleumier et al. 2005; Yantis and Ser-
ences 2003). We thus created a condition where attention would select among 
stimuli presented simultaneously at the exact same retinal location. This allowed 
us to subsequently assess the fMRI signal as well as explicit and implicit memory 
traces, for both previously attended and ignored objects.

After the fi rst exposure to the overlapping objects (study phase), one group 
of participants was given a surprise memory test, in which they were shown one 
object at a time (previously attended or ignored objects, either shown in original 
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or mirror view, plus new objects; Fig. 4b). Participants were asked to judge 
explicitly whether they had already seen the object during the initial study phase 
(with the superimposed objects). Recognition was relatively good for previously 
attended objects. By contrast, explicit recognition was dramatically lower for 
previously ignored objects and did not differ from the rate of false “old” responses 
to new items (Fig. 4c).

A second group underwent the same study phase and was then tested on an 
unexpected task in which the participants had to identify visual objects from 
fragmented pictures (Snodgrass and Feenan 1990), without requiring any explicit 
judgment of whether these were old or new images compared to those shown in 
the preceding study phase. Identifi cation was signifi cantly worse for new (i.e., 
needed more complete versions of the objects) than for old objects (Fig. 4d). 
Performance was better for old objects from the previously attended stream than 
for those from the ignored stream, but critically, all previously ignored objects 
yielded better identifi cation relative to that of new objects. These behavioral tests 
therefore demonstrated complete amnesia for previously ignored items on direct 
explicit testing and reliable behavioral priming on indirect testing, indicating that 
memory traces were formed for these objects even in the absence of attention.

A third group participated in an event-related fMRI study that measured 
neural responses to previously attended or ignored objects, shown alone in the 
same or mirror-reversed orientation, intermixed with new items as before. 
Repetition-related decreases in fMRI responses (see Vuilleumier et al. 2002a) to 
previously attended objects repeated in the same orientation were found in right 
posterior fusiform, lateral occipital, and left inferior frontal cortex. More anterior 
fusiform regions showed repetition-decreases for all “old” objects, irrespective 
of attention and orientation (Fig. 4e), confi rming that ignored stimuli had attained 
relatively high-levels of visual processing during the study. In addition, previously 
ignored objects produced fMRI response-increases in bilateral lingual gyri (V1) 
relative to both previously attended and new objects (Fig. 4f), suggesting a selec-
tive effect of prior attentional suppression for these objects on the subsequent 
response in the early visual cortex (see below).

Selective attention at exposure can thus produce several distinct, long-term 
effects on visual processing of stimuli that are repeated later. Previously attended 
objects led to neural response-suppression and previously ignored objects resulted 
in some response-enhancement, both effects arising in different brain areas. 
Enhancement of previously ignored items cannot be explained by nonspecifi c 
changes from inattention in the fi rst study phase to attention during the test phase 
since other brain regions (e.g., fusiform cortex) showed repetition decreases for 
the very same items during the test phase, and entirely new items did not produce 
such effects. The repetition enhancements observed here for ignored objects 
might be related to negative priming effects such as those observed in some 
behavioral tasks. Typically, when a previously ignored object later becomes a 
target, reaction times to this “new” target are slower (Tipper 1985). Negative 
priming may arise particularly in situations when attention serves to exclude 
distractors in favor of the target (Tipper and Driver 1988) and when explicit 
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awareness of the ignored stimulus is eliminated (Tipper 2001), as this was the 
case during our study phase. Moreover, negative priming can operate even for 
novel shapes (DeSchepper and Treisman 1996), which suggests that it might be 
involved in the early stages of shape processing, in accord with the lingual sites 
where fMRI repetition-enhancements were observed for ignored objects.

5 Conclusions

In this chapter, three fMRI studies were presented. Taken together, these studies 
provide converging evidence for signifi cant functional plasticity, occurring at the 
fi rst cortical stage of visual processing in the adult human brain. While the cel-
lular mechanisms that underlie such long-term modulation of the BOLD signal 
in V1 remain largely unknown, recent theoretical models have proposed that 
perceptual learning might implicate local changes in excitatory and inhibitory 
infl uences within the visual cortex (e.g., Adini et al. 2002). Although our fi ndings 
are mostly compatible with such models, these fi ndings also attest to massive, 
top-down attentional infl uences from task-related requirements that impose sig-
nifi cant constraints on long-term plasticity in V1. Therefore, models that would 
best fi t our data need to incorporate both local infl uences within V1, and top-
down infl uences from signal control and task expectations (e.g., Herzog and 
Fahle 1998).

Fig. 4. a In the fi rst study phase, subjects saw a rapid visual stream of displays, each con-
taining two overlapping shapes, one drawn in cyan, the other in magenta (here rendered 
in black and white). The task was to monitor only stimuli of a particular color (here the 
black ones). This study-phase was equal in all the behavioral and fMRI testing. b During 
the behavioral recognition task and during fMRI, black line drawings were presented one 
at a time, including previously attended and ignored objects, half of which were shown 
with the same view as in the fi rst study part and half mirror reversed, randomly intermin-
gled with new objects. c Percentage of “old” recognition judgments for each stimulus 
condition; the results show reliable explicit memory for previously attended items, and 
amnesia for previously ignored items. d Levels of picture fragmentation at which objects 
were correctly identifi ed, showing signifi cant priming for both previously attended and 
previously ignored items, as compared with new items. e Main effects of attended < new 
objects (“repetition suppression”, irrespective of view change) found in bilateral anterior 
fusiform regions and the left intraparietal sulcus. Left: statistical SPM results overlapped 
on the mean normalized anatomical brain of participants; right: group-averaged fMRI 
response from the right anterior fusiform peak, showing repetition-decreases for both 
previously attended and ignored objects compared to new objects. f Activity in the bilat-
eral lingual areas supportive of “repetition enhancement” for ignored verus new objects. 
Left: statistical SPM results superimposed on the mean anatomical brain of participants; 
right: group-averaged fMRI response from the left lingual peak, showing selective repeti-
tion-increases for previously ignored objects, but not for previously attended or new 
objects. Adapted from Vuilleumier et al. (2005)
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Taken together, these data demonstrate an involvement of the early visual 
cortex in long-term effects of attentional selection and perceptual learning, thus 
challenging the traditional view of primary sensory cortices as hard-wired (see 
review by Fahle 2005). How permanent these neural changes are and to what 
extent they may also generalize to other stimuli or tasks, remain important ques-
tions for future research.
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1 Introduction

More than a century ago, it was shown that there is an acuity defi cit in peripheral 
vision that can be compensated for by increasing stimulus size (Aubert and 
Foerster 1857; Wertheim 1894). The corresponding size-scaling approach, or 
cortical magnifi cation concept, has accounted for much of the eccentricity varia-
tion in grating contrast sensitivity (Koenderink et al. 1978; Rovamo and Virsu 
1979) and various other measures of acuity (e.g., Levi et al. 1985; Virsu et al. 
1987). Yet this cannot be the whole truth since size-scaling fails to establish 
positional invariance for a wide range of visual tasks, like numerosity judgments 
(Parth and Rentschler 1984), discrimination of phase-modulated (Harvey et al. 
1985) and mirror-symmetric images (Rentschler and Treutwein 1985), face rec-
ognition (Hübner et al. 1985), and recognition of numeric characters (Strasburger 
and Rentschler 1996); (Strasburger et al. 1991).

To explain this discrepancy, we previously suggested that peripheral vision 
ignores pattern structure independently of scale but detects image energy in 
much the same way as foveal vision does (Rentschler and Treutwein 1985; Rent-
schler 1985). Similarly, our previous study (1996) proposed that peripheral vision 
fails to integrate pattern features. Such explanations of functional inhomogeneity 
across the visual fi eld remain somewhat vague as long as there is little known 
about the corresponding neural representation of patterns. To address that issue, 
we review two recent studies of pattern recognition in direct and indirect view, 
which used classifi cation paradigms corresponding to two meanings of the term 
pattern recognition (cf. Watanabe 1985, Chap. 1): Strasburger (2005) elaborated 
on the recognition of numeric characters, i.e., the identifi cation of patterns as 
members of already known classes. Jüttner and Rentschler (2000) investigated 
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how observers learn to assign unfamiliar grey-level patterns to previously 
unknown classes.

2 Crowding Effect in Indirect View

A conspicuous limitation of pattern recognition on indirect view is known as the 
crowding effect, where performance is impaired for test patterns that occur in 
the presence of neighbouring patterns (Strasburger et al. 1991). The effect is 
small in foveal vision (Flom et al. 1963) but dramatically reduces recognition 
performance in extrafoveal vision (Bouma 1970). In amblyopia–a loss of visual 
function due to disuse in childhood–the effect is strong in the fovea as well 
(Stuart and Burian 1962). Crowding changes during visual development but 
shows a slower time course than that for acuity (Atkinson et al. 1986) and plays 
an important, if not fully understood, role in dyslexia (Geiger and Lettvin 1986). 
Figure 1 provides a simple demonstration of the effect.

The strong infl uence of retinal eccentricity on the crowding effect can be 
explained at least partly as an effect of spatial attention (Strasburger et al. 1991; 
He et al. 1996). This has been demonstrated by Strasburger et al. using a technique 
introduced by Averbach and Coriell (1961) who found a bar pointing towards 
the target letter, but not a circle around it,  effective in directing the attention of 
observers to targets within letter strings. Thus, both spatial attention and lateral 
masking have been demonstrated. In addition, Strasburger and co-authors per-
formed an error analysis similar to that by Eriksen and Rohrbaugh (1970), for 
separating sensory and attentional infl uences on lateral masking. Strasburger et 
al. succeed in showing that localization errors, i.e., the inadvertent reporting a 
fl anker rather than the target, and failure to recognize the target character in the 
middle were equally frequent in many cases. They interpreted this result as a 
consequence of pattern recognition in the absence of positional information or 
the ability to precisely focus attention.

Fig. 1. Crowding effect. The two representations of the digit “6” are shown at the same 
contrast and distance from the fi xation target. Yet, when vision is fi xated on the dot, the 
“6” on the right is easily recognized, whereas the same “6” on the left is not
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Strasburger (2005) confi rmed and extended these fi ndings using three different 
recognition paradigms (Fig. 2). A standard crowding condition similar to that in 
Strasburger et al. (1991) was compared to a cued condition, which used a circle 
at the target position appearing just before the target, and a “content-only” 
condition, where positional information was separated from (semantic) pattern 
content. Contrast thresholds for the recognition of numeric characters (digits 0–
9) were measured using an adaptive algorithm (Harvey 1997). Characters were 
presented in white on a grey background (50 cd/m2 luminance) for 100 ms, either 
in isolation (baseline condition) or laterally fl anked by two additional digits. 
Twenty observers of both genders (aged 20–30 years) were tested under identical 
conditions. In each crowding condition, three digits (target and fl ankers) of the 
same size and contrast were used. Subjects were instructed to report the middle 
digit, and the dependent variable was the contrast threshold for recognizing the 
letter. In the fl anked condition, the target was surrounded by neighbouring digits. 
In the cued condition, a black circle was additionally exposed at the target loca-
tion with an onset of 150 ms before the target. The circle was switched off at 
target onset.

The content-only condition was established by modifying the threshold crite-
rion of the standard condition. Thresholds were determined by accepting as 
correct not only responses that identifi ed the middle target but also responses 
that identifi ed one of the fl ankers. Thus, subjects refl ected the ability to recognize 
patterns independently of their location with sustained attention focused on the 
middle target. Taken together, there were two variations relative to the standard 
fl anked condition (1): one, where spatial attention was modulated by a positional 
cue (2) and one, which separated target location and target content (3).

The magnitude of the crowding effect depends on stimulus size, character 
separation, contrast, and retinal eccentricity (Bouma 1970; Strasburger et al. 
1991; Pelli et al. 2004). Three middle-character eccentricities, namely 1˚, 2˚, and 
4˚, were used with (scaled) stimulus sizes of 0.3˚, 0.4˚, and 0.6˚, respectively. The 
size of the ring cues was scaled to 0.44˚, 0.59˚, and 0.88˚ in diameter.

Figure 3 shows the mean recognition thresholds over fl anker distances under 
conditions (1)–(3). Thresholds for the single-digit are indicated by a horizontal 
line, together with the average standard error. As expected, of all three eccentric-
ity conditions, (1) yields the highest thresholds. Crowding is absent at suffi ciently 
large fl anker distances, as seen in the top and middle graph of Figure 3, and 

Fig. 2. Stimulus layout in the fl anked and cued crowding condition. Letter size (s) is 
specifi ed as letter height in degrees of visual angle; fl anking distances (d) are measured 
from the respective character centres. e: eccentricity
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Fig. 3. Recognition contrast thresholds for the three crowding conditions as a function of 
fl anker distance, at three eccentricities on the horizontal meridian (top to bottom graph 
1˚, 2˚, and 4˚, respectively). The thresholds for the single-character presentation are shown 
as thin horizontal lines; error bars on the corresponding data point show the mean for all 
data points in that sub-graph
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gradually sets in at decreasing fl anker distance. Contrast thresholds under condi-
tion (2) are below those of condition (1) at 1˚ and 2˚ eccentricity but still clearly 
above those under the single-digit condition. Thus, the ring cue was, at these 
eccentricities, partially effective in focusing attention on the middle character. 
Reasons for the cue not being effective at 4˚ could be a circle size that was too 
small, thus introducing some masking along with attention guidance (Averbach 
and Coriell 1961). Contrast thresholds are lowest (i.e. performance best) under 
the content-only condition (Fig. 3, fi lled squares). For eccentricities of 1˚ and 2˚, 
thresholds are nearly equal to those corresponding to the single-digit condition 
(horizontal line). At 4˚ eccentricity, thresholds are elevated but still clearly below 
those of the standard fl anking condition. Thus, when the position of a character 
within a letter string was ignored, its recognition under crowding conditions was 
almost as good as that when presented in isolation.

Figure 4 shows the results of error analysis. The dependent variable “corre-
spondences” indicates how often a character, that was erroneously reported to 
be present at the target location, actually occurred as one of the fl anking char-
acters. Related chance performance (23.6%) is indicated by the dashed line in 
Figure 4. The difference between the proportion of correspondences and chance 
level can be attributed to localization errors, where observers correctly identifi ed 
a pattern but missed its location. Such errors do not occur at large fl anker dis-
tances and clearly increase with decreasing fl anker distance. At their maximum, 
observed correspondences are as high as 52% (fi lled circles), thus demonstrating 
close to 30% recognitions at the wrong location (52%–23.6% chance). The 
remaining errors (100%–52% = 48%) can be attributed to a failure in recognizing 
pattern content. The comparison of Figures 3 and 4 further shows that fl anker 
distances, below which crowding and mislocalization, respectively, take place, 
are about equal. Thus, localisation errors occur if and only if there is crowding.
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Fig. 4. Correspondences of the observers’ incorrect responses with one of the fl anking 
characters in the fl anked condition, as a function of fl anker distance. Chance level (23.6%) 
is indicated by the dashed line
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The effects of crowding conditions on contrast thresholds and on correspon-
dences were tested for statistical signifi cance using two one-way analyses of 
covariance, with crowding condition as the factor (and linearized eccentricity as 
covariate). All effects were highly signifi cant at the 1% level. Importantly, the 
correspondences are nearly equal (38.6% vs 39.1%) between the fl anked (1) 
and the fl anked-and-cued condition (2). Therefore, the cue is effective in
 improving recognition performance (as shown above under condition 2) but the 
improvement does not stem from moving attention away from the fl anking 
characters.

To summarize, at fl anker distances up to 2.5˚ (eccentricity ≤4˚), the crowding 
effect is to a large part (up to 30%) explained by imprecise coding of the target 
character’s position. Remaining errors (48%) can be attributed to insuffi cient 
coding of pattern content. A ring cue preceding the target enhances (content) 
recognition by sharpening transient spatial attention but leaves positional coding 
unaltered. Thus it appears that pattern identity and pattern location are sepa-
rately encoded.

3 Attentional Spotlight and Feature Integration

As has previously been conjectured, the visual periphery seems to have a restricted 
ability to encode spatial relations between pattern components or integrate 
pattern features (Rentschler and Treutwein 1985; Strasburger and Rentschler 
1996). Similarly, Pelli et al. (2004) characterized crowding as a process of impaired 
feature integration occurring in the visual periphery, in distinction to lateral 
masking from impaired feature detection occurring anywhere in the visual fi eld. 
Strasburger (2005) proposed that the range of feature integration is related to 
spatial attention and might refl ect the spread of attentional spotlight. Distin-
guishing sustained and transient visual attention (Nakayama and Mackeben 
1989; Mackeben 1999), the standard crowding task involves sustained attention 
since subjects were well aware in advance of where the stimulus would appear. 
The role of the ring cue in that framework was to enhance content coding by 
increasing transient attention, leaving position coding unaffected.

How does the concept of attention mediating feature integration fi t with neu-
rophysiological fi ndings? Flom et al. (1963) have shown that lateral interactions 
do also occur when target and fl ankers are presented to one eye and the other 
eye, respectively (dichoptic viewing conditions). Interactions therefore occur at 
the cortical stage. Results of dichoptic masking in the fovea and in the periphery 
support this view (Tripathy and Levi 1994). Strasburger (2005) elaborated on 
that within a concept of attention involving the spatially selective control of 
bottom-up activation through top-down connections. Selectivity was assumed to 
be mediated by retinotopically organized brain structures (cf. LaBerge 1995; 
Vidyasagar 2001). The gating itself could occur in early cortical areas or even in 
the lateral geniculate nucleus. The latter is commonly thought to subserve a 
gating function in the retino-cortical pathway. Indeed, Vidyasagar has shown 
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attentional modulation in single-cell studies as early as in V1 (see also the chapter 
by S. Schwartz, this volume).

These observations suggest that, mediated through the pulvinar and V1, brain 
regions involved in attention selectively control retinotopically organized bottom-
up activation. Owing to the function of a winner-take-all network (perhaps sub-
serving Gestalt closure and related to object-based attention), the dominant 
stimulus representation might be selectively relayed to cortical areas performing 
visual feature integration like the inferotemporal cortex (ITC, see Tanaka 1996). 
Feature integration could occur in an unintended region of the visual fi eld if the 
information encoded in the neural map is imprecise in location or spatial extent. 
In such cases, the perceived pattern would not coincide with the target. The ring 
cue, however, would seem to pre-activate the corresponding (retinotopic) loca-
tion in the map without affecting other locations.

4 Category Learning vs Discrimination Learning

To explore pattern encoding in direct and indirect view, Jüttner and Rentschler 
(1996, 2000) used a paradigm of supervised learning, where unfamiliar grey-level 
patterns (“compound Gabor signals”) are assigned to a given number of pattern 
classes. The luminance profi les of stimuli were varied through the modulation of 
phase relationships and, to some extent, amplitudes between spatial frequency 
components. Resulting classifi cation tasks therefore largely involved the distinc-
tion of pattern structure.

Two types of classifi cation tasks were compared, each involving a learning set 
of 15 patterns. Learning patterns were to be assigned to three classes having 
fi xed mean pattern vectors for identical image energy (Fig. 5). Set A, with a large 
variance in signals within each class and relatively small variance of signals 
between classes, presented participants with a diffi cult task. Set B, with a small 
variance within classes and large variance between classes, presented subjects 
with an easy task (Fig. 5a, left). Discrimination tasks involved the same stimulus 
sets used in three consecutive experiments, each requiring observers to assign 
sub sets of 10 learning signals to one of two pattern classes (Fig. 5b). Discrimina-
tion tasks thus conformed to the Delayed-Matching-to-Sample paradigm of 
behavioural research (see Miller and Desimone 1994). Three viewing conditions 
were employed: pattern exposure at the locus of fi xation (central) and fi xation 
3˚ to the left and 3˚ to the right of the pattern centre, respectively (left and right). 
Pattern size was scaled according to cortical magnifi cation (Rovamo and Virsu 
1979). Learning performance was characterized using the number of learning 
units to criterion and a computational model providing mappings of internalized 
pattern representations onto their physical counterparts (probabilistic virtual 
prototypes, PVP; Rentschler et al. 1994).

PVP solutions for discrimination learning are obtained by making use of the 
fact that “dipole confi gurations” of pairs of pattern representations can be com-
bined as in vector addition (see Jüttner and Rentschler 1996, Appendix I). Thus, 
it is demonstrated that such solutions for discrimination learning veridical1y 
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represent the physical signal confi gurations in both direct and indirect view for 
both diffi cult and easy tasks (Fig. 6, fi rst rows for sets A and B). Similar results 
are obtained for category learning with the easy stimulus set B (Fig. 6, second 
row for set B). For the diffi cult set A, however, quasi-congruence of physical 
signal confi gurations and reconstructed pattern representations is only obtained 
for stimulus exposure at the locus of fi xation (Fig. 6, set A, second row, centre). 

categorization task discrimination task

II

IIII

class I
class II
class III

ξ

η

II

III

III I

II

I

(1 x 3 classes: I-II-III) (3 x 2 classes: I-II,I-III,II-III)

set A

set B

?m

a

b

Fig. 5. a Pattern stimuli for discrimination and category learning. Stimulus sets consisted 
of 15 compound Gabor signals defi ned by a cosine waveform and its third harmonic, both 
modulated by an isotropic Gaussian aperture. The third harmonic was varied in amplitude 
b and phase ϕ. The physical signal representation used the features of evenness, η = b cos 
ϕ, and oddness, ξ = b sin ϕ. Pattern classes consisted of three clusters of fi ve samples each. 
Scale: 1 unit = 15 cd m−2. Mean pattern luminance 70 cd m−2. Right: Images corresponding 
to the mean vectors of pattern classes. b Category learning (left) involved three pattern 
classes simultaneously. Discrimination learning (right) successively involved pairs of 
pattern classes (reproduced with permission from Jüttner and Rentschler 2000)
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For off-axis stimulation, pattern representations degenerate to linear confi gura-
tions, lacking extent in the second dimension (Fig. 6, set A, second row, left and 
right). Similarly, learning duration was massively prolonged (about 8-fold) for 
category learning with the diffi cult stimulus set A under conditions of off-axis 
observation only.

These results falsify our original hypothesis according to which relational 
pattern encoding is impossible in indirect view. Instead, they indicate that struc-
ture-based discrimination and easy categorization tasks can be performed in 
indirect view provided size-scaling is applied. Yet there is an inability to perform 
diffi cult pattern classifi cation tasks by indirect view that occurs even when sam-
pling characteristics are accounted for by size-scaling.

[central]

0.0 deg-3.0 deg

[left]

3.0 deg

[right]

discrimination

discrimination

categorization

categorization

set A

set B

_
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_
e=0.15 e=0.12

_

e=0.11

e=0.07

e=0.13

e=0.13

e=0.08

e=0.15
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e=0.07

_
e=0.16 e=0.08

_

class I
class II

class III

Fig. 6. Pattern representations generated through discrimination and category learning 
in direct and indirect view. Data obtained by re-projecting “virtual” class prototypes from 
behavioural classifi cation data in physical feature space by means of probabilistic Bayesian 
classifi ers (reproduced with permission from Jüttner and Rentschler 2000)
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5 Object Selective Attention in Direct and Indirect View

Concerning the difference between discrimination learning and category learning 
in direct and indirect view, it is noteworthy that for discrimination learning it is 
suffi cient to construct in short-term memory a model of the comparison signal 
using a bottom-up process. This model is used as a template against which a 
comparison signal is matched. Supervised category learning, by contrast, requires 
activation from long-term memory of class models under the instructions of a 
“teacher”. These models are matched against input signals and modifi ed in the 
event of mismatches. The ability to activate the contents of long-term memory 
according to the requirements of current tasks is a defi ning property of working 
memory (Baddeley 1986; Fuster 2003). Within the biased-competition model 
(see the chapter by G. Deco and co-workers, this volume, and Deco and Rolls 
2004), representations of pattern categorization in working memory can be 
considered templates for object selective attention (Desimone and Duncan 
1995).

In the monkey, DMS tasks were studied by having the animal recognize a 
stimulus as being equivalent to another one presented shortly before. Neurons 
both in the inferior temporal cortex (ITC) and in the prefrontal cortex (PFC) 
may show related sample-selective delay activity (Miller and Desimone 1994; 
Miller et al. 1996). However, sample-selective delay activity in the PFC survives 
intervening irrelevant stimulus pairings, whereas in the ITC, this is not the case 
(Miller et al. 1996). Miller and co-workers therefore concluded that working 
memory is mediated through the PFC in terms of explicit representations of 
sample stimuli, whereas the ITC allows the automatic detection of stimulus rep-
etitions only.

It is tempting, therefore, to speculate that, in distinction from discrimination 
learning, human category learning relies on pattern representations in working 
memory as have been found in the PFC of the monkey by Miller and colleagues. 
Our fi ndings would then imply that memories from pattern stimulation in the 
peripheral visual fi eld are not only spatially under-sampled due to cortical mag-
nifi cation but can also be activated in working memory to a restricted extent only. 
Thus, we suggest that the restricted ability to classify complex patterns in indirect 
view refl ects a restricted capacity of object-selective attention.

6 Structured Pattern Representations in Direct and 
Indirect View

The proposal of pattern classifi cation involving the representation of class models 
in working memory warrants further consideration. Traditional approaches to 
pattern recognition are based on the notion that members of a given class share 
certain features or feature vectors. Such descriptions allow the classifi cation of 
simple isolated patterns but problems arise as pattern complexity increases and/
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or patterns are embedded in scenes. Feature vectors are then found to be inade-
quate for encoding the variability of class samples. One reason for this is that 
patterns of different classes may share common feature vectors yet be structur-
ally different (Bischof and Caelli 1997). This diffi culty led to the development of 
structural or syntactic pattern recognition that underlies more recent approaches 
to object recognition within the domain of machine intelligence (see Caelli and 
Bischof 1997). Strategies of learning structural pattern representations based on 
part attributes (unary features) and part relations (binary features) have been 
developed in that context. Moreover, such strategies have been employed suc-
cessfully for the analysis of category learning by humans (see the chapter by 
M. Jüttner, this volume).

With regard to pattern classifi cation in direct and indirect view, it is important 
to note that there are several types of part-based recognition strategies (see 
Caelli and Bischof 1997). Such strategies may use “attribute-indexed” represen-
tations only, thus ignoring the associations between features and pattern parts. 
For instance, two patterns may be distinguished by a difference in the distribu-
tions of distances between pattern parts. In case of mirror-image signals, however, 
these distributions would be identical as such patterns are characterized by the 
same sets of unary features and (undirected) binary features. The classifi cation 
of mirror-image patterns therefore requires “part-indexed” representations pro-
viding explicit associations between relational attributes and the pattern parts 
these refer to. Part-indexed representations for visual pattern recognition may 
be implemented using the attribute of “position” relative to an allocentric or 
scene-based frame of reference (Rentschler and Jüttner 2007). In general, 
part-indexed representations allow for more powerful but computationally 
more expensive strategies of structural pattern processing (Caelli and Bischof 
1997).

It might be hypothesized, therefore, that pattern recognition in indirect view 
relies on attribute-indexed representations only, whereas attribute-indexed as 
well as part-indexed representations are available in direct view. Consistent 
with this proposal would be an inability to distinguish mirror-image patterns in 
extrafoveal vision (Rentschler and Treutwein 1985; Rentschler 1985; Saarinen 
1987). It is impossible, however, to decide whether such a functional restriction 
of recognition on indirect view could be attributed to a limitation with regard 
to the access to working memory or origination at earlier stages of visual 
processing.

7 Conclusions

The size-scaling concept fails to account for the functional inferiority of periph-
eral vision in a wide range of pattern recognition tasks. We have hypothesized 
in the past that this can be explained, additional to a coarser grain, by an inability 
to properly integrate pattern features or encode structure. Here we have reviewed 
more recent fi ndings demonstrating the possibility of recruiting or learning 
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structured representations for pattern recognition in direct and indirect view. Yet 
we delimited the following shortcomings of pattern recognition on sideways 
viewing:

(1) The recognition of numerical characters in indirect view depends on 
whether digits occur in isolation or in combination with fl anking characters 
(crowding effect). The interference of distractors and spatial cueing with the 
recognition of target characters indicates separate neural encoding of semantic 
pattern content and pattern position within certain spatial arrays, possibly based 
on a limitation of spatial selective attention.

(2) Peripheral vision not only fails in distinguishing mirror-symmetric patterns 
but also in solving diffi cult tasks of structure-based pattern classifi cation. The 
latter type of functional restriction can be attributed to a limited access to 
working memory or, in other terms, of object selective attention. It is not clear, 
however, whether the diffi culty with mirror images is a consequence of this limi-
tation or originates at an earlier level of visual processing.

These fi ndings are consistent with the view that objects are represented in the 
brain at several levels from the sensory to the semantic (cf. Fuster 2003), with 
different mechanisms of attention operating at each of these levels (cf. Desimone 
and Duncan 1995).

Acknowledgements. We are indebted to Sophie Schwartz, Gustavo Deco, 
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4
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Object Recognition
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Birmingham B4 7ET, UK

1 Introduction

Approaches to object recognition that rely on structural, or part-based, descrip-
tions have a long-standing tradition in research on both computer and biological 
vision. Originally developed in the fi eld of computer graphics, Binford (1971) 
was among the fi rst to suggest that similar representations might be used by 
biological systems for object recognition. According to this author, such repre-
sentations could be based on certain three-dimensional (3D) part primitives 
termed “generalized cones”.

Marr and Nishihara’s (1978) seminal theory of recognition drew much on this 
concept. Recognizing the power of the notion of generalized cones, they pro-
posed that objects are represented as axis-based structural descriptions, where 
the axes are derived from occluding contours. A different but related approach 
to human object recognition was proposed by Biederman (1987; Hummel and 
Biederman 1992). According to the Recognition-by-Components (RBC) model 
complex objects are described as spatial arrangements of basic component parts. 
These parts come from a restricted set of basic shapes with unique contour prop-
erties that are invariant over different views. In contrast to Marr and Nishihara’s 
account, there is no need to recover an axis-based three-dimensional shape 
description. Rather an explicit representation of 3D objects can be derived 
directly from two-dimensional (2D) contour information and matched with 
stored structural models.

The structural approaches to human object recognition considered so far may 
be regarded as 1st generation part-based approaches. From the mid 1980s onwards, 
a renewed interest in structural object recognition emerged within the area of 
machine vision, stimulated mainly by a shift of attention from object recognition 
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to image understanding and scene analysis (see e.g., Shapiro and Haralick 1981; 
Fan et al. 1989). These challenges inspired the development of a new generation 
of part-based recognition schemes (e.g., Jain and Hoffman 1988; Caelli and 
Dreier 1994; Rivlin et al. 1995; Bischof and Caelli 1997; Pearce and Caelli 1999). 
Such schemes can be classifi ed as generic part-based approaches as they use the 
term “part” in a more fl exible way. Parts may be defi ned either in the 2D image 
domain or based on the 3D range data that includes depth information. Further-
more, analysis into parts is seen as a recursive concept – applicable in the initial 
segregation of a scene into object(s) and background as well as in object classifi -
cation and object identifi cation. It is this versatility that makes generic part-based 
approaches so attractive for the cognitive modelling of human performance. The 
present paper focuses on one such approach, evidence-based systems (EBS), that 
allows the development of a process model for human category learning. Its 
usefulness is demonstrated by analysing behavioural data in experiments that 
address the effects of context and of mirror-image relations in pattern category 
learning – aspects that are diffi cult to assess by traditional psychometric catego-
rization models. Finally, the principles and potential of generic part-based strate-
gies, as exemplifi ed by EBS, are related to current standard models of human 
object recognition.

2 Evidence-Based Pattern Classifi cation and 
Category Learning

The EBS approach is based on the notion that complex patterns are best encoded 
in terms of parts and their relations (Jain and Hoffman 1988; Caelli and Dreier 
1994). In an evidence-based classifi cation system, a given pattern is fi rst seg-
mented into its component parts (Fig. 1). Each part is characterized by a vector 
of part-specifi c, or unary, attributes (e.g., size, luminance, area), and each pair of 
parts is described by a vector of part-relational, or binary, attributes (e.g., dis-
tance, angles, contrast). Within each attribute space, regions that function as 
activation regions for rules are defi ned. These regions result from the distribution 
of the attribute vectors of all objects used in the database during training. Once 
triggered by an attribute vector, the activation of a given rule provides a certain 
amount of evidence for the class membership of the input object. Evidence 
weights are implicitly estimated via the weights of a three-layer neural net. Here 
each input node corresponds to a rule, each output node to a class, and there is 
one hidden layer. The relative activity of an output node provides a measure of 
the accumulated class-specifi c evidence, which can be probabilistically inter-
preted and related to a classifi cation frequency.

When used as a framework for cognitive modelling (see Jüttner et al. 1997, 
2004), EBS describes category learning as the successive testing of working 
hypotheses. Each working hypothesis corresponds to the selection of a subset of 
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attributes, which defi ne a reference system for describing parts and their rela-
tions. Once chosen, the elaboration of such a working hypothesis will include the 
formation of rules and the tuning of evidence weights. Eventually, the elabora-
tion process results in a successful categorization. Otherwise, the current working 
hypothesis is rejected and replaced by a different one.

Each subset of attended attributes may be regarded as a state within a search 
space of possible working hypotheses defi ned by the set of all combinations of 
unary and binary attributes. Learning speed is determined by the time required 
to fi nd a solution within that search space and should be directly proportional to 
NFS/N, where NFS denotes the number of EBS solutions within the search space 
and N the total numbers of states. When used as a predictor for behavioural 
learning time, any variation of the categorization task that affects learning diffi -
culty (i.e., the number of EBS solutions) should be refl ected in the observed 
learning duration, which should vary according to 1/NFS. Therefore, the set of 
attributes evaluated for rule generation can be regarded as a “signature” of the 
underlying conceptual representation.

The two key features of EBS modeling, i.e., the analysis of learning dynamics 
and the reconstruction of categorical knowledge structures, will be demonstrated 
here in two behavioural experiments addressing the impact of context on 
category representations and the role of mirror-image relations in category 
learning.

a b

Fig. 1a,b. a Processing stages and b sample illustration of the representational levels 
involved in evidence-based classifi cation. For convenience, only two unary and binary 
attributes, four rules and two classes are considered. See main text for further details. 
(From Jüttner et al. 1997, with permission)
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3 EBS Applications I: The Impact of Context on Category 
Learning and Representation

Although our perception of the world is highly adaptive to contextual informa-
tion, context has remained a relatively vague concept in vision research. Previous 
research has considered the role of context mainly with regard to visual selection 
and object recognition. With regard to the former, contextual information has 
been shown to modulate the deployment of spatial attention (Chun and Jiang 
1998) and the statistical pattern of saccadic eye movements (Morris 1994; De 
Graef 1990). At a more cognitive level, many studies have demonstrated that 
identifi cation is facilitated when an object is semantically consistent rather than 
inconsistent with the scene in which it appears (e.g., Palmer 1975; Biederman 
1981), although the level of processing at which the contextual modulation of 
perception occurs has remained controversial (see e.g., Biederman 1972; Palmer 
1975; Henderson et al. 1999).

The approaches described above all regard context as a determinant of how 
previously acquired knowledge guides the interpretation of sensory experience. 
In this study, we pursued a complementary perspective by showing that context 
also specifi cally affects learning, that is the acquisition of knowledge and the way 
in which such knowledge is mentally represented. For visual perception, such 
learning involves in particular the acquisition of object categories as the basis of 
object recognition (Rosch 1978).

In two classifi cation-learning experiments, we explored the effect of comple-
mentary manipulations of context on the internal representation of pattern 
categories. Our experimental paradigm involved the classifi cation of Com-
pound Gabor patterns (Fig. 2), which ensured that the learning process was 
entirely under experimental control, as such stimuli are unfamiliar to naive 
observers.

In Experiment 1, we compared category learning and generalization with 
respect to two different class confi gurations (Fig. 2a): a 3-class confi guration 
defi ned by three clusters of fi ve patterns each (set 1), and a 4-class confi guration 
composed of four clusters of three patterns (set 2). In the fi rst part of the experi-
ment, subjects were trained using a supervised-learning schedule to correctly 
classify all patterns of one of the two learning sets. Learning was partitioned into 
learning units and each learning unit consisted of two phases, a training phase 
and a test phase. During training, each pattern was presented three times in 
random order for 200 ms, followed by the corresponding class number displayed 
for 1 sec. During testing, each pattern was presented once in random order and 
was classifi ed by the observer. Once the subjects had reached the learning crite-
rion, they entered the second part of the experiment. Here the observers’ ability 
to recognize contrast-inverted versions of the previously learned patterns was 
assessed. Each test pattern was presented and classifi ed 30 times in random order. 
The timing parameters were the same as those used in the learning part of the 
experiment.
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a

b

Fig. 2a,b. Experiments on context effects in category learning. a For Experiment 1, two 
sets of Compound Gabor patterns were generated in a two-dimensional evenness-oddness 
Fourier space (for details see Jüttner and Rentschler 1996). Scale: 1 unit = 20 cd/m2. Set 
1 contained three clusters of fi ve samples, set 2 four clusters of three samples. Each signal 
cluster defi ned one class to be learned by the subject. The large symbols connected by 
dashed lines denote the class means or prototypes. For illustration, these class prototypes 
are depicted in their greylevel representation. b For Experiment 2, the 12 patterns of set 
2 were degraded by replacing parts of the grey levels by mean luminance. Thus, in set 3, 
all bright parts of the image were removed, in set 3, all dark parts of the image, and in 
set 5, all intermediate values. In order to assess generalization, for each learning set, a 
corresponding set of test patterns was generated by inverting the contrast polarity of the 
patterns as indicated in the inset. (From Jüttner et al. 2004, with permission)
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Two groups of fi ve subjects with normal or corrected-to-normal vision partici-
pated. Figure 3a (bright bars) and Figure 3b (left) show learning duration and 
generalization performance for the two sets of learning patterns. The data dem-
onstrated that the different learning contexts, as expressed by the two classes of 
confi gurations, had distinct effects on both performance indices. On average, the 
3-class confi guration was learned within 12 learning units, whereas the subjects 
needed about 28 learning units to learn the 4-class confi guration. For generaliza-
tion, the response rate for correctly classifying the contrast-inverted images was 
about 0.8 for set 1, and dropped to 0.45 for set 2.

In Experiment 1, we changed the context locally, i.e., for the individual pattern, 
by changing the confi guration of the learning set. In contrast, Experiment 2 

a

b

Fig. 3a,b. a EBS-simulated learning durations (1/N
FS

, where N
FS

 is the number of EBS 
solutions in the learning space, dark bars) and observed group means (bright bars) for 
learning set 1–5 in Experiments 1 and 2. b Empirical generalization performance (bright 
bars, cf. Fig. 3) and EBS attribute-generalization indices (dark bars) for set 1–5 in Experi-
ments 1 and 2
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involved a global change of context, i.e., a manipulation of context for a complete 
class confi guration. This was achieved by modifying the degree of stimulus accen-
tuation. Based on the 4-class confi guration (set 2) of Experiment 1, three further 
sets of learning patterns were generated by removing image parts via a threshold-
ing operation (Fig. 2b). With these new sets of stimuli, we trained three groups 
of subjects to criterion and tested them for their ability to generalize to contrast 
inversion.

The accentuation brought about by thresholding yielded a drastic reduction of 
learning duration, from about 28 learning units for the original signals in set 2 to 
about 4 learning units for those of set 5 (bright bars in Fig. 3a). At the same time, 
generalization to contrast inversion improved, from about 0.45 in set 2 to about 
0.95 (Fig. 3b left). Thus, the accentuated versions of the learning stimuli were 
much easier to learn and facilitated better generalization than the original 
images.

The variations of learning context introduced in Experiment 1 and Experiment 
2 yielded distinct effects on both learning and generalization performance. To 
gain further insight into the nature of the underlying mental representations, we 
modeled human performance in terms of evidence-based pattern classifi cation. 
For the simulations, we constrained the system parameters in a way that had 
proved optimal in previous work involving the same type of stimulus material 
(see Jüttner et al. 1997, 2004): The segmentation stage used a region-analysis 
technique that was based on partitioning the image according to connected grey-
level regions yielding 3–5 parts per image. The rule-generation stage employed 
a K-means clustering procedure producing a set of 10–14 rules. The classifi er was 
supplied with a reservoir of four unary attributes (position, luminance, aspect 
ration and size) and three binary attributes (distance, relative size, contrast). We 
then tested at which attribute combinations the training of the system converged, 
i.e., the system that successfully promoted the ability to distinguish between the 
classes.

The model-predicted learning durations for the fi ve sets of patterns are sum-
marized by the dark bars of Figure 3a. A comparison with the behavioural data 
(bright bars) shows that for both experiments not only was the ranking order of 
the empirical learning durations preserved in the simulated values, but also the 
ratios of learning durations were well approximated by the latter. Thus, the 
model provides a unifi ed account for context effects induced by very different 
experimental manipulations – the alteration of class confi guration (Experiment 
1) and variations of stimulus degradation (Experiment 2).

The analysis in terms of EBS also allows predictions concerning the diffi culty 
of generalizing acquired class knowledge to contrast inversion. For this purpose, 
we computed an attribute-generalization index, defi ned as the ratio of the sum 
of contrast-independent attributes and the overall sum of all attributes appearing 
in the EBS solutions. As illustrated in Figure 3b (right), the ranking of this index 
mirrors the ranking in observed generalization performance. The proportion of 
contrast-invariant attributes therefore determines how well class concepts relying 
on these attributes may be generalized to contrast inversion.
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4 EBS Applications II: Mirror-Image Relations in 
Category Learning

Visual patterns that are mirror-symmetric counterparts of each other are notori-
ously diffi cult to distinguish. Our ability to learn such distinctions to the point 
where they become almost trivial (for example, the distinction between the 
letters p and q, or “left shoe” and “right shoe”), i.e., where they attain the status 
of quasi entry levels within the categorization hierarchy, renders mirror-image 
discrimination a characteristic feature of visual expertise (Johnson and Mervis 
1997; Tanaka and Taylor 1991).

