
Chapter 2
Positive Selection in Human Populations:
Practical Aspects and Current Knowledge
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Abstract Natural selection targets a heritable trait that provides greater or lower
chances for an organism to reproduce, and/or to survive, in a given environment.
This evolutionary process is therefore directional: while an advantageous trait will be
selected for and, thus, increase in frequency in the population, a prejudicial pheno-
type will be selected against and purged from the population. This concept, intro-
duced in 1858 simultaneously by Charles R. Darwin and Alfred Wallace ((Darwin
and Wallace J Proc Linnean Soc London 3:46–50, 1858); (Darwin On the origin of
species by means of natural selection, or the preservation of favoured races in the
struggle for life. John Murray, London, 1859)), has been at the core of the study of
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evolution and biological research. However, since then there has been passionate
debate concerning its relative importance among other evolutionary processes, the
prevalence of adaptive traits, and how they are originated in natural populations.

Since the recent wealth in genomics data, population and evolutionary geneticists
have been able to interrogate the genome to understand the molecular basis of natural
selection. In this chapter, we will focus on a particular mode of natural selection:
positive selection also referred as adaptive selection or Darwinian selection. We
describe statistical approaches to identify signals of positive selection and their
practical challenges using genomics data. Then, we give a review on the current
knowledge on positive selection in the human genome.

Keywords Positive selection · Adaptive selection · Hard sweep · Haplotype ·
Polygenic adaptation · Genome-wide selection scans · Complex adaptive traits ·
Selection on regulatory elements

2.1 Statistical Approaches to Identify Signals of Positive
Selection

Charles R. Darwin and Alfred Wallace introduced at the mid-nineteenth century the
concept of natural selection, focusing on phenotypic variation (Darwin and Wallace
1858; Darwin 1859). Since then, natural selection has been also widely studied at the
genomic level, with a particular interest for positive selection. Positive selection
refers to the process through which an allele that determines an advantageous trait
will increase rapidly in frequency in the population, potentially until it reaches
fixation. The allele frequency trajectory in the population through the action of
positive selection depends on two main factors: the strength of the selective pressure
and the number of generations since it started. The strength of positive selection is
measured by the selection coefficient defined as the increased percentage of off-
spring of the individuals carrying the advantageous genotype in each generation as
compared to individuals with alternative genotypes. A higher selection coefficient
allows the advantageous allele to increase quicker in frequency, and thereby, to
reach fixation in a shorter time. The speed of the increase tends to decline with the
rise of frequency of the advantageous allele in the population since the relative
advantage of individuals carrying the advantageous genotype declines with the
frequency of their competitors. As a consequence, the allele frequency trajectory is
non-linear and depends on the number of generations since the allele began to
increase in frequency through the action of positive selection.

The shift in allele frequency comes with some typical molecular footprints used to
detect selective events in the genome. Usually, we distinguish between two method
families according to the kind of data analyzed:
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• Using divergence data, i.e. sequences from different species, one can identify
substitutions in the genome that are different across the species due to past
selective events that contributed to the species divergence.

• Using polymorphism data, i.e. sequence or genotype data from different
populations within the same species, to explore the nucleotide and haplotype
diversity within and among populations.

The different molecular patterns left by a selective event are not maintained
forever in the genome, and those footprints allow inferring how many generations
have passed since the selective events occurred. In this chapter we will focus only on
methods of detecting positive selection using polymorphism and the recent advances
in methods developed to detect selection using both genotyping and
sequencing data.

2.1.1 Using Polymorphism Data

In 1974, Maynard-Smith and Haigh (Maynard-Smith and Haigh 1974) proposed a
model to explain the molecular mechanisms at play when positive selection acts on a
variant. In this model, now referred to as the hard sweep model, they described the
phenomena of genetic hitchhiking which results from positive selection driving a
quick increase in frequency of an initially rare and beneficial allele toward fixation.
This selective sweep occurs so quickly that recombination is not efficient to cut the
haplotype where the selected variant arose, and thus, most of the variants carried by
this haplotype also increase in frequency (Fig. 2.1). Therefore, under the hard sweep
model, one expects a decrease in genetic diversity in the surrounding genomic
region. The size of the region affected by such a sweep is proportional to the ratio