Mirror-image relations between patterns assigned to different categories may 
affect learning in two different ways: One possibility is that the skill to discrimi-
nate between left and right counterparts of mirror-image pairs is acquired via 
associative learning. This notion can be related to Gross and Bornstein’s (1978) 
hypothesis, according to which mirror images are confused because they are inter-
preted as two views of one object in three-dimensional space and therefore tend 
to be linked to the same conceptual node in memory. Alternatively, the tendency 
to confuse mirror images could arise at the level of stimulus representation as 
mirror images necessarily share the same local features and therefore produce 
similar feature descriptions. Learning to distinguish mirror-image pairs would 
imply a representational shift, during which local features, or isolated pattern 
parts, are linked to larger entities within a confi gural description where the sym-
metry relations between the two patterns can be resolved. Representational shifts 
from isolated parts to more holistic formats have been proposed as one of the 
changes that may emerge during the development of expertise in the recognition 
of faces and other objects (e.g., Farah et al. 1998; Gauthier and Tarr 2002).

The two hypotheses outlined above differ in the way in which they predict 
generalisation, or transfer, of categorical knowledge involving mirror-image rela-
tions. If such relations are mediated by associative learning mechanisms that link 
stimuli with particular conceptual nodes, then there should be little or no gener-
alization if the same patterns are paired with new labels (nodes) in a subsequent 
transfer task. In contrast, if learning of mirror-image relations is mediated by 
representational shifts at the stimulus level, then such shifts, once acquired, 
should easily transfer to novel tasks in which the same patterns are employed in 
a different categorization context. We tested these predictions in a category-
learning experiment involving a set of 12 Compound Gabor patterns that formed 
a square-like confi guration of four clusters (I–IV) of three patterns each (Fig. 
4a,b) within their defi ning Fourier feature space. Patterns of the cluster pairs I–
IV and II–III consisted of mirror images of each other, whereas those of pairs 
I–II and III–IV did not.

For the fi rst experiment, we combined the four clusters in a pairwise manner 
in two different ways that either grouped clusters containing mirror images of 
each other into different categories (condition C1, Fig. 4c left) or into the same 
category (condition C2, Fig. 4c middle). Two groups of observers were trained 
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in a supervised learning paradigm in either of these two-class conditions. Once 
they had reached the learning criterion of a perfect classifi cation they were tested 
as to the transfer of their conceptual knowledge in a second experiment, where 
subjects were trained to assign the patterns of each of the four clusters into dif-
ferent categories (condition C0, Fig. 4c right). Thus, the second experiment 
involved the same stimuli but a different categorization context.

The learning time data of both groups in the two experiments are summarised 
in Figure 5a. In Experiment 1 (Fig. 5a left), Group 1 (condition C1), which was 
required to distinguish mirror images during learning, needed an average of 26.2 
learning units to reach the learning criterion. In contrast, Group 2 (condition 
C2), which was not required to discriminate between mirror images during learn-
ing succeeded at an average of 2.75 learning units. A complementary data pattern 

a

c

b

Fig. 4a–c. Experiments on mirror-image relations in category learning. a A learning set 
of 12 iso-energy Compound Gabor patterns was generated, consisting of four clusters I–IV 
of 3 patterns each (small symbols). Note that the cluster pairs (I, IV) and (II, III) consist 
of mirror images of each other. Scale: 1 unit = 20 cd/m2. b The four cluster means (not 
part of the learning set) are illustrated by their grey-level representation. c Cluster pairs 
(condition C1 and C2, Experiment 1) or individual clusters (condition C0, Experiment 2) 
of the learning set were used to defi ne pattern categories to be learned by the subjects. 
Note that in the two-class conditions, clusters that were mirror images of each other were 
either grouped into different classes (C1) or into the same class (C2)
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a

b

c

Fig. 5a–c. a Mean learning duration (number of learning units to criterion) in Experiment 
1 (two-classes confi gurations C1 and C2) and in Experiment 2 (four-classes confi guration 
C0) for Group 1 and Group 2. b EBS-predicted relative learning durations for Experiment 
1 (two-class conditions C1 and C2, left) and for Experiment 2 (four-class condition C0, 
right) with observers being pre-trained in either C1 or C2. Note the complementary 
pattern of learning times that closely matches the behavioural data shown in (a). c Rela-
tive frequencies of unary (u.P: position, u.S: size, u.I: luminance, u.A: aspect ratio) and 
binary (b.D: distance, b.S: relative size, b.C: contrast) attributes within the EBS solutions 
for the classifi cation tasks C1 and C2. Note that the attribute position (highlighted in 
black) attains a predominant role for condition C1, which involves the discrimination of 
mirror patterns
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is found in Experiment 2 (Fig. 5a right): While Group 2 on average learned the 
patterns after 30.2 learning units, Group 1 required only 8.5 learning units to 
reach the learning criterion.

The results of Experiment 2 show that subjects who had successfully learned 
to discriminate between mirror-symmetric counterparts in Experiment 1 general-
ized this conceptual knowledge to a different categorization context involving 
the same set of stimuli. This supports the hypothesis that learning to distinguish 
between mirror images involves a representational shift towards a format in 
which mirror-image relations are easier to resolve, thus facilitating their integra-
tion within categorical knowledge structures. To explore the underlying mental 
representations, we modelled human performance using an EBS classifi er. The 
simulations followed the same procedure as outlined in section 3 and employed 
the same system parameters with regard to pattern segmentation, rule genera-
tion, and attribute reservoir.

Figure 5b (left) shows the EBS-predicted learning durations for the category 
learning tasks in Experiment 1. In agreement with the behavioural data, fast 
learning is obtained for class confi guration C2 (cf. Group 2 in Fig. 5a left), 
whereas slow learning is obtained for class confi guration C1 (cf. Group 1 in Fig. 
5a left). Figure 5b (right) plots the cross-task compatibility index 1/IFS, where IFS 
denotes the number of attribute states that allow the solution of the classifi cation 
problems with two-classes as well as that of the classifi cation problem with four 
classes (C0, cf. Fig. 4c). This index is low for the classifi cation problem C1 and 
high for C2. The latter results explain the complementary pattern observed for 
the learning duration of Group 1 and Group 2 in Experiment 2 relative to that 
in Experiment 1 (Fig. 5a).

The relative frequencies of unary and binary attributes within the sets of solu-
tions for conditions C1 and C2 are shown in Figure 5c. These histograms may be 
regarded as signatures of the underlying categorical representations as they indi-
cate the relative importance of the various attributes within the solutions of the 
respective classifi cation problems. Accordingly, the signature of C1 differs from 
that of C2 mainly in that the unary attribute position becomes predominant at 
the expense of the unary attribute size. These simulation results further corrobo-
rate the representational shift hypothesis by suggesting that the shift crucially 
implies the use of spatial (positional) information relative to an external (ego-
centric or allocentric) frame of reference. The use of such positional information 
permits the unique indexing of parts by their spatial coordinates and therefore 
indicates a qualitative difference in the internal representation of pattern catego-
ries that are acquired in tasks involving mirror-image discrimination.

5 Discussion

Evidence-based classifi ers solve a given categorization problem by constructing 
rules carrying class-specifi c evidence weights. These rules are based on non-
relational and relational attributes of object parts defi ned in the image domain. 
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Such strategies can be used to model pattern category learning and generaliza-
tion to grey-level transformations at the level of the subjects’ individual profi le 
of confusion errors (Jüttner et al. 1997). Here we extend these fi ndings by dem-
onstrating that EBS also predicts the relative diffi culty of a category-learning 
task as refl ected in learning time. Such simulations allow inferences about the 
set of attributes evaluated for rule generation, thus providing a “signature” of 
the underlying conceptual representation. This result has been achieved by fi rst 
showing how context systematically affects the internal representation of 
pattern categories (see also Jüttner et al. 2004), and then identifying attributes 
that are crucial for mirror-image discrimination. Although the experiments 
involved different sets of patterns, different classifi cation tasks and different 
types of pattern manipulation to test generalization, the simulations were based 
on the same set of system parameters. EBS therefore provides, despite its 
potentially many degrees of freedom, a parsimonious description of human 
performance.

Evidence-based classifi ers provide an explicit link between physical and inter-
nal representation, as image segmentation, attribute extraction and rule genera-
tion are entirely defi ned within the (physical) image domain. Such a representational 
format contrasts with that of standard psychometric approaches to categorization 
such as prototype models (Reed 1972), exemplar models (Medin and Schaffer 
1978; Nosofsky 1986) or General Recognition Theory (Ashby 1989). These 
models generally represent objects or patterns as single points within a multidi-
mensional psychological space, the metric of which is derived from perceived 
similarity via multidimensional scaling. A limitation of such models resides in the 
fact that mapping from physical feature space into psychological space remains 
algorithmically unspecifi ed. As a consequence, this class of models fails to explain 
the diffi culty of mirror-image discrimination because they remain tacit as to what 
makes mirror stimuli look so similar. The EBS approach solves this problem by 
relating classifi cation behaviour to a representation based on components that 
constitute physical pattern structure.

While evidence-based classifi cation adopts a more low-level perspective than 
traditional psychometric categorization models, it assumes a more high-level 
stance than physiologically inspired approaches, such as the HMAX model of 
Riesenhuber and Poggio (1999). HMAX operates directly in image space and 
consists of alternating layers of linear (S) and non-linear (C) units that perform 
a hierarchical decomposition of the input image into features defi ned by the S 
units. The C units employ a nonlinear maximum operation to pool over afferents 
tuned to different positions and scales thus achieving invariance to translation 
and size. Such decomposition could be conceived as a pre-processing front end 
to an evidence-based classifi er to detect the presence of pattern components. 
However, taken as a stand-alone model the spatial pooling performed by the C 
units makes HMAX less adequate for categorization tasks involving more 
complex stimuli, such as mirror patterns, that only differ in the position of their 
local features. Consistent with this notion, HMAX simulations yield similar con-
fusion patterns for pseudo-mirror views of depth-rotated paper clip objects as 
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observed for neurons in the inferotemporal cortex of the monkey (Riesenhuber 
and Poggio 1999).

This paper focussed on the application of part-based approaches to pattern 
categorization but such techniques also provide a promising method of reconcil-
ing divergent positions in theories of object recognition between proponents of 
geon-based models on the one side and view-based accounts on the other. In 
their original form, geon-based models (Biederman 1987; Hummel and Bieder-
man 1992) provide a framework for object recognition at the level of basic-level 
categorizations based on structural object descriptions involving non-metric, cat-
egorical relations between object components. In contrast, part-based approaches 
such as EBS capture performance in more complex tasks such as categorization 
at the subordinate level where continuous, metric relations between object com-
ponents become crucial for discrimination. However, the effective distinction of 
attribute values depends on the partitioning used to defi ne rule regions, and only 
values falling into different partitions activate different rules. When applied to 
spatial dimensions, such partitioning may result in rules that code discrete-valued, 
categorical spatial relationships such as “on top of”, i.e., categorical relations of 
the kind that form the reservoir of relational attributes in geon-based accounts. 
Furthermore, the segmentation algorithm used to extract the part-structure of 
the input image can be implemented in various ways, for example using Lapla-
cian Filters (Marr 1976) or 2D curvature operators (Zetzsche and Barth 1990). 
Given this fl exibility it is conceivable that the use of components based on non-
accidental contour properties, i.e., geons, represents a fast-track route for object 
recognition at a relatively coarse level of the categorisation hierarchy within a 
more general part-based recognition system that accommodates sophisticated 
subordinate classifi cations.

As an alternative to structural accounts, there is a wide range of so-called 
image-based models that generally assume that 3D objects are represented in 
terms of multiple, viewer-centred, two-dimensional (2D) views, among which the 
visual system interpolates if necessary. Despite this common denominator of 
viewpoint specifi city the understanding of the representational format that con-
stitutes a “view” has changed over the years, from early picture-like representa-
tions (Pinker 1984) over those involving simple features like corners or vertices 
(Poggio and Edelman 1990; Riesenhuber and Poggio 1999) to fragments in more 
recent versions (Ullman and Sali 2000; Edelman and Intrator 2000). In that sense, 
view-based accounts have become more structural, which permits linkage to the 
idea of part-based recognition.

Conversely, part-based recognition schemes allow the implementation of dif-
ferent types of representational formats, depending on whether only relations 
between adjacent parts are considered, or between all parts. Moreover, repre-
sentations generated by evidence-based systems in general are “attribute-
indexed”, i.e., such representations ignore the explicit associations between 
attributes and pattern parts. While such representations are suffi cient for the 
distinction of objects with differing part structures, these representations neces-
sarily fail in more complex classifi cation tasks, such as the discrimination of 
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mirror images, which are characterized by the same sets of unary and binary 
attributes. Here attributes need to be associated with the parts to which they 
refer. In our simulations, this association was re-established by the attribute posi-
tion, which uniquely indexes parts by their spatial coordinates. The resulting 
representations attain the additional quality of being “part-indexed” and allow 
for more powerful but computationally more expensive part-based recognition 
strategies such as graph-matching (see Bunke 2000). From a phenomenological 
perspective, part-indexed representations can be regarded as one possible real-
ization of a “holistic” format, in which pattern parts become connected to each 
other in a unique, non-interchangeable way – in contrast to attribute-indexed 
representations where this uniqueness is not guaranteed. Learning such part-
indexed object representations thus implies a shift toward a format in which 
individual parts form larger constituents akin to the notion of fragments proposed 
in more recent image-based accounts (Edelman and Intrator 2000; Ullman and 
Sali 2000).

In conclusion, generic part-based approaches provide a unifi ed framework that 
is general enough to account for recognition at various levels of categorization 
and suffi ciently fl exible to accommodate both principles of geon-based and 
image-based approaches. Indeed, there is recent evidence from behavioural 
(Hummel 2001; Foster and Gilson 2002; Stankiewicz 2002; Haywood 2003; Thoma 
et al. 2004) and neuroimaging (Vuilleumier et al. 2002) studies to suggest that 
view-invariant and view-dependent representations do co-exist in the brain with 
a relative preponderance that may depend on task, context and level of expertise. 
Such co-existence would make a single, unifi ed account for the representational 
format that underlies human object recognition appear a particularly parsimoni-
ous theoretical perspective.
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1 Introduction

Shape is the major route by which we gain knowledge about our visual world. 
All contemporary theories of shape-based object representation, e.g., Hummel 
and Biederman (1992); Riesenhuber and Poggio (2002), assume a hierarchy of 
features by which the initial Gabor-like fi ltering that is characteristic of V1 cell-
tuning is ultimately transformed through a series of stages to a point where cell 
tuning is better described by “moderately complex” features with receptive fi elds 
(r.f.s) that often cannot be analyzed into their linear components (Tanaka 1993; 
Kobatake and Tanaka 1994). These later stages are the inferior temporal cortex 
in the macaque (IT) and, in humans as determined by fMRI, likely the Lateral 
Occipital Complex (LOC). Along with the increase in r.f. nonlinearity in IT and 
LOC, the cells exhibit a high degree of invariance to changes in the conditions 
of presentation so the response is only moderately changed to variations in the 
viewing conditions. In this chapter we will review recent evidence, both behav-
ioral and neural, that shed light on the nature of these object representations.

A bit of recent history and commentary on that history. 
Theories of object recognition are often termed “controversial,” particularly 

in accounting for the effects of rotation in depth. The apparent controversy has 
been phrased in terms of whether vision is “view-based” (e.g., Poggio and 
Edelman 1990) or “invariant.” But what is the controversy? As we have noted 
previously (Biederman and Bar 2000), all accounts of vision have to be view-
based. The alternative is Extra Sensory Perception (ESP)!

The empirical issue has been defi ned in terms of whether there is a zero vs some 
cost in matching or recognition of an object when it is presented at an orientation 
in depth other that the orientation of its initial presentation. Again, all accounts 
of vision would have to say that under most circumstances there should be some 
cost. In an extreme case, one cannot know what the back of a house looks like 
from looking at its front, aside from generalization from the viewing of similar 
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houses. But what about the quite common intermediate case where some of the 
perceptual information from one view can be discerned from another? In my 1987 
Psychological Review paper, I proposed a “geon recovery principle” by which a 
similarity function could be computed, akin to Tversky’s (1977) aspects of similar-
ity measure, that was a positive function of the number of geons that were present 
in both views and a negative function of the geons that were present in view A but 
not in view B and the number of geons that were present in view B but not in view 
A. There would have to be weightings of these geons in terms of their perceptibil-
ity (resolution) due to foreshortening and self-occlusion as well as their diagnos-
ticity to the object/response class, etc. I also speculated that the same function 
might defi ne the similarity between any two objects or an intact object and a 
version missing some parts, etc. There is considerable evidence that the overlap 
in parts does predict, at least qualitatively, rotation costs (e.g., Biederman and 
Gerhardstein 1993) but a full quantitative account is still lacking. It is unfortunate, 
in my opinion, that so much ink has been spilled on attacking a position – zero 
rotation costs for all conditions of rotation – that no one ever held.

Insofar as I noted that different representations (i.e., different GSDs) could 
be required for substantially different views (Biederman 1987), what strikes me 
as particularly ironic is that I probably should be regarded as the (an?) originator 
of modern versions of view-based theories!

Wallraven and Bülthoff’s (this volume) “view-based” account assumes that the 
alternative to their position is a 3D model, of the kind proposed by Marr (1982). 
But there is no doubt that Marr, whose account of object recognition was admit-
tedly tentative, would not (indeed, cound not,) argue that one could know what 
the back of a house looked like from just seeing its front (igloos excepted). They 
ascribe to me a similar account, but as noted previously, Biederman (1987) was 
quite clear that different GSDs would be required for large differences in view-
points. What they seem to have missed is what many have been arguing now for 
20 years: Nonaccidental properties, available from a 2D image, offer an extraor-
dinarily powerful way to achieve 3D view invariance – as long as the surfaces 
that project these properties are available in the image.

2 Four Issues: Invariance, Structural Descriptions, 
Nonaccidental Properties, and Surface Features

In this section I will consider some of the outstanding issues and then later briefl y 
review research, both psychophysical and neural, relevant to these issues.

2.1 Invariance
Given that all contemporary theories posit a hierarchy of features – rather than, 
say, the direct matching of Gabor kernels – what are the issues that remain? One, 
of course, is how invariance can be achieved. An object seen at one position, ori-
entation in depth, direction of illumination, and size, can be often recognized with 
little or no cost when seen at another viewpoint where these variables can undergo 
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considerable changes in their values. The Riesenhuber and Poggio (2002) model 
achieves a degree of invariance, as does the Hummel and Biederman (1992) 
network. I will only consider invariance to rotation in depth in this chapter.

2.2 Nature of the Representation: Feature Hierarchies 
vs Structural Descriptions
As noted previously all theories posit a hierarchy of features by which Gabor-like 
units with local r.f.s are ultimately mapped unto highly non-linear units with a 
high degree of invariance. An excellent example of non-linear units can be found 
in the V4 L-vertex units discovered by Pasupathy and Connor (1999). An L 
vertex, as its name implies, is formed by the cotermination of two (non-collinear 
contours) at a common point. The V4 L-vertex units are each tuned to a particu-
lar angle (e.g., 60 deg.) and a particular orientation (e.g., with the bisector verti-
cal) of the vertex. These units are nonlinear in that they are neither activated by 
the bisector of the angle nor by a single leg of the vertex. Both legs are required. 
But is a set of features consisting of vertices and lines suffi cient for understanding 
object recognition?

Some accounts (e.g., Riesenhuber and Poggio 2002) would answer this ques-
tion in the affi rmative. Indeed, their Hmax model does an impressive job in 
assigning new object instances into previously learned object categories.

An alternative theoretical approach also assumes a feature hierarchy but maps 
the features onto a structural description (SD) (Humphreys and Riddoch 1987; 
Biederman 1987; Winston 1975). A structural description distinguishes parts and 
relations. It thereby allows reasoning about objects so that not only can the 
model determine that two images represent different objects, but how they differ. 
For example, given two objects, one with a cylinder on a brick and the other with 
a wedge on an identical brick, we can readily perceive that it is the top parts 
of the two objects that differ in shape, even if the bricks were not aligned 
horizontally.

As noted above, a major distinction between feature hierarchies and S.D.s is 
that relations are explicitly defi ned and distinguished from parts in an S.D. but 
not in a feature hierarchy. Instead the relations in a model such as Hmax are 
implicit in a 2D coordinate space. A set of features (which in a S.D. might cor-
respond to a part), might have coordinates that, if read out explicitly (as they are 
in a S.D.), could show that these features were “above,” or “larger than,” or 
“connected end-to-end” with another set of features but those labels, e.g., 
“above,” “connected end-to-end,” don’t exist in Hmax.

2.3 Nonaccidental vs Metric Properties
Geon theory is a particular instantiation of structural descriptions (i.e., geon 
structural descriptions, GSDs) (Biederman 1987; Hummel and Biederman 1992). 
GSDs place heavy reliance on nonaccidental properties (NAPs). NAPs are quali-
tative properties of (in the case of shape) orientation and depth discontinuities, 
which are largely unaffected by rotation in depth. For example, whether a contour 
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is straight or curved is unlikely to change as the object rotates in depth. In con-
trast to NAPs, much image variation is metric (MPs, for metric properties), such 
as degree of curvature or the length of a contour. Whereas small differences in 
MPs are registered with diffi culty, differences in NAPs provide a ready basis for 
distinguishing one object’s parts and relations from another (e.g., Biederman and 
Bar 1999). Neither a classifi cation of contour by NAPs nor explicit parts nor 
explicit relations are specifi ed by view-based templates or current feature hier-
archy accounts.

2.4 Surface Features vs Orientation and 
Depth Discontinuities
Still another distinction between Geon Theory and Hmax is, as noted above, that 
Geon Theory extracts the shape of an object as defi ned by its orientation and 
depth discontinuities. Hmax just takes the image as is – surface characteristics 
such as color and texture as well as the object’s shape. Thus geon theory would 
tend to minimize the differences between a photograph of an object and its line 
drawing rendition. For Hmax, this would be an enormous difference.

3 Object Reasoning

To illustrate what is meant by object reasoning, imagine performing a matching 
task in which you are to determine if two sequentially presented novel objects 
are the same or different, irrespective of their orientation in depth. Before scru-
tinizing Figure 1, please cover the objects with your hand. The fi gure illustrates 
some possible trials in which the object on the left is always S1, the fi rst object. 
The objects in the right column are possible S2s. Take a quick peek at S1. You 
probably can describe it. Now take a quick peek at the top object in the S2 
column. It should be trivially easy to respond “different.” The same would be 
true of the second object in the S2 column. Or the fourth. You might judge the 
third object to be “same,” even though the object is now rotated in depth, as is 
the wedge in the previous object. The fi rst three trials differed in at least one 
geon and the discrimination is trivially easy. The last object had the same geons 
and it looks the same as S1, despite its depth rotation. Little or no rotation costs 
would be expected with such objects.

4 Empirical Research

4.1 NAPs (Geons) vs MPs
GSDs specify both parts and relations. I will here concentrate on the NAP char-
acterization of the parts (see Biederman 1995, for a summary of the evidence 
supporting the role of simple parts in the representation mediating visual object 
recognition).
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The benefi t conferred by NAPs, documented by Biederman and Gerhardstein 
(1993), and confi rmed by Biederman and Bar (1999) is quite dramatic and is 
among the largest effects in shape recognition. This benefi t does not appear to 
depend on exposure to regular, simple artifacts that are so prevalent in environ-
ments in the developed world. Recently Nederhouser et al. (2005) reported that 
the Himba, a semi-nomadic tribe in northeastern Namibia with minimal exposure 
to developed-world artifacts, showed markedly better performance in a match-
to-sample task in matching single geons when the distractor differed in a NAP 
than an MP. In fact, the NAP advantage for the Himba was identical to that 
shown by University of Southern California undergraduates, suggesting that the 
connectivity subserving the NAP advantage develops from robust statistics that 
would hold with virtually any natural environment.

IT tuning also show greater sensitivity to differences in NAPs compared to 
MPs. Kayaert et al. (2003) showed the IT cells in the macaque modulated their 
fi ring more to a change in a NAP compared to a change in an MP when the dif-
ferences in NAPs and MPs were equated by a measure of pixel energy.

4.2 Matching Depth-Rotated Objects
Distinctive NAPs can confer an enormous benefi t in attempting to determine 
whether two bent paper clips are the same or different when they are viewed at 
different orientations in depth (Biederman and Gerhardstein 1993). These inves-
tigators substituted a different geon for each center segment of a set of 10 line 
drawings of bent paper clips. The addition of the distinctive geon dramatically 
reduced rotation costs (to 5,000/sec) from a level with error rates so high that 
RTs were, essentially, uninterpretable.

View-based template accounts, in assigning no special status to NAPs or parts, 
would require familiarity with the specifi c views of novel objects, with only a 
modest generalization gradient around a nearby view. Some (Tarr and Bülthoff 
1995) protested this demonstration, arguing that NAPs were of value only with 
a small set of known stimuli where people could anticipate a distinguishing NAP. 
That people would spontaneously exploit distinguishing NAPs was, indeed, one 
of the points that Biederman and Gerhardstein wished to make, but is familiarity 
required to get immediate viewpoint-invariance with novel objects?

Moshe Bar and I (Biederman and Bar 1999) compared directly the rotation 
costs for detecting differences in either a Metric Property (MP) or a NAP in 
a same-different sequential matching task. We used novel, rendered two-part 
objects, such as those shown in Figure 1, presented at either the same or different 
orientations-in-depth. On half the trials the objects were identical; on half 
the trials they differed in either an MP, e.g., aspect ratio, of a single part or a 
NAP, e.g., straight vs curved axis (producing a different geon) of a single 
part. The contrast of the object on the left and the third object in the right hand 
column of Figure 1 illustrates a NAP difference (straight- vs curved-axis 
cylinder). The MP variation would have been a cylinder with a different length 
(aspect ratio) or angle of attachment to the wedge. The subjects saw a given 
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stimulus sequence only once, so they could not predict whether a part would 
change, or, if there was a change, which part would change and how it would be 
changed.

How much of an MP difference is equivalent to a given NAP difference? This 
apples-and-oranges problem is critical for any principled answer to this question. 
In the Biederman and Bar (1999) experiment the MP and NAP differences were 
selected to be equally discriminable, as assessed by RTs and error rates, when 

Fig. 1. An illustration of four trials in a Same-Different matching task of two-geon novel 
objects (from Biederman 2000). The object on the left is S1, the fi rst stimulus for all four 
trials. The four objects in the right column are possible S2s. The top object differs in both 
geons; the second and third in one geon, and the bottom object is the same, but rotated 
in depth. Observers should have no trouble accurately performing same-different judg-
ments. Nor should they have any diffi culty in describing the objects and how they differ 
from each other. Only the third and fourth S2s would have been trials in the Biederman 
and Bar (1999) experiment
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the objects were at the same orientation in depth (0˚ orientation difference). The 
MP image differences were also approximately the same magnitude (actually 
slightly larger) then the NAP image differences when the images were scaled 
according to a wavelet-like similarity measure (Lades et al. 1993). Rotation 
angles that averaged 57˚ produced only a 2% increase in error rates in detecting 
the NAP differences but a 44% increase in error rates (to a level that was below 
chance) in detecting MP differences.

Rotation costs, though small, are often apparent even with distinguishing 
GSDs (Biederman and Gerhardstein 1993; Biederman and Bar 1999; Hayward 
and Tarr 1997; Tarr et al. 1997; Tarr et al. 1998). What might be producing these 
costs? It is possible, as noted by Biederman and Gerhardstein (1993), that an 
orientation-specifi c representation underlies these costs. This representation may 
be of one of two types, given current theorizing: a) an episodic representation 
that binds view information along to an invariant representation of shape, as 
detailed by Biederman and Cooper (1992), see below), that could be employed 
on some percent of the trials to mediate performance (though not necessarily 
object perception), or b) that there are viewpoint specifi c representations directly 
mediating object perception. But before the latter alternative is accepted merely 
on the basis of some costs with distinguishing GSDs present, other possible bases 
for the costs must be ruled out.

Look again at Figure 1 and consider what one would have to do to make it 
diffi cult, under rotation, to determine that the third S2 object was different from 
the fi rst and the fourth S2 object was the same. One way would be to render the 
object in such a way that it would be diffi cult to determine if the distinguishing 
geon was curved or straight. Biederman and Bar (1999), in a critical review of 
those studies reporting high rotation costs, noted that low resolution of the dis-
tinctive geon was a common characteristic in such studies. Biederman and Bar 
(1998) showed that factors that increased the discriminability of distinguishing 
geons in rendered images, such as avoiding near accidents or using increased 
exposure durations, greatly reduced rotation costs.

There is another, subtler, effect that could have contributed to the apparent 
costs of rotation in the Tarr et al. (1997, 1998); Hayward and Tarr (1997) same-
different matching studies. On rotated Same trials and all Different trials in a 
Same-Different matching task, a “difference” signal might be produced by the 
change in luminance of specifi c display positions. This signal may be related to 
Nowak and Bullier’s (1997) fi nding that marked changes – a transient – in a 
stimulus produce a signal that rapidly propagates through the ventral pathway 
all the way to frontal cortex. (Because of the intervening mask, the difference 
signal would be between S2 and an actively maintained representation of S1, as 
noted by Biederman and Bar 1999.) No difference signal would be produced 
when S1 and S2 are the same, unrotated, object in the same position. So the 
subject could readily use the absence of a difference signal to respond Same on 
unrotated (0˚) trials, artifactually lowering reaction times (RTs) on such trials 
with the consequence that the slope of the RT X Rotation Angle function would 
be increased. Biederman and Bar (1998) showed that the effect of this artifact 
in increasing rotation costs could be greatly reduced by merely shifting S2 with 
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respect to S1 on all trials, so that the difference signal was always present. The 
translation, by producing a difference signal on all trials, served to raise the RTs 
and error rates for 0˚ trials relative to rotated trials. This had the effect of greatly 
reducing the apparent costs of rotation. Biederman and Bar’s (1999) experiment, 
which found near invariance over rotation, also translated S2 with respect to S1 
on all trials.

4.3 Observations About Bent Paper Clips as 
Experimental Stimuli
Many of the studies documenting large rotation costs have employed stimuli 
resembling bent paper clips. The central motivation for devising such stimuli (and 
others of similar design) was that they would be unfamiliar, so that the learning 
of different poses could be studied. However, one must consider an obvious 
characteristic that accounts for much of the extraordinary diffi culty in classifying 
members of sets of such stimuli: The members of such sets are not distinguished 
by GSDs.

The absence of distinguishing GSDs in the standard set of bent paper clips 
means that the critical information for everyday shape recognition is absent from 
these stimuli so the relevance of such objects to normal recognition can be ques-
tioned. Some bent paper clip devotees have suggested that their stimuli are rel-
evant for subordinate-level recognition, such as the difference between different 
kinds of tables. However, a review of the vast majority of subordinate-level clas-
sifi cations that people make in their lives suggests that it is extremely rare that 
distinguishing GSDs are not available. A square table can be distinguished from 
a round table without appeal to metric information and certainly without engag-
ing in mental rotation. Biederman et al. (1999) note that NAPs of small regions, 
rather than metric templates, are specifi ed for discriminating among highly 
similar classes such as birds on the same page in the bird guides.

Think of how you would discriminate two different chairs of the same manu-
facturer’s model. Without fail, visitors to my offi ce look for a distinctive scratch 
or stain or other such nonaccidental difference, at a small scale. They never con-
sider what is readily expressed by metric templates – a template of the whole 
chair or, in selecting a small feature, those that might differ metrically (at a 
modest scale).

The objects shown in Figure 1 meet the criteria of being unfamiliar, yet in 
retaining distinctive geons they allow one to study how such information might 
be used. Although a set of paper clips lack distinctive GSDs, their projections 
often provide an accidental or near accidental characteristic that people try to 
interpret in terms of GSDs (Biederman and Gerhardstein 1993, 1995; Biederman 
and Bar 1998). For example, the bottom S2 object in Figure 2 resembles an arrow 
that would normally be produced by actual cotermination of segments but is here 
an accident of viewpoint. Biederman and Bar (1998) observed that when there 
were such qualitative differences in appearance – typically well captured by dif-
ferences in GSDs – miss rates were extremely high. When S1 and S2 were actually 
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different clips but with similar GSDs, as in the upper three S2s of Figure 2, then 
the false alarm rates were extremely high.

As rotation angles increase from 0 to 90˚, there is an increasing chance of 
changes in the qualitative characterization of such stimuli. The oft reported 
increase in matching costs with increasing rotation angles may be more a conse-
quence of an increasing chance for a change in an accidental GSD then in the 
rotation of a template. Consistent with this interpretation are the low rotation 
costs for 180˚ rotations. Such rotations often approximate mirror refl ections 
under which the GSDs are preserved.

4.4 When GSDs are Insuffi cient
There is no doubt that aspects of early cortical representation are well described 
by a 2D array of local fi lters at a variety of scales and orientations. The view 

Fig. 2. Illustration of four trials in a Same-Different matching task (from Biederman 
2000) for bent paper clips of the kind that could have been run by Edelman and Bülthoff 
(1992). Only the bottom S2 is identical to S1 (but rotated in depth)
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expressed here is that the outputs of such a representation are mapped onto 
nonaccidental classifi ers – such as units distinguishing straight from curved lines 
or various vertices produced by cotermination of end stopped activity. A vector 
representing the activity of these nonaccidental classifi ers (which, in JIM, are 
bound through correlated fi ring), in turn, activate units akin to Hummel and 
Biederman’s (1992) geon feature assemblies, representing single or pairwise 
combinations of geons and their invariant nonaccidental relations, such as: VER-
TICAL_CYLINDER_ABOVE_PERPENDICULAR_SMALLER_THAN_X. 
The output of such geon feature assemblies could readily map onto language, as 
evidenced by the manner in which people describe the objects in Figure 1, as 
well as memory structures supporting object cognition.

What if the stimulus does not have distinguishing parts and nonaccidental 
properties, as with the set of smooth blobby shapes studied by Shepard and 
Cermak (1973)? In such a case the nonaccidental classifi ers would not be differ-
entially activated to distinguish the members of the stimulus set and the observer 
would have to rely on whatever metric information distinguished the stimuli, in 
which case the similarity space would be that established by the early local, mul-
tiscale, multioriented Gabor-like fi lters (Biederman and Subramaniam 1997). It 
should also be the case that discrimination among such stimuli should be more 
diffi cult than if distinctive GSDs were available (at the same level of spatial fi lter 
similarity), show more rotation costs, be diffi cult to articulate, and not be the 
basis of natural concept distinctions.

Discrimination performance among a set of highly similar faces shows such 
characteristics (Biederman and Kalocsai 1997), as well as similar pairs of the 
Shepard and Cermak (1973) shapes (Biederman and Subramaniam 1997) and 
objects with irregular parts (Cooper et al. 1995). See Biederman (1995) for a 
review.

5 Can View-Based Accounts Incorporate Geons as a 
Unique or Diagnostic Feature?

Given my earlier point that “view-based accounts assign no special status to 
NAPs,” one can ask whether view-based theorists could regard geons as some 
kind of unique or diagnostic feature extracted from a 2D view. The answer is, 
“of course.” But there is a serious problem with an account that holds that a 
unique or diagnostic feature will be employed for recognition. How does the 
perceiver know what is unique or diagnostic the fi rst time he or she views an 
object? Consider, again, an individual seeing the nonsense object on the left side 
of Figure 1. The coding of that object would, roughly, appear to be a vertical 
cylinder on top of a wedge. That is, the object is described in terms of its simple 
parts and the relations among these parts (Tversky and Hemenway 1984). This 
type of representation, a geon structural description (GSD), may well be the 
default description that the visual system generates in the absence of explicit 
knowledge about the other to-be-discriminated objects. GSDs often convey the 
functionality – or affordances – of the object. Moreover, GSDs often readily map 
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on to verbal descriptions and allow reasoning about objects. We can readily say 
how the four objects on the right side differ from the one on the left (or from 
each other).

The important question is not whether a representation is view-based, but what 
that representation is (as, again, all representations are view-based). The phe-
nomena of: a) small rotation costs with distinctive GSDs when matching novel 
objects, b) the sizable costs in recognizing new views of objects, such as a set of 
bent paper clips, that are not distinguished by GSDs (as discussed in the next 
section), and c) the reduction in the costs in b) from learning the new views, has 
obscured the issue of representation, insofar as the nature of what was learned 
was often not considered. In allowing translational and scale feature invariance, 
the recent Riesenhuber and Poggio (2002) scheme resembles an earlier proposal 
by Bartlett Mel (1997). There is nothing in the Riesenhuber and Poggio model 
to suggest the enormous inferential leverage and invariance to rotation costs 
provided by distinctive NAPs or the difference in recognizability between recov-
erable and nonrecoverable contour deletion. These models are, essentially, 
feature lists in that they do not posit explicit structures, such as parts and rela-
tions among parts, by which objects might be represented – and described. 
Instead, different arrangements of the parts merely produce new features. A 
potential serious shortcoming of such models is that it is not clear how well they 
would do with novel objects that are to be distinguished from unknown sets of 
other objects, such as with the task illustrated in Figure 1.

6 Recent Neural Evidence for GSDs

6.1 Parts in IT
It has long been known that macaque inferior temporal (IT) neurons are highly 
shape selective and that different neurons show different shape preferences. 
Tanaka (1993) demonstrated that these preferences could be elicited quite 
strongly to features of “moderate complexity,” typically composed of one or two 
parts. This level of complexity closely matches what would be expected from 
single geons, invariant shape features, and, most frequently, geon feature assem-
blies (Hummel and Biederman 1992), in which two geons are bound in a specifi c 
relation.

What occurs in IT when a macaque views an object? Tanifuji and his associates 
(Tsunoda et al. 2001) have employed optical imaging to address this question. 
Viewing a complex object such as a fi re extinguisher does not activate the whole 
region homogenously. Instead, several “spots” of activity are apparent. This 
group then recorded the activity of individual neurons within these spots, using 
Tanaka’s (1993) reduction technique in which parts of a complex stimulus are 
removed in an effort to determine the specifi c feature(s) driving the cell. For the 
most part, neurons within a spot tended to respond to a single part of the object, 
such as the hose or the barrel, without any reduction in activity compared to their 
response to the complete object although, occasionally, the removal of parts of 
the object resulted in increased fi ring, suggesting inhibition of that neuron from 
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the removed part. A neuron responding to the curved hose cease to fi re when 
the hose was straightened consistent with a general fi nding that to a fi rst approxi-
mation, Tanaka’s (1993) and Kobatake and Tanaka’s (1994), moderately complex 
features are viewpoint invariant. Consistent with this interpretation is Esteky and 
Tanaka’s (1998) results showing that metric variation, viz., changes in aspect ratio 
that would be produced by a rotation in depth, had only a minimal effect on IT 
cell activity.

6.2 NAPs vs MPs in IT
Vogels et al. (2001) tested macaque IT (area TE) neurons with the identical set 
of two-geon stimuli used by Biederman and Bar (1999) to determine if greater 
modulation in cell activity would be produced by a change in a geon compared 
to a change in an MP (Metric Property). They found that geon changes, despite 
their smaller image changes (as assessed by wavelet similarity measures), 
produced greater modulation (up or down) in cell activity. Moreover, when 
the original objects were rotated (i.e., those without an MP or geon change), the 
modulation attributable to the rotation itself was highly correlated with the 
modulation produced by MP changes for that cell but completely independent 
of the modulation produced by the geon changes. Such a tuning pattern would 
be expected given the results of Biederman and Bar (1999) that only geon-
changed stimuli were readily discriminable from the originals under rotation.

As noted earlier, Kayaert et al. (2003) more recently replicated the Vogels et 
al. (2001) effect of greater modulation from NAP as compared to MP changes. 
They scaled the image changes by a pixel energy measure. MP image changes had 
to be approximately 50% larger than NAP changes to produce the same degree 
of modulation. Moreover, the amount of modulation produced by depth rotation 
was equivalent to the modulation produced by nonrotated MP changes when the 
two conditions were equated according to the magnitude of image change.

6.3 Recent Neural Results Supporting a Geon Account of 
Shape Representation
Three assumptions of geon theory are that the representation of parts a) tends 
to be simple, b) that the geons are a partition of the set of generalized cylinders 
based upon nonaccidental differences in the generating function by which a cross 
section is swept along an axis, and c) that the information can be derived from 
orientation and depth discontinuities of the original image. Results from recent 
single-unit studies provide strong support for these assumptions. In the Kayaert 
et al. (2005b) investigation, macaques passively viewed 2D regular (i.e., simple) 
and irregular shapes while neurons in area TE were recorded. A difference in a 
regular shape, say between a circle and a square, produced markedly more abso-
lute modulation (i.e., change in fi ring, up or down) than a change in a highly 
irregular shape, where the two types of changes were matched with respect to 
pixel similarity. If the irregular shapes differed in a NAP (viz., with round vs 
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straight contours), then the cells modulated more, suggesting that the sensitivity 
to NAPs can be witnessed even with irregular shapes.