Fig. 2.1 Molecular patterns in a genomic region suffering from a selective sweep. In a neutrally
evolving region (before the selective sweep), an adaptive mutation (green circle) arises on one
chromosome. During the selective sweep the frequency of the adaptive allele and its linked variants
rapidly increase in frequency. After the sweep, the adaptive and linked alleles are fixed, and
variability in the region is lost. During the recovery phase, new mutations begin to appear in
different chromosome backgrounds by recombination and mutation restoring the diversity patterns
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of the strength of selection and the rate of recombination (Barton 1998; Kaplan et al.
1989; Maynard-Smith and Haigh 1974). Thus, the reduction in levels of diversity
within the genome is determined by the distribution of selection coefficients and the
number of selective events in unlinked genomic regions. A selective sweep drives a
quicker shift in allele frequency than what is expected under genetic drift. However,
if recombination occurs, neutral alleles far from the selected site may not be driven to
fixation, resulting in a temporary excess of high-frequency derived alleles at inter-
mediate distance from the selected site (Fay and Wu 2000; Kim 2006; Przeworski
2002). Once the sweep is over, the genomic region enters a recovery phase during
which it returns to neutral diversity levels through new mutations leaving a strong
skew towards low frequency alleles persisting for many generations (Braverman
et al. 1995; Kim 2006; Przeworski 2002). The strength and occurrence of sweeps can
allow hitchhiking to dominate genetic drift, especially in large populations, and
become the source of stochasticity for neutral alleles (Gillespie 2000; Kaplan et al.
1989; Maynard-Smith and Haigh 1974); this concept is known as genetic draft
(Gillespie 2000). Maynard-Smith and Haigh formulated the theoretical background
for most of the tests implemented thus far to detect signatures of selection at a
molecular level using polymorphism data. A recently implemented database (Pybus
et al. 2014) reports genome-wide scores for most of those tests ran on 1000 Genomes
data in worldwide populations (The 1000 Genomes Project Consortium 2012), the
latest publicly available polymorphism data. Those tests rely on three main features
expected to be present in a genomic region surrounding a selected allele: long
linkage disequilibrium (LD) haplotypes, a skewed Site Frequency Spectrum (SFS),
and an excess of genetic differentiation among populations. The list of tests reported
in this database (Pybus et al. 2014) is given in Table 2.1.

2.1.1.1 Tests Based on Long Haplotypes

Positive selection creates high levels of LD in the region surrounding the selected
variant due to a quick shift in allele frequencies. For a given shift in allele frequency,
less recombination events take place when there is a selective sweep than under
genetic drift since the shift in allele frequency is much quicker in the former case.
The Long Range Haplotype (LRH) test is commonly used to detect this signal
(Sabeti et al. 2002a). However, this test does not take into account the recombination
rate heterogeneity across the genome. To overcome this limitation, other tests have
been implemented and are based on the Extended Haplotype Homozygosity decay
(EHH, Sabeti et al. 2002a), which measures the decay of the haplotype homozygos-
ity observed when moving away from the selected variant; this is caused by
hitchhiking of a neutral allele (see Fig. 2.2 for a schematic representation of EHH
decay calculation). The Cross-Population Extended Haplotype Homozygosity
(XPEHH) compares the EHH decay observed in a population of interest to a
reference (Sabeti et al. 2007). The integrated Haplotype Score (iHS; Voight et al.
2006) compares within the same population the EHH decay for the derived and
ancestral alleles. Those two comparisons correct for recombination rate
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heterogeneity across the genome. Only recent selective sweeps (<30,000 years ago)
can be characterized by the presence of long haplotype blocks because older sweeps
have had time to shuffle the haplotype blocks, and are therefore not identifiable
through this method.