Kayaert et al. (2005a) discovered that a population code of IT neurons repre-
sents independent dimensions of generalized cylinders. For example, a given cell 
might respond to a highly curved axis of shape independently of its taper, aspect 
ratio, or curvature of its sides. These cells were, to a great extent, tuned to one 
end of a dimension or the other, with very few cells preferring intermediate 
values. Thus a cell could respond predominantly to a highly curved axis while 
another cell would respond to a straight axis with the fi ring declining as the axis 
curvature was changed away from the maximally preferred value.

In the Kayaert et al. (2003) study demonstrating greater sensitivity of IT cells 
to NAP compared to MP changes, the preferences were unaffected by depicting 
the shapes as 3D volumes, 2D silhouettes, or line drawings. This suggests that 
the shape preferences are tuned to the orientation and depth discontinuities. 
Consistent with this result is a fi nding by Kourtzi and Kanwisher (2000) that 
adaptation of the fMRI BOLD signal when viewing a sequence of two object 
images is maintained when the image changes from a grey-level photograph to 
a line drawing of the same object. A change in the object causes a release of the 
adaptation, i.e., a larger bold signal. The lack of an effect of image variables – and 
a form of invariance – was demonstrated by Vogels and Biederman (2002) who 
showed that the preferences of IT cells to rendered 3D objects was largely main-
tained irrespective of changes in the direction of illumination, changes which 
produced large effects on the image itself.

6.4 Familiarity
There have been a number of reports of TE cell preferences refl ecting experi-
mental manipulations of familiarity (e.g., Logothetis et al. 1994; Tanaka 1996). 
There are two points to be made about such demonstrations. First, tens, if not 
hundreds, of thousands of trials are required to obtain such preferences (Logo-
thetis 1999). Second, as discussed previously, it is not unlikely that there are at 
least two functions of object recognition subserved by IT. One is to provide 
descriptions of objects, novel or familiar, such as what the reader experienced 
when fi rst viewing S1 in Figure 1. Such a system is likely well developed by late 
infancy. The second function is to provide an episodic record of the perceptual 
experience with particular objects or scenes. It is possible that the cells found in 
the training experiments are those subserving this second episodic memory func-
tion. That there may be these two representations of objects was documented by 
Biederman and Cooper (1992) who showed that the priming of object naming 
was invariant with size changes but that such changes produced considerable 
interference on episodic old-new judgments of the shape of the object (in which 
size was to be ignored). Distractors in that experiment were objects with the same 
name but a different shape. Similar results were found for changes in position 
and refl ection (Biederman and Cooper 1991) and orientation (Cooper et al. 
1992). Although the fi rst function probably supports lion’s share of human object 
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recognition, it would certainly be possible to employ the second problem to solve 
particular classifi cation tasks. If I know that a chair is on the right and a table on 
the left, a fl ash of an object on the right could lead me to infer that it was a chair 
rather than a table. Such view information could be employed whenever there 
was diffi culty in determining an object’s GSD.

Baker et al. (2002) trained macaques to classify four vertical “batons,” each 
with one shape on top and another shape on the bottom, into two classes. The 
assignment of batons to responses was such that the monkey could not use an 
individual shape to make a response (see Fig. 3). For example, one of the two 
batons assigned to the left key could have a circle on top and a square on bottom 
while the other would have a triangle on top and a star on the bottom. The two 
right batons would be one with a circle on top and a star on the bottom while the 
other had a triangle on top and a square on bottom. After about 25,000 trials cells 
in IT were found that responded to the individual baton but three times that many 
still responded to the individual shapes, irrespective of what else was assigned to 
it. These results indicate that specifi c combinations of features can be learned but 
that the dominant coding in IT seems to be the individual shape.

6.5 Structural Descriptions
Despite the common assumption of structural descriptions in cognition and their 
value in object reasoning as described previously, there has been, until recently, 
no direct evidence for them. Behrmann et al. (2006) have recently reported a 
patient with a lesion of the left LOC (approximately) who, at fi rst glance, is sensi-
tive to the shape of parts but not at all to the relations among these parts. After 

Left Response Right Response

Fig. 3. Illustration of the stimuli from the Baker et al. (2002) experiment. On each trial 
the monkeys saw one of the four batons. The two left batons were assigned to the left 
key; the two right to the right key. Note that the individual shapes and their positions (top 
or bottom), by themselves, are insuffi cient to determine the correct response. The monkey 
must process the conjunction of the two shapes. After about 28,000 training trials, cells 
in IT were found that responded to the individual batons but three times as many were 
found that responded to the individual shapes

OBJ_05.indd   84 8/14/2007   2:50:05 PM



 5. Biederman: Object Categorization  85

learning four two-geon objects he was able to determine when a geon changed 
but was completely insensitive to a change in the relations. However the patient 
presents simultagnosia so it is possible that he can only process a single geon at 
a time.

Hayworth and Biederman (2005) reported an fMRI study in which subjects 
viewed brief two-frame “fl ip movies” in which one part of a two-geon object 
cycled between two different shapes so that a cylinder on top of a brick could 
change into a pyramid and back again for several cycles. A 24-sec block of trials 
consisted of three of such geon change movies with the particular shape change 
varying between movies. In another block the geon would retain its shape but vary 
its relations, such as the cylinder moving from vertically on top of a brick to hori-
zontally to the side of the brick. The magnitude of these image changes were 
equated with respect to pixel energies and, indeed, MT was equally affected by 
the different kinds of changes. For every subject for every voxel in LOC, greater 
activity was associated with a change in part shape compared to a change in the 
relations between parts. In fact the relations condition did not lead to greater 
activity than a control condition in which the object retained its shape but merely 
rotated in depth. However a region of the intraparietal sulcus showed markedly 
greater activity to the relations condition than the part shape condition.

7 Conclusion

The evidence suggests that GSDs provide a suitable representation with which 
to understand the large body of results that have recently accumulated in the 
psychophysical study of depth-rotated objects as well as single unit and fMRI 
investigations. In addition, GSDs provide a basis for understanding the general 
problem of object perception and reasoning.
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1 Introduction

The question of how humans learn, represent and recognize objects has been one 
of the core questions in cognitive research. With the advent of the fi eld of com-
puter vision – most notably through the seminal work of David Marr – it seemed 
that the solution lay in a three-dimensional (3D) reconstruction of the environ-
ment (Marr 1982, see also one of the fi rst computer vision systems built by 
Roberts et al. 1965). The success of this approach, however, was limited both in 
terms of explaining experimental results emerging from cognitive research as 
well as in enabling computer systems to recognize objects with a performance 
similar to humans.

More specifi cally, psychophysical experiments in the early 1990s showed that 
human recognition could be better explained in terms of a view-based account, 
in which object representations consist of snapshot-like views (Bülthoff and 
Edelman 1992) instead of a full, 3D reconstruction of the object. The most 
important result of these experiments is that recognition performance is 
critically dependent on the amount of view-change between learned and 
tested object view. This stands in stark contrast to the predictions from frame-
works using 3D representations such as the often-cited Recognition-By-
Components theory (Biederman 1987) which is based on a 3D alphabet of 
basic geometrical shapes (so-called geons) and predicts a largely view-invariant 
recognition performance. To date, psychophysical and neurophysiological exper-
iments have provided further evidence for the plausibility of the view-based 
approach (see, e.g., Tarr and Bülthoff 1998; Wallis and Bülthoff 2001 for two 
recent reviews).

OBJ_06.indd   89 8/14/2007   2:50:33 PM



90  C. Wallraven and H.H. Bülthoff

In a recent paper, an attempt has been made to reconcile these two ap-
proaches to object processing (Foster and Gilson 2002): a careful study of view-
dependency of novel objects that were created by combining structural properties 
(number of parts) with metric properties (thickness, size of parts) has found that 
both view-dependent and view-independent processing seem to be combined in 
object recognition. Thus, instead of taking the extreme perspective of either 
view-based or view-invariant processing one might envisage a visual processing 
framework in which features are selected according to the current task, where 
the optimality, effi ciency and thus the dependency on viewing parameters of the 
features depend on the amount of visual experience with this particular task.

Robust extraction of structural, view-invariant features from images, however, 
has proved to be diffi cult for computer vision. Therefore, parallel to view-based 
approaches to object recognition in human psychophysics, view-based computer 
vision systems began to be developed. These sometimes surprisingly simple recog-
nition systems were based on two-dimensional representations such as histo-
grams of pixel values (Swain and Ballard 1991), local feature detectors (Schmid 
and Mohr 1997) or on pixel representations of images (Kirby and Sirovich 1990). 
The good performance of these recognition systems using complex images taken 
under natural viewing conditions can be seen as another indicator for the feasibil-
ity of a view-based approach to recognition.

To date, most theories of object recognition as well as most computer vision 
systems have mainly focused on the static domain of object recognition. Visual 
input on the retina, however, consists of dynamic changes due to object- and 
self-motion, non-rigid deformations of objects, articulated object motion as well 
as scene changes such as variations in lighting, occluding and re- and disappearing 
objects, and at any given point in time several of these changes can be interact-
ing. The central question for this chapter will thus be: To what extent do object 
recognition processes rely on dynamic information per se? Several psychophysi-
cal experiments, which will be discussed below, suggest an important role for 
dynamic information, in both learning and recognition of objects. Based on these 
fi ndings, an extension of the current object recognition framework is needed in 
order to arrive at truly spatio-temporal object representations.

In this chapter, we therefore want to explore the idea of learning and repre-
senting objects in a spatio-temporal context by developing a computational 
object recognition framework motivated by psychophysical results. Specifi cally, 
we are interested in developing a recognition framework, which can learn and 
recognize objects from natural visual input in a continuous perception-action 
cycle. In the following, we will fi rst briefl y summarize the psychophysical experi-
ments that guided the development of the recognition framework. Subsequently, 
we will present details of the framework together with results from several com-
putational recognition experiments. Finally, we will summarize experiments con-
ducted with a humanoid robot in which the framework was applied to multi-modal 
recognition of objects using proprioceptive and visual input. These experiments 
represent a fi rst step towards a closely coupled perception-action system based 
on and motivated by psychophysical research.
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2 Psychophysical Experiments

2.1 Temporal Continuity for Object Learning
To illustrate the importance of temporal context, consider a view-based object 
recognition system faced with the task of learning object representations. Input 
to this system consists of a series of views that the system acquires. The problem 
for this recognition system is how to link the many views of an object to create 
a consistent and coherent object entity; especially since these views can be very 
different from each other. One solution to this problem is the observation that 
in real life we seldom see only isolated snapshots of objects. Usually novel objects 
are explored either actively through manipulation by our hands or by walking 
around them. This results in a sequence of images that gradually change from 
the initial view of the object to a very different one within a short period of time 
– temporal contiguity. This general observation about natural visual input in a 
continuous perception-action context motivates the following question: Does the 
human visual system use temporal contiguity to build a mental representation of 
the object in order to associate views together? This temporal association hypo-
thesis was investigated in two studies (Wallis and Bülthoff 2001; Wallis 2002), 
which we briefl y review below.

Study 1 – Stimuli: Twelve faces from 3D-laser-scanned female heads were used 
as stimuli. The faces were separated into three training sets of four faces each. 
Using a technique by Blanz and Vetter (1999), 3D morph sequences between all 
possible combinations of face pairs within each set were created. A sequence 
consisted of a left profi le view (−90˚) of an original face A, a −45˚ view of morph 
A→B (the average of face A and B), a frontal view (0˚) of face B, a +45˚ view 
of morph A→B, and fi nally a right profi le (+90˚) of face A (Fig. 1). A backward 

Fig. 1. Illustration of the morph experiment. A morph sequence of two individuals (A 
and B) is shown to participants who fuse the sequence into one coherent identity due to 
the temporal continuity present in the visual input
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sequence showed the same images in reversed order. The training sequence 
consisted of a forward sequence and a backward sequence, followed by the 
forward sequence again and the backward sequence again.

Study 1 – Experimental design: Participants were divided into two groups. In 
the fi rst group, each participant was trained using sequential presentation of the 
sequences. In the second group, training used simultaneous presentation of all 
morph images shown together on the computer screen for the same total time. 
After training, the participants performed a simple image matching task in which 
they had to decide whether two subsequently shown images were different views 
of the same face or not. Half of the trials presented matches, whereas in the other 
trials half of the test face pairs belonged to the same training set (within set, WS) 
and the other half to different training sets (between set, BS). If views of objects 
are associated based on temporal contiguity, then training with sequential pre-
sentation should cause the images grouped in one training sequence to be fused 
together as views of a single object. After such training, participants in the testing 
phase would be expected to confuse faces that were linked together in a training 
sequence (WS) more often than between-faces that were not (BS). Training with 
simultaneous presentation was included to rule out the possibility that the morphs 
alone were suffi cient for the training effect, in which case an effect should appear 
after both training procedures.

Study 1 – Results: The results of the experiment confi rmed that participants 
were more likely to confuse those faces that had been associated temporally in 
a sequence (WS). Thus, participants learned to fuse arbitrary views of different 
faces into one coherent identity without any explicit training. In addition, the 
results from the second group indicated that the presence of morphs among the 
training images alone was not suffi cient to cause the association of two different 
faces with each other.

Study 2 – Stimuli and design: In a follow-up study (see Wallis 2002), the results 
were replicated using two different sets of stimuli for sequential presentation. 
The sequences here consisted of images of different faces instead of morphs thus 
further increasing the visual difference between frames. In the second experi-
ment, training sequences were created by scrambling the poses in the sequence 
such that at most two consecutive images showed a consistent and smooth rota-
tion (of 45˚). The remaining experimental parameters in the two experiments 
closely followed the design of the fi rst study for the morph group. This experi-
ment tested whether temporal association based on temporal contiguity could 
still be detected even when the spatial similarity between consecutive images was 
low.

Study 2 – Results: The main result from the fi rst experiment was that confusion 
scores in the WS condition were signifi cantly higher than those in the BS condi-
tion indicating that temporal association, indeed, is possible even with more dis-
similar sequences. However, the relative effects of temporal association on the 
two test conditions were reduced compared to that of the morphed sequences in 
the fi rst study. This is an important fi nding as it indicates that association is 
infl uenced by spatial similarity as well as temporal contiguity. In the second 
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experiment, there were no signifi cant main effects for a scrambled presentation 
of images, which destroyed the consistent rotation interpretation but otherwise 
should have left the pure temporal contiguity intact. However, over the course 
of three blocks, a signifi cant trend towards a slow dissociation between the two 
test conditions could be detected. The author interpreted this as a sign that tem-
poral association can take place under such conditions – albeit at a much slower 
rate.

2.2 General Discussion
Summarizing the two studies, one can conclude that the learning of object rep-
resentations is strongly infl uenced by the temporal properties of the visual input. 
One successful strategy of how the brain might solve the task of building consis-
tent object representations – even under considerable changes in viewing condi-
tion – seems to be to assign consecutive images to the same object. This process 
is not only infl uenced by temporal parameters but also to a signifi cant degree by 
the similarity properties of the input. Arbitrary images seem to be much harder 
to learn, suggesting a crucial infl uence of the spatial similarity of visual input. 
These fi ndings therefore are consistent with the extended concept of spatio-
temporal continuity resulting in integration of images that are below a certain 
similarity threshold and that are presented within a certain time window.

The fi ndings of these experiments as well as further psychophysical (most 
notably Stone 1999) and physiological studies (e.g., Miyashita 1988) provide 
strong evidence for an integral role of temporal characteristics of visual input in 
object representations and for their active use in learning and recognizing objects. 
However, the question remains how exactly spatial and temporal information 
can be integrated in object representations. In the next chapter, we propose a 
computational implementation, which provides such an integration as part of the 
recognition and learning procedure.

3 Computational Recognition System

3.1 The Keyframe Framework
The abstract framework shown in Figure 2 consists of several key elements. First, 
and most importantly, the system processes incoming images in a sequential 
manner in order to extract so-called keyframes, which represent an extension of 
the view-concept followed in the view-based approach. Each input frame of an 
image sequence is fi rst processed in order to extract local features (so-called 
interest points), which are then tracked across subsequent frames. Eventually, 
the changes in visual input will be too large and will lead to a loss of tracked 
features. The core idea behind the framework is that keyframes are precisely 
defi ned by that point at which tracking breaks down. If this happens, a new 
keyframe is inserted into the object representation and the process repeats. 
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Keyframes are thus two-dimensional views (snapshots) of the scene, which are 
defi ned by the temporal continuity (in close connection to the psychophysical 
experiments described in the previous section) of the visual input and form a 
connected graph of views (see Fig. 2).

Note that in this abstract form the keyframe approach resembles the concept 
of “aspect graphs” (Koenderink and van Doorn 1979), in which objects are 
defi ned by their aspects, i.e., by visual events, where a sudden change in the 
observed shape of the object occurs. Even though the rigorous mathematical 
formulations were highly appealing to the computer vision community due to 
their geometric interpretations, computational realizations of the aspect graph 
framework for arbitrary objects proved to be diffi cult. One of the core ideas, 
however, namely the representation of objects by visual events remains a power-
ful concept, which our proposed framework retains. Whereas the focus of aspect 
graphs mainly lies in representations of 3D objects by well-defi ned views, we 
want to go one step further with the keyframe concept by representing all kinds 
of dynamic visual input with the help of two-dimensional views.

Fig. 2. Abstract description of the keyframe framework. Local feature tracking is used to 
extract visual events (“keyframes”) from an image sequence, resulting in a view-based, 
connected object representation
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Furthermore, learning and recognition are not separated in our framework 
with new keyframes constantly being compared against the learned library. This 
means that the system continuously learns new data that can be used to augment 
existing object representations or form new ones. This is a crucial pre-requisite 
for any cognitive system, as it is embedded in a dynamic sensory environment 
and thus constantly receives new input that has to be evaluated and categorized 
in order to create appropriate (re-)actions.

This embedding of object learning and recognition in a temporal context is 
reminiscent of the “active vision” paradigm that was developed in the 1980s in 
computer vision (for example, Aloimonos et al. 1987). Most of the research in 
active vision was focused on how to control the optics and mechanical struc-
ture of vision sensors to simplify the processing for computer vision. Here, we 
go one step further by endowing object representations themselves with a tem-
poral component through tracking of features and the graph-like keyframe 
representation.

3.2 Properties of the Framework
As indicated in the introduction, learning and recognition of objects certainly 
seems possible using only the static dimension – one of the key questions then 
of course becomes: What – apart from psychophysical motivations – is the advan-
tage of using the temporal dimension in the framework?

Keyframes: In the most extreme case of a view-based framework, learning 
would involve storing all input images. This strategy is certainly not feasible for 
any reasonable amount of learning data due to storage constraints. In addition, 
it also represents a severe problem for recognition as the time it takes to index 
into the representation becomes prohibitively large. The question thus is: which 
views to select for learning? Here the keyframe concept provides an intuitive 
answer to that question: select the views in which an important visual event 
occurs. In order for this strategy to be successful, one needs to make the assump-
tion that the visual input is, on average, slowly changing, which, given the psy-
chophysical evidence presented above, certainly seems to be valid. Furthermore, 
the keyframes are organized in a directed graph structure, which allows for pre-
activation of frames during recognition of image sequences. If two connected 
keyframes in a row could be recognized, chances are good that the next incom-
ing keyframe will be the next node in the graph. This strategy thus dramati-
cally reduces the search time during recognition of known sequences or 
sequence-parts.

Visual features: We chose to include local features in the framework in order 
to focus on locally informative visual aspects of each frame (see Fig. 2). These 
local features consist of simple image fragments (much in the spirit of Ullman et 
al. 2002) extracted around interest points that are detected in the image at several 
scales. Whereas of course the exact nature of these features is open to further 
experimentation (for example, Krieger et al. 2000; Lowe 2004 for other ap -
proaches), already these relatively simple image fragments are effective in 
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compressing image data. In addition, the most important contribution of the 
tracking that is used to determine the keyframes is that it allows access to feature 
trajectories. In our framework, the trajectories follow features from one key-
frame to the next. The larger the visual difference between keyframes, the more 
discriminative these feature trajectories are – this is because the chances of false 
matches are reduced, the longer a feature can reliably be tracked (see also 
Tomasi and Kanade 1991). More importantly, the trajectories describe the trans-
formation of each feature from one keyframe to another and thus can be used 
to generate priors for matching feature sets. Consider, for example, a sequence 
of a rotating object for which the feature trajectories between keyframes will 
have a shape that is specifi ed by the direction of the (3D) rotation. For recogni-
tion, a matching prior can now be derived directly from the trajectories by con-
straining feature matches to that very direction. Whereas this strategy obviously 
works only for some simpler cases of object motion, it nevertheless will provide 
a much more robust feature matching. In addition, we want to stress that our 
focus on visual features and their transformations between visual events is a 
much broader concept not restricted to object motion alone. Going beyond a 
simple matching prior, this information can also be used to explicitly model 
generic object or category transformations (Graf 2002), which expands the key-
frame framework into a general learning concept for any dynamic visual data.

3.3 Computational Experiments
In the following, we will briefl y present results from computational experiments, 
in which we tested the performance of the keyframe implementation on a highly 
controlled database (for details of the implementation as well as additional 
experiments also including real-world video sequences, see Wallraven and Bül-
thoff 2001).

Stimuli: The database consisted of 60 sequences of faces taken from the MPI 
face-database (Troje and Bülthoff 1996). This database contains highly realistic 
3D laser-scans of faces and allows full control of all aspects of rendering (pose, 
lighting, shadows, scene, etc.) for benchmarking recognition algorithms. Each 
sequence showed a face turning from −90˚ (left) profi le view to +90˚ (right) profi le 
view consisting of 61 frames at pose intervals of 3 degrees. All faces were ren-
dered from a viewing distance of 1.3 m on a black background using a frontal 
point-light source. Our test sets consisted of images from the same sequences in 
addition to novel images containing pose variations of +/−15˚ (upwards and 
downwards) as well as two different illumination directions.

Keyframes: Using the local feature tracking algorithm described above, the 
system found 7 keyframes for each of the 60 sequences (Fig. 3a shows 
some example keyframes and their average poses). Furthermore, the angular 
distance between subsequent keyframes is smallest for the frontal poses 
(between keyframes 3 and 5). This is due to the fact that a rotation around the 
frontal view causes larger variations in features (such as ears disappearing and 
appearing) leading to an earlier termination of tracking. Note also that even 
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though the framework itself has no prior knowledge about the object class or 
the object motion, similar views are selected as keyframes. This is a demonstra-
tion that our framework is able to generate consistent representations provided 
the input also exhibits consistent characteristics. Finally, the representation 
of each image sequence consists of a number of keyframes containing local 
features, resulting in a signifi cant, size reduction. This is an essential property 
for any view-based system working with dynamic data since otherwise huge 
amounts of data would have to be stored. To calculate the size reduction of 
the representation, we compared the size of the fi nal sequence models to the 
raw pixel data and determined a reduction of 99.1% (7 keyframes compared 
to 61 original frames corresponds to a reduction of ∼90%; each keyframe con-
tains ∼200 local features, each of which consists of 5 × 5 pixels. Given the ori-
ginal image size of 256 × 256 pixels, this results in a reduction of ∼92% per 
keyframe).

a

b

Fig. 3. a Examples of keyframes extracted from image sequences of rotating faces. The 
bottom fi gures list the average pose in degrees found across the whole database. b Match-
ing scores for 6 “novel” faces. Note that the target face has a much higher matching score 
than the fi ve other distractors
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Recognition results: Our fi rst recognition experiment concerned a validation 
of whether the resulting keyframe representation could support recognition of 
intermediate views of the original sequences. We therefore tested all keyframe 
representations with the remaining (61 − 7) * 30 = 1620 frames not included 
in the keyframe representation, which resulted in a total recognition rate of 
100%. To illustrate the robust matching, Figure 3b shows the matching scores 
for a set of keyframes with one target image and 5 distractor images, all of which 
show the same view. First of all, one can see that the target has a much higher 
matching score than the distractors. Interestingly, the highest match score for the 
distractors is almost exclusively achieved for the correct pose. In addition, all 
curves show a consistent view-based behaviour with a fall-off around the best 
matching keyframe. Recognition rates in the second experiment testing novel 
views under pose and illumination variation were 98.6% and 89.4%, respectively. 
Although pose variation is tolerated well by the system, changes in illumination 
clearly show the limits of the simple matching scheme. Taking the amount of 
compression into account, however, we think that these results demonstrate the 
feasibility and robustness of our approach (see also Wallraven and Bülthoff 
2001).

4 Multi-Modal Keyframes

So far, the keyframe framework has been treated as a framework for recognition 
of objects in the visual modality. The general idea of spatio-temporal object 
representations, however, can of course be extended to other modalities as well. 
In the following, we will introduce such a multi-modal object representation 
combining visual with proprioceptive information, which was successfully imple-
mented on a robot-setup and subsequently tested in object learning and recogni-
tion scenarios.

Recent research in neuroscience has led to a paradigm shift from cleanly sepa-
rable processing streams for each modality towards a more integrative picture 
consisting of multi-modal object representations. Such cross-modal integration 
of data from different modalities was also shown, for example, to play an impor-
tant role for haptic and visual modalities during object recognition. In a recent 
psychophysical experiment (see Newell et al. 2001), participants had to learn 
views of four simple, 3D objects made of stacked LEGOTM bricks either through 
the haptic modality (when they were blind-folded) or through the visual modality 
(without being able to touch the objects). Testing was then done using an old-new 
recognition paradigm with four different conditions: two within-modality condi-
tions, in which participants were trained and tested in either the haptic or the 
visual domain and two between-modality conditions, in which information from 
the learned modality had to be transferred to other modalities in order to solve 
the recognition task. For each condition, in addition, either the same viewpoint 
or a viewpoint rotated 180˚ around the vertical axis was presented in order to 
test the viewpoint-dependence of object recognition.
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The recognition results for the four conditions showed fi rst of all that cross-
modal recognition occurred at levels well above chance. Not surprisingly, recog-
nition of rotated objects in the within-modality condition was severely affected 
by rotation in both modalities. This shows that not only visual recognition is 
highly view-dependent but also that haptic recognition performance is directly 
affected by different viewing parameters. One could thus extend the concept of 
view-based representations of objects also to the haptic modality. Another inter-
esting fi nding of this study is that recognition performance in the haptic-to-visual 
condition increased with rotation. The authors assumed that this was an example 
of a true cross-modal transfer effect – the reason for such a transfer lies in the 
fact that during learning the haptic information extracted by participants was 
mainly derived from the back of the object. When presented with a rotated object 
in the visual modality, this haptic information was now visible, which enabled 
easier recognition. The results from this experiment thus support the view that 
haptic recognition is also mediated by view-based processes – although the exact 
dependence on viewing angle remains to be investigated. In addition, the authors 
shed light on how information from the haptic modality can be used to enable 
easier recognition in the visual modality. Taken together with the spatio-
temporal framework outlined above, this cross-modal transfer might be an 
important reason for the excellent visual performance of human object recogni-
tion – after all, it is known that infants learn extensively by grasping and touching 
objects, which thus could provide a “database” of object representations for 
visual recognition.

4.1 Multi-Modal Keyframes – the View-Transition Map
Taking these psychophysical experiments as inspiration, we now want to describe 
how visual and proprioceptive input can be combined to create and test a multi-
modal keyframe representation.1

Let us consider a person who is examining an object by holding it in their hand 
and turning it around – the sensory information that is available in this situation 
consists of not only dynamic visual data but also dynamic haptic information. 
More specifi cally, we will focus on the proprioceptive information as a subset of 
the haptic information, which consists of the 3D confi guration of the hand (such 
as the exact confi guration of the fi ngers holding the object) as well as that of the 
wrist. How could this information be of use for learning and recognition?

First of all, proprioceptive information about the 3D confi guration of the hand 
could actually be used in a similar manner as in the psychophysical experiment 
described in the previous section. Since it is three-dimensional, it can for example 
generate a 3D viewing space in which keyframes (derived from the visual infor-

1 The multi-modal representation, as well as the experiments were developed in 
collaboration with Sajit Rao, Lorenzo Natale, and Giulio Sandini at the Dipartimento di 
Informatica, Sistemistica e Telematica at the University of Genoa.
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mation of the image sequence) can be anchored at proprioceptive coordinates. 
This would link the visual appearance from the keyframe with the hand position 
and confi guration and thus provide a proprioceptively anchored visual space. 
Returning to Figure 2, we see that one of the inherent disadvantages of the key-
frame framework is that the real-world topology of the keyframe graph is unde-
fi ned – only the outgoing and incoming links for each keyframe are known. 
Although this provides enough information to resolve recognition tasks (see 
previous section), being able to convert the viewer-centered keyframe graph into 
an object-centred keyframe graph would provide additional constraints for 
matching visual appearances since such a representation would be more closely 
integrated into a perception-action loop.

One of the problems with the idea of proprioceptive space, however, is that 
absolute coordinates in such a space make little sense from the perspective of 
recognition. Although it might be the case that objects suggest a canonical grasp 
(in much the same manner as they might suggest an affordance in the Gibsonian 
sense), usually it is possible to pick up and hold an object in a number of ways – 
all of which will change the absolute proprioceptive coordinates to which key-
frames will be attached. Our solution is to interpret the proprioceptive space in 
a similar manner as the keyframe graph: as a representation based on changes 
in its underlying modality. Thus, rather than using an absolute frame of refer-
ence, each generated keyframe could be attached to a relative change in proprio-
ceptive coordinates. One way to implement such a multi-modal representation 
is as a lookup table, in which each entry can be accessed via its relative change 
in proprioceptive space – this change can, for example, be simply the difference 
between the proprioceptive state vectors of the hand (including wrist angles, 
fi nger positions, etc.). This novel representation – which we call a view transition 
map – would for n visual keyframes consist of n(n − 1) entries for all possible 
proprioceptive transitions between keyframes.

How could one use this view-transition map to recognize objects? First of all, 
a keyframe representation of an object is learned in an active exploration stage 
using a pre-learned motor program, which for example grasps an object and turns 
it around. Each new keyframe is entered into the transition map at a position 
specifi ed by the relative change in proprioceptive state from the previous key-
frame. In addition, the transition map is enlarged by adding transitions from this 
keyframe to all previous ones. In a second step, a test object is picked up and 
keyframes are extracted again while the same motor program is executed. In 
order to recognize this object using the transition map, the fi rst keyframe that 
was generated from the test sequence is matched against all of the keyframes of 
the training sequence using visual similarity (in our implementation, similarity 
consisted of simple Euclidean distance – using local feature matching would 
further increase the robustness of the system). Once this match has been estab-
lished, the transition map can be used to quickly fi nd neighboring keyframes by 
looking for the most similar proprioceptive transition from the keyframe that 
matches the current change in the proprioceptive state. With this strategy one 
could expect to recognize objects in a much more effi cient manner as indexing 
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proprioceptive transitions allows for direct matches in an object-centered refer-
ence frame.

4.2 Computational Recognition Experiment
The proposed view transition map representation was tested in a computational 
experiment in which we explored its use for object recognition.

Experimental setup: Figure 4a shows the robot setup from the Dipartimento 
di Informatica, Sistemistica e Telematica at the University of Genoa that was 
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Fig. 4. a The robot setup (Metta et al. 2000) that was used in the multi-modal keyframe 
experiments b the objects used in the learning and recognition experiments. c–f Example 
results from the object recognition experiment showing the increase in discriminability 
when using multi-modal representations. The bright bars show matching using the view 
transition map, the dark bars show visual matching only
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used in this experiment (Metta et al. 2000). The important components of the 
setup for this experiment consist of an actively foveating stereo camera head 
(using space-variant image sensors mimicking the human retinal structure) and 
an anthropomorphic robotic arm with a fully controllable hand. The camera head 
was pre-programmed to fi xate on the location of the hand in order to track the 
hand during all movements. In addition, a trajectory for the hand movement was 
defi ned, which consisted of the hand rotating fi rst around the axis defi ned by the 
arm (“turning the hand”) and then around a second axis resulting in an up-and-
down movement of the hand. This exploratory motion sequence ensured an 
adequate visual coverage of any grasped object. The test objects for the experi-
ments consisted of 9 household and toy objects and are depicted in Figure 4b – 
note that some of the objects are rather similar in terms of their visual 
appearance.

In order for the robot to learn an object, it was placed into the robot’s hand 
and the exploratory motion sequence was initiated. The visual input from the 
foveated cameras was then used to track local features in real-time using the 
keyframe framework as described in the previous section. Each time the system 
found a keyframe, the proprioceptive transition leading from the last to the 
current keyframe was used as an index into a matrix where each entry stored the 
visual information of the frame (in this case simply consisting of the whole frame 
rather than its local feature representation). In addition, each incoming keyframe 
was matched against all existing keyframes using the view-transition map match-
ing procedure outlined above. If a match of suitable strength was found, the 
keyframe was discarded, otherwise the keyframe was inserted into the represen-
tation. A total of 9 objects were learned in this manner; in addition two control 
conditions were recorded, which simply showed a sequence of empty hand 
moving.

Recognition results: To test recognition performance, six of the objects were 
given again to the robot and the same movements were executed. Each new 
keyframe was then compared against all learned transition maps using the match-
ing procedure described above and the amount of matches in each transition map 
was added up to a fi nal matching score. If the sequence would be identical, all 
keyframes would be found in the map and therefore the matching score would 
be 1. To provide a baseline, visual-only matching was also run in addition to the 
multi-modal matching procedure. Figure 4c–f shows histograms of the matching 
scores for the two matching procedures for four test-objects. For the “box” 
object, both procedures correctly predict the right category; the multi-modal 
matching, however, has a much higher discriminability compared to the visual-
only matching. The same is true for the “bricks1” and “gun” object. Finally, the 
“toy” object is an example of an object, which is not correctly recognized by 
visual-only but is recognized by the multi-modal matching.

Summary: The results of these initial computational experiments are very 
encouraging. Through a straightforward extension of the keyframe approach to 
include proprioceptive information, we have shown how multi-modal object 
representations can be learned as well as how such representations can help to 
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increase the discriminability of object recognition. Since our representation is in 
part three-dimensional (i.e., coupled to proprioceptive coordinates), some of the 
robustness actually comes from 3D information in a viewer-/manipulator-centred 
coordinate system. It would be interesting to see how such a representation might 
capture the results in the chapter by Gschwind et al. (this volume) on exploration 
of 3D shapes.

Among several extensions that can be envisioned, adding more sophisticated 
local feature matching, better classifi cation schemes as well as different cue com-
bination approaches should further improve the performance of the framework. 
Another interesting property of the transition map is that it enables execution 
of specifi c motor actions based on visual input. Consider, for example, a situation 
in which an object has to be manipulated in order to insert it into a slot. The 
inverse of the transition map would allow such a task to be solved by executing 
motor commands that trace out a valid motor path to the desired view based on 
the current view. In a similar manner, the transition map could also be used for 
effi cient imitation learning based on visual input and for executing mental rota-
tions. The key to all of these applications is that the transition map provides a 
strong coupling between proprioceptive data (action) and visual data (percep-
tion) and in this manner facilitates representation of a perception-action loop in 
an effective and effi cient way.

5 Conclusion

In this chapter, we proposed an abstract framework for learning and recognition 
of objects that is inspired by recent psychophysical results which have shown that 
object representations in the human brain are inherently spatio-temporal. In 
addition, we have also presented results from a computational implementation 
of this keyframe framework, which demonstrate that such a system can reliably 
recognize objects under a variety of conditions. Finally, experiments with multi-
modal keyframes have shown that by integrating non-visual cues, object learning 
and recognition becomes more effi cient and effective. We believe that this frame-
work can represent a signifi cant step in designing and implementing a truly cogni-
tive system, which is embedded in a constantly changing environment and thus 
has to constantly analyze and learn in order to plan its (re-)actions.
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1 Introduction

Biological 3D object recognition is restricted to the sensing of 2D projections, or 
images, and is further constrained by the lack of transparency. The most common 
assumption then is that image data are referenced to mental object representa-
tions. Such representations, or object models, must be contrasted with object 
recognition in so far as the latter involves the understanding of image data. This 
distinction is central to recognition-by-components (RBC; Biederman 1987), a 
theory of human image understanding based on the assumption that input images 
are parsed into regions that display nonaccidental properties of edges. These 
properties provide critical constraints on the identity of 3D primitives (“geons”) 
the images come from, e.g., cylinders, blocks, wedges, and cones, and are (rela-
tively) invariant with viewpoint and image degradation.

RBC can be implemented by building structural representations from geons 
linked through explicit categorical relations (Hummel and Biederman 1992). 
This theory predicts that object identifi cation will be fast and accurate if geons 
are readily identifi ed in characteristic arrangements. It also implies that view-
point invariance in 3D object recognition is achieved for all views that activate 
the same geon structural description (GSD; Biederman and Gerhardstein 1993). 
However, viewpoint invariance is not found for stimuli based on irregular blob 
structures (“amoebae”; Edelman and Bülthoff 1992; Bülthoff and Edelman 1992) 
and wire-like objects (“paper-clips”; Bülthoff and Edelman 1992). It has been 
held that the latter result is incompatible with recognition theories involving 3D 
representations. This gave rise to the multiple-views hypothesis, according to 
which a set of views of an object is stored in memory and the object is recognized 
by normalizing the input view to the most nearly compatible among such stored 
views (Tarr and Pinker 1989; Bülthoff and Edelman 1992).
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Given these different perspectives on human object recognition, it is helpful 
to consider the development of object recognition by computer. Early approaches 
to this problem used the concept of generalized cones applied to the domain of 
line drawings of objects and scenes composed of polyhedral or curved parts. The 
understanding of such “engineering” drawings was demonstrated by producing 
a line drawing of the arrangement of parts as it would appear from any desired 
viewpoint. Yet it was clear that the interpretation of “naturalistic” images was 
another matter altogether (see Ballard and Brown 1982, chapter 9). To solve the 
latter type of problem, part-based recognition schemes are now employed in a 
more fl exible way. For instance, the analysis of parts may be initiated by segment-
ing input images into regions that are recognized as parts of objects in the data-
base. If no recognition occurs, the parameters of the initial segmentation are 
varied. Clearly, such approaches do not succeed in one stroke. These processes 
typically involve closed-loop systems where the current interpretation state is 
used to drive the lower level image processing functions. For these reasons, 
“world knowledge” and learning play key roles in second-generation image 
understanding and object recognition by computer (see Caelli and Bischof 1997), 
and the chapter by M. Jüttner, this volume).

The latter development prompted this study of the roles of prior knowledge 
and learning in the recognition by human observers of “structure-only” 3D 
objects composed of identical parts in varying spatial arrangement. As the left-
right categorization of mirror-image forms is a typical feature of visual expertise 
(Johnson and Mervis 1997; Tanaka and Taylor 1991; Rentschler and Jüttner 
2007), the test stimuli included handed objects.

2 Separating Representation and Recognition

Valid conclusions as to the nature of object representations cannot be drawn 
unless their dependence on stimulus information (Liu 1996; Liu et al. 1999) and 
task demands (Tjan and Legge 1998) is taken into account. The latter two studies 
made this point using an ideal observer model based on statistical pattern rec-
ognition. Thereby patterns are classifi ed using sets of extracted features and an 
underlying statistical model for the generation of these patterns (see Haykin 
1999).

Tjan and Legge (1998) showed that viewpoint dependence of recognition is 
low for structurally regular objects, but dependence increases as regularity 
decreases. They were further able to demonstrate a correspondence between the 
predicted view-point complexity (VX) of a recognition task and published human 
data on viewpoint dependence. For instance, they found low VX values for 
simple geometric objects (single geons) and mechanical compositions (distinct 
multiple-geon objects) consistent with the observations by Biederman and 
Gerhardstein (1993). By contrast, wire-like and amoebae objects showed high 
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VX consistent with the fi ndings by Edelman and Bülthoff (1992). Tjan and Legge 
concluded that confusion about the nature of object representations can be 
attributed at least partly to a failure to distinguish betweeen visual processing 
and the type of recognition task including the physical characteristics of test 
objects.

The fi ndings of Tjan and Legge would seem to be consistent with reports from 
object recognition by computer (see Dickinson 1993). On the one hand, 2D 
indexing primitives, i.e., image structures that are matched to stored object 
models, are useful for small object databases. The reason for this limitation is 
increasing search complexity and reliance on verifi cation with decreasing com-
plexity of primitives. On the other hand, the reliable recovery of 3D indexing 
primitives from input images is a very diffi cult problem. Nevertheless, due to a 
concomitant decrease in search complexity for matching, 3D indexing primitives 
may be more successful than 2D indexing primitives for large databases.

Against the conclusions from ideal observer models, it might be held that these 
models rely on traditional pattern recognition, where classifi cation is achieved 
by partitioning feature space into regions associated with different pattern classes. 
However, there are many recognition problems that cannot be solved this way. 
For instance, the effi ciency of object recognition systems may be judged using 
the criterion of “stability and sensitivity” (Marr and Nishihara 1978, p. 272). 
Accordingly, descriptions must refl ect the similarity of objects thus enabling 
generalization. At the same time subtle differences need to be preserved to allow 
discrimination. Stable information representing global aspects of object shape 
must be decoupled, therefore, from information representing fi ner details. This 
can be achieved by relying on prominent pattern components for similarity 
judgments, whereas full pattern representations are used for discrimination 
(Rentschler et al. 1996).

More generally, traditional pattern recognition works well for simple isolated 
patterns but is inadequate for complex patterns and objects embedded in scenes. 
Image interpretation by computer therefore relies on the extraction of features 
of image parts and features of part relations that are linked together to form 
structural descriptions. Sets of hierarchically organized rules (“graphs”) are 
then generated for classifi cation to the extent needed for solving a given recog-
nition problem. Classifi cation performance can be improved further by feed-
ing back results from rule evaluation to earlier stages of the rule generation 
system. Such methodologies of syntactic pattern recognition (see Caelli and 
Bischof 1997) have been adapted to the analysis of human image understanding 
(Rentschler and Jüttner 2007; see also the chapter by M. Jüttner, this volume) 
and object recognition (Osman et al. 2000). That approach would seem to be 
particularly appropriate for implementing cognitive functions as it integrates 
bottom-up and top-down processing characteristics. However, the various de-
grees of freedom of implementing such systems warrant further experimental 
research into the roles of prior knowledge and learning in human 3D object 
recognition.
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We therefore sought to distinguish representations and recognition using a 
psychophysical paradigm of category learning involving priming. Priming is a 
technique from memory research using the benefi cial infl uence of pre-exposure 
to a stimulus in the absence of explicit instructions to remember the stimulus 
(Biederman and Cooper 1991; Cooper et al. 1992). When used in combination 
with an invariant procedure of recognition involving fi xed stimulus sets, any 
effect of priming must be attributed to object memory, i.e., representation.

3 Learning 3D Structure from Images

Our recognition paradigm used two sets of 3D objects consisting of one bilater-
ally symmetric object and one pair of handed (left and right) objects each (Fig. 
1). Following priming (Fig. 2), participants were trained to classify a set of 22 
learning views (Fig. 3). Upon reaching 90% correct, participants classifi ed 83 test 
views (64 novel views, 19 learned views). Classifi cation performance was meas-
ured in terms of signal detection accuracy (d prime; see Rentschler et al. 2004) 
and response time.

In the fi rst experiment (Gschwind et al. 2004), we used objects built from 
spheres termed spheres. Resulting views were poor in ordered feature elements 

object 1 object 2 object 3

Fig. 1. Test sets of one bilaterally symmetric 3D object and one pair of handed (mirror 
symmetric) 3D objects. Each object was composed of four spheres (top) or cubes con-
nected by rods (bottom). Three object parts formed an isosceles rectangular triangle, 
while the fourth one was placed perpendicularly above the centre of one of the base parts. 
Objects were generated both as physical models and virtual models. Physical models were 
constructed of polystyrene balls (6 cm diameter) or wooden cubes (3 cm sides) and rods 
(3 cm long, 1.2 cm diameter). Virtual models were generated and displayed as perspective 
2D projections by the Open InventorTM (Silicon Graphics, Inc.) 3D developer’s toolkit. 
A lighting model of mixed directed and diffuse illumination and a lack of cast shadows 
was used
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and connectivity of parts. This raised a question regarding the extent to which 
priming effects depended on stimulus information. We sought to answer this 
question in the second experiment using a set of modifi ed stimuli termed cubes. 
The latter set had the same macrogeometric structure as spheres but textured 
cubes and rods as parts (see Fig. 1). The conditions of generating learning and 
test views, priming, as well as category learning and generalization were identical 
for both experiments.

Figure 4 shows the effects of priming in terms of classifi cation performance in 
the fi rst unit of category learning. With spheres, priming did not signifi cantly 
affect the accuracy for object 1, perhaps because subjects were already at ceiling. 
Yet motor priming signifi cantly improved classifi cation of the handed objects 2 
and 3 (Fig. 4, top left). For cubes (Fig. 4, top right), both motor and vision priming 
were equally effective in inducing classifi cation, with the induction effect being 
most pronounced for non-handed object 1. Response times tended to be increased 
by vision and motor priming for the classifi cation of spheres (Fig. 4, bottom left), 
although signifi cance was only reached with motor priming for non-handed object 

Fig. 2. For vision priming (top), participants watched one after the other computergraphic 
projections of the 3D objects successively rotating around the three principal axes. Two 
cycles of exposure of 90 s and 10 s per axis were used. For motor priming (bottom), the 
blindfolded subjects manipulated the physical models without restriction. No instructions 
other than the invitation to familiarize themselves with the objects were given. Priming 
lasted for 5 min and was followed by category learning
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a

b

Fig. 3. a Supervised category learning was partitioned into a series of learning units, each 
consisting of a learning phase and a test phase. For learning, subjects saw in random 
sequence each of the learning views followed by the corresponding object label. For 
testing, they saw the learning views again but had to indicate the object labels by pressing 
a key on the computer keyboard. b Learning sets of 22 views (6 different views for object 
1, 8 for each of the objects 2 and 3) obtained by sampling the viewing sphere in steps of 
60˚. In addition, a random rotation angle around the (virtual) camera axis was employed. 
Test sets of 83 views (21 different views for object 1 and 31 different views for each of 
the objects 2 and 3) were obtained by sampling the viewing sphere in steps of 30˚. 19 of 
the test views were already used during category learning (5 for object 1 and 7 each for 
objects 2 and 3). Sixty-four test views were from novel viewpoints (16 for object 1, and 
24 each for objects 2 and 3)
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1. For cubes, an increase in response times was obtained by vision and motor 
priming for the handed objects 2 and 3 only (Fig. 4, bottom right).

Category learning continued until observers reached a criterion of 90% correct. 
For spheres, the number of learning units to criterion was not signifi cantly 
dependent on experimental conditions (N = 25.7 ± 6.3 control, N = 33.1 ± 6.9 
vision, N = 16.2 ± 4.3 motor). For cubes, both types of priming strongly enhanced 
category learning (N = 25.4 ± 5.8 control, N = 8.6 ± 4.0 vision, N = 3.8 ± 1.0 
motor).

4 Generalization to Novel Viewpoints

The experiments continued with measuring generalization to novel viewpoints 
and re-classifi cation of learned views (Fig. 5). With spheres, the accuracies for 
non-handed object 1 were found to be relatively high and virtually unaffected by 
priming (Fig. 5, top left). The accuracies for handed objects 2 and 3 were poor 
under the conditions of control and vision. Motor priming, however, strongly 
improved accuracies to yield values equal to those. Except for the performance 
involving the non-handed object under the conditions of control and vision 
priming, accuracies for spheres were signifi cantly better for the learned views 
than for the novel views. Motor priming caused longer response times for both 
types of object but there was no signifi cant difference in response times between 
novel and learned objects across priming conditions. With cubes (Fig. 5, right), 
maximum accuracies were obtained for both object types and there was no 
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Fig. 4. Effects of priming on object recognition. Priming conditions were control, vision, 
and motor both for spheres (fi lled circles, left) and cubes stimuli (fi lled squares, right). 
Classifi cation accuracies (d prime, top) and response times (RT, bottom) obtained from 
the fi rst learning unit. 10 subjects entered category learning for each condition but only 
7 control subjects reached criterion. Error bars: ± 1 S.E. (N = 7 * 6 control/object1, N = 7 
* 8 control/object23; N = 10 * 6 object1, N = 10 * 8 object23 for vision and motor)
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signifi cant effect of priming conditions nor a signifi cant difference between 
learned and novel views. That is, with cubes there occurred no differences in 
recognition performance between object types, priming conditions, or learned 
and novel views.

5 Inverse Problems and Spatial Transformations

Non-discrimination of handed objects is predicted by structural recognition 
models using non-directed part relations (e.g., Hummel 2001) and by view-based 
recognition models (e.g., Riesenhuber and Poggio 1999). Moreover, with spheres 
we found performance to be view-dependent consistent with the predictions of 
view-based recognition models. This would seem to support the “rotation-for-
handedness” hypothesis (Tarr and Pinker 1989; Tarr 1995; Gauthier et al. 2002), 
according to which humans rely for recognition on refl ection-invariant mecha-
nisms in the brain and use mental rotation (Shepard and Metzler 1971) to dis-
ambiguate handedness.
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Fig. 5. Generalization to novel viewpoints for spheres (left) and cubes (right). Accuracies 
(d prime) cumulated over views, classifi cation decisions, and observers at the top, corre-
sponding response times at the bottom. Closed symbols denote generalization perform-
ance from novel viewpoints, open symbols from learned viewpoints. Each view was 
presented three times. Error bars: ± 1 S.E. (novel viewpoints: N = 7 * 3 * 16 control/object1, 
N = 7 * 3 * 24 control/objects23, N = 10 * 3 * 16 vision/motor/object1, N = 10 * 3 * 24 vision/
motor/objects23; learned viewpoints: N = 7 * 3 * 5 control/object1, N = 7 * 3 * 7 control/
objects23, N = 10 * 3 * 5 vision/motor/object1, N = 10 * 3 * 7 vision/motor/objects23). No 
error bars are given for the classifi cation accuracies for cubes stimuli because of deviation 
from normal distribution
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The latter hypothesis, however, meets two diffi culties when applied to the 
results of our experiments. First, images are generally ambiguous with regard to 
the 3D structures they are derived from. The solution for such inverse problems 
critically depends upon the operation of constraints, i.e., prior object knowledge 
(Pizlo 2001). This is why in previous studies on mental rotation subjects were 
given “a great deal of feedback about the 3D structure of each object” 
(Tarr 1995, p. 61). Our observers had no prior object knowledge under the 
control condition and were found to be completely unable, both for spheres 
and cubes, to disambiguate handedness early in practice (Fig. 4, top). Second, 
we used 2D views generated by conjointly varying the three Euler angles of rota-
tion (see Korn and Korn 1968, Section 14.10). To reliably recover these angles 
from a given 2D view is impossible, and the rotation of the image plane was an 
additional source of uncertainty for the matching process. On these grounds, we 
reject the rotation-for-handedness hypothesis according to which our observers 
could have achieved disambiguation of handedness by employing con-
tinuous rotations around specifi c axes in 3D. Instead, for both non-handed and 
handed objects, they must have iteratively used combinations of spatial 
transformations.

Consistent with the latter conclusion, subjects with motor priming needed for 
the recognition of both non-handed and handed spheres prolonged response 
times, typically moved their hands during classifi cation, and spontaneously 
reported having mentally rotated the candidate models for classifi cation. The 
retardation of response times would seem to refl ect, therefore, the times needed 
for generating internalized candidate models, transforming them during the 
matching process, and executing additional transformations to align mirror sym-
metric counterparts. This implies that, for spheres with motor priming, our rec-
ognition paradigm could not be separated into one of recognizing the non-handed 
object and one of discriminating handedness. Indeed, the improvement of cate-
gory learning through motor priming was most pronounced for non-handed 
object 1. The signal detection analysis of data from the generalization phase 
demonstrated that this resulted at least partly from a reduction of the misclassi-
fi cation of views of the handed objects as views of the non-handed object.

We then turn to the question of how motor priming facilitated the classifi cation 
of stimuli built from spheres. Clearly, such type of priming drew the attention of 
subjects to the third stimulus dimension. This enabled them to explicitly generate 
relational 3D representations (Thoma et al. 2004). Participants may have solved 
the inverse problem for spheres by encoding temporal sequences of exploratory 
fi nger and hand movements along the physical object models. As object palpation 
directly evokes mental imagery (Critchley 1953, chap. IV), it seems that some 
sort of kinetic object traces were stored in multimodal representations (e.g., 
Zangaladze et al. 1999). Subjects may then have inferred the connectivity of 
sphere parts, i.e., 3D structure, from linking object parts exposed in 2D views to 
such internalized representations. Conversely, we suggest that the type of prior 
knowledge provided by vision priming did not allow the solution of the inverse 
problem for spheres. Indeed, during vision priming subjects noted ambiguous 
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rotation-in-depth of the spheres objects. These effects were caused by uncertain-
ties of correspondence between object views displayed during motion.

6 Role of Image Understanding in Invariant Recognition

From the equivalence of vision and motor priming for classifying cubes (Fig. 5), 
we conclude that the clear connectivity between parts and the related ordering 
of feature elements helped the solution of the inverse problem right from the 
visual stimulus. Moreover, the parallel contours of cube parts facilitated match-
ing thus supporting the verifi cation of candidate 3D object models. Therefore, 
the classifi cation of cubes would seem to be an instance of fast and accurate rec-
ognition that is viewpoint invariant as predicted by RBC. Indeed, for cubes we 
found recognition performance to be view-invariant. Furthermore, the classifi ca-
tion of handed objects built from cubes entailed prolonged response times, thus 
indicating the need of aligning internalized object models to an external refer-
ence system.

In case of objects built from spheres, the extraction of part relations from 2D 
views was diffi cult. The parts as such left the axes of connectivity between them 
completely unspecifi ed. The image understanding of the observers therefore 
benefi ted greatly from structural cues obtained from motor memory, thus pre-
sumably using 2D representations augmented by 3D information from motor 
memory (see Liu et al. 1995). The matching of such reduced object models to 
input data, however, entailed an increase in search complexity, i.e., the amount 
of spatial transformations and matching needed for categorization. As a result, 
the response times for classifying both types of objects built from spheres, non-
handed and handed, were prolonged.

These fi ndings emphasize the role of image understanding in object recogni-
tion. The two sets of objects had identical structural characteristics relevant for 
classifi cation, and their respective members were readily decomposed into identi-
cal parts. Object recognition relied, therefore, entirely on the ability to recover 
part relations from 2D views.

7 Conclusions

We have shown that early in practice, humans were virtually blind to structural 
differences of 3D objects composed of identical sphere-shaped parts. Category 
learning improved recognition but more for non-handed objects than for handed 
objects. Prior knowledge from passively inspecting 2D views of depth-rotating 
objects did not affect recognition, whereas active haptic exploration of physical 
3D models enabled equally accurate but view-dependent recognition of both 
non-handed and handed objects. Using objects with the same macrogeometrical 
features but clear connectivity of cube-shaped parts yielded very different results. 
Recognition was fast and accurate early in practice for the non-handed object. 
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Yet, with both types of prior knowledge, category learning enabled equally 
accurate and view-independent recognition for both non-handed and handed 
objects.

These results demonstrate, on the one hand, that there is no absolute differ-
ence between stimuli that allow distinct structural descriptions for 3D object 
recognition and stimuli that do not (e.g., Biederman and Gerhardstein 1993). 
Prior knowledge and learning play an important role in determining the extent 
to which image regions and their relations can be referenced to mental object 
representations. On the other hand, the structure-based recognition of 3D objects 
is not accommodated by the multiple-views theory of recognition (e.g., Bülthoff 
and Edelman 1992). These observations would seem to be consistent with the 
conclusions by Christou and Bülthoff (2000), according to whom the nature of 
object representations depends on whether there is enough stimulus information 
for the recognition task at hand.

We therefore propose that observers build 3D representations for object rec-
ognition as long as suffi cient stimulus information and prior knowledge are avail-
able. Yet internalized 3D models may be too similar to allow their disambiguation 
concerning class membership, a situation typically encountered in classifi cation 
at the subordinate level. Alternatively, observers may fail early in practice to 
extract from input images view-invariant geometric primitives in distinct rela-
tions. Category learning might then enable them to derive such structural descrip-
tions. Otherwise, they would resort to the use of object representations in image 
format and corresponding matching behavior, thus increasing classifi cation per-
formance for learned views at the expense of decreased performance in gener-
alization to novel views.
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1 Introduction

Faces constitute a special class of visual stimuli not only because we possess 
expert visual skills and specialized brain areas to recognize them, but also because 
we can extract a rich set of socially and affectively important information from 
them in a seemingly effortless manner. Abundant research conducted in cogni-
tive psychology, neuroscience, and clinical neuropsychology has provided an 
elaborate model of the complex functional architecture underlying these differ-
ent aspects of face processing, each presumably associated with specifi c neural 
substrates that are interconnected all together within a large-scale distributed 
network (Grüsser and Landis 1991). Thus, many infl uential neurocognitive 
models have proposed that face recognition may proceed along a series of distinct 
stages organized in a hierarchical stream of processing (Bruce and Young 1986; 
Haxby et al. 2000), from low-level visual analysis subserving the detection and 
organization of facial features, up to higher-level processes allowing the storage 
and retrieval of personal information and other associative functions (Fig. 1a). 
Furthermore, some dissociations in recognition performance in healthy subjects, 
as well as neuropsychological defi cits observed in patients with focal brain lesions, 
have led to the idea that different processing pathways might be responsible for 
extracting identity-related information versus other facial features related to 
emotional expression, eye gaze direction, or speech lip motion, and that such 
pathways might operate in parallel (Bruce and Young 1986; Grüsser and Landis 
1991). To what extent these different processing streams may interact to infl u-
ence each other, and how the different kinds of information may eventually be 
unifi ed in a single face percept, are two fundamental questions that still remain 
to be determined.
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Recent progress in functional brain imaging has allowed a tremendous refi ne-
ment of our knowledge of the anatomy of the human face recognition system, 
and its operating properties. In particular, a cortical region in the human fusiform 
gyrus has been identifi ed as critically implicated in face processing across a 
variety of studies using positron emission tomography (PET) (Sergent et al. 1992; 
Haxby et al. 1994) or functional resonance imaging (fMRI) (Kanwisher et al. 
1997; McCarthy et al. 1997). This region is commonly referred to as the “fusiform 
face area” (FFA), and generally thought to play a major role in the detection as 
well as the discrimination of individual faces (Gauthier et al. 2000; Grill-Spector 
et al. 2004). The FFA is consistently activated by pictures or line-drawings of 
human faces more than by any other categories of visual objects or scenes, and 
its activation correlates with face perception during the presentation of ambigu-
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Fig. 1. a Traditional cognitive model of face processing derived from Bruce and Young 
(1986), in which identity and expression are processed along pathways of separate serial 
stages. b Network of brain areas typically activated by contrasting faces > other visual 
objects in fMRI, bilaterally but with variable hemispheric asymmetry, including (1) fusi-
form cortex, FFA; (2) lateral occipital cortex, OFA; (3) superior temporal sulcus, STS; 
(4) amygdala; (5) anterior lateral temporal cortex

OBJ_08.indd   120 8/14/2007   2:51:31 PM



 8. Neural Representation of Faces in Human Visual Cortex  121

ous stimuli, perceptual rivalry, or even mental imagery. However, several other 
brain regions, within and outside the visual system, are also differentially acti-
vated by faces relative to other visual objects (Sergent et al. 1992; Haxby et al. 
2000). These regions include the lateral occipital face area (OFA), the superior 
temporal sulcus (STS), the amygdala, plus other areas in the temporal poles and 
ventromedial prefrontal cortex (Fig. 1b). In accord with previous cognitive 
models (Bruce and Young 1986), it has been proposed that the FFA might be 
crucially involved in processing visual features carrying face identity information, 
which should remain relatively invariant across changes due to expression, view-
point, or pictorial format. Conversely, STS and amygdala might be more impor-
tant for processing changing or dynamic features in faces, such as expression or 
gaze, which are socially and emotionally relevant and shared across many differ-
ent identities (Haxby et al. 2000). The role of other brain regions still remains 
largely unsettled (for extended neuroanatomical model, see Gobbini and Haxby 
2007).

However, although there is now abundant evidence that face identity is pro-
cessed in the FFA and that facial expression is processed in amygdala and STS, 
there is also increasing evidence that these two aspects of face recognition might 
not be entirely encapsulated and separately implemented in these different 
regions, as previously proposed by cognitive models. In particular, the present 
chapter will focus on two series of recent brain imaging studies showing that face 
representation in the FFA is not totally insensitive to emotional expression and 
not totally independent from viewpoint. By illustrating how different regions in 
the face recognition system may not carry out specialized processes alone but 
dynamically interact with each other, these fi ndings call for a refi nement of the 
current neurocognitive models of face recognition, which have considered only 
a serial feedforward mode of information processing but ignored the role of more 
interactive and re-entrant mechanisms.

2 Emotional Infl uences on Face Processing in 
Fusiform Cortex

A number of brain imaging studies have consistently shown that the activation 
of sensory cortical areas can be enhanced for emotionally relevant stimuli, includ-
ing not only faces (Morris et al. 1998a; Vuilleumier et al. 2001) but also pictures 
(Lane et al. 1999; Sabatinelli et al. 2005) or voices (Grandjean et al. 2005). For 
instance, such increases may arise in the visual cortex with faces displaying fearful 
relative to neutral expressions, or with photographs containing aversive relative 
to more mundane scenes. A negative emotional content generally appears much 
more effi cient in producing such increases, particularly for faces (Surguladze 
et al. 2003), although positive arousal can sometimes produce similar effects 
(Mourao-Miranda et al. 2003; Sabatinelli et al. 2005).

Such increases in response to emotional (e.g., fearful) faces have been observed 
in various regions such as the fusiform cortex, posterior inferior and lateral tem-
poral cortex, as well as in very early occipital areas such as the primary striate 
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cortex (area V1) (Morris et al. 1998a; Vuilleumier et al. 2001; Pessoa et al. 2002b). 
However, these effects also exhibit a relative selectivity depending on the cate-
gory of the emotional stimulus. For instance, in an fMRI study (Vuilleumier et 
al. 2001), where pictures of faces with either a fearful or neutral expression were 
presented together with pictures of houses, fear-related increases were found to 
arise selectively in the lateral fusiform region that also showed face-specifi c 
responses, corresponding to the FFA. However, a nearby region in the parahip-
pocampal cortex showing house-specifi c responses (i.e., the parahippocampal 
place area, PPA) was not modulated by the emotional expression of faces seen 
with the houses (Fig. 2). This fi nding suggests that emotional signals received 
from faces can produce a selective infl uence on the cortical representation of 
faces in the FFA, and that face identity processing in fusiform cortex may not be 
purely encapsulated and immune to interactions with processes involved in face 
expression recognition.

Moreover, the modulation of the FFA by emotional expression of faces was 
found to arise in the same voxels in the cortex as the modulation produced by 
selective attention to faces (Fig. 2). In the same fMRI study using faces and 
houses presented together (Vuilleumier et al. 2001), we could compare the effect 
of expression and the effect of selective attention by manipulating attention and 
emotion orthogonally, while keeping the task identical across all conditions. 
While visual arrays always contained two faces (fearful or neutral expression) 
and two houses, the observers had to concentrate on two pictures only (either 
the vertical or horizontal pair) on each single trial, in order to make same/
different judgments for these two pictures. Thus, we could measure the differen-
tial impact on neural responses due to fearful vs neutral emotional expressions 
when faces were either in the focus of attention, or outside the focus of attention. 
Three major results were found. First, the effects of emotion and attention on 
FFA responses were additive to each other, with a similar enhancement to fearful 
expression when faces were in the focus of attention (for a same/different judg-
ment) and when they were outside the focus of attention (with a same/different 
judgment being made on houses instead). Second, the effect of emotion from 
ignored faces arose in the FFA despite a strong reduction in activity due to inat-
tention when observers concentrated on the houses. Third, the peak of emotional 
effects in the FFA was exactly the same as the peak of attentional effects, and 
fully consistent with the location of face-selective areas reported in previous 
studies. This pattern of results has then been replicated in two further fMRI 
studies using the same paradigm in different subjects (Bentley et al. 2003; 
Vuilleumier et al. 2004).

Taken together, these fi ndings suggest that FFA activity may be controlled 
by top-down infl uences imposed not only by attentional systems (presumably 
mediated by fronto-parietal cortical networks), based on current task demands 
(Wojciulik et al. 1998), but also by emotional systems extracting the potential 
affective or social value of faces even when these are not currently task-relevant 
or in the focus of attention. Such emotional effects on neural responses of the 
FFA might result in a more salient representation of faces with particular affec-
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Fig. 2. a Paradigm used to compare the effects of emotion and attention in responses to 
faces. On each trial, two faces and two houses are presented together, aligned in either 
vertical or horizontal pair, while observers are instructed by an initial cue to concentrate 
only on one pair of locations (here vertical). Faces can be neutral or fearful. b Effect of 
attention to faces versus houses, resulting in an increased activation of both right and left 
FFA. c Effect of fearful versus neutral expression in faces, resulting in a similar increase 
in the FFA (bilaterally but stronger on the right, see arrow), in addition to an activation 
of the amygdala (bilaterally but stronger on the left as shown here). Average parameter 
estimates of activity (±SE) are shown across all conditions of attention and expression for 
(d) right FFA and (e) left amygdala
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tive values, such as threat, and thus provide a plausible neural substrate for 
attentional biases towards emotional faces, as observed in several behavioral 
studies (Vuilleumier and Schwartz 2001a, b; Fox 2002; Vuilleumier 2005). For 
instance, as compared to neutral faces, faces with threat-related expressions tend 
to produce faster detection in visual search (Fox et al. 2000; Eastwood et al. 2001) 
or visual orienting paradigms (Mogg et al. 1994; Pourtois et al. 2004).

Our fMRI data also accord with neurophysiological recordings in the monkey 
showing that some face-selective neurons in temporal cortex may show enhanced 
responses to faces with particular expressions (Sugase et al. 1999). However, in 
neurophysiological recordings, other face-selective neurons in the same cortical 
area may also show enhanced responses to faces with a particular identity. Unfor-
tunately, the spatial resolution of fMRI is still insuffi cient to determine whether 
distinct neuronal populations in the human FFA might be sensitive to facial 
expression or identity, and thus differentially modulated by emotion and atten-
tion. In the future, higher-fi eld MRI and voxel-by-voxel analysis of activated 
regions within fusiform cortex might provide better insights into the fi ne cortical 
organization of distinct neuron clusters with different processing preferences. 
Some recordings in STS in the monkey have shown that identity-selective and 
emotion-selective neurons might be arranged in distinct clusters along the ventral 
and dorsal banks of STS, respectively (Hasselmo et al. 1989). However, it is still 
unclear what is the homology between these cortical visual areas in monkeys and 
humans.

3 Distant Sources of Emotional Signals from the Amygdala

Interestingly, neurophysiological data in the monkey suggest that an emotional 
modulation of face processing in visual cortex might occur only after some delay 
following the initial face-selective responses. Thus, the fi rst neuronal activity 
(<100 ms) might primarily code for global stimulus category (face vs other object) 
whereas subsequent activity (100–150 ms) might code for fi ner information such 
as expression and/or identity (Sugase et al. 1999). This delayed modulation has 
therefore been attributed to some re-entrant infl uences from distant brain areas 
responsible for processing affective or familiarity information. In particular, 
emotional infl uences on visual cortex might be provided by the amygdala, which 
is known to be critically implicated in emotional processing, especially threat, 
and to give rise to feedback projections to all levels of the ventral visual cortical 
stream (Amaral et al. 2003). These anatomical connections might allow the 
amygdala to have substantial modulatory control over sensory processing at 
several stages along the visual pathways.

In agreement with this idea, our fMRI results revealed that the amygdala could 
respond to fearful faces irrespective of whether observers had to concentrate on 
faces or houses (Vuilleumier et al. 2001). Thus, amygdala activation was not sig-
nifi cantly infl uenced by attention in this paradigm, despite the robust effect of 
attention on visual cortex (Fig. 2). These data suggest that emotional responses 
in the amygdala may not rely on face processing taking place in the fusiform 
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cortex, consistent with other fi ndings that the amygdala can still be activated by 
threat cues in some conditions when observers are not aware of these cues (e.g., 
during masking (Morris et al. 1998b; Whalen et al. 1998), rivalry (Pasley et al. 
2004; Williams et al. 2004), or blindsight (Morris et al. 2001; Pegna et al. 2005)). 
Yet it is possible that the amygdala responses can also be infl uenced by attention 
in other conditions (Pessoa et al. 2002a, b). More importantly, these results also 
suggest that amygdala activation to fearful expression might provide the primary 
source of emotional modulation on the FFA, leading to the persistent and addi-
tive enhancement regardless of the concomitant attentional modulation.

To test directly this idea of amygdala infl uences on the FFA, we conducted 
another fMRI study using the same paradigm with face-and-house pairs as above, 
but now in patients with amygdala lesions (Vuilleumier et al. 2004). In this study, 
two groups of patients with medial temporal lobe sclerosis were compared, half 
in whom the lesions affected both the amygdala and hippocampus, and the other 
half in whom the lesions affected the hippocampus only and spared the amygdala. 
Patients with hippocampus damage but intact amygdala showed a normal 
increased activation for fearful faces in fusiform and occipital cortex, whereas 
patients with additional amygdala damage showed no differential responses to 
fear in the FFA. In addition, parametric analyses revealed a linear inverse cor-
relation between the severity of amygdala sclerosis and the enhancement of 
ipsilateral fusiform activity by fear, consistent with amygdala connections pro-
jecting mostly to ventral visual cortical pathways within the same hemisphere 
(Amaral et al. 2003). By contrast with this lack of emotional effects, both groups 
of patients showed a normal modulation of the FFA by attention to faces as 
compared to attention to houses. These fi ndings therefore strongly support the 
idea that the amygdala can infl uence activity in distant visual areas and boost the 
representation of faces in the FFA based on their affective signifi cance.

Face processing in the FFA is therefore likely to be partly controlled by “feed-
back” or re-entrant signals from the amygdala (Vuilleumier 2005), in addition to 
concomitant infl uences from other control systems in fronto-parietal attentional 
networks and probably still other sources yet to be identifi ed. These modulatory 
infl uences from the amygdala may facilitate the detection of affectively signifi -
cant information and enhance attention towards these salient stimuli, but also 
modify the establishment or retrieval of memory traces associated with emo-
tional faces. In agreement with a role in detection and attention, previous behav-
ioural results have shown that amygdala lesions in humans will abolish the typical 
attentional biases towards stimuli with threat versus neutral meaning. However, 
the functional consequences on memory still remain to be fully explored.

4 Distinct Visual Cues for Processing Faces in Fusiform 
Cortex and Amygdala

The fact that the amygdala might still respond to fearful faces presented outside 
the focus of attention (Vuilleumier et al. 2001), or sometimes even outside aware-
ness (Morris et al. 1998b; Whalen et al. 1998; Pasley et al. 2004; Williams et al. 
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2004), has commonly been explained by the existence of distinct neural pathways 
for processing emotional cues. In particular, based on animal studies of fear-
conditioning (LeDoux 2000) and studies of patients with blindsight after destruc-
tion of their primary visual cortex (Morris et al. 2001; Pegna et al. 2005), it has 
been hypothesized that the detection of threat-related stimuli might not depend 
on elaborate cortical analysis but rather implicate a fast subcortical pathway 
conveying only “quick and dirty” signals (Morris et al. 1999; LeDoux 2000). This 
subcortical pathway might involve direct visual inputs to the superior colliculus 
and/or pulvinar nucleus of the thalamus, bypassing early cortical stages of pro-
cessing from geniculo-striate pathways to the ventral occipito-temporal stream 
(Morris et al. 1999, 2001). However, although this subcortical route might play 
an important role in blindsight or cortical blindness, its connections to the amyg-
dala still remain controversial in humans (Pessoa 2005), and “quick and dirty” 
information might also reach the amygdala through a fi rst volley of bottom-up 
inputs within the visual cortex prior to full perceptual analysis and attentional 
selection (Vuilleumier 2005).

In any case, a preservation of amygdala activation to stimuli perceived under 
poor conditions of visibility would make sense in order to afford rapid and effi -
cient response to threat. Moreover, subcortical visual pathways are known to 
carry only crude visual information with low-spatial frequency, extracted from 
magnocellular pathways, whereas fi ner visual information in high-spatial fre-
quency from parvocellular pathways project exclusively to cortical areas in the 
ventral occipito-temporal stream (Merigan and Maunsell 1993; Sahraie et al. 
2002). Using fMRI in healthy subjects, we therefore tested for any differential 
sensitivity of amygdala and fusiform cortex to low-spatial frequency (LSF) and 
high-spatial frequency (HSF) (Vuilleumier et al. 2003a). Observers were pre-
sented with photographs of faces displaying either a neutral and fearful expres-
sion, and containing either low-pass, high-pass, or intact (broad-band) spatial 
frequency content (Fig. 3). Activation of the FFA was found to be generally 
reduced for LSF faces relative to intact or high-pass faces, irrespective of expres-
sion, consistent with an important role of fi ne edge and texture information in 
driving activity of temporal visual cortex. By contrast, amygdala responses to 
fearful expression were greater for both LSF and intact faces than for HSF faces, 
despite the reduced response to HSF in the FFA.

This dissociation suggests that amygdala and FFA may extract different spatial-
frequency content in faces, which may play distinct roles in expression and iden-
tity processing, respectively (Vuilleumier et al. 2003a). This would be consistent 
with behavioral studies showing different perceptual biases to LSF and HSF cues 
when observers must categorize the identity and expression of “hybrid” stimuli, 
in which different faces with different content are superimposed (Schyns and 
Oliva 1999).

Remarkably, however, we found that the FFA was increased by fearful relative 
to neutral expression only with LSF (and intact) faces, but not with HSF, even 
though the FFA was generally less sensitive to HSF than LSF cues (Vuilleumier 
et al. 2003a). This pattern provides further support to the idea that such 
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Fig. 3. a Stimuli used to compare face processing based on the low-spatial frequency 
(LSF) and high-spatial frequency (HSF) content of images, relative to normal (broad-
band) images. b Posterior fusiform cortex was activated by the presence of HSF in face 
stimuli, but not by LSF. c Average parameter estimates of activity (±SE) in FFA. Note 
however that an enhancement by fearful expression was driven by the presence of LSF. 
d Amygdala was activated by fearful expression in the LSF of face stimuli, but not by 
HSF. e Average parameter estimates of activity (±SE) in amygdala
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emotional effect in FFA may depend on inputs from the amygdala, rather than 
on intrinsic cortical processing. The same pattern was observed in two subse-
quent imaging studies where “hybrid” faces were used. Both in fMRI (Winston 
et al. 2003) and ERPs (Pourtois et al. 2005a), we found that differential cortical 
responses to fearful vs neutral faces were evoked only when fearful expression 
was presented within the LSF content of pictures, irrespective of the expression 
of another superimposed face presented in HSF. This critical role of LSF infor-
mation seems consistent not only with several recent studies showing that amyg-
dala processing of fearful expression in faces may be highly sensitive to the large 
eye features that are typically present in these faces (Morris et al. 2002; Whalen 
et al. 2004; Adolphs et al. 2005), but also with some psychophysical results 
showing an important role of confi gural information for the recognition of face 
expression (rather than just local features) (Calder et al. 2000).

Conversely, our fMRI study (Vuilleumier et al. 2003a) also suggested that face 
identity processing in the FFA was established from HSF more reliably than from 
LSF cues. Because each individual face identity was repeated once during the 
whole course of the fMRI experiment, we could test for any repetition-priming 
effects induced by different visual images of the same face identity. Repetition-
priming effects correspond to a selective decrease in the activation of cortical 
areas processing a particular stimulus type when this stimulus is repeated, relative 
to its fi rst exposure, and such effects can thus reveal the specifi c attributes 
extracted by neurons in that particular area (Grill-Spector and Malach 2001; 
Naccache and Dehaene 2001). Here, by comparing repetition-priming effects for 
HSF and LSF faces relative to those for intact faces, we found that only faces 
fi rst seen in HSF produced subsequent decrease when repeated later in a differ-
ent format (Fig. 4), whereas faces fi rst seen in LSF produced no decrease when 
repeated (Vuilleumier et al. 2003a). These data suggest that a long-term repre-
sentation of identity in the FFA was more effi ciently established and more effi -
ciently generalized to other images when derived from HSF than from LSF 
information. Moreover, repetition-priming effects for identity across different 
images were found to predominate in more anterior regions of the fusiform 
cortex, whereas the peak of frequency-selectivity for HSF vs LSF was found in 
a more posterior fusiform region. Other imaging fi ndings have also shown that 
the FFA might code for face identity irrespective of spatial frequency (Eger et 
al. 2004) or contrast polarity (George et al. 1999).

Taken together, these data suggest that face processing may not only take 
place in different brain pathways for different purposes (e.g., identity recognition 
in FFA and expression recognition in amygdala), but also exploit different infor-
mation (e.g., LSF or HSF, global vs local cues) and probably proceed at different 
time-scale in different brain areas (with expression processed earlier in amygdala 
and then fed back to FFA). Thus, models of face processing should not only 
incorporate a “dual-route” framework for identity and emotion informa-
tion (Bruce and Young 1986; Haxby et al. 2000), but also a “dual-stage” 
framework.
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Fig. 4. a Stimuli used to test for repetition-priming effects when face identity is repeated, 
either in the same picture format or across different picture formats (e.g., fi rst seen in LSF 
and later repeated in HSF, or vice versa). b Repetition-priming effects in posterior (left) 
and anterior (right) fusiform cortex, where responses showed a selective decrease when 
face identity was repeated irrespective of whether the repetition was with the same or 
with different images. c Average parameter estimates of activity (±SE) in anterior fusi-
form cortex, where repetition-priming were the strongest when the face identity was fi rst 
seen in HSF and repeated in LSF (as opposed to the reverse order)
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5 View-Selectivity and Invariance

If the FFA can encode faces irrespective of format and process identity 
across different spatial-frequency cues, what is the degree of invariance to other 
changes in visual inputs during identity recognition? A critical issue in visual 
perception in general has concerned how objects and faces can be identifi ed 
despite changes in their visual appearance across different encounters 
(Biederman and Kalocsai 1997; Tarr and Bulthoff 1998; Biederman and Bar 2000; 
Vuilleumier et al. 2002). Thus, the identity of an individual face can usually be 
recognized across substantial visual changes due to different expressions, age, or 
viewpoint. In fact, we probably never see the same face twice with exactly the 
same view, yet we can readily identify a person across two meetings, or an old 
friend who has not been seen for several years. However, still little is known 
about how the visual system may achieve such effi cient recognition abilities 
across very different visual inputs. Although the FFA has consistently been 
shown to process face identity cues (Gauthier et al. 2000; Grill-Spector et al. 
2004), it remains unclear how face identity is represented in the FFA.

According to classic models of face recognition (Bruce and Young 1986), after 
some initial structural encoding stage, view-invariant traits might be extracted 
and stored into a long-term visual representation of a given individual face (e.g., 
“face recognition unit”), which may then allow a generalization of recognition 
from a particular view to another view of the same face. However, few studies 
have systematically examined whether the neural substrates of such “face recog-
nition units” might correspond to the FFA and code for a particular face identity 
across different views (Grill-Spector et al. 1999). We have addressed this ques-
tion in two recent brain imaging studies (Pourtois et al. 2005b, c) by using a rep-
etition-priming paradigm in which different views of the same faces were 
presented twice, with an intervening delay of several minutes. As mentioned 
above, repetition-priming leads to a decreased activation for repeated stimuli as 
compared with their initial presentation, refl ecting a selective adaptation of 
neurons tuned to particular stimulus attributes when these attributes are repeated 
(Grill-Spector and Malach 2001; Naccache and Dehaene 2001). This provides a 
useful method for probing the critical properties to which neurons respond, even 
when the different populations overlap in the same cortical region, since adapta-
tion should occur for a repeated stimulus if the same neuronal population rep-
resents this stimulus across various appearances; whereas a lack of adaptation 
for a given stimulus repeated with a different appearance indicates the recruit-
ment of a new population of neurons. Several studies found repetition-priming 
decreases in the FFA when faces were repeated but most have used the same 
photograph (Grill-Spector et al. 1999; Gauthier et al. 2000; Henson et al. 2000; 
Huettel and McCarthy 2001; Henson et al. 2002) or the same view with different 
renderings (George et al. 1999; Vuilleumier et al. 2003a; Eger et al. 2004).

In a fi rst study (Pourtois et al. 2005b), unfamiliar faces were fi rst shown in 
front-views or three-quarter views, and later repeated either with the same view 
(using different photographic shot) or with a different view. We found that the 
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FFA in both hemispheres showed view-sensitive repetition effects, with only a 
partial generalization from three-quarter to front views (Fig. 5). This indicates 
that face representation in the FFA is not view-invariant, and does not form a 
truly abstract and three-dimensional trace of faces after a single encounter. 
However, the asymmetrical pattern of repetition-priming effects (with some 
adaptation from three-quarter to front views but not vice versa) suggests that 
three-quarter views may provide more critical features to derive another view 
later, or provide better tridimensional cues relative to incomplete or inaccurate 
information in front-views. By contrast, we found that more medial regions in 
fusiform cortex showed repetition effects across all types of viewpoint changes, 
but these regions were outside face-selective areas and may contribute to higher-
level processing stages related to associative processes related to semantic in-
formation or more abstract person-identity representations. Moreover, this 
generalization across viewpoints arose selectively in the left hemisphere. This 
hemispheric asymmetry might be consistent with other results showing that view-
invariant priming effects for man-made objects were also selectively present in 
the left but not right anterior fusiform cortex (Vuilleumier et al. 2002).

A second fMRI study (Pourtois et al. 2005c) has recently confi rmed that rep-
resentation of faces in the FFA does not generalize across different views of the 
same identity, now using faces from both unfamiliar and famous people. We 
reasoned that famous faces would be more likely to give rise to a robust view-
invariance in long-term representations as compared with unfamiliar faces viewed 
only once as in our previous study (Pourtois et al. 2005b). In this new experiment 
(Pourtois et al. 2005c), each individual face identity was fi rst shown in a given 
view and then repeated in a different view after a varying delay (counterbalanced 
across subjects). Again, the FFA showed priming effects only when faces were 
repeated with the same view. There was no priming whatsoever in the FFA when 
the same face identity was repeated from one view to another, even for faces of 
famous people or actors that have repeatedly been seen under different appear-
ance. All repetition effects for these well-known faces arose in left temporal and 
frontal cortex only, suggesting that they implicated more semantic information 
about person-identity rather than abstract visual representation of faces (Rhodes 
1985; Damasio et al. 1990; Vuilleumier et al. 2003b).

This study also showed that a region in the medial fusiform gyrus, outside 
the FFA, showed some priming-realated decreases when unfamiliar faces were 
repeated with a slightly different viewpoint but still a similar appearance (Fig. 6). 
Unlike the previous study, this medial fusiform region was now found in the right 
but not left hemisphere. Thus, our results point to distinct subregions within fusi-
form cortex that may show a different sensitivity to viewpoint or visual similarity.