2.1.1.2 Tests Based on Site Frequency Spectrum

The SFS is the representation of the number of alleles observed in a sample
belonging to different frequency classes for a given set of polymorphic sites. Genetic
hitchhiking around a selected allele will drive neutral alleles located nearby to high
frequency leading to a reduced diversity, an excess of rare and derived alleles, and a

Table 2.1 Statistics implemented by (Pybus et al. 2014) and are available in as UCSC tracks in the
1000 Genomes Selection Browser 1.0 at http://hsb.upf.edu/

Method family Method Reference

Site frequency Spectrum Tajima’s D Tajima (1989)

CLR Nielsen et al. (2005)

Fay and Wu’s H Fay and Wu (2000)

Fu and Li’s D Fu and Li (1993)

Fu and Li’s H Fu and Li (1993)

R2 Ramos-Onsins and Rozas (2002)

Long haplotypes XPEHH Modified from Sabeti et al. (2007)

ΔiHH Modified from Voight et al. (2006)

iHS Modified from Voight et al. (2006)

EHHaverage Modified from Sabeti et al. (2002a)

EHHmax Modified from Sabeti et al. (2002a)

Wall’s B Wall (1999)

Wall’s Q Wall (2000)

Fu’s F Fu (1997)

DH Nei (1987)

Za Rozas et al. (2001)

ZnS Kelly (1997)

ZZ Rozas et al. 2001)

Population
differentiation

FST Weir and Cockerham (1984)

XPCLR Chen et al. (2010)

ΔDAF Hofer et al. (2009)

Descriptive statistics Segregating sites

Singletons

π (nucleotide diversity) Nei and Li (1979)

DAF (Derived allele
frequency)

MAF (Minor allele frequency)
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scarcity of alleles at intermediate frequency as compared to what is expected under
neutrality (Fig. 2.3). The excess of rare alleles which persists for a long time during
the recovery phase (up to ~250,000 years) can be formally tested by the famous
statistic Tajima’s D (Tajima 1989). Moreover, if the ancestral state of the variants is
available, one can also test for the expected excess of high-frequency derived alleles
(Fig. 2.3), with the Fay and Wu’s H test (Fay and Wu 2000). This excess of rare
alleles vanishes more rapidly as recombination allows neutral variants to evolve
under genetic drift. This pattern can be detected for up to ~80,000 years after the
sweep has occurred.

2.1.1.3 Tests Based on Genetic Differentiation

When a population faces a change in environment, positive selection may act on
mutations that help the individual adapt better to this new environment. To detect the
alleles responsible for local adaptation, one approach is to study genetic differenti-
ation among populations. Traditionally the most used statistic is the fixation index,
FST, first introduced by Sewall Wright which has been reformulated by multiple
researchers. Using Cockerham andWeir’s formula (Weir and Cockerham 1984), FST

can be viewed as the proportion of genetic diversity due to allele frequency differ-
ences among populations:

FST ¼ σa2
σw2 þ σb2 þ σa2

σw
2, σa

2, and σb
2 are the intra-individual, inter-population, and within population

inter-individual variances, respectively.
FST ranges from 0 to 1, with 0 signifying no differentiation (complete panmixia)

and 1 indicating complete differentiation of the populations. Although high FST can

Fig. 2.2 Extended
Haplotype Homozygosity
decay. Moving away from
the variant of interest, the
haplotypes bifurcate and the
haplotype carrying the core
markers are less and less
frequent. Thicknesses of the
lines represent the frequency
of the haplotype (haplotype
counts in red). The
haplotype homozygosity is
given at the bottom
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putatively be attributed to the action of positive selection in one population, this
approach is often criticized because of its sensitivity to population structure, demo-
graphic history, ascertainment bias, sample size, and minor allele frequency (for a
review, see Holsinger and Weir 2009). The ΔDAF score (the differences of derived
allele frequency between one population and a reference; Hofer et al. 2009) is
another genetic differentiation index which suffers the same limitations. However,
the use of the derived allele state allows identification of the population where
positive selection has occurred. Further methods using genetic differentiation pattern
have been developed. For example, the Cross-Population Composite Likelihood
Ratio test (XPCLR) developed by Chen et al. (2010) relies on the comparison of a
null model of genetic drift to one with a selective sweep by taking advantage of the
genomic context around the selected allele in order to detect genomic regions with
SFS differentiation among populations due to hitchhiking. This makes XPCLR more

Fig. 2.3 Site Frequency Spectrum under different evolutionary models. The Unfolded SFS repre-
sents the number of derived alleles observed within different frequency classes. A region that has
evolved under positive selection presents an excess of rare variants and of derived alleles at high
frequency (red). During the recovery phase, the former pattern will remain due to new mutations
arising in the region while the latter is lost more rapidly. Based on coalescent simulations of 100Kb
regions evolving under neutrality (3000 neutral replicates in blue) and with a recent selective sweep
driving an advantageous mutation up to fixation (300 selective sweep replicates in red), in an
European-ancestry demographic model using COSI software (Schaffner et al. 2005)
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robust to demography and ascertainment bias than individual single nucleotide
polymorphism (SNP) based methods such as FST and ΔDAF.