Taken together, our data do not support the hypothesis that the FFA may hold 
“face recognition units” representing faces in a view-independent format. Rather, 
face identity appears to be coded in a view-sensitive manner in the FFA, but it 
can generalize across different image renderings when these show the same 
viewpoint. Thus, memory traces of a given face identity might be represented in 
more distributed networks linking visual cortex with other distant brain areas 
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Fig. 5. a Stimuli used to test for repetition-priming effects when face identity is repeated 
either with the same viewpoint (front-view or three-quarter) or with a different viewpoint 
(e.g., fi rst seen in front-view and later repeated in three-quarter, or vice versa). b Activa-
tion pattern across the different experimental conditions, overlaid on the mean anatomical 
scan of participants. White-colored areas show brain regions with face-selective responses, 
including FFA, STS, and amygdala. Gray-speckled areas show repetition-priming effects 
for faces repeated with the same view condition, involving extensive bilateral ventral 
temporal regions including FFA on both sides. Black-colored areas show repetition-
priming effects for faces repeated with a different view, relative to faces seen for the fi st 
time, involving the left medial fusiform cortex outside the FFA. Average parameter 
estimates of activity (±SE) are plotted for (c) the right FFA (red area) and (d) left medial 
fusiform cortex (blue area)
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Fig. 6. a Stimuli used to test for repetition-priming effects when identity is repeated with 
the same or different viewpoint for either well-known or unknown faces. b Repetition-
priming effects arose in a medial region of right fusiform cortex when identity was 
repeated across different views, but only for unknown faces which were visually more 
similar to each other, as compared to different views of famous faces which were visually 
more different. c Average parameter estimates of activity (±SE) in right fusiform cortex
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(Bruce 1982; Damasio et al. 1990; Vuilleumier et al. 2003b), rather than being 
supported by in a single neuronal populations in a single brain area.

6 Conclusions

Recent brain imaging studies have highlighted the distributed and interactive 
nature of face perception in the human brain (Haxby et al. 2000, p. 256). The 
present chapter has focused on the processing of two major facial attributes 
(identity and expression) in the main brain regions associated with face recogni-
tion, i.e., the fusiform cortex (FFA), as well as the amygdala. Our fi ndings reveal 
that although the FFA is critically implicated in face identity processing, repeti-
tion-priming effects may arise when the same face is seen across different picture 
formats but not when the same identity is seen across different viewpoint, sug-
gesting that representations of faces in the FFA are not view-invariant and do 
not maintain a fully abstract 3D memory trace for previously encountered faces, 
even when these are from well-known people. In addition, face processing in the 
FFA is not totally independent of emotional expression, as predicted by tradi-
tional cognitive models proposing a strict segregation between processing path-
ways for expression and those for identity. However, emotional effects in the 
FFA are essentially generated by amygdala feedback on extrastriate cortex, 
which may arise during a second stage of processing after a fi rst sweep of coarse 
visual inputs into the visual system. Future research still needs to elucidate the 
nature of visual information and computations taking place in different brain 
regions, and their dynamic interactions over time. Despite our impression that 
faces can be recognized effortlessly in a single glance, face recognition clearly 
involves more than a single brain process triggered in a single instant.
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1 History of Hybrid Models

1.1 Introduction
The human capacity for visual object recognition is characterized by a number 
of properties that are jointly very challenging to explain. Recognition perfor-
mance is highly sensitive to variations in viewpoint such as rotations in the picture 
plane (e.g., Murray 1995, 1998; Jolicoeur 1985) and to some rotations in depth 
(e.g., Hayward 1998; Lawson and Humphreys 1996, 1998) but invariant with the 
location of the image in the visual fi eld (Biederman and Cooper 1991; Stankie-
wicz and Hummel 2002), the size of the image (Biederman and Cooper 1992; 
Stankiewicz and Hummel 2002), left-right (i.e., mirror) refl ection (Biederman 
and Cooper 1991; Davidoff and Warrington 2001), and some rotations in depth 
(Biederman and Gerhardstein 1993). Second, object recognition is remarkably 
robust to variations in shape (Davidoff and Warrington 1999; Hummel 2001). 
For example, people spontaneously name the picture of a Collie or a Pomeranian 
both as simply a “dog” – a phenomenon termed “basic level” categorisation 
(Rosch et al. 1976).

Theorists traditionally struggle to account for these properties. In so called 
view-based theories (e.g., Olshausen et al. 1993; Poggio and Edelman 1990) rep-
resentations mediating object recognition are usually based on metric templates 
derived from learned views. Although more recent accounts allow for combina-
tions of template fragments (e.g., Edelman and Intrator 2003), the object features 
in view-based representations are fi xed to certain locations in the image. There-
fore, these accounts can readily explain effects of view-dependency in object 
recognition. In contrast, so-called structural description theories assume that the 
visual system extracts a more abstract representation from the 2D image on the 
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retina by encoding an object’s constituent parts and their spatial relations (e.g., 
Biederman 1987; Hummel and Biederman 1992). Such a description is unaffected 
by many view-changes (such as changes in size, left-right refl ection) and it also 
applies to many different exemplars of an object, permitting generalisation over 
metric variations of shapes (see Hummel 2001).

1.2 View Specifi c vs Abstract Representations
Not surprisingly, theorists have for some time sought to explain object recogni-
tion phenomena by integrating two qualitatively different types of representa-
tions. We will call these accounts hybrid models. For example, Posner and his 
colleagues (Posner 1969; Posner and Keele 1967) found an advantage for the 
sequential matching of identical letters in comparison with the matching of letters 
with the same name but differing case. However, this advantage was found only 
with short interstimulus intervals. These results were confi rmed by other research-
ers with more realistic stimuli (Bartram 1976; Ellis et al. 1989; Lawson and 
Humphreys 1996) and were taken as evidence for the existence of a rapid, stimu-
lus-specifi c representation and a more durable, abstract representation that gen-
eralises over variations in shape.

There is also neuropsychological evidence in support of representations that 
are either view-specifi c or more abstract. Warrington and her associates (War-
rington and James 1988; Warrington and Taylor 1978) asked brain-damaged 
patients to recognize objects from canonical or non-canonical views. Observers 
with damage to the right posterior areas of the brain were particularly poor at 
non-canonical object recognition; therefore, Warrington and Taylor (1978) pro-
posed that visual object recognition involves in two main stages. In the fi rst stage, 
perceptual object constancy is achieved, relying heavily on right hemisphere 
processing. The second stage involves semantic categorisation, which taps pri-
marily left hemisphere processing. Damage to the right hemisphere would there-
fore impair object constancy, so that only objects in highly familiar (canonical) 
views are recognisable (Warrington and James 1988). There are more recent 
accounts based on such hemispheric differences in which an abstract-category 
recognition system is assumed to be dominant in the left brain hemisphere 
whereas a specifi c-exemplar subsystem is thought to be working more effectively 
in the right hemisphere (Marsolek 1999).

Somewhat different representations working in two parallel pathways were 
proposed by Humphreys and Riddoch (1984). Their patients were shown 3 pho-
tographs of objects. The task was to match two different views of a target object 
by discriminating the object from a visually similar distracter object. Four of their 
patients with right-hemisphere damage only showed impairment in this task 
when the principal axis of the target object was foreshortened in one of the 
photographs. In contrast, a fi fth patient (with damage to the left hemisphere) 
showed impaired matching only when the saliency of the target object’s main 
distinctive feature was reduced, but foreshortening of the principal axis did not 
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affect his performance. According to Humphreys and Riddoch (1984), this double 
dissociation indicates that two functionally independent routes are responsible 
for achieving object constancy. One route processes an object’s local distinctive 
features whereas the second route encodes the object’s structure relative to the 
frame of its principal axis.

One particular shortcoming of these early hybrid accounts discussed above is 
their lack of specifi cation. In particular, it is not clear under what conditions the 
different representations are tapped separately or in combination. One type of 
attempt to clarify those conditions is to invoke process differences such as mental 
rotation (Jolicoeur 1990; Corballis 1988) or holistic vs analytic processing (Farah 
1990, 1991). These will not be dealt with here but for a critical review, see 
Humphreys and Rumiati (1998) and Lawson (1999).

1.3 Representation Use according to Task-Demands
Tarr and Bulthoff (1995) suggest that human object recognition can be thought 
of as a continuum between pure exemplar-specifi c discriminations and cate -
gorical discriminations. According to this line of thinking, extreme cases of 
within-class discriminations allow for recognition exclusively achieved by 
viewpoint-dependent mechanisms. When objects are to be distinguished in broad 
categorical classes recognition of objects may be exclusively achieved by 
viewpoint-invariant mechanisms. Shape discriminations usually fall within the 
extremes of the continuum and recognition is mediated by viewpoint-dependent 
and viewpoint-independent mechanisms according to the nature of the task, the 
similarity and familiarity of the stimuli, and other context conditions. Although 
this account seems intuitive, its predictions are rather general and the experi-
mental evidence is somewhat unclear (Murray 1998; Hayward and Williams 
2000).

2 A Hybrid Model of Object Recognition and Attention

2.1 The Hummel Model
Most of the previous hybrid accounts incorporate representations that have 
properties similar to structural descriptions (e.g., Hummel and Biederman 1992) 
or view-like representations (e.g., Olshausen et al. 1993). However, which type 
of representation is employed may depend on attention (Hummel and Bieder-
man 1992). The next section will describe a hybrid account of object recognition 
that specifi es how visual attention affects the representation of object shape.

The fact that both structural descriptions and view-based representations of 
shape can account for some, but not all of the properties of object recognition 
led Hummel (Hummel and Stankiewicz 1996; Hummel 2001) to propose that 
objects are recognized based on a hybrid representation of shape, consisting of 
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a holistic (i.e., “view”-like) representation as well as an analytic representation 
(i.e., a structural description) of shape (Fig. 1).

Given a 2D image (such as a line-drawing) of an object, the Hummel model 
(JIM.3) generates both an analytic and a view-based representation. The analytic 
representation codes an object’s shape in terms of the object’s parts and their 
categorical interrelations. This representation has the properties of structural 
description (Biederman 1987) and is largely robust to many variations in view-
point (such as translation, changes in scale, left-right refl ection and some rota-
tions in depth) but it is sensitive to rotations in the picture plane (see Hummel 
and Biederman 1992). The analytic representation allows generalization to novel 
views and to novel exemplars of known categories. However, it requires process-
ing time and visual attention to be able to represent parts and spatial relations 
independently of each other (Hummel and Biederman 1992; Hummel 2001).

The holistic representation, in contrast, does not specify parts of an object or 
their categorical spatial relations. Instead, object parts are represented in terms 
of their topological positions in a 2-D coordinate system (see Hummel 2001). 
Since the holistic representation does not require attention for binding parts to 

Fig. 1. A simple sketch of the architecture of JIM.3 (adapted from Hummel 2001). Units 
in the input layers of the model are activated by the contours from an object’s line 
drawing. Routing gates propagate the output to units with two representational compo-
nents: The independent units represent the shape attributes of an object’s geons, and the 
units in the holistic map represent shape attributes of surfaces. The activation patterns of 
both components are learned individually, then summed in a higher layer over time. Units 
in the uppermost layer code object identity
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their spatial relations, it can be generated rapidly and automatically. The repre-
sentation formed on the holistic map is sensitive to left-right refl ections as well 
as to rotations in the picture plane and in depth because the units representing 
object surfaces are spatially separated. However, the holistic representation is 
invariant with translation and scale.

2.2 Previous Tests of the Hummel Model
Stankiewicz et al. (1998) tested the predictions of the hybrid analytic/holistic 
model regarding changes in viewpoint using an object naming task with paired 
prime/probe trials. A prime trial consisted of a fi xation cross followed by a box 
to the left or right of fi xation, which served as an attentional cue (see Fig. 2 for 

Precue 

Ready Signal 

Fixation Signal 

Prime  
Display 

Prime Mask 

Fixation Signal 

Probe Display 

Probe Mask 

Prime 
Response 

Probe 
Response 

Horse  
Guitar 
800 ms 

Feedback 

195 ms 

Pause 

~ 3s 

Fig. 2. Sequence of displays in a typical short-term priming paradigm (here an example 
from Experiment 1)
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a similar paradigm used in Thoma et al. 2004). This was followed by two line 
drawings of common objects, one of which appeared inside the cueing box, and 
the other appeared on the other side of fi xation. The participant’s task was to 
immediately name only the cued image (the attended prime) and not respond 
to the other image (the ignored prime). The entire prime trial (from cueing box 
to mask) lasted only 195 ms, which is too brief to permit a saccade away from 
fi xation. Each prime display was masked and after 2 seconds followed by a probe 
display containing a single image of an object at fi xation. Again, the task was to 
name the object which was either the same object as the attended prime, the 
same object as the ignored prime, or an object the participant had not previously 
seen in the experiment (an unprimed probe, which served as a baseline to 
measure priming). Images of repeated objects (i.e., other than unprimed probes) 
were either identical to the corresponding primes, or were left-right refl ections 
of them. Priming was measured as the difference in latencies between repeated 
(previously attended or ignored) and unrepeated (unprimed) probe images. The 
results showed that attended prime images reliably primed both themselves and 
their left-right refl ections. However, ignored prime images only primed them-
selves in the same view. Moreover, the effects of attention (attended vs. ignored) 
and refl ection (identical images vs. left-right refl ections) were strictly additive: 
The priming advantage for same view prime-probe trials was equivalent in both 
attended and unattended conditions (about 50 ms). The fact that attention and 
refl ection had additive effects on priming provides strong support for the inde-
pendence of the holistic and structured representations of shape in the hybrid 
model. A holistic representation contributes to priming in a strictly view-
dependent way and is independent of attention, whereas an analytic representa-
tion contributes to priming regardless of the view but depends on attention. 
Stankiewicz and Hummel (2002) tested the hybrid model’s predictions concern-
ing changes in position and scale using a similar paradigm as in Stankiewicz 
et al. (1998). As predicted, priming for attended and ignored objects was not 
affected by view changes such as translation and scaling (i.e., changes in position 
and size).

2.3 Testing Confi gural Distortions in the Hybrid Model
Here, we report 8 further experiments that examine aspects of the Hummel 
model using a priming paradigm similar to that employed by Stankiewicz et al. 
(1998). The fi ndings of Stankiewicz and colleagues are clearly consistent with the 
hybrid model, but they cannot provide a direct test for the model’s primary theo-
retical assertion – that the object shape is represented in a hybrid analytic and 
holistic fashion. To test the assumption of truly analytic representations underly-
ing object recognition, we employed images that would not resemble any holistic 
representations. Whereas analytic representations of shape should be necessarily 
robust to confi gural distortions – such as scrambling of component parts – a 
holistic representation should be very sensitive to such image variations. Con-
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sider the manipulation of splitting an image down the middle and moving the 
left half of the image to the right-hand side (Fig. 1). A holistic representation of 
the intact aeroplane (e.g., stored as a view as in a typical image-based model; 
e.g., Poggio and Edelman 1990) would be matched, in its entirety, against an 
object’s image to determine the degree of fi t between the image and the holistic 
representation (i.e., view) in memory.

According to this holistic measure of similarity, the intact and split images of 
the aeroplane are very much different. However, a structural representation 
could compensate for this manipulation as long as the shapes of the object’s 
parts are recoverable from the information presented in each half of the image 
(Biederman 1987; Hummel and Biederman 1992). In the split image, the front 
of the aeroplane is not connected to the back, yet the two halves retain enough 
structural information to allow the identifi cation of the object.

Experiments 1–3 are from Thoma et al. (2004) and were designed to directly 
test the central theoretical assertion of the hybrid model that the representation 
of an attended image is analytic and holistic whereas the representation of an 
ignored image is only holistic. Experiment 1 investigated the role of attention in 
priming for split and intact object images. Participants named objects in pairs of 
prime-probe trials (as in Stankiewicz et al. 1998). Half of the prime images were 
presented intact, and half were split either horizontally or vertically, as illustrated 
in Figure 2. The factors of attention (attended vs ignored image) and image type 
(intact vs. split) were crossed orthogonally. The probe image was always intact 
and corresponded either to the attended prime, the ignored prime, or it was an 
image the observer had not previously seen in the experiment (which served as 
a baseline).

As predicted by the hybrid model, split images primed their intact counterparts 
only when the split images were attended, but both attended and ignored intact 
images primed their intact counterparts (see Fig. 3a). There was a reliable priming 
advantage for intact primes over split primes. Thus, the effects of attention 
(attended vs ignored) and confi guration (intact vs. split) were strictly additive as 
in Stankiewicz et al. (1998).

Experiment 2 was designed to estimate what fraction of the priming observed 
in Experiment 1 was due to visual (as opposed to concept and/or name) priming. 
Images in the identical-image conditions of Experiment 1 (attended-intact, 
ignored-intact) were replaced with images of objects having the same basic-level 
name (e.g., “piano”) as the corresponding probe object, but with a different 
shape (e.g., “grand piano” instead of “upright piano”). The results of Experiment 
2 showed than an intact probe image was primed more (about 80 ms) by an 
attended split image of the same exemplar (e.g., a grand piano) than by an 
attended intact different exemplar of the same basic-level category (e.g., upright 
piano). Since in both cases participants responded with the same name in prime 
and probe trials, this difference indicates a strong visual component to the priming 
in the attended and ignored conditions. There was no priming for unattended 
primes (split or different exemplar), suggesting that all the priming observed in 
the unattended condition of Experiment 1 was specifi cally visual.
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The priming patterns in Experiments 1 and 2 are predicted by the theory that 
the visual system generates holistic representations of ignored images and ana-
lytic representations of attended images (Hummel 2001; Hummel and Stankie-
wicz 1996). However, an alternative interpretation is that all the observed priming 
resides in early visual representations (i.e., rather than in representations respon-
sible for object recognition, as assumed by the hybrid model). Identical images 
may simply prime one another more than non-identical images, and attended 

Experiment 1: 
Priming of Intact versus Split Images
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Experiment 3:
Priming for Split and Intact Prime and Probe Images
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Fig. 3a,b. Priming (baseline RT minus RT in each experimental condition) means (ms) 
and standard errors in a Experiment 1 for intact probe images (Thoma et al. 2004) as a 
function of whether the prime image was attended or ignored and intact or split (n = 42). 
b Priming means in ms and standard errors for Experiment 3 (Thoma et al. 2004) as a 
function of whether the prime object was attended or ignored and whether both prime 
and probe were split or intact
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images prime one another more than unattended images. If this “early priming” 
account is correct, then the advantage for identical images over non-identical 
images and the advantage for attended images over unattended images could 
yield the effects found in Experiment 1. This interpretation is challenged by the 
results of Stankiewicz and Hummel (2002), who showed that priming for ignored 
images is invariant with translation and scale. Nevertheless, a third experiment 
was designed to establish whether the results of Experiments 1 and 2 refl ect a 
reliance on holistic processing for ignored images, as predicted by the hybrid 
model. Applied to the current paradigm, the logic is as follows: If the results of 
the fi rst two experiments refl ect the role of holistic representations in the recogni-
tion of ignored images, and if these holistic representations are encoded in LTM 
in an intact (rather than split) format, then ignoring a split image on one occasion 
should not prime recognition of the very same image on a subsequent occasion. 
However, if the results are due to priming early visual features (in both the 
attended and ignored cases), then ignoring a split image on one trial should prime 
recognition of that (split) image on the subsequent trial. By contrast, both models 
would predict that attending to a split image on one trial should permit the 
encoding and, therefore, priming of that image.

The results of Experiment 3 showed that a split image primed itself when 
attended but not when ignored, whereas an intact image primed itself under both 
conditions (see Fig. 3b). Critically, in the ignored conditions priming was found 
only for intact images but not for repeated split images. This demonstrated that 
the lack of priming for ignored split images in Experiment 1 cannot be attributed 
to a general decrease of priming in response to split images. The priming pattern 
is predictable from the hybrid model and in contrast to the alternative hypothesis 
that would have predicted equal levels of priming under both ignored 
conditions.

The results reported by Thoma et al. (2004) strongly support the central theo-
retical tenet of the hybrid model of object recognition (Hummel 2001; Hummel 
and Stankiewicz 1996), that object recognition is based on a hybrid analytic + 
holistic representation of object shape. Attended intact, attended split and 
ignored intact images primed subsequent recognition of corresponding intact 
images, whereas ignored split images did not prime their intact counterparts. This 
pattern of effects is predicted by the hybrid account because attended images are 
represented both analytically and holistically, whereas ignored images are re-
presented only holistically.

2.4 Plane Rotations
Object recognition is well-known to be sensitive to orientation in the picture 
plane (for a review, see Lawson 1999). The principal aim of Experiments 4 and 
5 (Thoma, Davidoff, and Hummel 2007) was to test the hybrid model with picture 
plane rotations. A distinction between base (objects with a preferred upright 
position) and no-base objects (objects without a defi nite base) was made, which 
has previously been found to have importance for both behavioural (Vannucci 
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and Viggiano 2000) and neuropsychological (Davidoff and Warrington 1999) 
investigations of object orientation. In a simple object naming study Thoma 
et al. (2007) confi rmed the fi nding that objects with a defi nite base (e.g., a house) 
incurred increasing recognition performance costs when rotated, whereas no-
base objects (e.g., hammer) were equally recognisable in all picture plane orien-
tations. Subsequently, in Experiment 4, the pattern of priming effects observed 
for plane-rotated no-base objects clearly replicated the fi ndings of Stankiewicz 
et al. (1998) with mirror-images and those of Thoma et al. (2004) with split 
images. Thus, the general notion of a hybrid model consisting of a holistic and 
analytic representation is supported by the fact that attended objects primed 
themselves in both the same view and the rotated view, whereas ignored objects 
only primed themselves in the same view (Hummel 2001).

In an attempt to test whether low-level early priming could have yielded these 
results, a replication of Experiment 3 was attempted using base-objects (e.g., a 
house). The relevant prime objects (attended or ignored) and the corresponding 
probe images were shown in the same orientation – both appeared in either an 
upright (familiar) or rotated (unfamiliar) view. The particular interest was in the 
ignored trials. Once more, Experiment 5 found a signifi cant amount of priming 
in one condition (upright prime and identical probe image) and no priming in 
the other. Importantly, the lack of priming here was for ignored identical views 
that were unfamiliar (rotated view of base objects). Thus, the lack of priming in 
the ignored conditions for rotated no-base objects seen in Experiment 4 cannot 
be attributed to changes in early visual stimulation and cannot be trivially attrib-
uted to the amount of featural overlap between prime and target views. The 
priming pattern found in Experiment 5 (and previously with split objects, see 
Fig. 3b) is perhaps the most direct evidence that images of ignored objects 
achieve priming from access to stored familiar views. The data also fi t previous 
fi ndings that attention is necessary to establish view-independent representations 
(Murray 1995).

2.5 Depth Rotation
Experiments 6–8 (Thoma and Davidoff 2006) are concerned with depth rotations 
in the Hummel model. Just as with plane-rotations there are many documented 
effects of rotations in depth on recognition performance. Many researchers have 
shown view-dependent effects after depth rotations of familiar objects (e.g., 
Hayward 1998, Lawson and Humphreys 1996, 1998). However, Biederman and 
his colleagues (Biederman and Gerhardstein 1993) have obtained view-invariant 
effects after some rotations in depth that did not alter the visible part-structure 
of an object. The hybrid theory of object recognition may offer an explanation 
for mixed fi ndings on depth-rotation effects.

Certain rotations in depth produce a mirror transformation of the image if the 
object is bilaterally symmetric. In Experiment 6, the fi ndings of Stankiewicz et 
al. (1998) with mirror images were replicated with a new set of photorealistically 
rendered objects. Once more, the effects of attention and viewpoint were addi-
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tive. Attended objects primed both themselves and their refl ected versions, 
whereas ignored objects only primed themselves but not their mirror versions. 
Thus, the hybrid model may account for effects of depth rotations in which the 
part structure is not changed between views.

In contrast to mirror refl ections, rotations in depth between study and test can 
affect the analytic representation because visible parts may be occluded or new 
parts may be revealed (Biederman and Gerhardstein 1993). Depth-rotations that 
differ from those akin to mirror-refl ections should therefore provide an oppor-
tunity to further test the theory that two representations work in parallel because 
depth rotation may affect both representational components (analytic and holis-
tic) instead of just one (holistic). The aim was to test whether depth-rotation 
involving part changes affects priming for attended objects (analytic plus holistic 
representation) more than for ignored objects (holistic representation only).

The logic underlying Experiment 7 comprises three parts: First, according to 
the hybrid model, all viewpoint changes (except translation and scaling) should 
affect the holistic component. Second, because the holistic representation works 
with and without attention, changes in viewpoint by depth-rotations should 
equally decrease the amount of priming in both attended and ignored conditions 
compared to priming in the identical viewpoint. Third, depth-rotations that affect 
the perceived part structure of the object should additionally reduce the amount 
of priming for attended images (because only then will the analytic representa-
tion be affected), but not for ignored images. In summary, if a part-based repre-
sentation is involved for attended images but not for ignored ones, object rotations 
involving part changes should affect priming for attended images (holistic and 
analytic change) more than for ignored images (holistic change only).

In Experiment 7, objects were rotated in depth to produce an altered part-
structure between views. To achieve a qualitative change in view orientation, 
objects were rotated in depth and depicted in two views. One was a complete 
side view (Fig. 4c) that would be primed by a more conventional view or vice 
versa (Fig. 4b). As a consequence, some parts of the object seen in one view 
(Fig. 4c) are not visible in the second view (e.g., the tail in Fig. 4b) and vice versa 
(e.g., legs in Fig. 4c). The effect of part-change was verifi ed in a pilot study.

a,b c

Fig. 4a–c. Three views of an example object as used in Thoma and Davidoff (2006). View 
b is rotated further away (90˚) from view a than from view c (60˚), but the object shares 
more visible parts with view a, because two of the legs are hidden in view c whereas a 
new part (the tail) appears
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The results of Experiment 7 replicated the previous fi ndings of priming for 
attended images in the same view and in a changed (here: depth-rotated) orienta-
tion while ignored objects only primed themselves in the same view (see Fig. 5). 
Unlike previous tests of the hybrid model, the data show a unique interaction 
between attention and view-change: The difference between identical and depth-
rotated views was signifi cantly greater for attended than for ignored images.1 This 
novel priming pattern is in line with the prediction of the hybrid model that 
depth-rotations may cause qualitative changes in analytic representations that 
depend on attention.

The data are not in line with view-based accounts. If attention plays a role in 
matching input with representations based on metric properties, one would 
expect enhanced priming effects for rotated objects in attended conditions rela-
tive to ignored conditions because attention would serve to aid the matching 
process (e.g., Olshausen et al. 1993). This was not the case here – the priming 
difference between rotated and identical view was greater for attended than for 
ignored objects.

As predicted from the hybrid model of Hummel (2001), viewpoint and atten-
tion produced additive effects of priming between qualitatively similar views, just 
as observed in Experiment 6. In Experiment 8, there was a greater degree of 
angular separation (90˚) between the prime and probe view than in Experiment 
7 (60˚), yet the former view pairs (Fig. 4a,b) were rated by observers as more 
similar (in terms of visible parts) than the view pairs of Experiment 7 (Fig. 4b,c). 
Thus, the differences between the attended conditions of Experiments 7 and 
8 confi rm previous fi ndings (Hayward 1998; Lawson 1999) that the amount of 
angular rotation (60˚ vs 90˚) is not a reliable predictor of recognition performance 
as would be expected if object shape was represented only metrically.
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Fig. 5. Priming means (ms) and standard errors in Experiment 7 (Thoma and Davidoff 
2006, Experiment 2) as a function of whether the object was attended or ignored in the 
prime display and whether the probe objects were presented in the same orientation or 
rotated in depth
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The results for attended images also confi rm that object recognition depends 
on whether the same parts are visible across views (Biederman and Gerhardstein 
1993; Srinivas 1995). The hybrid’s model general notion that object recognition 
across rotations in depth involves both an analytic and a holistic representation 
is also corroborated by Foster and Gilson (2002) who used novel 3-D objects that 
were to be discriminated in matching tasks either by a metric or a non-accidental 
(i.e., structural) property.

3 Multiple Representations in the Brain

The recent confi rmation of the Hummel model from behavioural evidence fi nds 
support from neuroscience. Janssen et al. (2000) showed that neurons in the 
superior temporal sulcus were selective for three-dimensional shape whereas 
neurons in the lateral TE were generally unselective for 3D shape, though equally 
selective for 2D shape. Functional imaging studies (e.g., Vuilleumier et al. 2002) 
also support the notion that two types of object representations can be distin-
guished according to view-invariance in priming tasks. Vuilleumier et al. (2002) 
showed that repetition of images of common objects decreased activity (i.e., 
showed priming) in the left fusiform area independent of viewpoint (and size), 
whereas a viewpoint-dependent decrease in activation was found in the right 
fusiform area. Interestingly, the latter area was sensitive to changes in orientation 
but not in size – properties of the holistic component directly predicted by the 
hybrid model (Hummel 2001) and confi rmed in behavioral studies (Stankiewicz 
and Hummel 2002).

As we have outlined in a previous section, numerous studies of patients 
with (limited) object agnosia indicate qualitatively different representations 
(Warrington and James 1988; Humphreys and Riddoch 1984). More recent evi-
dence seems to corroborate the idea of multiple representations in the brain. 
Davidoff and Warrington (1999, 2001) studied patients who were extremely 
impaired at recognising object parts. Nevertheless, they were normal in naming 
intact objects though only when seen in familiar views. In terms of the hybrid 
model, the patients’ holistic components seemed intact, allowing object recogni-
tion from familiar views, whereas analytic components were impaired preventing 
recognition of object parts or from unfamiliar views.

There is also neuropsychological evidence that attention may play a role in 
shape representation. Patients demonstrating unilateral neglect usually fail to 
respond to stimuli presented on the side contralateral to their lesion. Despite 
showing poor response to contralesional stimuli, there is evidence that these 
patients can nevertheless process semantic and shape properties in that fi eld 
(Marshall and Halligan 1988; McGlinchey-Berroth et al. 1993). Recently, Forti 
and Humphreys (in press) have shown that the processing of shape information 
in the neglected hemifi eld depends on viewpoint as proposed by Stankiewicz et 
al. (1998) and seems qualitatively different from non-neglected stimuli. Similar 
fi ndings come from studies on extinction, in which patients are able to detect 
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ipsilesional stimuli presented alone but not when they are presented simultane-
ously with a stimulus on the contralesional side. Importantly, a recovery from 
extinction can be observed for global form information (Humphreys et al. 2000).

4 Conclusions

As we have seen, studies from different areas of cognitive science indicate the 
coexistence of multiple or hybrid representations of shape, resembling a distinc-
tion between holistic and analytic processing (Hummel 2001). This chapter has 
focused on the processing of shape in Hummel’s model of object recognition 
because it is currently the most detailed model describing the role of attention 
in hybrid representation. Studies using traditional (rotation, refl ection, scaling, 
translation, exemplar change) and novel (splitting) manipulations of object shape 
clearly confi rmed the model’s predictions regarding analytic/holistic representa-
tions. However, there are still many aspects of object recognition that are yet to 
be integrated into the model.

The hybrid model is largely based on a structural descriptive approach to 
object recognition (Hummel and Biederman 1992), which has been criticized in 
the past (e.g., Tarr and Bulthoff 1995; Edelman and Intrator 2003). For example, 
it is unclear how the model (and its predecessors) extracts axes of geons from 
2D images. Another critique concerns the representation of irregular objects 
without obvious parts (such as a bush). One solution could be that in these cases, 
recognition relies more on the holistic component (Hummel 2003). A further 
way in which aspects of the Hummel model may be employed is to consider the 
role of time. For example, Zago et al. (2005) showed that visual priming for 
objects was maximal for an exposure time of 250 ms, then decreases. Therefore, 
they argued that certain aspects of an initial broad representation may be fi ne-
tuned, becoming more stimulus specifi c.

In summary, it seems that attention is not necessary for object recognition but 
that the representations underlying object recognition differ according to whether 
an object is attended or not. An analytic representation is formed for attended 
objects and will be relatively robust to changes in view or confi guration, except 
for part-changes. A holistic representation of an object is formed with and 
without attention allowing rapid recognition, but such a representation is very 
sensitive to any changes in view of global shape.

Note
1. The level of priming in Experiment 7 under all priming conditions was slightly higher 

than that in other experiments, and there was a slight trend toward positive priming 
for the ignored rotated prime. This may be due to the fact that the probe views were 
slightly less canonical (foreshortened) which produced longer identifi cation times for 
baseline conditions (∼50 ms compared to Experiment 6) and allowed more room for 
priming.
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1 Introduction

Neuropsychological studies of patients with damage to either the temporal or 
parietal region have suggested that these areas can be broadly divided into two 
functionally different pathways, a ventral “what” pathway for feature-related 
object vision and a dorsal “where” pathway for motor-oriented spatial vision 
(Milner and Goodale 1995; Mishkin and Ungerleider 1982). This is a reasonable 
separation since humans must resolve what an object is regardless of where it is 
to achieve object recognition, and vice versa to plan body actions in relation to 
the object. Neuroanatomical studies in the monkey cerebral cortex have demon-
strated that parietal and temporal cortical areas are heavily connected with each 
other (Felleman and Van Essen 1991). Given the similarity between human 
and monkey cortical architecture (Van Essen 2003), it is expected that human 
temporal and parietal areas also have similar inter-connections. Such inter-
connections would imply potential interactions between the temporal and pari-
etal areas. However, it remains unclear how deeply these areas actually interact 
with each other. Concerning this question, we report recent studies suggesting 
that illusory perception of an object location called “saccadic compression of 
visual space” affects the perception of object shapes.
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2 Saccadic Compression of Visual Space

2.1 Localization of a Flash near the Time of 
Saccade Execution
In daily life, humans frequently make a voluntary rapid eye movement called a 
saccade. Although the retinal location of an object changes quickly when doing 
a saccade, we usually do not perceive this change as a movement of the object. 
A widely accepted explanation for this fact is that the object location that we 
perceive is represented with respect to the head (Bridgeman et al. 1994). It is 
necessary to calculate the head-centered representation to integrate retinal loca-
tion of the object image to eye position. Denoting head-center representation, 
retinal image location and eye position as T, R and E, respectively, this calcula-
tion can be represented as T = R + E (Fig. 1a). Neurophysiological and neural 
network simulation studies have suggested that this calculation is performed in 
parietal cortical areas (Andersen and Zipser 1987). For example, strength of 
visual responses of neurons in Brodmann area 7a of monkey brain is modulated 
by eye position (Andersen et al. 1985, see Fig. 1b). Such property is typically 
found in the intermediate layer of a feed-forward neural network that calculates 
head-centered representation from retinal image and eye position signal (Zipser 
and Andersen 1988). Generally, representation of object location with respect 
to a body part of the observer such as head-center representation is called “ego-
centric representation”. Egocentric representation of an object location is impor-
tant for control of visually guided body actions, and integration of visual input 
with idiothetic or self-motion information (e.g., vestibular, motor efference 
copy and proprioception) is a common prerequisite for all kinds of egocentric 
representation.

a

b

Fig. 1. Head-center representation of object location. Left: Head-centered representation 
of a visual object (T). T is the invariant of change in eye position when the object and 
head are fi xed. Right: Eye-position modulation of visual responses of neurons in area 7a 
of the monkey brain. Visual responses during fi xating on a ∼ i are schematically shown in 
bar plots. Response of this model cell is enhanced when the monkey fi xates on the top 
left. Head-center representation can be built up from this sort of eye-position-modulated 
visual response
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Although head-center localization works well in daily life, it is known that the 
apparent location of a stimulus fl ashed within tens of milliseconds before, during 
or after saccade onset changes drastically depending on stimulus onset time rela-
tive to saccade onset time (Honda 1989, 1990, 1991; Matin et al. 1969, 1970). In 
general, localization error is in the same direction as the saccade when the fl ash 
is presented before saccade onset, and opposite to the saccade when the fl ash is 
presented after saccade. These results are interpreted as indicating that eye posi-
tion signal changes more slowly compared to the actual change of eye position 
during saccade execution (Honda 1990). If this interpretation is correct, we could 
assume that localization error will be independent of the physical properties of 
a fl ash. However, previous studies showed that the presence of a luminous back-
ground causes dependency of the mislocalization size on retinal location of the 
fl ash (Bischof and Kramer 1968; Honda 1995; O’Regan 1984; Ross et al. 1997). 
Among these studies, Ross et al. (1997) reported that mislocalization strongly 
depended on the location of a fl ash when a green stimulus was fl ashed on an 
equiluminant red background. Figure 2 schematically shows the procedure and 
the results of their experiment. The subject made a horizontal saccade from F to 
T, while a vertical bar was presented for 10 ms before, during or after the saccade 
onset. Possible bar locations were −10 deg, 0 deg or 10 deg. The subject was asked 

Fig. 2. Saccadic compression of visual space. Left: Spatial confi guration of the stimulus 
and the time course of stimulus presentation. The subject made a saccade from F to G 
and reported the apparent location of the vertical bar (S). Right: Apparent position of 
vertical bars, plotted against stimulus onset time relative to saccade onset time. Each 
symbol (circle, triangle or square) corresponds to the result of a single trial
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to report verbally where the vertical bar was perceived after saccade termination 
by indicating a horizontal ruler presented on the screen. The right panel of Figure 
2 plots the apparent location of the vertical bar against the stimulus onset time 
relative to saccade onset. Each symbol corresponds to a single trial. This plot 
shows that the vertical bar was mislocalized as if visual space was compressed 
toward the goal of the saccade near the time of saccade onset (Ross et al. 1997). 
Ross et al. called this phenomenon “saccadic compression of visual space”. Here-
after, we will abbreviate this “saccadic compression”.

To date, it has been shown that saccadic compression also occurs in a lumi-
nance-modulated stimulus (Morrone et al. 1997). The effect of saccadic compres-
sion becomes stronger when stimulus contrast decreases (Michels and Lappe 
2004). Compression in the direction orthogonal to the saccade is also observed, 
but the amount of compression is much smaller in comparison to that in the 
direction parallel to the saccade (Kaiser and Lappe 2004). Lappe et al. (2000) 
examined the dependence of perisaccadic mislocalization on the availability of 
visual spatial references at various times around a saccade. Their results showed 
that presaccadic compression occurs only if visual references are available imme-
diately after, rather than before or during, the saccade. This fi nding indicates the 
importance of the time course of visual input on the generation of saccadic com-
pression, while it is known that rapid displacement of a visual frame of reference 
simulating saccadic eye movement does not produce localization error similar to 
saccadic compression (Honda 1995; Morrone et al. 1997). These results suggest 
that saccade execution also plays an essential role in generating the compression 
effect.

2.2 Neural Correlates of Saccadic Compression
Krekelberg et al. (2003) suggested that the middle temporal (MT) and medial 
superior temporal (MST) areas may be concerned with the generation of saccadic 
compression. Initially, they measured the conditional probability of a particular 
fi ring rate for MT, MST, LIP and ventral intraparietal (VIP) neurons given the 
presentation of a fl ash at a particular location during fi xation (this conditional 
probability was called “codebook”). The fl ash was presented during fi xation or 
within ±200 ms from saccade onset, with “fi xation codebook” obtained from data 
in the former condition and “perisaccadic codebook” obtained from the latter. 
They then examined how precisely the fl ash location can be estimated by trans-
lating the fi ring rate of neurons into stimulus location using these codebooks. 
The results indicate that MT and MST neurons can reliably encode retinal loca-
tion of the fl ash with the fi xation codebook. Performance of the perisaccadic 
codebook was no better than that of the fi xation codebook even for decoding 
the location of perisaccadic fl ash. Most importantly, retinal location of the fl ash 
estimated using the fi xation codebook was widely mislocalized in a manner 
similar to saccadic compression. From these fi ndings, Krekelberg et al. suggested 
that dorsal downstream areas relying on MT and MST for retinal location infor-
mation would inherit this mislocalization.
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3 Saccadic Compression and Shape Perception

3.1 Effects of Saccadic Compression on Shape Perception
Ross et al. (1997) performed several experiments to argue that the illusion that 
they found results from compression of the neural representation of visual space. 
In one of these experiments, they presented some photographs of natural scenes 
25 ∼ 0 ms before saccade execution, and asked the subjects to report verbally how 
the shape of objects in the scene were perceived. The result was that 11 of 13 
subjects reported shape distortion of objects. Santoro et al. (2002) examined the 
effect of saccadic compression on the detection of a Glass pattern, i.e., a moiré 
pattern constructed from spatially random dots by duplication and displacement 
(Glass 1969). The subject made a horizontal saccade of 19 deg amplitude and a 
stimulus was presented 25 ∼ 0 ms before saccade onset. The upper or bottom half 
of the stimulus was a horizontal or vertical Glass pattern, and the other half 
was random dots. Duration of the stimulus presentation was 5 ms. The subjects 
reported which of the upper or bottom half was a Glass pattern. In the control 
condition, the subject judged the same stimulus without making a saccade. The 
results showed that detection of the horizontal Glass pattern was improved when 
it was presented before saccade onset, while there was no such improvement for 
the vertical Glass pattern (Fig. 3). Santoro et al. (2002) discussed that saccadic 
compression apparently shortened the horizontal dot separation resulting in 

Fig. 3. Saccadic compression improves detection of Glass patterns. The subject made a 
horizontal saccade of 19 deg amplitude and a dot pattern was fl ashed for 5 ms. The subject 
then judged whether the top or bottom half of the dot pattern was a Glass pattern. They 
reported that performance of detection of the Glass pattern (d’) was improved when a 
horizontal Glass pattern was fl ashed immediately before saccade onset
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improved detection of the horizontal Glass pattern. Considering the involvement 
of MT/MST in saccadic compression (Lappe et al. 2000), these fi ndings suggest 
that transient changes in neural responses in MT/MST affect perception of object 
shape and global patterns as well as perception of object locations.

Contradictory to this suggestion, Matsumiya and Uchikawa (2001) reported 
that the apparent width of a rectangle presented before saccade onset was not 
compressed. Figure 4 shows their stimuli and procedure. At fi rst, they compared 
the apparent widths of multiple bars (Fig. 4a) and solid rectangles (Fig. 4b) briefl y 
presented before saccade onset. The subjects made a horizontal saccade to the 
location at which the saccade target was presented (20 deg right from the fi xation 
point), and the stimulus was presented for one video frame (15.0 ∼ 16.7 ms) so 
that the stimulus onset relative to saccade onset was 33.4 ∼ 0 ms. The center of 
the stimulus was on the goal of the saccade. Two hundred milliseconds after the 
saccade goal was extinguished, a reference triangle was presented for one video 
frame. The subject judged whether the stimulus was smaller or larger than the 

Fig. 4. Saccadic compression did not affect the apparent width of rectangle and proxim-
ity-grouped object. Top: The stimuli used in the experiment and the time course of stimu-
lus presentation. Bottom: summary of the results and explanations by Matsumiya and 
Uchikawa (2001). A perceptually-grouped single object is uncompressed in the same 
manner as a solid object
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reference. In control trials, the subject observed the same sequence of visual 
stimuli without making a saccade. The results showed that the apparent width of 
multiple bars was compressed compared to that in control trials, while the appar-
ent width of a rectangle remained unchanged. In addition, they examined the 
apparent width of fi gures shown in Figure 4c,d. The procedure was the same as 
described above except that the width of the stimulus was fi xed and the width of 
the reference rectangle was changed between trials. The results were that the 
apparent width of Figure 4c was compressed while that of Figure 4d remained 
unchanged. Based on these results, Matsumiya and Uchikawa (2001) suggested 
that shape perception of a single object is not distorted by saccadic compression. 
The “single object” need not be a solid, but a global pattern of multiple elements 
that is perceptually grouped as a single object (see the bottom part of Fig. 4) also 
defends against saccadic compression. This suggestion confl icts with the fi nding 
of saccadic compression of objects in a natural scene reported by Ross et al. 
(1997). Concerning this point, they speculated that there was no distortion of the 
object images in natural scenes, but the apparent location of each object image 
in the natural scenes shifted toward the saccade goal just before the saccades. 
The impression that the natural scene had become deformed would result from 
an apparent shift of each object image (Matsumiya and Uchikawa 2001).

3.2 Does Kanizsa Figure Defend against 
Saccadic Compression?
The suggestion by Matsumiya and Uchikawa (2001) further implies that percep-
tion of an object shape may be protected from transient changes in neural 
responses in MT/MST. Considering the theory of two visual pathways for “what” 
and “where” vision, this is an attractive hypothesis. However, Matsumiya and 
Uchikawa (2001) only showed that a solid object and a set of multiple objects 
organized by the so-called “Gestalt law of proximity” are uncompressed. To 
demonstrate that shape perception is truly protected from saccadic compression, 
it is necessary to show that other shape perception processes are also unaffected 
by saccadic compression. To investigate this point, Sogo and Osaka (2005) exam-
ined whether a Kanizsa-type subjective fi gure is protected against saccadic 
compression. The top left of Figure 5 shows the stimuli used in our experiment. 
“Disks” and “Pacmen” were expected to be apparently compressed. “Real 
Contour” and “Filled” were expected to remain uncompressed because these 
fi gures contained a single wide rectangle. Our question is whether the “Illusory 
contour” of a rectangle defi ned by a Kanizsa-type subjective contour (Kanizsa 
1979) would be compressed or not.

The top right of Figure 5 shows the spatial confi guration of the stimuli used in 
our experiment. The subject fi xated on F at the beginning of a trial and a cross 
(G) was fl ashed for 20 ms 20 deg right to the F. The subject made a horizontal 
saccade as quickly as possible to the location where G was fl ashed. At a random 
time within 120 ∼ 240 ms from the onset of G, one of the target stimuli shown in 
the top left of Figure 5 was presented for 10 ms. Width of the target was 16 deg 
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for 83% of the trials and 12 deg and 20 deg for the rest of the trials. A probe 
appeared approximately 1500 ms after onset of the saccade goal. The probe was 
the same shape and height as the target but the width of the probe was either 
wider or narrower than the target. The subject reported the apparent width of 
the target by adjusting the width of the probe using a joystick. Representative 
data are shown at the bottom left of Figure 5. The apparent width of all stimuli 
was narrowest when they were presented near the time of saccade onset. As 
expected, the minimum apparent width of “Pacmen” was narrower than that of 
“Real Contour”. The result for “Illusory Contour” was clearly similar to that of 
“Pacmen”. The bottom right of Figure 5 compares the minimal apparent widths 
of fi ve targets (the mean from four subjects). The minimal apparent widths of 
“Disks”, “Pacmen” and “Illusory Contour” were signifi cantly narrower than 
those of “Real Contour” and “Filled”. This fi nding indicates that Kanizsa-type 
illusory contour does not protect against saccadic compression. However, it is 
also possible to speculate that the horizontal distance between inducers (i.e., 
pacmen in the “Illusory Contour”) might be too long to provoke a strong impres-

Fig. 5. Effect of saccadic compression on the apparent width of a Kanizsa fi gure. Top: 
The stimuli used in the experiment and spatial confi guration of the stimuli. Bottom left: 
Representative results from a single subject. Bottom right: The minimal apparent width 
(average of the results of four subjects). The result for “Illusory Contour” was clearly 
similar to those for “Disks” and “Pacmen”
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sion of illusory rectangle. To investigate this possibility, we examined whether 
the apparent width of a Kanizsa rectangle was compressed even when the hori-
zontal distances between inducers were much shorter. The result was, interest-
ingly enough, that minimal apparent width of “Illusory Contour” was not different 
from that of “Disks” for all distances examined (Sogo and Osaka 2005). Thus, 
we did not fi nd any sign that perception of a Kanizsa fi gure is protected against 
saccadic compression.

3.3 Does a Line-Drawing of a Triangle Defend against 
Saccadic Compression?
An unexpected fi nding in the experiment shown in Figure 5 is that the apparent 
width of the “Real Contour” was also slightly compressed. This may be because 
this stimulus was not a single object in the strict sense but a compound of a rect-
angle and four disks. If the rectangle and four disks were perceived as separate 
objects and the apparent horizontal distance between disks was compressed, the 
overall width of the stimulus would be slightly compressed while the width of the 
rectangle was correctly perceived. Another possibility is that compression of 
the rectangle width was too small to detect with the method used by Matsumiya 
and Uchikawa (2001). To investigate this possibility, we examined the effect of 
saccadic compression on shape perception of a single object in a manner different 
from asking the subject to indicate the apparent width of the object (Sogo and 
Osaka 2007). Top left of Figure 6 shows the stimulus. The experiment consists 
of two conditions, “triangle” and “bar” condition. In the triangle condition, the 
subject fi xated on F at the beginning of the trial and G was fl ashed for 20 ms. As 
quickly as possible, the subject made a horizontal saccade to the location where 
G had fl ashed. A triangle was fl ashed for 10 ms near the time of saccade onset. 
The triangle was randomly upright or upside-down, and the top or bottom vertex 
was offset from the horizontal center of the triangle. The task of the subject was 
to judge whether the top or bottom vertex was shifted to the left or right of the 
horizontal center of the rectangle. Under the “bar” condition, a vertical bar was 
fl ashed for 10 ms instead of the triangle. The location of the bar was randomly 
selected from three possible locations, indicated by BL, BR and BC in Figure 6. 
The task for the “bar” condition was to point to the apparent location of the bar 
using a cursor. To compare the results of the “triangle” and “bar” condition, we 
calculated the distortion of the triangle under the “triangle” condition and the 
predicted distortion from mislocalization of the vertical bars (bottom left of Fig. 
6). Distortion of the triangle in the “triangle” condition was defi ned as a propor-
tion of the shift of the top or bottom vertex of the subjectively regular triangle 
(defi ned by 50% point of the psychometric function) from the horizontal center 
in proportion to the width of the triangle. The predicted distortion was defi ned 
as a shift of BC location from the center of BL, and BR in proportion to the dis-
tance between BL, and BR. The right panel of Figure 6 shows the results for four 
subjects. Solid lines with fi lled squares show the observed distortion in the 
“triangle” condition, and dashed lines with open diamonds show the distortion 
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predicted from the “bar” condition. In the presaccadic period, both the observed 
and predicted distortion occurred in the direction opposite to the saccade and 
increased as the stimulus onset time relative to saccade onset became closer. The 
amount of the observed distortion was constantly smaller than that of the pre-
dicted distortion. These results suggest that the shape perception of a single 
object was less affected by saccadic compression compared to localization of 
vertical bars. In this sense, shape perception is protected from saccadic compres-
sion. However, this protection is not suffi cient to eliminate all distortions of 
object shape.

3.4 How does Saccadic Compression Distort 
Shape Perception?
We have reviewed recent studies of saccadic compression and its effect on shape 
perception. These studies indicate that some fi gures are hardly affected by sac-
cadic compression (simple geographic object and aproximity-grouped objects) 
while others are affected (Kanizsa fi gure and Glass pattern). Our tentative expla-

Fig. 6. Effect of saccadic compression on the perception of triangle shape. Top left: 
Spatial confi guration of the stimuli. Bottom left: Defi nition of distortion. Dashed vertical 
lines indicates horizontal center of the stimuli. Right: The results from four subjects. 
Shadowed areas indicate that stimulus presentation and eye movement overlapped. These 
data should be unreliable because retinal image of the triangle was smeared in these 
trials
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nation for these fi ndings is based on the following data and assumptions. Firstly, 
saccadic compression probably originates in transient changes of neural responses 
in the parietal areas (Krekelberg et al. 2003, for MT/MST neurons) and propa-
gates to early visual processing areas through feedback connections (Deco and 
Lee 2004; Juan and Walsh 2003). Secondly, recognition of Kanizsa fi gures, Glass 
patterns and natural objects are processed in recurrent loop between early and 
higher visual areas (Grill-Spector et al. 2001; Kourtzi and Kanwisher 2001; 
Larsson et al. 1999; Mendola et al. 1999; Murray et al. 2002) and are somehow 
time-consuming (Brandeis and Lehmann 1989; Guttman and Kellman 2004; 
Murray et al. 2002; Ringach and Shapley 1996). Finally, proximity-based percep-
tual grouping is rapidly processed in early visual areas (Han et al. 1999, 2001). 
From these assumptions, we speculate that neural representations of single 
objects and proximity-grouped objects will be built up so quickly that these rep-
resentations are hardly affected by feedback input from parietal areas where 
saccadic compression is generated. Compared to these, Kanizsa fi gures, Glass 
patterns and natural objects will be more strongly affected by feedback inputs 
from parietal areas because it takes a longer time to recognize these patterns and 
objects.

There may be other possible explanations for differences in the strength of 
compression effect between fi gures. For example, Sogo and Osaka (2005) pointed 
out that differences between representations of real and illusory contour in V1 
and V2 (Ramsden et al. 2001) may cause stronger compression of a Kanizsa 
rectangle compared to that of a real rectangle. However, we consider it diffi cult 
to explain the effect of saccadic compression on shape perception without assum-
ing that an interaction with the dorsal “where” pathway could have an effect on 
the ventral “what” pathway.

4 Conclusion

In this chapter, we showed new evidence supporting the interaction between 
dorsal and ventral pathways by showing that saccadic compression affects the 
shape perception process in the ventral pathway. The functional signifi cance of 
such interaction is not clear at present. We speculate that this interaction may 
support building and maintaining representations of object shape under dynamic 
change of retinal images due to body actions, although a possible model showing 
how dorsal-ventral interaction achieves stable object representation could be 
advanced in the future.
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1 Object Recognition and Visual Working Memory

Our visual world contains numerous objects. An important function of the visual 
system is to recognize an object by comparing perceptual and memory represen-
tations. Although we seldom have any problems in recognizing natural objects, 
which promotes the belief that object recognition is a quite simple process of 
matching perceptual and memory representations, recognition does in fact 
involve extremely complicated visual processing. The fact that objects are almost 
never presented in isolation illustrates the complexity and diffi culty of object 
recognition. The cluttered nature of our visual environment poses an object 
segmentation problem (including fi gure/ground segregation problem), which 
itself is quite diffi cult. Even if one can successfully segment a set of objects, there 
is another problem for the visual system to solve: the so-called binding problem. 
If there are multiple objects, each of which has its own feature values such as 
shape, color, size, and so on, then how does the visual system properly maintain 
the correct correspondences of these features? This chapter focuses on this 
binding problem in both object recognition and visual working memory.

2 Binding in Object Recognition and 
Visual Working Memory

The binding problem emerges whenever a system needs to represent multiple 
entities having multiple features simultaneously. Thus, both the literature on 
recognition of a multi-part object and that on storage of multiple objects in 
short-term memory contain theoretical discussions on the binding problem. In 
the object recognition literature, Hummel and Biederman (1992) illustrated the 
importance of the binding problem by proposing a neural network model of 
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structural-description-based object recognition. In Biederman’s (1987) RBC 
theory of object recognition, natural objects are represented by structural descrip-
tions composed of a set of part representations and their spatial relations. Because 
parts and their relations are represented by a set of geometric properties and 
parts need to be simultaneously represented, it is crucial to properly represent 
the binding of features. Hummel and Biederman proposed a network using 
temporal synchrony of oscillatory activity to implement feature binding 
mechanism.

Somewhat in parallel, in visual working memory literature, where we appear 
to be able to maintain multiple objects simultaneously, a similar proposal has 
been presented by Luck and Vogel (1997). Luck and Vogel showed that a func-
tional unit of visual working memory is object representations where their fea-
tures are integrated, and that the capacity of visual working memory is about 3–5 
objects. Based on these fi ndings, Luck and Vogel proposed that synchronous 
neural oscillation binds visual features of an object (Todd and Marois 2004; 
Vogel et al. 2001; Vogel and Machizawa 2004; see also Cowan 2001 for a review). 
However, these previous studies are insuffi cient to provide strong evidence sup-
porting the role of objects in visual memory. The results of some studies using a 
change detection task suggest that our capacity for object representation in visual 
memory is more limited than previously believed (Alvarez and Cavanagh 2004; 
Olson and Jiang 2002; Wheeler and Treisman 2002; Xu 2002). Moreover, Saiki 
(2002, 2003a, b) recently devised a paradigm called multiple object permanence 
tracking (MOPT) to investigate memory for binding in visual memory, and a 
reported similar limitation in visual memory.

3 Is Limited Binding Specifi c to Visual Working Memory?

Although the literature is currently equivocal regarding the capacity of memory 
for feature binding, it is likely that our memory for binding is not as powerful as 
Luck and Vogel fi rst proposed. This raises a question of whether bindings in 
visual working memory and object recognition are fundamentally different, 
because given that we can easily recognize objects with 3–4 parts (Biederman 
1987), the binding mechanism for object recognition appears to be able to deal 
with 3–4 parts simultaneously.

There are some important differences between the issues of binding in object 
recognition and visual working memory. Among these, I focus on one particular 
aspect in this chapter. Binding in object recognition is structural in the sense that 
a particular combination of component features is associated with a higher level 
description of parts, whereas binding discussed in visual working memory lacks 
such a higher level unit. For example, a combination of “straight axis, curved 
cross section, and constant size of cross section” defi nes a geon of cylinder, 
whereas a combination of “red, square, and large” does not have any label 
for it.
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In other words, a problem with stimuli used in visual working memory may be 
the lack of such structural relations. To address this issue, an experiment was 
conducted to compare the effect of higher level nodes on maintenance of feature 
binding in visual working memory. Two specifi c questions are addressed:

(1) Does pre-stored knowledge about shape-color correspondence facilitate 
memory for feature bindings, and if so, how?

(2) Does constant mappings of shape-color correspondence within an experi-
mental session facilitate memory for feature bindings, and if so, how?

If manipulations of (1) or (2) facilitate performance, the limited capacity for 
feature bindings in previous works is likely to refl ect the arbitrary and indepen-
dent nature of feature conjunctions used in the experiments. In contrast, if the 
factors above do not facilitate performance, then the capacity limit is likely to 
be more general.

4 MOPT as a Paradigm to Investigate Binding in Visual 
Working Memory

Saiki (2002, 2003a, b) recently devised a paradigm called multiple object perma-
nence tracking (MOPT) to investigate whether humans can track multiple object 
fi les in a dynamic situation, and showed that object motion, even if slow and 
easily tracked, severely disrupts the ability to maintain multiple object fi les. In 
the MOPT task, four to six objects with different colors or shapes are placed at 
equal eccentricity, then rotated behind a windmill-shaped occluder (Fig. 1). In 
the middle of the rotation sequence, features of two objects may be switched 
during an occlusion. The task of the observer is to detect whether a feature switch 
occurred. The speed of disk rotation was manipulated by the relative motion of 
disks and occluder, to investigate the effect of motion in a parametric manner. 
In general, switch detection was markedly impaired as motion speed increased 
(Saiki 2002, 2003a, b).

Two necessary conditions must be met to properly evaluate the use of feature 
conjunctions. First, to eliminate possible contributions from simple feature infor-
mation, the stimulus set should use identical sets of features in different combina-
tions. The second condition is the use of a task being able to evaluate the 
representation of feature combination. MOPT paradigm in Saiki (2003a, b) only 
satisfi ed the fi rst condition. Change detection tasks used in visual memory, includ-
ing the original MOPT, fail to satisfy the second condition, because simple stimu-
lus salience can account for correct change detection without using memory 
for feature combinations. One task satisfying the second condition is the percep-
tual identifi cation task used in perceptual feature binding (Ashby et al. 1996). 
However, the simple identifi cation task also contains problems. Even if subjects 
are simply asked to report an object with change, the cognitive load in response 
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mapping is signifi cant, and is quite likely to affect memory performance. Fur-
thermore, direct identifi cation forces participants to transform visual information 
into a verbal form, which can also compromise visual memory performance.

To avoid problems with both detection and simple identifi cation tasks, a task 
called type identifi cation was devised (Saiki and Miyatsuji, 2007). The paradigm 
can be illustrated using a color and shape example. Suppose the fi rst display 
contains a red square on the left and a blue circle on the right, then four possible 
change types exist: no change (red square and blue circle); color change (blue 
square and red circle); shape change (red circle and blue square) and object 
change (blue circle and red square). The type identifi cation task requires partici-
pants to identify which event occurs in the stimulus sequence, as discrimination 
among four alternatives. Correct identifi cation of change type requires memory 
for feature combinations. At the same time, unlike simple identifi cation, the cost 
in response mapping is negligible. These characteristics are crucial, particularly 
when using the wide varieties of colors and shapes seen in most visual memory 
tasks. If several colors and shapes are used, type identifi cation based solely on 
salience is almost impossible, and the cost in terms of response mapping in simple 
identifi cation becomes prohibitive. Compared with change detection tasks, the 
type identifi cation task can thus extract important additional information regard-
ing binding memory.

480 ms

240 ms

No Change Object Switch Color Switch Shape SwitchSwitch
 Type

Red Green Blue Yellow

Fig. 1. Schematic illustration of the multidimensional multiple-object permanence track-
ing (MOPT) task. In this example, the objects are stationary and the occluder is rotating. 
In the second visible period, four types of switches may occur between the circle and the 
square
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To use the type identifi cation paradigm, multiple object features such as color 
and shape must be used in the context for which the spatiotemporal locations of 
the objects are relevant. Otherwise, change detection and type identifi cation 
become identical. In this study, objects were defi ned by conjunction of color and 
shape.

Using the multidimensional MOPT paradigm with the type identifi cation pro-
cedure, the roles of prestored memory representations of color-shape conjunc-
tions in maintaining object information in visual working memory were evaluated. 
An experiment was conducted to investigate (1) whether known color-shape 
conjunctions facilitate maintenance of multiple object representations in visual 
working memory, (2) whether fi xed color-shape conjunction facilitates mainte-
nance of multiple object representations, and (3) whether patterns of errors 
demonstrate the roles of prestored conjunctions in visual working memory.

5 Experiment

5.1 Method
5.1.1 Participants

The experiment used 12 participants, and all displayed normal color vision.

5.1.2 Design

Two main independent variables were object type and motion type. The object 
types were natural (N) when natural objects were used, geometric-constant (GC) 
when geometric fi gures were used as in previous studies, while the shape-color 
correspondences were fi xed, and geometric-varied (GV), which is identical to 
previous studies (Fig. 2). The motion types were object motion and occluder 
motion.

5.1.3 Materials

Participants were shown a pattern of four colored objects and an occluder on 
top. Smooth rotation of the pattern and occluder at constant angular velocities 
resulted in alternating appearance and disappearance of the pattern. The four 
colored objects were confi gured in a diamond pattern, with each object placed 
at a visual angle of 4.0˚ from the center of the occluder. Shapes used for objects 
in the geometric conditions were circle, square, hexagon and triangle. Objects 
used in the natural condition were lobster, frog, banana, and violin, which had 
clear associated colors, based on a preliminary survey. Colors were those typi-
cally associated colors: red, green, yellow, and brown, for both natural and geo-
metric conditions. The colored objects were occluded using a gray windmill-shaped 
occluder (18.3 cd/m2), and the background was light gray (28.9 cd/m2). The 
sequence was either regular clockwise or counterclockwise rotation throughout, 
containing one visible period in which the locations of features of the two objects 
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were switched. A total of four events were possible: object-switch with simultane-
ous switch of color and shape; color-switch alone; shape-switch alone; and no 
switch (Fig. 1). The occluder displayed four openings of 30˚, through which the 
colored pattern could be seen. A switch event occurred between the 3rd and 6th 
occluded periods. When a switch event occurred, the sequence terminated at the 
next occlusion period. The timing of sequence termination under the no switch 
condition matched that under other conditions. Time and location of switches 
were unpredictable to the participants. Participants were asked to identify event 
types without feedback as to which was correct.

Object motion was manipulated by the relative motion of the pattern and 
occluder, as described by Saiki (2003b). In the occluder motion condition, objects 
were stationary and the occluder rotated at 126˚/s. In the object motion condition, 
the object rotated at 84˚/s, and the occluder rotated at 42˚/s in the opposite direc-

Red GreenBrownYellow

Red GreenBrownYellow

Red GreenBrownYellow

a. Natural condition

b. Geometric-Contrast condition

c. Geometric-Varied condition

Fig. 2. Schematic illustration of the manipulation of object type. a Natural condition had 
fi xed and natural correspondences between shape and color, b Geometric-constant condi-
tion had arbitrary, but constant correspondences between shape and color, c Geometric-
varied conditions had arbitrary shape-color correspondences varying across trials
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tion. Note that both conditions had exactly the same duration of visible period 
(480 ms) and occluded period (240 ms). Experimental programs were written in 
MATLAB, using Psychophysics Toolbox extensions (Brainard 1997; Pelli 
1997).

5.1.4 Procedure

Each experimental trial began with presentation of the sequence, followed by 
the appearance of four response boxes for event types. Participants selected 
responses by clicking a response box. To avoid verbal encoding of color and 
shape, articulatory suppression was achieved by getting participants to repeat-
edly say “da, da, da”. The entire experiment comprised three experimental ses-
sions, each containing 192 trials. Object type condition was fi xed throughout each 
experimental session, and order of sessions was counterbalanced across partici-
pants. Within each session, object motion conditions were randomly mixed from 
trial to trial. In each object type session, each motion condition comprised 96 
trials, with 24 trials for each event type, for a total of 576 experimental trials.

5.2 Results
5.2.1 Correct Type Identifi cation

Figure 3 shows the proportions of correct type identifi cation as a function of 
object type and object motion conditions. Analyses of proportions of correct data 
used arcsine transformed value as dependent variables. First, ANOVA with a 3 
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Fig. 3. Mean proportion of correct identifi cations for stationary and motion conditions as 
a function of object types; black bars: object motion, white bars: occluder motion. Error 
bars denote standard errors of the mean
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(object type) × 2 (object motion) × 4 (switch type) design was conducted for the 
proportion of correct identifi cation. Here I focused on results involving the object 
type. The main effects of object type (F(1,4) = 11.43, P < 0.05) were signifi cant, 
although Schéffe’s multiple comparison did not demonstrate signifi cant pairwise 
differences. Differences among object type conditions were rather weak. 
The object type showed signifi cant interaction with switch type (F(3,12) = 24.53, 
P < 0.0001), and three-way interaction was also signifi cant (F(3,12) = 4.89, 
P < 0.05).

5.2.2 Response Type Analyses

Although object type did not show strong effects on the overall proportion 
correct, its signifi cant interaction with other factors suggests that object 
type modulates the task performance signifi cantly. To clarify these effects, I next 
analyzed patterns of errors. To show the effects of object type clearly, two types 
of events were defi ned: type variant event, and type invariant event. Type variant 
events composed of shape-switch and color-switch, where the combination of 
color and shape differs before and after the switch. Type invariant events com-
posed of object-switch and no-switch, where the combination of color and shape 
does not change across the switch. First, I analyzed the type variant trials. Errors 
found in these trials were classifi ed into the following three categories: feature 
miss, feature confusion, and feature false alarm. Feature misses and false alarms 
are errors where observers responded “no-switch” and “object-switch”, respec-
tively, because one feature-switch event is either missed or falsely reported. 
Feature confusions are errors between color-switch and shape-switch. Figure 4a 
shows mean proportions of these error types for object type conditions. It is clear 
that the natural condition showed signifi cantly more feature confusion errors 
than the other conditions, (F(4,44) = 16.52, P < 0.0001). Furthermore, as shown 
in Figure 4b, not only the frequency but also the direction of confusion showed 
signifi cant differences. The natural condition showed a strong asymmetry such 
that confusion of shape as color is much more frequent than the other direction, 
whereas the other two conditions did not show such a difference, (F(2,22) = 30.42, 
P < 0.0001).

Next, I analyzed type invariant trials. Errors in these trials were classifi ed 
into two categories: Feature errors and location errors. Feature errors were 
selections of color- or shape-switch events for type invariant events, and 
location errors were confusion between object-switch and no-switch. Figure 5 
shows mean frequencies of these error types for object type conditions. Unlike 
the type variant trials, the type invariant trials showed a signifi cant difference 
according to whether color-shape mapping remained constant or not. Namely, 
the geometric-varied condition showed signifi cantly higher frequency of feature 
errors than the other two conditions, (F(2,22) = 22.50, P < 0.0001). Error patterns 
in the natural and geometric-constant conditions were quite similar to each 
other.
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a.  Type-variant events

0

0.05

0.1

0.15

0.2

0.25

Natural Geometric-Constant Geometric-Varied

Object Type

P
ro

po
rt

io
n

 b. Direction of feature confusion

0

0.05

0.1

0.15

0.2

0.25

0.3

Natural Geometric-Constant Geometric-Varied
Object Type

P
ro

po
rt

io
n

Fig. 4. a Mean proportion of errors for type variant trials as a function of object type 
conditions, black bar: feature miss, white bar: feature confusion, gray bar: feature false 
alarm, b Mean proportion of subtypes of feature confusion errors, black bars: shape switch 
judged as color switch, white bars: color switch judged as shape switch
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6 General Discussion

Multidimensional MOPT with the type identifi cation paradigm demonstarated 
that memory for feature binding is severely limited, which is consistent with 
previous MOPT experiments and other studies. This chapter investigated whether 
this limitation is specifi c to the use of arbitrary combinations of color-shape, and 
the answer was no. Two additional conditions, the natural condition where pre-
stored color-shape conjunction is available, and the geometric-constant condi-
tion, where color-shape correspondence is fi xed throughout the experiment, 
showed only a weak tendency toward performance improvement, and these 
conditions showed severe performance impairment under the moving condition. 
The natural object and geometric-constant conditions were virtually the same in 
accuracy, suggesting that prestored color-shape conjunctions had limited effect 
on percent correct data.

However, analyses of error types demonstrated strong effects of prestored 
conjunction on task performance. Compared with geometric conditions, the 
natural condition showed signifi cantly more errors confusing between color-
switch and shape-switch, suggesting that observers were quite sensitive to detect 
a change in object identity, but not able to accurately identify the switch type. 
In the natural condition, color and shape form a unit of object identity, but to 
identify the switch type, its component (either color or shape) and location needs 
to be bound. Observers can detect the occurrence of color or shape switch when 
they see a green lobster, but they are not good at telling whether a red lobster 
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Fig. 5. Mean proportion of errors for type invariant trials as a function of object type 
conditions, black bars: feature error, white bars: location error
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changed to a green lobster (i.e., color switch), or a green frog changed to a green 
lobster (i.e., shape switch). In fact, they had a strong bias to judge any switch 
involving identity change as a color switch.

In contrast, although the error rates were about the same under the geometric-
constant condition, the pattern of errors is quite different. As shown in Figure 
4, color and shape behave more independently, even when the conjunctions are 
completely fi xed. Unlike the case of lobster, when a predefi ned red-square com-
bination changed to a red-circle (i.e., shape-switch), errors were more likely to 
be an indication of no switch (i.e., overlooking the shape-switch), and in the case 
of feature confusion, errors occurred evenly in both directions.

Results for the natural condition support a view that visual features are fi rst 
bound together to form a type representation, before further binding to a spa-
tiotemporal location to form a token (Kanwisher 1991). Moreover, this view 
holds only when type information is prestored in LTM, and without prestored 
types, shape-color conjunctions played no signifi cant role. Types may be repre-
sentations that are prestored in the long-term memory system, with arbitrary 
color-shape combinations not prestored in LTM as types.

More importantly, the availability of type information did not facilitate task 
performance in MOPT. This raises a possibility that even the feature binding in 
structural descriptions may have a similar limitation. As Hummel and Biederman 
(1992) described, structural description is not simply a co-activation of a set of 
geons, but also a binding of parts with relations. Given part representation is a 
set of its components, it is similar to the type representation discussed here. Thus, 
structural description needs binding of parts (types) with spatial information, 
which corresponds to the binding of types with their locations in MOPT task. 
Thus, the formal structure has a certain level of similarity between multiple 
objects in the MOPT task and an object’s structural description. In addition, 
recent neuroimaging studies using MOPT (Imaruoka et al. 2005) and part-
combined objects (Hayworth and Biederma, 2005) suggests spatial information 
processing in both cases using the same neural substrates, posterior parietal 
cortex.

However, there are important differences as well. For example, parts are 
tightly grouped by connectedness and other grouping factors (Saiki and Hummel 
1998), but objects are completely separated in MOPT. Binding in structural 
description formation is limited to shape information, but shape and color (and 
other object features) are used in MOPT. Clearly, how these factors affect 
binding performance is an issue for further studies, but this chapter shows that 
limits in feature binding in visual working memory are not simply an artifact of 
arbitrary feature combinations, and these limits may have a broader common 
ground including binding in object recognition.
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1 Introduction

In humans and mammals with higher cognitive capabilities, the neocortex is a 
very prominent brain structure (Fig. 1). As such it seems to be crucially involved 
in the cognitive processes. The neocortex can be subdivided into a set of func-
tionally different areas (Van Essen et al. 1992), and it communicates with most 
of the other brain systems. It is a structure with a high internal functional com-
plexity and diversity which is involved in most aspects of cerebral processing. 
Various cortical areas represent and process different aspects of the environment 
and the subject’s internal states in a distributed way. In the visual modality for 
example, occipital to temporal regions of the brain are thought to mainly repre-
sent object identity-related sensory information, whereas occipital to parietal 
brain regions are thought to mainly represent and process spatial information 
and aspects preparing motor plans. The former is referred to as the “ventral 
stream” and the latter as the “dorsal stream” (Ungerleider and Haxby 1994). 
Lateral prefrontal areas are thought to store contextual information of the 
present and recent past, which can serve as a reference framework for the behav-
ioral relevance of visual stimuli and motor plans, and can form a basis for deci-
sion-making processes (Leon and Shadlen 1998).

All of these different representations held in different cortical areas need to 
be integrated to form a coherent stream of perception, cognition, and action. 
Instead of a brain area with central executive functions, there is a massive recur-
rent connectivity between cortical brain areas. These connections form the white 
matter, which occupies the largest fraction of the brain volume. It is hypothesized 
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that only one-quarter of all possible connections between areas have been real-
ized in the human brain, and most of these are of recurrent nature (Salin and 
Bullier 1995). Thus, partial representations held in different cortical areas might 
be integrated by mutual cross talk, mediated by inter-areal neural fi bers. When-
ever one brain area provides bottom-up input to another area via inter-areal 
connections, the latter area feeds back top-down biasing signals, presumably to 
facilitate matching of the two different representations.

Further neurophysiological evidence gives rise to the assumption that each 
cortical area is capable of representing a set of alternative hypotheses encoded 
in the activities of alternative cell assemblies. Representations of different con-
fl icting hypotheses inside each area compete with each other for activity and for 
being represented (Desimone and Duncan 1995). However, each area represents 
only part of the environment and / or internal state. In order to arrive at a coher-
ent global representation, different cortical areas bias each others’ internal rep-
resentations by communicating, through inter-areal connections, their current 
state to other areas, thereby favoring certain sets of local hypotheses over others. 
For example, different objects present in the visual fi eld could compete for being 
represented in one brain area. This competition might be resolved by a bias given 
towards one of representation from another area, as obtained from this other 

Fig. 1. Illustration of the human neocortex. Gray-shaded regions group the cortical areas 
by functional similarity, black arrows schematically indicate inter-areal connectivity. 
Adapted from Statter (2002)
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area’s local view – encoding for example the behaviorally relevant location in 
the visual fi eld and favoring thus only the object corresponding to that location 
to be represented in the fi rst area (Rolls and Deco 2002). By recurrently biasing 
each other’s competitive internal dynamics, the global neocortical system dynam-
ically arrives at a global representation in which each area’s state is maximally 
consistent with those of the other areas. This view has been referred to as the 
biased competition hypothesis (Moran and Desimone 1985; Chelazzi et al. 1993; 
Desimone and Duncan 1995; Chelazzi 1998; Reynolds and Desimone 1999).

In parallel to this competition-centered view, a cooperation-centered picture 
of brain operation has been formulated, where global representations fi nd 
their neural correlate in assemblies of co-activated neurons (Hebb 1949). Co-
activation of neurons induces stronger mutual connections between neurons, 
which lead to assembly formation. The concept of neural assemblies was later 
formalized in the framework of statistical physics (Hopfi eld 1982; Amit et al. 
1994; Amit and Brunel 1997b), where assemblies of co-activated neurons form 
attractors in the phase space of the recurrent neural dynamics (patterns of co-
activation can represent fi xed points to which the dynamical system evolves). For 
biologically plausible networks of spiking neurons used in this study, the attractor 
dynamics have been recently investigated by (Amit and Brunel, 1997a; Brunel 
and Wang 2001; Stetter 2002; Deco and Rolls 2003).

In this chapter, we introduce the unifying principle of biased competition and 
cooperation (BCC) for neurocognitive modeling of higher neocortical functions. 
Section 2 presents the BCC modeling framework by summarizing a set of under-
lying working hypotheses and relating these hypotheses to experimental evi-
dence. Section 3 summarizes a neurocognitive model study of attentional fi ltering. 
It shows how biased competition and cooperation operate within a single model 
brain area. Section 4, fi nally, introduces a bi-areal BCC model for learning visual 
categorization. It demonstrates how BCC operates across two different brain 
areas and shows how Hebbian synaptic plasticity can change the multi-areal 
attractor dynamics towards increased performance of the multi-areal system.

2 Biased Competition and Cooperation Models

2.1 Coupled Attractor Network View
The most dominant feature of the neocortex is the dense and recurrent intra-
areal and inter-areal connectivity. At present, there are no clear data-derived 
criteria related to signal propagation time, synaptic transmission effi cacy, or 
axonal penetrance of the target tissue that would allow clear separation of intra-
areal from inter-areal connectivity. Hence, there are two alternative conceptual 
models for neocortical operation in the framework of recurrent network theory: 
(i) The fi rst model considers the whole neocortex as a giant attractor network; 
its connectivity is determined by the neuroanatomical features of both the intra- 
and inter-areal connections. (ii) The second model treats each cortical area or 
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even smaller sub-structures (such as a hypercolumn) as an attractor network. 
These smaller attractor networks are linked by recurrent long-range inter-areal 
connections. By these latter connections, the local attractor dynamics become 
linked to each other, and affect each other in such a way that a global attractor 
is fi nally formed. Because of the anatomical and functional subdivision of the 
neo-cortex, it seems more reasonable to adopt the second view of linked attractor 
networks for large-scale brain modeling. The modular architecture has the advan-
tage that it reduces the model complexity and facilitates exploratory research.

2.2 Structural Aspects of Model Brain Area
Despite the high functional diversity, different cortical areas are remarkably 
uniform in their anatomical structure (Kandel et al. 1991). About 80% of neurons 
are excitatory pyramidal neurons (Abeles 1991), that communicate via glutama-
tergic AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and 
NMDA (N-methyl-D-aspartate) synapses. These neurons locally collect signals 
over a large fraction of cortical depth and laterally spread dense local excitation 
across a diameter of about 200 mm. Longer-range collateral axon fi bers laterally 
spread excitation up to several millimeters, dependent on the species. A very 
constant feature across different areas and species is their patchy appearance 
(Lund et al. 1994; Bosking et al. 1997; Kisvarday et al. 1997; Somogyi et al. 1998), 
when viewed from the cortical surface. These patches seem to preferentially link 
the neurons in one area to neuron populations with similar response properties 
(Malach et al. 1993; Kisvarday et al. 1997). Pyramidal neurons are also the source 
of long-range inter-areal connectivity. A smaller amount of about 20% of cortical 
neurons are GABA-ergic (gamma-aminobutyric acid) and inhibitory in effect. 
They are highly diverse in morphology, but one prominent type of GABAergic 
neurons seem to be basket cells, which laterally spread inhibition through about 
600–800 mm. GABAergic neurons do not directly communicate across areas (for 
further details see Stetter 2002, and references therein). To properly describe the 
dynamic aspects of neural cognitive processes, we constructed the BCC models 
as networks of integrated and fi ring neurons with detailed synaptic dynamics (as 
introduced by Brunel and Wang 2001). The recurrent excitatory postsynaptic 
currents (EPSCs) are modeled to have two components, mediated by AMPA 
(fast) and NMDA (slow) receptors. External EPSCs imposed onto the network 
from outside are assumed to be driven only by AMPA receptors. The shunting 
inhibitory GABAergic synapses inject inhibitory PSCs (IPSCs) into both pyra-
midal cells and interneurons. Furthermore, in these Models, we maintained the 
proportion 80% excitatory neurons and 20% inhibitory neurons, consistent with 
experimental data (Abeles 1991).

Motivated by the observation of cortical columns in the striate cortex, we 
hypothesize that cortical neurons can be grouped by the similarity of inter-areal 
and local input. Following the concept of population coding we adopted a spiking 
network structured into distinct populations of neurons. Three types of popula-
tions are defi ned: a specifi c population gathers excitatory neurons having a 
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specifi c behavioral function; a non-specifi c population groups all other excitatory 
neurons in the modeled brain area; and an inhibitory population groups all local 
inhibitory neurons in the modeled brain area. The latter regulates the overall 
activity and implements competition in the network by spreading a global inhibi-
tion signal. Within each population, neurons are mutually connected by stronger 
than average synaptic weights with a mean strength w+ (Fig. 2). These corre-
spond to local pyramidal axonal fi bers. Different populations i and j are laterally 
connected by weaker than average connections with mean synaptic strengths 
wij. The collection of all weights determines the attractor landscape and the func-
tion carried out by the model. We then introduce the following simplifying 
assumption, which is convenient but not a necessary ingredient to the model: 
Populations that represent features associated with each other are linked by 
stronger than average weights, wij = w0. The strengthening could be the result of 
coactivation followed by Hebbian learning. On stimulation with one of the fea-
tures, the corresponding associated populations tend to be co-activated through 
the recurrent intra-areal dynamics. Thus, the weights w0 implement cooperation 
and underlie the formation of Hebbian cell assemblies in the model. However, 
populations that represent unrelated or anticorrelated features, are linked by 
weaker than average weights, wij = w−. The dominant connectivity between such 
populations is propagated laterally through the model GABAergic neurons and 
is inhibitory in effect. Neuron populations for different cell assemblies attempt 
to shut down each other’s activity. Thus, the weak weights w− implement com-
petition for activation.

Fig. 2. Sketch of a general purpose model cortical area
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2.3 Inter-Areal Connectivity
Fast myelinated long-range axons of pyramidal neurons connect different cortical 
areas. They connect to spatially restricted parts of the target-area and follow some 
topographic order (Zeki and Shipp 1988). In most of the cases, feedforward con-
nectivity to a target area is complemented by feedback-connectivity to the origi-
nal one. The neurons feeding back from a higher area preferentially address 
neurons in the lower area that drives them. When an area receives input from a 
lower area characterized by a less abstract representation, the input is referred to 
as bottom-up driving input. Feedback input from a higher area, characterized by 
a more abstract representation, is referred to as top-down biasing input. Whereas 
bottom-up input is thought to activate a set of “hypotheses” consistent with the 
lower level (e.g., sensory) features, top-down biasing input is thought to back-
propagate higher order (e.g., more global) information and thereby to contribute 
the selection of one activation pattern among several possible patterns.

However, although we conceptually follow this view, there is no anatomic 
dynamic difference between bottom-up and top-down signals in our proposed 
model: both form small, additive input to a given cortical area from other areas. 
As a consequence, a multi-areal biased competition and cooperation model 
consists of a recurrent network of recurrent attractor networks.

2.4 Dynamic Operation
In most cortical areas and at any time, about 99% of neurons are on average 
only spontaneously active at a rate of about 3 Hz (Wilson et al. 1994; Koch and 
Fuster 1989). About 1% of neurons are on average active with higher than spon-
taneous rates, typically some tens of Hz. Based on these numbers it becomes 
obvious that each area is mostly driven by strong background current from the 
ocean of spontaneously active neurons throughout the neocortex. Specifi c input 
currents are only small perturbations on top of this background current, in the 
range of a few percent. Hence it is the task of the recurrent areal circuitry to 
amplify these small inputs in a way that is useful for signal processing. Finally, 
cortical spike dynamics are very irregular, introducing considerable fl uctuations 
to the synaptic currents by which the neurons communicate.

In the presence of fl uctuations, intra-areal attractor dynamics can be very vola-
tile, and can respond in dramatically different ways to small changes in driving 
or biasing inputs. It might be that this volatility and potential instability underlies 
important cognitive processes such as decision making, spontaneous thoughts 
and creativity.

3 Attentional Filtering

Selective attention may be defi ned as a process, in which the perception of certain 
stimuli in the environment is enhanced relative to other concurrent stimuli of 
less importance. A remarkable phenomenon of selective attention, known as 

OBJ_12.indd   192 8/14/2007   2:53:24 PM



 12. Biased Competition and Cooperation  193

inattentional blindness, has been described for human vision (for a review see 
Simons 2000). The inattentional blindness refers to an absence of awareness 
regarding a certain visual event when attention is focused on another event.

Recently, Everling et al. (2002), investigated the underlying mechanisms of the 
referred effect by measuring the activity level of the prefrontal cortex (PFC) 
neurons in awake behaving monkeys performing a focused attention task. In this 
experiment, a monkey, after being cued to attend one of two visual hemifi elds 
(left or right eye-fi eld), had to watch a series of visual stimuli conjointly exposed 
in both hemifi elds consisting of different pairs of objects. The animal was to react 
with a saccade (rapid intermittent eye movement occurring when eyes fi x on one 
point after another) if and only if a predefi ned target object appeared in the cued 
hemifi eld. In order to correctly perform this cognitive task, the monkey had to 
ignore any object in the uncued hemifi eld and to concentrate (focus his attention) 
on the cued location. The experimental results showed that some PFC neurons 
discriminate between a previously learned target and a non-target, but that this 
discrimination disappears when objects are presented in the unattended visual 
hemifi eld. We refer to this effect as attentional fi ltering. In other words, attention 
acts in a multiplicative way upon the sensory driven neuronal response, and 
consequently these neurons seem to code for behavioral relevance of a stimulus 
rather than for its identity. Only a task-relevant stimulus (i.e., target in the cued 
hemifi eld) is gated by the context and allowed to be represented. This attentional 
fi ltering effect of an object’s representation for the unattended hemifi eld is com-
plete and might be the neuronal substrate of the referred selective attention 
effect studied in humans, possibly explaining blindness to ignored inputs.

Neurodynamical models developed within the framework introduced in the 
second section, have been proven to successfully account for different aspects of 
visual attention (Rolls and Deco 2002; Corchs et al. 2003) and working memory 
context-dependent tasks (Deco and Rolls 2003; Deco et al. 2004; Almeida et al. 
2004). Here, we review a biologically relevant minimal model (Szabo et al. 2004) 
for analyzing the underlying neuronal substrate of the visual attentional fi ltering 
effect. We observed that the mechanism of biased competition alone cannot 
account for the experimental results and show that biased competition and 
cooperation between stimulus selective neurons are, in combination, required 
conditions for reproducing the referred effect.

We implemented a network of excitatory and inhibitory integrate-and-fi re 
neurons, modeling a small part of the PFC, which are fully connected (Fig. 3). 
The model (Fig. 3) consists of populations of neurons that show the same selec-
tivities as found in the experimental results (Everling et al. 2002). Under a non-
attentive control task, they encode information about the object identity (“T” 
for target, “O” for other) and spatial location (“L” for left, “R” for right hemi-
fi eld). Therefore, we showed four interconnected selective populations coding 
for target with preferred location left (TL), target with preferred location right 
(TR), non-target (other) left (OL) and non-target (other) right (OR).

On top of the spontaneous background input received by each neuron in 
the network, the four selective populations are driven by object-specifi c and 
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unilateral inputs, assumed to originate from lower sensory areas which process 
the visual scene to provide these signals. Besides the specifi c afferent bottom-up 
input, the selective populations are also biased by two kinds of top down inputs. 
The fi rst top-down signal biases neurons that are selective for the target object. 
The origin of this signal is not explicitly modeled, but it might originate from a 
working-memory module that encodes and memorizes context in terms of rules. 
The second top-down signal, the attention bias, facilitates neurons that have the 
cued location as a preferred location. The origin of this bias, which might be sent 
from a spatial working memory area, is not modeled explicitly here. The network 
is fully connected, but weights can differ depending on the populations being 
connected. We model the prefrontal cortex of a monkey that has already been 
trained and do not explicitly model the learning process itself. The weights 
between the populations were intuitively chosen such as to match Hebbian learn-
ing. Between the populations encoding the same object identity, cooperation is 
implemented through stronger than average weight (w′). Competition is imple-
mented through a smaller than average weight (w−), as depicted in Figure 3. 
For more details on network implementation and parameters, see Szabo et al. 
(2005a).

Explicit simulations were carried out in the framework of the architecture 
presented in Figure 3, by applying each of the four different stimulus combina-

Selective Pools

Inhibitory
Pool

1 (GABA)

(AMPA+NMDA)
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w′

w′ w′

w′
w+ w+ w+

1 wn
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w−

1(GABA)

Pool
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Non − 

TL TR OROL

Fig. 3. Architecture of the prefrontal cortical module. The four sensory populations cor-
respond to target and non-target selective neurons with a preferred location left or right. 
Adapted from Szabo et al. (2004)
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tions used in Everling et al. (2002) and calculating the population-averaged spike 
rate of the target specifi c right preferred TR population. Under this condition, 
the attention bias set to the right preferred neurons corresponds to the condition 
“preferred location attended”, a left bias corresponds to the “non-preferred 
location attended” condition. Simulation results are presented in Figure 4 
(columns 2–4).

The left column of Figure 4 (Fig. 4, column 1) displays the experimental mea-
surements recorded from the PFC of awake behaving monkeys (Everling et al. 
2002) in the case of four stimulus combinations illustrated as insets. The black 
lines correspond to attention directed to the preferred location and the grey lines 

a

b

c

d

Fig. 4. Experimental results (column 1) and model simulation (columns 2–4) for focused 
attention task. Black lines: Attention focused to the preferred location (right), grey lines: 
attention focused to the non-preferred location of the measured neurons and model-
neurons, respectively. a Both target stimuli. b Target in preferred location only. c Target 
in non-preferred location. d both non-target stimuli. Column 2: simulation with coopera-
tion and competition . Column 3: simulation with competition only. Column 4: simulation 
with cooperation only. Adapted from Szabo et al. (2004)
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correspond to attention directed to the non-preferred location. In the second 
from left column (Fig. 4, column 2), the population-averaged responses of the 
model “target right selective” (TR) neurons for the same stimulus conditions and 
attentional states as the experimental results are shown, using both mechanisms 
of biased competition and cooperation. From the simulation results (Fig. 4, 
column 2) it can be observed that with this simple network, the obtained atten-
tional fi ltering effect is the same as that in the experimental results (Fig. 4, 
column 1).

Attentional fi ltering consists of four different phenomena which can be assigned 
to the four stimulus conditions: (i) When both hemifi elds contain target stimuli, 
the response refl ects whether the attended stimulus is in the preferred or non-
preferred location (Fig. 4, column 1a, column 2a). (ii) When a target appears in 
the preferred location only, the response is completely shut down (gray line), as 
soon as attention is shifted away from the target-stimulated side (Fig. 4, column 
1b, column 2b). We refer to this effect as attentional suppression. (iii) In contrast, 
when a target appears in the non-preferred location, the neural response is 
increased (gray line), as soon as attention is shifted towards it (Fig. 4, column 1c, 
column 2c). We refer to this effect as attentional facilitation. (iv) Finally, when 
both hemifi elds are stimulated with non-targets, the response remains low, 
refl ecting the target-selectivity of the neurons (Fig. 4, column 1d, column 2d). In 
combination of these effects, the neurons in both the experiment and the model 
encode only the contents of the attended hemifi eld (compare black lines in Fig. 
4, column 1, column 2 a and b with c and d, compare the grey lines in Fig. 4, 
column 1, column 2 a and c with b and d) and ignore the contents of the non-
attended hemifi eld (compare black lines in Fig. 4, column 1, column 2 a with b 
and c with d, compare the grey lines in Fig. 4, column 1, column 2 a with c and 
b with d). The content of the non-attended hemifi eld is not encoded in the 
responses.

When the network is dominated by competition (Fig. 4, column 3), the com-
petition causes complete attentional suppression of unattended stimuli (Fig. 4, 
column 3b), however, there is no attentional facilitation (see the zero activity in 
Fig. 4, column 3c). This is the case, because in the present model the facilitation 
effect is caused by a lateral propagation of activity from the stimulated TL popu-
lation to the nonstimulated TR population over recurrent connections. Because 
these connections are too weak in the competition only setting (i.e., w′ is too 
small), facilitation does not occur. When the network is dominated by coopera-
tion (Fig. 4, column 4), activities between attended and non-attended conditions 
are equalized, and as a consequence attentional effects are diminished (compare 
black with grey lines in Fig. 4, column 4). In particular, attentional suppression 
is no longer observed.

In summary, competition, mediated by a small weight w−, implements atten-
tional suppression, and cooperation, mediated by a strong weight w′, implements 
attentional facilitation. When both mechanisms act together, our model shows a 
strong, all-or-none attentional fi ltering effect, which results from the effects of 
weak top-down biases.
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4 Learning to Attend

In a recent experiment performed on behaving monkeys, Sigala and Logothetis 
have studied how selectivity to stimulus features of infero-temporal cortical 
(ITC) neurons is affected by learning a visual categorization task (Sigala 
and Logothetis 2002). The visual stimuli (schematic images of faces, see Fig. 5 
bottom-right) were characterized by several features (eye height, eye separation, 
nose length and mouth height), and only some of these (eye height and eye 

Fig. 5. a Experimental results adapted from Sigala and Logothetis when different com-
binations of features were presented (Sigala and Logothetis 2002). Shown are the average 
spiking rates of all recorded visually responsive neurons, grouped according to their best 
(black lines) and worst (gray lines) responses to the levels of diagnostic feature “Eye 
height” (a1) and non-diagnostic feature “Nose length” (a2). b Schematic representation 
of the network architecture and the expectations after successful learning of the visual 
categorization task. The connections between the diagnostic populations and the corre-
sponding categories are potentiated (thick arrows), the connections between the diagnos-
tic populations and the non-corresponding categories are depressed (dotted arrows), and 
the connections to and from the non-diagnostic neurons remain at an intermediate value 
(dashed arrows). Network activities for the particular stimulus presentation characterized 
by “high eyes” and “long nose” are depicted by the gray levels of the populations (dark 
gray: high activity; light gray: low activity). The relevant information that the presented 
stimulus has “high eyes” will bias, through the feed-forward interlayer connections, the 
competition in the category model layer towards the “Left” population. This population, 
in turn, generates through feedback interlayer connections, the tuning of the diagnostic 
feature “Eye height”. The categorization process does not infl uence the tuning of the 
non-diagnostic feature
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separation – named diagnostic features) were relevant for the categorization 
task.

The experimental results showed an enhancement in neuronal tuning for the 
values of the diagnostic features (Fig. 5a, top). Responses to non-diagnostic fea-
tures, in contrast, were poorly tuned (Fig. 5a, middle). Hence ITC activity not 
only encodes the presence and properties of visual stimuli but is also tuned to 
their behavioral relevance.

Recent studies (Freedman et al. 2003; Tomita et al. 1999) suggested that top-
down signals from PFC to ITC might infl uence neuronal responses in ITC. Szabo 
et al. (M. Szabo et al., 2005) hypothesized that neuronal responses in ITC could 
be modulated, in a behavioral context, by top-down signals originating from 
category encoding neurons, possibly residing in the prefrontal cortex, PFC. They 
proposed a two-layer neurodynamic computational model developed in a frame-
work of biased competition and cooperation.

The model predicted the interaction of two small connected areas in the brain, 
thus characterizing the stimulus-esponsive units from the ITC and the category-
encoding neurons from the PFC that we will review in this section. The schematic 
architecture is presented in Figure 5b.

In this minimal model, it is assumed that the presented stimuli are character-
ized by only two features, “Eye height” and “Nose length”, each with two dis-
crete values, and that the two categories are determined exclusively only by one 
feature: the diagnostic feature “Eye height”. Thus, there are four specifi c popula-
tions in the ITC layer, denoted according to the specifi c input that they receive. 
The specifi c populations in the PFC model layer encode two learned categories 
associated with the two actions: press left lever (“Left” population, or C1) and 
press right lever (“Right” population, or C2). The stimuli with the diagnostic 
feature in the fi rst state, “high eyes”, belong to category 1 and the those with 
diagnostic feature in the second state, “low eyes”, belong to category 2, irrespec-
tive of the value of the non-diagnostic feature “Nose length”.

Each individual neuron is driven by a background external input. The neurons 
in the four specifi c populations from the ITC layer additionally receive external 
inputs encoding stimulus specifi c information assumed to have on average the 
same strength. The network is fully connected within layers by excitatory and 
inhibitory synapses. Between the two layers, only specifi c neurons are fully con-
nected by excitatory synapses.

In our approach we assume, for simplicity, that intra-layer connections are 
already formed, e.g., by earlier self organization mechanisms. In the ITC model 
layer, cooperation takes place between specifi c populations, implemented by 
uniform lateral connectivity. They encode the same type of stimulus and are dif-
ferentiated only by their specifi c preferences to the feature values of the stimuli. 
The neural activity of the PFC model layer is designed to refl ect the category to 
which the presented stimulus corresponded. Competition is implemented between 
the category encoding populations.

Connections between the ITC and PFC are modeled as plastic synapses. Their 
absolute strengths are learned using a reward-based Hebbian learning algorithm. 
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After every trial the synaptic weights are changed according to the resulting 
reward signal and pre- and post-synaptic population activities, until convergence 
to a stable confi guration is reached. For more details on network structure, 
parameters and learning algorithms see (M. Szabo et al., 2005).

When a stimulus is presented to the trained network, after successful learning 
(as depicted in Fig. 5b), the sensory inputs (coming from lower visual processing 
areas) activate the ITC neurons and are propagated through feed-forward con-
nections to the PFC. This bottom up input from ITC biases the competition 
between category encoding populations. The winning category infl uences the 
activity of the neurons in the ITC layer such that they become selective for some 
of the presented features. Thus, in contrast to the last section, the attentional 
biases needed to guide the competition are produced autonomously in the 
model.

Simulation results presented in Figure 6 depict average network activities 
(over 50 consecutive trials) in three moments of the learning process: at the 
beginning of learning, at an intermediate point (after 200 trials) and after the 
convergence of synaptic parameters following 1500 trials. The plots in the fi rst 
row were obtained by performing the same calculations as for the experimental 
data (Fig. 5a). For each specifi c neuron in the ITC model layer, the spiking rates 
for all 50 consecutive trials were grouped based on the presented stimulus values 
and were averaged. Each specifi c neuron has a different response level to the 
two values of each feature. The highest responses for the diagnostic feature of 
all specifi c neurons in the ITC model area were averaged producing the “best 
Diagnostic” response. The lowest responses for the diagnostic feature of all spe-
cifi c neurons in the ITC model area were averaged to generate the “worst Diag-
nostic” response. Similar calculations were done for the non-diagnostic feature.

These average activities over all ITC specifi c neurons are presented for three 
points in time in Figure 6, top row. At the beginning of learning, there is no bias 
in the input to the PFC layer, the “Left” (C1) and “Right” (C2) populations are 
activated randomly with the same probability (Fig. 6a, bottom). Thus there is no 
difference between the tuning of the diagnostic and non-diagnostic features (Fig. 
6a, top). As learning progresses and the synaptic weights evolve, the network 
now correctly resolves the categorization task (Fig. 6b, bottom). At the same 
time, we notice the beginning of the tuning process that will be enhanced in time 
(Fig. 6b, top). After convergence, selectivity for the level of the diagnostic feature 
is enhanced, as compared to the non-diagnostic feature (Fig. 6c, top). The activi-
ties for the best and worst diagnostic feature values are more separated than 
those for the best and worst non-diagnostic feature values. This result is in good 
qualitative agreement with the experimental results (Fig. 5a).

The middle and bottom rows in Figure 6 show average spiking rates of specifi c 
populations in two layers for selected trials among the 50 successive trials where 
the presented stimulus was characterized by “low eyes” and “long nose” (popula-
tions D2 and O1 stimulated). Since there is no structure in the model ITC layer, 
enhancement of selectivity emerges due to the top-down input from the PFC 
layer, which encodes the previously learned stimulus categories. The rightmost 
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column, Figure 6c, corresponding to the point in the learning process, where the 
weights converged to a stable confi guration, is in agreement with the expectations 
after learning depicted in Figure 5b. From the time when the stimulus is pre-
sented to the network (time = 0 ms in Fig. 6), the selectivity of the category spe-
cifi c populations (Fig. 6c, bottom row) emerges through the competition biased 
by feed-forward inputs (ITC → PFC) from the specifi c populations of the ITC 
layer. Through the feedback modulatory inputs (PFC → ITC), this selectivity is 
transmitted afterwards to the feature-specifi c populations in the ITC (Fig. 6c, 

Fig. 6. Simulation results for a spiking network averaged over 50 successive trials at three 
points in the learning process: a at the beginning of learning; b an intermediate point 
during learning (after 200 steps); c after the weights converged to a stable confi guration 
(1,500 steps). The top row shows average spiking rates of stimulus responsive neurons, 
grouped according to their best and worst responses to the levels of diagnostic and non-
diagnostic features. The middle and bottom rows show the average spiking rates of specifi c 
populations in the ITC layer (D1, D2, O1, O2) and the PFC layer (C1, C2), respectively, 
for trials where the presented stimulus was characterized by: low eyes and long nose 
(external input to the populations D2 and O1) among 50 successive trials. Adapted from 
Szabo et al. (2006)
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middle). It can be seen that in the fi rst 100 ms after stimulus onset, the D1 and 
O1 (stimulated) or D2 and O2 (non-stimulated) populations do not differ in 
activity. Hence there is no diagnostic tuning. Only after the correct category 
population acquires activity, the diagnostic tuning builds up.

Summarizing the results of our simulations, we consider that the enhancement 
of selectivity for behaviorally relevant features could result from a constructed 
reward-based Hebbian learning scheme. The latter scheme robustly modifi es the 
connections between the feature encoding layer (ITC) and the category encoding 
layer (PFC) to a setting where the neurons activated by the level of a feature 
determinant for categorization are strongly connected to the associated category 
and weakly connected to the other category, and the neurons that receive input 
specifi c for a task-irrelevant feature, are connected to the category neurons with 
an average weight, not signifi cantly changed during training. In summary, the 
network successfully develops both a forward IT→PFC synaptic structure able 
to support correct classifi cation, and a backward PFC→IT synaptic structure 
producing a task-dependent modulation of IT response, providing evidence of a 
qualitative agreement with the fi ndings of Sigala and Logothetis.
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Infl uence of Visual Motion on 
Object Localisation in Perception 
and Action
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1 Introduction

The topic of this chapter is visual localisation of objects. Object recognition nor-
mally refers to the ability to identify what it is without concerned for where it is. 
In other words, the question is how we obtain a location-invariant representation 
of object. There is also a rationale derived from physiological fi ndings indicating 
two separate pathways for what and where information (Ungerleider and Mishkin 
1982). However, it is often equally important in real life to know where the object 
lies. We cannot eat an apple if we can not reach it with our hand and grasp it. 
To do this, we need to know its precise location together with its identity as a 
fresh apple that can be eaten. Object localisation is therefore closely related 
to object recognition in an ecological sense, and it would make sense to take a 
short break from the intense discussion on recognition in this book to consider 
localisation.

More specifi cally, recent fi ndings on the role of visual motion on spatial locali-
sation will be discussed. We sometimes need to interact with objects that move 
across the visual fi eld. This happens daily when you walk on a busy street or play 
with your cat, but it is more typical in sports such as baseball, cricket, and soccer 
in which the players need to interact with fast moving balls. Of course, we need 
to develop our motor skill to achieve good performance, but it is also expected 
that the visual system has been evolved to cope with dynamic interaction with 
objects.

A problem then is that neural signal processing is rather slow. For example, 
the latency typically measured in macaque striate cortex is about 30 to 50 ms 
(Maunsell and Gibson 1992). A ball coming at a speed of 150 km/h travels more 
than one meter during this delay, leaving no chance of hitting it. Obviously, we 
need to have some methods of anticipating the target path. Given that the 
delay in physical action is large and effector-dependent, it is likely that most of 
the adjustment should be accomplished through motor planning and its 
execution. However, the visual system seems to have its own process for delay 
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compensation, as suggested by several motion-related illusions. Also, such com-
pensation might work specifi cally for visuomotor action without always being 
consciously perceived. Here, I review such illusions after brief summary of sepa-
rate systems of vision for perception and action (Milner and Goodale 1995), and 
describe results from our group that indicated action-specifi c visual motion 
extrapolation.

2 Vision for Perception and Action

2.1 Separate Visual Pathways for Perception and Action
Milner and Goodale (1995) proposed that the brain has separate visual pathways 
for conscious perception and direct visuomotor control, and this proposal has 
been followed by intensive discussion over the past decade. They extended the 
idea of two visual pathways for what and where information (Ungerleider and 
Mishkin 1982) and argued that the ventral pathway is dedicated to the detailed 
conscious perception, while the dorsal pathway is dedicated to direct control of 
action (Fig. 1). It was radically assumed that the two pathways are independent 
and information through the dorsal pathway is not always accessible to conscious 
perception.

Supporting evidence for their theory has mainly come from case studies of 
human brain damage patients and lesion studies of monkeys. A patient with 
visual form agnosia was able to perform precise action like grasping or mailing 
without being able to perceive the detail (Goodale et al. 1991; Milner et al. 1991). 
There are also cases of “blindsight” patients who can point to the target without 
conscious perception (Weiskranz 1986). These patients generally have damage 
in the occipital lobe, and somtimes in the primary visual cortex (V1), that causes 
an overall dysfunction of the ventral stream. The dorsal pathway is relatively 
intact with possible support from the subcortical path through the superior col-

Fig. 1. The two major visual pathways in a human brain. From the visual cortex in the 
occipital lobe, the dorsal pathway extends into the posterior parietal cortex (PPC) through 
V5, while the ventral pathway goes into the inferotemporal (IT) cortex
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liculus, which is considered to enable visuomotor coordination. On the other 
hand, patients with optic ataxia (Bálint syndrome) tend to show diffi culties in 
visually-guided actions like reaching, while conscious perception is relatively 
unaffected (Bálint 1909). This syndrome generally involves damage in the pari-
etal lobe. Recently, it has been suggested that the damage is more specifi c to 
direct or on-line visuomotor control in a specifi c area within the dorsal pathway 
(Glover 2003; Rossetti et al. 2003). Interestingly, the accuracy of pointing action 
was improved if the patient waited for 5 s before initiating the action (Milner et 
al. 1999), which supports this recent view. There is insuffi cient space to describe 
the details here, but the results of monkey studies basically parallel these fi ndings; 
lesion in the posterior parietal areas causes disorder in visuomotor action while 
lesion in the infero-temporal areas disrupts perceptual judgements (see Milner 
and Goodale 1995).

2.2 Psychophysics on Dissociation of Perception and Action
There are psychophysical results that suggest similar dissociation in normal 
human observers. Displacement of a target near the time of saccade is not noticed 
but pointing action can be accurately performed (Bridgeman et al. 1979). A sta-
tionary target appears to move when the surrounding frame moves back and 
forth, but reaching action is not affected (Bridgeman et al. 1981). Controversies 
have arose after Aglioti et al. (1995) reported that grasping action is not mark-
edly affected by the size illusion of Titchener-Ebbinghaus circles (Fig. 2a). The 
“maximum aperture size” between the thumb and the index fi nger varied in 
relation to the actual object size, but it was relatively unaffected by the size con-
trast illusion induced by surrounding larger and smaller disks. They argued that 
the hand is not deceived by the illusion in conscious perception.

There have been criticisms of this experiment by Aglioti et al. (Franz 2001; see 
also Carey 2001). The most controversial point was the different task require-
ments. The perceptual task inherently involved comparison of two central disks, 
but the grasping task did not require this once the participant decided which 
target to pick. When the fi gure was shown one by one in both cases, there was 
no difference between perception and action (Franz et al. 2000). It has also been 
pointed out that the use of reference frames might cause different results (Bruno 

a b

Fig. 2. a The size contrast illusion (Tichener-Ebbinghaus circles). The left central disk 
appears larger than the right one because of the surrounds, although they are of the same 
size. b The orientation contrast effect used by Dyde and Milner (2002). The central grating 
on the left appears tilted clockwise due to the adjacent tilted grating. The central vertical 
line in the right panel appears tilted counter-clockwise due to the tilted frame
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2001). It seems that we have not come to a fi nal conclusion, but the criticisms 
also have problems. As Milner and Goodale (1995) originally pointed out, dif-
ferent use of reference frames could be inherent in perception and action. The 
conclusion of Aglioti et al. seems to make sense even with the diffi culties in the 
task differences. Findings of Bridgeman et al. regarding manual pointing seem 
less controversial because the task requirement of target localisation is equal in 
perception or action.

But why is action necessarily more accurate than perception? A case where 
action is more erroneous would complete double dissociation. Dyde and Milner 
(2002) conducted a clever experiment in which the illusion is cancelled for per-
ception but not for action, leading to apparent larger errors in action. First, they 
showed that orientation contrast between adjacent gratings (as seen in Fig. 2b, 
left) affected both perception and action (mailing: to orient a card as if putting 
it between bars) while a far frame induces orientation contrast only in perception 
(Fig. 2b, right). Then, when the left pattern is surrounded by an oppositely-tilted 
frame, the perceptual effects are cancelled out, but the visuomotor effect is not. 
The measured illusion was actually larger in action than in perception. This result 
demonstrated double dissociation between perception and action when coupled 
with the case where perceptual errors were larger with the far frames alone. They 
reasoned that the contrast between adjacent gratings occurs at an early level 
where the two pathways have not branched, while the frame effect occurs later 
in the vision-for-perception pathway. Their results, however, do not provide suf-
fi cient evidence for separate visual pathways. Action might ignore visual process-
ing at a later stage, but this does not necessarily mean that the visual information 
is separately elaborated for visuomotor control. A critical case is missing where 
vision for action is directly more susceptible to an illusion, which is fulfi lled by 
our results on motion-related illusions.

3 Motion Extrapolation Revealed by Visual Illusions

3.1 Flash Lag
When a visual object is briefl y presented near a continuously moving visual 
object, the moving one is perceived ahead of the fl ashed one (Fig. 3a), which has 
been called “fl ash lag” (FL). This effect had been already reported by MacKay 
(1958), but Nijhawan (1994) reinterpreted it as evidence for extrapolation of 
target motion to compensate for the neural delay, which has triggered numbers 
of follow-up studies. Nijhawan considered that compensation is particularly 
important for catching action, although it was just speculative.

Unfortunately, this very intriguing idea of motion extrapolation has not been 
supported by later studies. A major objection was that no overshoot of target 
motion is perceived if the moving target turns back at the time of the fl ash 
(Whitney and Murakami 1998). Extrapolation should have resulted in shift in 
the direction of the target motion before the unexpected reversal, but the moving 
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target is actually perceived as shifted in the direction after the reversal (Eagle-
man and Sejnowski 2000; Whitney and Murakami 1998). Furthermore, while no 
offset is perceived when the moving target disappears with the fl ashed one (fl ash 
terminated cycle, FTC), clear offset is perceived when the fl ash appear together 
with the moving one (fl ash initiated cycle, FIC) although there is no prior motion 
for extrapolation (Eagleman and Sejnowski 2000). Moreover, the size of the FL 
depends on the motion speed after the fl ash (Brenner and Smeets 2000). All of 
these observations contradict the extrapolation hypothesis. It is rather suggested 
that the perceived spatial offset is caused by a delay in the processing of the 
fl ashed target. In other words, FL is caused by the latency difference between 
continuous and suddenly-appearing targets (Whitney and Murakami 1998; 
Whitney et al. 2000), as the term “fl ash lag” correctly implied. Reduction of 
latency for a moving target can be related to attention (but see also Khurana 
et al. 2000; Namba and Baldo 2004). But latency difference alone might not be 
suffi cient (Arnold et al. 2003). Full explanation would include several factors 
like temporal averaging before and after the fl ash, and occasional release from 
it (“postdiction” by Eagleman and Sejnowski 2000).

The FL phenomenon therefore does not prove target extrapolation for “pre-
dicting the present” (Cavanagh 1997). However, a shorter latency for a moving 
object would at least partially compensate for the delay to facilitate action control. 
It is notable then that similar phenomenon has been reported cross-modally 
between vision and hand movement (Nijhawan and Kirschfeld 2003).

physical perceived

physical perceived

deviecreplacisyhp

a

c

b

Fig. 3. a The fl ash lag illusion. A bar briefl y fl ashes over a moving bar. When the two bars 
are physically aligned, we perceive that the fl ashed bar lags behind the moving one and 
they are not aligned. b The “representational momentum”. The fi nal location of a suddenly 
disappeared moving target is often perceived to be shifted ahead. c Motion related posi-
tional shift. When the three drifting Gabor patches with stationary windows are vertically 
aligned, the central patch looks misaligned, shifted in the direction of motion. These fi gures 
illustrate typical displays, but many variations have been demonstrated
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3.2 Representational Momentum
When a moving target suddenly disappears, its fi nal position tends to be per-
ceived ahead of the physical position (Fig. 3b). This phenomena has been called 
“representational momentum” (abbreviated as RM or sometimes “RepMo”) 
since it is as if our internal representation of the target has a momentum that 
cannot stop immediately (Freyd and Finke 1984). Intuitively, RM is understood 
as a signature of visual motion extrapolation. Note that the terminology does not 
necessarily imply the underlying mechanism at least in this article.

RM is apparently related to the FL (fl ash lag), but these two are distinct with 
regard to whether it involves relative judgement of position. The situation of RM 
is similar to the FTC case of FL, but note that the general fi nding of no FL for 
FTC is therefore not contradictory with RM. Interestingly, FL can occur even in 
the FTC if the spatial uncertainty is increased (Kanai et al. 2004).

As the terminology suggests, RM has been considered a cognitive effect on a 
memorised representation of the target, as supported by the effects of gravity 
and surface friction (Hubbard 1995). However, the basic effect might occur at 
an early perceptual level. Pursuit eye movement is crucial especially for a linear 
motion path; when the observer maintained fi xation, the effect nearly disappears 
(Ashida 2004; Kerzel 2000). Cognitive extrapolation could have been more stable 
when the visual motion is more accurately coded in the vicinity of eye movement, 
but it is not. Kerzel proposed that overshoot of pursuit eye movement should 
be the direct cause of the perceived RM, coupled with visible persistence and 
centrifugal bias (Kerzel 2000).

3.3 Motion-Related Positional Shift
Perception of object position is more directly affected by visual motion signals. 
A typical example is a drifting grating seen through a stationary window, when 
the edges are blurred as in Gabor patches. The whole window is perceived as 
shifted in the direction of the carrier motion (De Valois and De Valois 1991) 
so that aligned patches of oppositely drifting carriers do not appear aligned 
(Fig. 3c).

This illusion has been considered to refl ect spatial extrapolation for compensa-
tion of neural delays (Anstis and Ramachandran 1995). Technically speaking, 
however, there is no need to extrapolate the position of the stationary window. 
This suggests that the spatial shift is caused by a simple automatic process at a 
relatively early level. It even does not require real retinal motion signals, because 
adaptation to motion causes opposite spatial shifts (Nishida and Johnston 1999; 
Snowden 1998) with perceived motion aftereffect (MAE) in the stationary 
pattern. Even visible MAE does not seem a necessary condition for positional 
shifts. While MAEs are selective to spatial frequency (see Mather et al. 1998 for 
general reviews), the positional shift was immune to it; when the carrier orienta-
tion in the test pattern was orthogonal to that of the adapting one, we see little 
or no MAE but still see positional shifts (McGraw et al. 2002). Conscious percep-
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tion of adapting motion is not necessary, either; positional shift occurs when the 
adapting motion is not identifi able due to crowding (Whitney 2005). Underlying 
mechanisms for the positional shift are still open for further studies, but these 
results suggest that positional shifts refl ect early internal motion signals regard-
less of fi nal perception of motion.

Visual motion in the background area also affects target localisation. The posi-
tion of a briefl y presented target is shifted in the direction of a drifting grating 
even when the target is spatially separated from the grating (Whitney and 
Cavanagh 2000). It is as if motion stimuli distort the whole visual fi eld, but an 
important difference is that the target must be presented only for a short period. 
The background motion probably helps to compensate for our body or eye move-
ment in order to point to the target accurately (Whitney et al. 2003b).

3.4 Visual Motion and Reaching: Evidence of Extrapolation 
for Action?
Visual illusions should be related to ecological roles of specifi c visual functions, 
if they may not have obvious ecological merits themselves. In this respect, the 
motion-related illusions described above should be more closely related to direct 
action if they refl ect some operations for delay compensation. Flash lag involves 
a relative judgement of positions that is not easily tested by action in an unbiased 
way, but the other two illusions have been tested in similar conditions for percep-
tion and action.

We have reported that motion-related positional shift is more prominent in 
open-loop reaching action than in perceptual judgement (Yamagishi et al. 2001). 
A Gabor patch with a drifting vertical sinusoidal carrier was presented briefl y to 
the right of fi xation. The observers then judged the horizontal location of the 
target and responded either by touching the location using a rubber pen (visuo-
motor task) or by reading a visual ruler that was presented on the screen (per-
ceptual task). Note that the task requirement was similar and there is no 
task-dependent bias for different reference frames. In the visuomotor task, the 
observers made ballistic movement of their hand without seeing their arm and 
hand (open-loop action). The stimuli were observed through a mirror for this 
purpose. The absolute locations of responses were not always veridical without 
feedback, and we computed the averaged difference in responses to leftward and 
rightward stimuli as an index of the effect of carrier motion on localisation. 
The left panel of Figure 4 shows a typical result from one observer. Obviously, 
localisation error in the visuomotor task was larger than that in the perceptual 
task, increasing more rapidly with carrier speed. This difference cannot be attrib-
uted to the intrinsic open-loop gain of the motor system, because the difference 
in the two response modes almost disappeared when the response was delayed 
by 4 s (Fig. 4, right panel). Delayed responses had to rely on the stored perceptual 
representation (Hu and Goodale 2000; Milner et al. 1999). We also suggested 
that visuomotor responses are less asymmetric than perceptual ones with regard 
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to the motion direction. The result supports separate visual mechanisms, dem-
onstrating a case where action is more prone to illusion.

We have also found that the enhanced visuomotor localisation error is specifi c 
to achromatic stimuli (Ashida et al. 2005). Equiluminant chromatic stimuli (red-
green) did not yield a signifi cant difference between perception and action. Given 
the weak response of V5 to chromatic stimuli (Gegenfurtner et al. 1994), it is 
tempting to conclude that the visuomotor-specifi c positional errors occur within 
the dorsal visual pathway, while perceptual errors refl ect interaction of the two 
pathways where chromatic and achromatic motion signals are integrated.

A study of RM supported these fi ndings (Ashida 2004). The fi nal position of 
a horizontally moving disk on the screen was indicated using an on-screen cursor 
(perceptual) or by directly touching the screen (visuomotor). Visual feedback 
was controlled using a liquid crystal shutter goggle. The main result is shown in 
Figure 5, which demonstrates three major fi ndings. First, open-loop action yielded 
larger forward shifts that increased with target speed more linearly than percep-
tion, which is very similar to the left panel of Figure 4. Second, closed-loop 
responses were almost identical to the perceptual ones. It seems that perceptual 
information was dominant in this case. Finally, and most interestingly, perceptual 
shifts were reduced to almost zero by eye fi xation (Kerzel 2000), but open-loop 
responses remained nearly the same. This implies an intriguing possibility that 
extrapolation might occur within the egocentric coordinate that would be the 
default in visuomotor action. Perception might rely more on a retinotopic or 
possibly allocentric coordinate (not distinguishable under this condition). It is 
conjectured that perceptual RM occurs because perception uses egocentric 
signals when the retinotopic signals are unstable due to eye movements. In any 
case, further evidence was provided for separate visual processing for perception 
and visuomotor action in qualitative as well as quantitative ways.

While these results in general agree with the theory of Milner and Goodale 
(Milner and Goodale 1995), one problem arises regarding anatomical structures. 
They proposed that conscious perception arises only within the ventral brain 
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Fig. 4. Localisation errors for a drifting Gabor patch in perception and action for one 
observer. Differences in the mean responses for leftward and rightward stimuli are shown 
as a function of temporal frequency (speed). Immediate responses (left) and delayed (by 
4s) responses (right). Adapted from Yamagishi et al. (2001)
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pathway. But if so, how can we understand conscious perception of visual motion 
that is believed to be based upon area V5 (MT/MST) within the dorsal pathway? 
The basic idea of two visual systems has been confi rmed by the results, but the 
underlying anatomical structure should be reconsidered. It now seems more 
plausible to assume that some parts of the dorsal pathway are involved in con-
scious perception. According to Rizzolatti and Matelli (2003), there are two dis-
tinct pathways within the dorsal pathway, one from V6 to the superior parietal 
lobule and the other from V5 to the inferior parietal lobule. The former is con-
sidered to support on-line visuomotor control while the latter might underlie 
space perception (Ungerleider and Mishkin 1982). More studies would be 
required for further understanding of the two pathways.

4 Concluding Remarks

Effects of visual motion on spatial localisation have been extensively studied over 
the past several years. I have concentrated on manual action, but eye movements 
have also been studied for visuomotor coordination, as partly discussed in the 
chapter by Sogo and Osaka in this book.

However, we have not yet come to understand the underlying neural mecha-
nism. We have been surprised by the fMRI (functional magnetic resonance 
imaging) results that the stimulus representation in V1 might be shifted in the 
opposite direction by visual motion (Whitney et al. 2003a). Although it has 
turned out that the effect is small and there is no overall opposite shifts (Ashida 
and Smith 2005; Liu et al. 2004), it is plausible that early visual areas are not 
responsible for motion-related shifts, which is also suggested by dissociation 
between perception and action in our studies. Activities in V1 would have affected 
both equally. Despite a positive result in cat’s primary visual cortex (Fu et al. 
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2004), higher areas should be sought for humans as suggested by a TMS (tran-
scranial magnetic stimulation) study (McGraw et al. 2004); giving TMS to V5 
reduced the positional shifts after motion adaptation but TMS to V1 had no 
effect. Techniques have been developed to investigate higher and smaller cortical 
areas and new insights are expected to be provided in the near future.
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Neural Substrates of Action 
Imitation Studied by fMRI
Shigeki Tanaka

Department of Psychology, Faculty of Human Sciences, Jin-Ai University, 3-1-1 Ode-cho, 
Echizen, Fukui 915-8586, Japan

1 Introduction

Action imitation presents several interesting points for the study of object rec-
ognition and action because, during imitation, a person must manipulate body 
parts as objects and, at the same time, do this using our own body. Other people’s 
action can be imitated so easily that the complicated cognitive processes involved 
in imitation tend to be overlooked. It is well known that even the neonate can 
imitate (Meltzoff and Borton 1979; Meltzoff and Moore 1983). The process of 
imitating other people’s actions involves various cognitive elements such as visual 
perception of target actions, transforming perceived actions into one’s own body 
and/or motor representation, and simulation of one’s own motor image (Decety 
and Chaminade 2003; Jackson and Decety 2004; Chaminade et al. 2005).

Mirror neurons were reported to be activated when a monkey observed the 
hand actions of another as well as when the monkey himself performs the 
same action (Rizzolatti et al. 1996), implying that these neurons represent 
the concept of action regardless of who performs the action. The impact of 
the fi nding of mirror neurons was very strong, and its concept has been intro-
duced into various topics in cognitive science from motor cognition to the prob-
lems of self and others (Rizzolatti and Craighero 2004), such as a sense of action 
agents (Decety et al. 2002) and empathy for others (Carr et al. 2003; Gallese 
2003).

In this chapter, two fMRI studies concerning action imitation (Tanaka et al. 
2001; Tanaka and Inui 2002) and recent related fi ndings by other groups are 
introduced.
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2 Experiment 1: Finger Action Imitation with and without 
Symbolic Meaning

2.1 Ideomotor Apraxia
A pathological state exhibiting defi cits in pantomiming on verbal command or 
gestural imitation is called ideomotor apraxia (IMA) and is caused by left inferior 
parietal lesions. Heilman et al. (1982) proposed that the motor engrams for 
skilled movements are stored in the left supramarginal gyrus. Then damage to 
this area or disconnection between this area and the motor area lead to defi cits 
of action imitation. Recently, Goldenberg and Hagmann (1997) showed that 
IMA was caused by poor percep tion of target postures. In their study, they 
examined whether IMA patients could manipulate mannequins by instructing 
the patients to imitate presented actions using mannequins. The action required 
the patients to properly imitate a target action different from those required 
to manipulate mannequins. The IMA patients were poor at this task as well as 
at tasks that required imitation using their own bodies. This means that the 
poor imitation by IMA patients cannot be attributed to the damage to the 
stored motor engrams, but might be derived from a defi cit in perceiving target 
actions.

2.2 fMRI Study of Finger Action Imitation
Previous neuroimaging studies investigating on the imitation of fi nger actions 
used very simple tasks; subjects were required to raise their fi ngertips slightly 
according to the presentation of line-drawn or photos of fi nger pictures (Iacoboni 
et al. 1999; Krams et al. 1998). In those studies various brain activations were 
reported, including that in the parietal area. However, the stimuli were too 
simple to study the elements of the imitation process, such as the detailed analysis 
and perception of target posture, transformation from perceived posture into 
one’s own body image or manipulation of the motor image to produce real 
action. In order to study those elements in action imitation, we performed an 
fMRI study using rather complicated tasks, i.e., fi nger confi gurations with or 
with out symbolic meaning. During imitating of actions with symbolic meanings, 
visual recognition might lead to activate stored motor memories of those actions. 
However, imitating novel actions requires more detailed observation to under-
stand the spatial relations among fi ngers and also requires more detailed motor 
control for action execution.

2.2.1 Tasks and Subjects

An imitation task with three conditions was used. In the fi rst (S−) condition, 10 
pictures of meaningless (in Japanese culture) fi nger confi gurations were pre-
sented to the subjects (three such items are shown in Fig. 1a). The subjects were 
required to imitate the fi nger confi guration using their right hand, during the 
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stimulus presentation. Stimuli were presented for 2 seconds for each (SOA = 3 s, 
ISI = 1 s, 10 pictures in random order per block, block duration = 30 s). The 
second (S+) condition, 10 pictures of fi nger confi gurations (Fig. 1b) with symbolic 
meaning (in Japanese culture), were presented in a manner identical with that 
for the S− condition. The third condition was a rest condition: a fi xation point 
was shown instead of fi nger pictures with the same SOA and ISI. Subjects were 
instructed just to watch the fi xation point. The three conditions were repeated 
four times in a counter-balanced order. The visual stimuli were controlled by a 
personal computer and were projected onto a screen by a liquid crystal display 
projector seen through a mirror set above their eyes as the subjects lay in the 
MRI machine. The visual angle was 5.3 × 5.4. The subjects’ performance was 
monitored through the window at the MRI control console. All responses were 
evaluated as correct or incorrect and recorded into the list of the stimuli for each 
subject. Responses were evaluated as correct whenever fi ngers to be extended 
and those to be folded were correctly imitated.

A total of nine right-handed subjects (six male and three female; mean age 
25.2 years; range 22–34) participated. All subjects were fi t, healthy, on no medica-
tion, free from any history of neurological or psychiatric illness and gave written 
informed consent.

2.2.2 fMRI

A 1.5 T MRI scanner was used to acquire 72 scans per subject with a gradient 
echo EPI sequence (TR/TE = 5000/40 ms, FA = 90, FOV = 220 mm, matrix = 64 
× 64, 32 axial slices, 5 mm slice thickness without gap). The fi rst four scans were 
discarded to avoid initial instability. Data analysis was performed using SPM 
96 (http://www.fi l.ion.ucl.ac.uk). All EPI images were spatially normalized 
with MNI template for group analysis. Imaging data were corrected for head 

a

b

Fig. 1. Examples of visual stimuli. a Finger confi guration without symbolic meaning (S−, 
top row), b With symbolic meaning (S+, bottom row). Three of the ten pictures are shown 
for each condition. In b, the usual meanings of the confi gurations are promise, OK, and 
scissors from left to right
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movements and signal intensity variation and smoothed with an isotropic Gauss-
ian kernel 10 mm FWHM. Signifi cance was assessed using the delayed box-car 
reference.

2.3 Results and Discussion
The mean number of incorrect responses was 3.4 (range 2–5) among 80 responses. 
All incorrect responses were made in the S− condition and most of them were 
within the fi rst S− block. Most of the incorrect responses were a timeout type 
(subjects failed to make any response or made uncertain fi nger movement, then 
skipped to the next image). This result was consistent with the subjects’ com-
ments after the experiment that an effort was required to imitate meaningless 
fi nger confi gurations without seeing their own hand, even though it had been 
confi rmed that they could imitate all stimuli in both the S− and S+ conditions 
promptly and completely in front of a PC monitor outside the MRI room.

For fMRI data analysis, In S− vs. rest, there was activation in the right SMG 
(Fig. 2a) which was not observed in S+ vs. rest. The comparison between S− and 
S+ is shown in Fig. 2b (uncorrected for multiple comparisons). In the comparison 
S− vs. S+, only bilateral parietal activation differed signifi cantly. There was no 
signifi cant difference of activation detected in the comparison of S+ vs. S−. In 
both comparisons of S− vs. rest and S+ vs. rest, strong right cerebellar activation 
was observed.

In the comparison of S− vs. S+ conditions, signifi cant activation in the bilateral 
SMG was observed. In comparison with the rest condition, both S− and S+ condi-
tions showed activation in the left SMG, but only the S− condition showed activa-
tion in the right SMG. According to interviews after the experiment, subjects did 

Fig. 2. The results of the comparison among three conditions shown in a transparent brain 
system. a S− vs. rest, b S− vs. S+ and c S+ vs. rest. The thresholds for activation was set 
at P < 0.001 for voxel level. The results in a and c were corrected for multiple comparisons 
at the extent threshold of P < 0.05 and the result in b was uncorrected. SMG: supramar-
ginal gyrus
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not have to carefully analyze the position of each fi nger in the S+ condition, 
because they were well accustomed to the stimuli. Contrarily the S− condition 
required more detailed visual analysis of the target stimuli as well as somesthetic 
analysis/integration than the S+ condition. Iacoboni et al. (1999) also suspected 
that activation in the right SMG in their fMRI study of fi nger imitation might 
imply that the perceived information of the observed action, such as the angle 
of a fi nger joint, is stored in this area. We suppose the activation in the right 
supramarginal gyrus (SMG) detected in S− vs. S+ might be related to the percep-
tion of target actions of the S− condition that required more detailed visual 
analysis than under the S+ condition. The subjects had to feel their own fi ngers 
because they could not see them during the tasks, especially imitating unaccus-
tomed fi nger confi gurations under the S− condition. The difference in activation 
in the left primary motor and sensory areas on comparison of S− vs. S+ might 
refl ect this effort. Sensory and/or motor representation of fi ngers might be neces-
sary for the manipulation of mental representations required under the S− condi-
tion. The left SMG activation in the comparison S− vs. S+ might show the deep 
involvement of this area in preparing and executing novel fi nger confi gurations 
which require integrating several simple actions (each fi nger posture) into a more 
complex one. Lesions in the inferior parietal lobule are known to cause distur-
bances in complex polymodal integration of somesthetic and visual representa-
tion such as ideomotor apraxia (Heilman et al. 1982; Ochipa et al. 1994; 
Goldenberg et al. 1996). Our result is consistent with these neuropsychological 
fi ndings.

3 Hand/Arm Action vs. Finger Confi guration

3.1 fMRI Study of Action Imitation: Hand/Arm vs. 
Finger Action
Goldenberg (1999) reported an interesting clinical study that patients with right 
brain damage performed more poorly in fi nger confi guration imitation than in 
hand/arm action imitation, and vice versa for patients with left brain damage. A 
neuroimaging study showed different parietal involvement in the recognition 
tasks of hand/arm action and fi nger confi guration (16) (Hermsdorfer et al. 2001). 
To study the neural substrates involved in action imitation of hand/arm and those 
of fi nger confi gurations, we performed an fMRI study.

3.1.1 Subjects and Task

A total of 12 right-handed subjects (six male; mean age = 24.8, range 21–34 years 
old) participated in a task with three conditions. In all conditions, subjects were 
instructed to imitate presented postures using their right hand or fi ngers. The 
fi rst condition was a control condition (rest) in which pictures such as shown in 
Figure 3a were presented for 2 sec followed by a fi xation point for 1 sec, which 
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was repeated 10 times in one block. Subjects were instructed just to watch it 
without any motion. In the second (hand) condition, one of six pictures of mean-
ingless hand/arm postures was presented to the subjects (Fig. 4, top row). There 
were two patterns of elbow joint angle, straight or bent, and three patterns of 
hand position. Subjects were required to imitate the presented posture using their 
right arm and hand; stimulus movements were performed with the left hand of 
the demonstrator, so that subjects imitated the movement as if they were seeing 
themselves in a mirror. At each trial, as the stimulus disappeared, they were 
required to go back to the rest position. Stimuli were presented for 2 s each (SOA 
= 3 s, ISI = 1 s, 10 pictures in random order per block, block duration = 30 s). In 
the third (fi nger) condition, one of six pictures of meaningless fi nger confi gura-
tions (Fig. 4, bottom row) was presented in the same fashion as in the hand 
condition. The hand and the fi nger conditions were repeated four times in 
a counter-balanced order. The presentation and the control system of visual 
stimuli were the same as used in the experiment 1. Subjects’ responses through 

Fig. 3. The experimental design for the three conditions

Fig. 4. Visual stimuli. Hand/arm postures (top row) and Finger confi guration (bottom 
row)
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all sessions were recorded by a digital video camera for estimating their 
performance.

3.1.2 fMRI

A 1.5 T MRI scanner was used. A total of 100 scans per subject were acquired 
with a gradient echo EPI sequence (TR/TE 5000/55 ms, FA = 90, FOV 240 mm, 
matrix 64 × 64, 38 axial slices, 5 mm slice thickness without gap). The fi rst four 
scans were discarded to avoid initial instability. Data analysis was performed 
using SPM 99 (http://www.fi l.ion.ucl.ac.uk). All EPI images were acquisition-
corrected for sampling bias effects caused by different times relative to the hae-
modynamic response for each subject. The images were realigned to correct for 
interscan movement and spatially normalized with MNI template for group 
analysis. The images were smoothed with an isotropic Gaussian kernel of 8 mm 
FWHM. Signifi cance was assessed using the delayed box-car reference convolved 
with a haemodynamic response function. Linear contrasts between different 
conditions gave results as activated areas by creating a spatially distributed map 
of the t-statistic (SPM{t}). Activation was thresholded at P < 0.001, corrected for 
multiple comparisons for each subject. The acquired four contrast maps, hand 
vs. rest, fi nger vs. rest, hand vs. fi nger and fi nger vs. hand, of each subject were 
jointly used for group analysis based on the random effects analysis (17) (Friston 
et al. 1999).

3.2 Results and Discussion
All subjects’ responses recorded by the digital video camera were evaluated by 
a naive observer and it was determined that all subjects responded correctly on 
all trials. Compared with the control condition, in the hand condition a signifi cant 
activation was detected in the bilateral precentral and postcentral gyri, inferior 
parietal gyri, and cerebellum, and in the right occipital lobe, thalamus and 
putamen. Under the fi nger condition, signifi cant activation was detected in 
various areas including the bilateral pre/postcentral gyri and the inferior frontal 
gyrus (Brodmann area (BA) 44).

When the hand condition was compared with the fi nger condition, signifi cant 
activation was detected in the bilateral superior parietal lobule and the bilateral 
pre/post central gyri (Fig. 5, left). The fi nger condition compared with the hand 
condition demonstrated signifi cant activation in the left inferior frontal area 
(Brodmann area (BA) 44, 47), bilateral inferior parietal lobules and right supe-
rior parietal lobule (Fig. 5, right).

3.2.1 Broca’s Area

Signifi cant activation was observed in Broca’s area under the fi nger condition 
compared with the rest condition or with the hand condition, suggesting that 
Broca’s area might be more important in imitating fi nger actions than in that of 
hand/arm actions. Since the fi rst report of mirror neurons by Rizzolatti et al. 
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(1996), many studies have indicated involvement of Broca’s area in human action 
imitation or observation (Iacoboni et al. 1999; Iacoboni et al. 2001; Krams et al. 
1998; Perani et al. 2001, etc.). Broca’s area activation was not reported in some 
imaging studies in which task conditions include recognition of hand/fi nger pos-
tures or simple observation of another person’s grasping action (Hermsdorfer 
et al. 2001; Perani et al. 2001). Buccino et al. (2001) reported in their fMRI study 
that Broca’s area was activated when subjects observed hand actions that actually 
manipulated objects but not when subjects observed pantomimes of object 
manipulation. In the PET study by Hermsdorfer et al. (2001), neither task condi-
tions of recognizing hand/arm action vs. recognizing fi nger confi guration showed 
any Broca’s area activation. In our study, subjects actually performed action 
imitation during the scan and Broca’s area activation was detected under the 
fi nger condition. Consequently, Broca’s area might be involved more in the 
process of execution than in the process of recognition in human action 
imitation.

3.2.2 Parietal Lobe

Goldenberg (1999) reported that the laterality of brain lesion showed a correla-
tion with action imitation tasks of hand/arm action and fi nger confi guration. He 
proposed that imitations of hand and fi nger gestures are subserved by at least 
partially different mechanisms that are differently distributed across the two 
hemispheres: the right hemisphere being more involved in the process of visuo-
spatial cognition of presented gestures, while the left hemisphere is more involved 

Fig. 5. The results of the random effects analysis on 12 subjects shown on a template brain 
image. Hand vs. fi nger (left) and fi nger vs. hand (right) are shown. The statistical threshold 
is voxel level P < 0.001 (uncorrected)
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in the process of referring to knowledge of one’s own body as well as in the 
process of preparing and executing one’s own action. In their PET study of the 
recognition of other people’s actions, Hermsdorfer et al. reported that the rec-
ognition of fi nger confi gurations showed more symmetrical activation in the 
parietal area, while that of hand postures showed left lateralized parietal activa-
tion, which is consistent with their clinical observations (Hermsdorfer et al. 2001). 
In the present study, the activated area in the parietal lobe was located mainly 
in the left hemisphere under the hand condition and bilaterally under the fi nger 
condition. These fi ndings are consistent with the clinical fi ndings reported by 
Goldenberg (1999). The right parietal area was more involved in fi nger action 
imitation which might require greater recognition of the spatial relation of the 
presented fi ngers. Choi et al. (2001) reported left superior parietal activation in 
their fMRI study in which subjects pantomimed tool use. The activation pattern 
shown in their result were similar to that under the hand condition of our study, 
possibly due to the fact that most of the actions using tools consist of not fi nger 
but hand/arm actions.

Why are there such differences between the cortical networks involved in 
hand/arm posture and those of fi nger confi guration imitation? We suspect it 
might be due to differences in the modality of feedback information (visual vs. 
somatosensory) during development. That is, one can see one’s own fi ngers 
during imitation of another person’s fi nger confi guration, but one cannot see one’ 
s own body movement during the imitation of hand/arm postures without using 
a mirror. Thus visual feedback is more important for fi nger action imitation, 
while somatosensory feedback plays the main role in imitating hand/arm posture. 
It may therefore be that through the developmental process, different cortical 
networks come to be involved in those two types of action imitation. Goldenberg 
(2002) reported recently that a patient group with right brain damage performed 
more poorly in foot gesture imitation than in hand gesture imitation. This result 
can also be explained by the availability of visual feedback during imitation; it is 
easy to see one’s own foot gesture, but it is diffi cult to see one’s own hand/arm 
gestures (and their spatial relation to one’s own face) by oneself.

With regard to the coordinates of mental representation, hand/arm posture is 
related more to self-centered coordinates; the arms and hands might be repre-
sented using spatial relations referred to the body. Contrarily, object-centered 
coordinates might be more important for the representation of fi nger confi gura-
tions, the mutual spatial relations among the fi ngers being more important than 
their relation to the body.

Visuoconstructive disturbance caused by right hemisphere damage is a defect 
in copying geometric fi gures. Visuoconstructive functions consist of the cognitive 
process of recognizing the spatial relations among objects and expressing these 
relations as one’s motor output. It has been reported that patients with 
visuoconstrutive disturbance showed defi cits in imitating fi nger confi gurations 
(Yamadori 1985; Ogura and Yamadori 1983). This clinical fi nding might also 
imply that one important element of fi nger action imitation is recognizing spatial 
relations among presented objects.
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1 Introduction

Mutual coordination of timing is required to produce synchronous cooperative 
behavior between humans, and an anticipation mechanism related to external 
events is thought to be indispensable to generate such movement. The impor-
tance of this timing control becomes clear if one considers, for example, playing 
together in a musical ensemble. However, it has been reported that a time dif-
ference exists between awareness of cognitive synchrony and physical synchrony, 
such as a negative asynchrony phenomenon (see next paragraph). Analysis of 
this anticipatory mechanism should be performed, not only to elucidate the 
physical process, but also to understand the underlying cognitive process in which 
a higher brain function, such as attention (Kahnemann 1973), is involved.

The synchronization tapping task has been used as the simplest method for 
examining the timing mechanism. In this experiment, the subject is required to 
synchronize his/her fi nger movement with a periodic auditory or visual stimulus. 
The most striking demonstration of anticipatory timing control occurs when the 
onset of each tap precedes the onset of stimulus by several 10 ms (Stevens 1886; 
Woodrow 1932; Fraisse 1966; Kolers and Brewster 1985; Peters 1989; Mates et al. 
1994; Aschersleben and Prinz 1995). This pressing-in-advance phenomenon, of 
which the subject is unaware, demonstrates that the motor command to the fi nger 
is generated before the onset of the auditory stimulus, suggesting a process of 
anticipatory timing control. The negative time offset caused by tapping in advance 
is referred to as negative asynchrony – a phenomenon that is always observed in 
the synchronization tapping task in response to a periodic stimulus.

To examine this type of phenomenon, Mates et al. (1994) conducted a syn-
chronous tapping experiment using a periodic auditory stimulus within a range 
of 300 to 4,800 ms. They confi rmed that negative asynchrony was observed for 
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all of the above stimulus intervals with a difference in the degree of its occur-
rence. They found that the upper limit for the generation of stable, negative 
asynchrony with little fl uctuation is 2 to 3 s for the interstimulus-onset interval 
(ISI). It was also reported that if the ISI limit is exceeded, reactive responses 
become mixed with the negative asynchrony.

Synchronization tapping tasks and other types of time-discrimination tasks and 
time-reproduction tasks (Ivry 1996, 1997; Pascual-Leone 2001; Rao et al. 1997) 
have demonstrated that the cerebellum plays an important role in neural mecha-
nisms that support perception of time intervals under 1 s. Higher brain functions 
contribute to the perception of time intervals that exceed 2 to 3 s (Kagerer et al. 
2002; Brown 1997). Mangles et al. (1998) conducted a series of experiments on 
time perception under 2 sets of conditions – short (400 ms) and long (4 s) time 
intervals – in subjects with injuries to the cerebellum and prefrontal cortex. They 
found that subjects with an injury to the prefrontal cortex exhibited a deteriora-
tion of performance only on the long-duration discrimination tasks. They also 
discovered a defi ciency in the subjects’ working memory. These fi ndings suggest 
a multi-component timing mechanism (Ivry 1997) and the importance of working 
memory in the perception of long time periods.

Experiments by Mates et al. (1994) did not clarify the role of working memory 
or the contribution of these two types of timing mechanisms to the occurrence 
of negative asynchrony. Miyake et al. (2001) proposed the hypothesis of a dual-
anticipation mechanism in sensory-motor coupling. An experiment supporting 
this hypothesis was recently reported by Zelaznik et al. (2002). The experiment 
presented here was designed to determine the effects of higher brain functions 
like attention on a synchronization tapping task.

A number of cognitive models have been proposed to explain the relationship 
between the perception of a time interval exceeding 2 to 3 s and attention. 
Among these, the “attention-allocation model” is based on the premise that 
decision-making time is determined by the extent of attentional resources allo-
cated to the temporal-information processing system in contrast to the mental-
activity processing system unrelated to time (nontemporal information processing) 
(Brown 1997; Macar and Casini 1999). Central activation of working memory is 
involved in this allocation of attention (Baddeley 1986, 1998a, b; Osaka 2000). 
According to Kahnemann’s attention-capacity model (1973), there are limited 
attentional resources, and these resources determine the limits in the processing 
of perceptual information. Attention is a critical resource in the execution of 
mental activities, and it can be appropriately allocated to each separate task 
according to the tendencies and intentions of each individual during the simul-
taneous execution of multiple tasks. In this condition, it is possible to quantify 
the amount of the attentional resources that has been allocated based on the 
magnitude of the mental processing involved.

We examined the range of ISI affected by attention in a synchronization 
tapping task based on the above models. If the subject’s attention is directed 
toward processing of information other than tapping during a synchronization 
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tapping task, it becomes diffi cult for the subject to focus the amount of attention 
required for the execution of the tapping task due to the limited capacity of 
attentional resources. If the amount of attention required in the tapping task 
exceeds the remaining resources, suffi cient processing resources cannot be allo-
cated to the temporal-information processing system, the ability to make tempo-
ral decisions becomes disrupted, and anticipatory timing control is thought to be 
affected.

2 Methods

A dual-task method (Baddeley 1986) was used to control the subject’s attention. 
In this experiment, the processing capacity required for executing the primary 
task was reduced by having the subject engage in an additional (or secondary) 
task while still performing the primary task. Well-known examples of these types 
of test are the reading-span test (Daneman and Carpenter 1980; Osaka and 
Osaka 1994), which measures the capacity of working memory when a subject is 
simultaneously reading a short sentence aloud and engaged in a word-memory 
task. Another is the articulatory-suppression method, which examines the orga-
nization of coding of auditory information when a subject is engaged in a cogni-
tive activity like memory while simultaneously repeating a word, such as “a” or 
“the” (Saitoh 1997). We employed a word-memory task as the secondary task to 
control the subject’s attention.

The word-memory task was used to restrict the target of attention control to 
short-term memory and to determine the correlation between attention and 
negative asynchrony in the synchronization tapping task. This type of transient 
memory has been regarded as a function of working memory and is often 
employed as a secondary task to divert the attentional resources of the subject. 
In this study, the difference in the number of memorized words was regarded as 
the difference in the amount of attentional resources and attention capacity that 
was available in the tapping task. The memory task involved two different 
numbers of words as a secondary task. If the attention capacity required by the 
memory task corresponds to the processing resources that are used in the syn-
chronization tapping task, some type of interference would appear between the 
two, and the difference in the number of memorized words is thought to refl ect 
the occurrence rate of negative asynchrony.

The subjects were asked to press a button in synchrony with the onset of a 
periodic pulse auditory stimulus as their primary task. A total of ten different 
ISIs were used in this study, and this task was performed under the following 
two conditions. Each trial had a fi xed ISI auditory stimulus for the controlled 
condition (N condition), then repeated for each of the ten durations of ISI. 
During the trials, the subjects were required to manually press a button precisely 
at stimulus onset. The word-memory task (M condition) was conducted parallel 
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to the the control task (N condition). The details are explained in the following 
section(s).

2.1 Tapping Task
The subjects were all right-handed and were required to press a button with their 
right index fi nger in synchrony with the onset of a periodic pulse auditory stimu-
lus. A total of ten different ISIs were used in this study: 450, 600, 900, 1,200, 
1,500, 1,800, 2,400, 3,600, 4,800, and 6,000 ms. The sequence of ISIs was random-
ized for each subject. The duration of each auditory stimulus was 100 ms, and the 
frequency was 500 Hz. The acoustic pressure was set at an appropriate magnitude 
that allowed the subjects to clearly hear the auditory stimulus. It was the same 
for each subject throughout all the trials.

2.2 Defi nition of Parameters
The data measured during this experiment were stimulus onset and tap onset. 
The main target of analysis was the time difference between the stimulus onset 
and the tap onset, defi ned as synchronization error (SE). This refl ects the tem-
poral relationship between stimulus and action. A positive SE indicates that the 
tapping onset lagged behind the stimulus onset. As demonstrated by Mates et al. 
(1994), tapping can be divided into 2 types, that with negative asynchrony and 
that reactive to stimulus. Therefore, the former is referred to as anticipatory 
tapping and the latter, as reactive tapping. The relationship between these two 
parameters is shown in the Figure 1a.

2.3 Subjects
Six healthy male university graduate students in their 20s volunteered to partici-
pate in this study. They all had experience in synchronization tapping tasks. All 
of the subjects were right-handed and had normal hearing.

2.4 System
The system used in this experiment was loaded onto a personal computer with 
a single task OS (PC-DOS2000, IBM). The stimulus sound was transmitted to 
the subjects via headphones from an external sound source connected to the PC 
through a parallel port. In addition, the button that the subjects pressed was 
connected to the PC via a parallel port. The program used in the study was 
developed using the programming language C. A built-in real time clock (RTC) 
with a time resolution of 1 ms was used to measure the time when the button was 
pressed and the time of auditory stimulus presentation.
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Fig. 1. Synchronization Error distribution. a Temporal relationship between tapping 
onset and stimulus onset. The time difference between the stimulus onset and the tap 
onset was defi ned as Synchronization Error (SE). Negative SE indicates that tapping 
precedes the stimulus onset and corresponds to anticipatory tapping. The time difference 
between two successive stimulus onsets was defi ned as the Interstimulus-onset Interval 
(ISI). The duration of each stimulus was 100 ms. b SE distribution for every Interstimulus-
onset interval (ISI) of subject A is shown. The upper fi gure corresponds to the normal 
condition, the lower two fi gures correspond to the memory condition. Here N represents 
normal synchronization tapping, and 4 words or 5 words represent tapping with 4- or 5-
word memory tasks, respectively. The number at the head of each fi gure represents ISI 
[ms]. (From Miyake et al. 2004, with permission)
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2.5 Procedure
The task was to press a button in coordination with a periodic-pulse auditory 
stimulus. This task was conducted under the following two conditions:

(1) N (control) condition: Each trial consisted of a set ISI auditory stimuli and 
was conducted for ten different ISIs. During each trial, the subjects were requested 
to press a button the moment they heard an auditory stimulus. Each trial lasted 
1 minute so that a memory task could be performed as a secondary task. By 
changing the number of trials corresponding to the ISIs, data from a total of 40 
taps could be collected for each ISI. Since the objective was to observe a steady 
reaction in the subjects, data recording began 10 s after the onset of the initial 
tap in each trial.

(2) M (memory-task) condition: Tapping was performed in the same manner 
as under the N condition in parallel with the word-memory task. The subjects 
were asked to remember a word using a Japanese phonetic character, which 
consisted of 3 to 5 morae. A “morae” is a syllable representing a Japanese word. 
All of the words were meaningful, but the combinations used in each trial were 
selected to make it diffi cult to create meaningful associations between words. In 
addition, the subjects were instructed not to memorize the words using the sto-
rytelling method (a method of memorization in which a story is created using the 
displayed words to shift the words into long-term memory). Either four or fi ve 
words were displayed in each trial. The mean number of morae was 3.69 for the 
4-word condition and 3.68 for the 5-word condition. The trials commenced simul-
taneously when the subject pressed the space bar on the computer keyboard. 
Once the space bar was pressed, the word set was displayed in the center of the 
monitor screen (IBM ThinkPad 535) for 3 s. The monitor then blacked out, and 
an auditory stimulus was immediately presented. The subjects were required to 
perform tapping for a 1-minute period while remembering the words. Immedi-
ately after completion of the tapping, the subjects were asked to recite the 
retained words. The order of the words was not considered relevant. Subjects A, 
B, and C performed the experiment in the order of the N condition – 4-word 
condition followed by 5-word condition, whereas subjects D, E and F performed 
the experiment in the order of the N condition – 5-word condition followed by 
4-word condition.

The subjects were also instructed not to time the tapping by counting to them-
selves while tapping or by making rhythmic physical movements. Each trial was 
conducted after a suitable interval to ensure that the subject’s concentration was 
not adversely affected by fatigue resulting from the preceding trials.

3 Results

3.1 Correct Response Rate for Word-Memory Task
The correct response rates for the word-memory tasks for each subject are shown 
in Table 1. The values for each subject are the mean values for each trial. The 
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correct response rate among subjects was 98.3% for 4 words and 91.7% for 5 
words. The difference between the mean values for the 2 groups was signifi cant 
at P < 0.05 on Wilcoxon sign rank sum test. There was an exceptionally large 
drop in performance observed for subject B. Memorization of 4 words could be 
executed almost perfectly by each of the subjects, whereas there was a difference 
in scores for the 5-word memorization task, which appeared to be more diffi cult. 
This result suggests that the attentional resources required to memorize 5 words 
exceeded or was close to the capacity limit.

3.2 Distribution of Synchronization Errors (SE)
The data obtained in this experiment were stimulus onset and tap onset. Syn-
chronization error (SE), the time difference between the stimulus onset and the 
tap onset, was analyzed as an index refl ecting the temporal relationship between 
stimulus and response.

The SE distribution at each ISI is shown in Figure 1b for Subject D. The nega-
tive SE indicates that the tap precedes the auditory stimulus. The shape of the 
SE distribution for the N condition can be divided into 3 types. First, the SE 
distribution for the small ISIs from 450 to 1,500 ms is focused around a shift in 
the negative direction with a small spread. This distribution corresponds to 
anticipatory tapping, i.e., tapping that generates a stable negative asynchrony. 
As the ISI increased, the dispersion of the distribution increased, and a 
sharp peak on the positive side occurred in the distribution from 4,800 to 6,000 ms. 
This positive peak refl ects reactive tapping, i.e., tapping that occurs refl exively 
after hearing the stimulus. Anticipatory tapping with a large negative SE and 
reactive tapping was mixed in the intermediate ISIs from 1,800 to 3,600 ms. 
Almost the same distribution was seen under the M condition, but reactive 
tapping occurred from around 1,800 ms under the M condition with both 4 and 
5 words, while reactive tapping occurred with an ISI of 3,600 ms under the N 
condition.

Table 1. Correct response rates for memory task. The 
value for each subject is the subject’s average value of all 
trials (from Miyake et al. (2004), with permission)

Correct response rate for memory task

Subject 4 words (%) 5 words (%)

A 100.0 96.4
B  92.0 77.3
C  98.9 90.9
D 100.0 94.6
E  98.9 92.8
F 100.0 98.2
Average  98.3 91.7
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3.3 Separation of Reactive Tapping and Its Occurrence Rate

Our objective was to obtain information on anticipatory timing control, and we 
did not analyze reactive tapping that was simply a refl exive movement. For this 
reason, it was necessary to distinguish between the two types of tapping modes. 
The examination of the SE distribution for ISI = 6,000 ms shown in Figure 1b 
demonstrated that almost all the taps were reactive. Since the SE that preceded 
the auditory stimulus exhibited a large shift in the negative direction, distinguish-
ing between the two types of tapping was relatively simple. Only those taps that 
were thought to have been reactive in tapping at an ISI of 6,000 ms were selected. 
The SE mean value of all subjects was calculated based on the SE mean for each 
subject and was 151 ms below that of the N condition (standard deviation among 
subjects = 15.7). Thus, the cut-off between the two types of tapping was defi ned 
as the value after subtracting 3 times the standard deviation from the mean value. 
SE = 100 ms was uniformly fi xed as the threshold for all subjects and ISIs. SE 
values larger than this were classifi ed as reactive tapping, and all others were 
classifi ed as anticipatory tapping.

The percentage of anticipatory tapping observed at each ISI for each subject 
and the mean among subjects were calculated under the N condition, 4-word 
condition, and 5-word condition (Fig. 2a). This percentage was defi ned as the 
anticipatory-tapping-occurrence rate. Almost 100% of tapping at an ISI below 
1,500 ms under the N condition was found to be anticipatory. The anticipatory-
tapping-occurrence rate tended to decrease as the ISI increased above 1,800 ms. 
Mates et al. (1994) found that the time capacity of 2 to 3 s corresponded to the 
ISI at which reactive tapping begins. It was also found that almost 100% of 
tapping was anticipatory at an ISI below 1,500 ms under the M condition for both 
4 words and 5 words. The anticipatory-tapping-occurrence rate for a higher ISI 
was smaller than that under the N condition. In addition, if 4- and 5-word condi-
tions are compared, there was almost no difference at a short ISI up to 1,500 ms, 
but the anticipatory-tapping-occurrence rate at higher ISIs was less for 5 words 
than for 4 words.

Figure 2b shows the results of a t test on the mean value of the anticipatory-
tapping-occurrence rate among all subjects for the combinations of N-4 words, 
N-5 words, and 4–5 words at each ISI. A signifi cant difference in the occurrence 
rate of anticipatory tapping was observed only at 3,600 ms under the N-4 words 
condition, whereas a signifi cant difference was observed from 1,800 to 3,600 ms 
under the N-5 words condition. In addition, the occurrence rate was signifi cantly 
lower for 5 words at 1,800 compared to that for 4 words. Since the correct 
response rate under the 5-word condition for the word-memory task was signifi -
cantly lower than that under the 4-word condition, the N-5 words condition was 
selected as the dual-task condition to measure the infl uence of attentional 
resources.

These fi ndings demonstrate that when tapping is performed with an ISI of 
1,500 ms or less, memory tasks are not affected by attentional interference, but 
are adversely affected with an ISI in the range of 1,800 to 3,600 ms. Furthermore, 
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Fig. 2. Occurrence rate of anticipatory tapping. a Anticipatory tapping was defi ned as 
tapping with an SE less than 100 ms. Left fi gures show the data from 6 subjects, and the 
right fi gure shows the average among 6 subjects. Abbreviations are the same as those in 
Figure 1. The error bar shows the Standard Error of all subjects. b t-test of anticipatory 
tapping occurrence rate. This shows the results of a t-test on the mean value of the occur-
rence rate of anticipatory tapping among all subjects, for the combinations of N-4 words, 
N-5 words and 4–5 words at each ISI. “*” and “#” indicate signifi cant differences at P < 
0.05 and 0.05 < P < 0.10, respectively. The blank column shows other results. We tested 
all the ISIs except 450, 600, 900 ms (all conditions), and 1,200 ms (4–5 words), because the 
occurrence rates under these conditions were almost all 100% in this range. (From Miyake 
et al. 2004, with permission)
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with an ISI of 4,800 ms or longer, the effect of attention was small, and the occur-
rence rate for anticipatory tapping was extremely low. It seems that this region 
should be considered the domain of reactive tapping, as shown in Figure 1b. It 
was determined that the synchronization tapping in the stimulus period of 6 s or 
less can be divided into 3 categories: (i) anticipatory tapping that is unaffected 
by the subject’s attention; (ii) anticipatory tapping that is affected by the subject’s 
attention; (iii) reactive tapping.

However, in the region of 1,800 to 3,600 ms, which is affected by attention, 
despite an increase in the occurrence rate of reactive tapping under the infl uence 
of the memory task (secondary task), not all tapping was reactive. In this ISI 
range, there was competition between the tapping task and the memory task for 
the use of attentional resources. This determines the processing effi cacy, or, in 
other words, a “trade-off relationship” exists. This fi nding corresponds to the 
“attention capacity hypothesis,” which was initially explained.

4 Discussion

The objective of this research was to examine the interference effect of a second-
ary task on a synchronization tapping task to determine the ISI range that affects 
attention in the anticipatory timing-control mechanism. The results of this 
research yielded the following information.

• The negative-asynchrony-occurrence rate was not affected by a secondary task 
in an ISI range of 450 to 1,500 ms.

• In the ISI range of 1,800 to 3,600 ms, the negative-asynchrony-occurrence rate 
was signifi cantly reduced by the simultaneous execution of a secondary task.

• The negative-asynchrony-occurrence rate was extremely low in the ISI range 
of 4,800 to 6,000 ms.

The N condition used in this study was essentially the same as that used in the 
experiment by Mates et al. (1994). The properties of the SE distribution that are 
shown in Figure 1b coincide closely with their results. They reported that reactive 
tapping began to appear at an ISI of 2 to 3 s and that the properties of the nega-
tive asynchrony changed in the same range. However, they did not determine 
the mechanism underlying this phenomenon. The results obtained in the present 
study using an experiment that took attention into consideration indicated that 
changes in negative asynchrony depended on two timing mechanisms that 
qualitatively differ and exist in the ISI regions of 450 to 1,500 ms and 1,800 to 
3,600 ms.

The reduction of attentional resources by the execution of a secondary task 
did not signifi cantly affect the negative-asynchrony-occurrence rate in the 450 to 
1,500 ms ISI range. The simultaneous execution of a synchronization tapping task 
and a secondary task could be within the range of the capacity limit of attentional 
resources required by both tasks according to the attention-capacity model that 
was initially proposed. The correct response rate under the 5-word condition for 
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the word-memory task was signifi cantly lower than that under the 4-word condi-
tion, where the correct response rate was close to 100% (Table 1). This fi nding 
suggests that the attentional resources required to memorize 5 words exceeds or 
is close to the capacity limit. Therefore, the fi nding that the tapping task remained 
unaffected suggests that there is an independent timing-control mechanism for 
attentional resources in this ISI range.

Movements that can be executed independent of mental processing are referred 
to as “automatic” (LaBerge and Samuels 1974; Laberge 1975), and regulation of 
movement through the spinal cord is known to be involved in these movements. 
For example, there are rhythm generators in the brain stem and spinal cord, such 
as the central pattern generator (CPG), that produces rhythmic muscle activity 
like walking (Pearson 1976). These generators are thought to correspond to a 
timer function that sends periodic pulses in time-perception and production-
pacemaker models (Ivry 1996). The possibility has been suggested that tapping 
in this ISI range is controlled in a feed-forward manner based on the analysis of 
SE’s autocorrelation coeffi cient (Miyake et al. 2002). It was previously reported 
that feedback is not received directly from the periphery in the lateral cerebel-
lum, which is responsible for timing control of movement, but that an extremely 
simple forward control exists (Kawato 1996). These mechanisms may be involved 
in the automatic anticipatory tapping that was observed in this research.

The synchronization tapping task in the ISI range of 1,800 to 3,600 ms was 
substantially affected by the lowered attentional resources resulting from the 
secondary task. However, despite the increase in the occurrence rate of reactive 
tapping under the infl uence of the memory tasks, not all tapping became reactive. 
In addition, a difference was observed in the extent of decrease in the occurrence 
rate of reactive tapping depending on the number of words to be remembered. 
These fi ndings indicate a trade-off relationship. The tapping task and the memory 
task in this ISI range compete with each other for attentional resources and 
determine the processing effi ciency. Consequently, it is necessary to consider 
what type of processing is involved in the attentional resources that have been 
diverted by the secondary task to determine the generation mechanism for antici-
patory tapping in this ISI range.

The processing that is required in word-memory tasks can be limited to the 
word-retention activity that accompanies maintenance rehearsal. This type of 
maintenance rehearsal is thought to be performed by the phonemic loop func-
tion, which is a subsystem of working memory (Baddeley 1998a, b). The obtained 
phonemic information (of a word) is automatically entered in the phonemic 
storage that is one of the lower-level systems in the phonemic loop and possesses 
a 1-to-2-s memory buffer. This phonemic storage is related to the maintenance 
of information concerning rhythm and time intervals (Brown 1997; Saitoh 1997). 
The phonemic-similarity effect in memory tasks, which is said to be based on the 
phonemic loop function, has been reported to be lost during the tapping task 
(Saitoh 1993). The premotor and supplementary motor areas are also involved 
in the phonemic loop (Osaka 2000), suggesting a relationship between the 
phonemic loop and motion control.

OBJ_15.indd   241 8/14/2007   2:55:23 PM



242  Y. Miyake et al.

In this way, the tapping task and word-memory task may compete for the 
allocation of phonemic storage capacity. This is just a hypothesis, but the fact 
that stable tapping control is possible in the ISI range of 2 to 3 s during a normal 
tapping task can be explained by this hypothesis. However, if a secondary task 
results in an overfl ow in the phonemic storage capacity, time anticipation may 
become diffi cult, regardless of the ISI. The results of this research, in which there 
was no apparent infl uence of the memory task at ISIs of 1,500 ms or less, contra-
dicts this hypothesis. We propose that anticipatory timing control is achieved 
through the interaction between time perception based on phonemic storage and 
automatic movement mechanisms in the actual timing control.

Our research was aimed at furthering psychological analyses related to the 
time-perception mechanism in anticipatory timing synchronization, which is 
thought to be indispensable in cooperative activity among humans. The results 
demonstrated for the fi rst time the presence of two types of anticipatory mecha-
nisms in the synchronization tapping task from the standpoint of attention 
involved in time perception. One is anticipatory tapping infl uenced by attention 
and seen at the ISI range of 1,800 to 3,600 ms, and the other is the automatic 
tapping mechanism that is not affected by attention and is seen at the 450-to-
1,500-ms range. Accordingly, this anticipatory timing mechanism can be consid-
ered a dual process in which the anticipatory mechanisms work together based 
on the processing of the implicit automatic anticipation and the explicit process-
ing of temporal information.

Finally, exactly how this type of perception- and movement-integrative process 
is involved in higher-level brain functions, such as attention and awareness, is an 
extremely complex problem. Pöppel et al. have already tackled the problem of 
integrating information in the temporal region through the framework of a “time 
window” (Pöppel 1971, 1988, 1997; Szelag et al. 2002). Humans integrate infor-
mation in this 3-s time window and generate a state of awareness that corre-
sponds to a “subjective present.” The anticipatory timing mechanism is closely 
related to this type of temporal integration, and the fi ndings of this study suggest 
that this time window is formed by a dual process of anticipation. If the physio-
logic foundation for this temporal-perception mechanism can be clarifi ed through 
imaging techniques such as f-MRI, it may be possible to construct a model for 
the neuronal mechanism demonstrated in this study. We also expect this to be 
related to the technology that supports cooperative processes among humans 
within the range of cognitive time.
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