2.2 Practical Challenges in Detecting Positive Selection
Using Polymorphism Data

Until recently, positive selection studies have been limited to sequence data from a
restricted number of genes covering only a few thousands nucleotides. Now that
detailed genetic maps are available in many human populations, it is possible to
measure the signature of positive selection on a genomic scale using polymorphism
data. Therefore, it is interesting to describe some potential challenges in detecting
positive selection using polymorphism data and approaches to overcome them. First,
detecting the different genomic footprints left by positive selection may be difficult
in chip-array data. Second, those footprints may result from other mechanisms.

2.2.1 Distortions Due to Ascertainment Bias

Most genotype data used to study population diversity contain relatively important
ascertainment bias. Ascertainment bias is the systemic distortion of the allele
frequency spectrum due to a priori discovery of the polymorphisms segregating in
a reduced sample. Thus, when genotyping individuals from other populations,
especially those distant from the reference sample (the one where the initial genetic
variants are described), it is not possible to catch all the genetic variation present in
these populations.

Ascertainment bias is an intrinsic feature of genotyping technologies which are
extensively used because they are simpler, cheaper, and much faster than sequencing
approaches. The resulting genotype information for the population of interest will
not be accurately produced for all the segregating sites but only for those present in
the discovery sample. The probability of identifying a SNP is a function of its
frequency, and as a consequence common SNPs are easier to detect. For example,
many arrays use SNPs discovered in European samples, and, when used worldwide,
the positions on the array are not polymorphic for the population of interest.
Populations do not share all variation and some SNPs are private to particular
populations (Casals and Bertranpetit 2012). The SNPs for newly designed arrays
have been selected from public databases such as HapMap (www.hapmap.org)
which in turn present an ascertainment bias of their own.

Usually, SNPs are selected to be genotyped in a population of interest with some
of the following criteria: (1) having a Minor Allele Frequency (MAF) above a given
threshold, usually relatively high in discovery samples representing either one or
several populations of interest; (2) SNPs that are distant from one another by a given
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number of base pairs; (3) SNPs within targeted regions of interest; (4) SNPs
maximizing the tagging of additional common SNPs that are in LD with them.

The criteria used affect the ascertainment bias, and it is difficult to assess a
posteriori its extent when using genotyping arrays designed by others. Arrays with
reduced ascertainment bias have been developed, for example, the Omni Family of
Microarrays from Illumina which includes up to five million markers per sample and
extensive coverage of new variants identified by the 1000 Genomes Project (The
1000 Genomes Project Consortium 2012), i.e. SNPs discovered through Next
Generation Sequencing (NGS) in samples from worldwide populations; and
Patterson and collaborators designed the Affymetrix Human Origins array with
clearly documented ascertainment specifically for the study of population genetics
(Patterson et al. 2012).

Ascertainment bias has a direct effect on many statistics that detect positive
selection using polymorphism data (Thornton and Jensen 2007). First, and the
most straightforward, SFS-based statistics are distorted by the artifact of the excess
of common variants in genotyping arrays. Second, the tests based on genetic
differentiation, such as the FST index, rely on a measure of genetic variance within
and among the populations. Hence, if the SNPs genotyped within different
populations present different ascertainment bias, the distribution of the index of
genetic differentiation will be distorted. Haplotype-based statistics were developed
in the first decade of this century with the goal to implement other methods less
sensitive to ascertainment bias (Sabeti et al. 2007, Voight et al. 2006). These
methods rely on an accurate estimate of LD patterns within a genomic region in
order to infer whether there is a pattern of EHH (Granka et al. 2012). If the
genotyping array only contains common variants and particularly chosen to tag
the variability from another population (González-Neira et al. 2006), the observed
LD patterns in the studied population are unlikely to be real. For example, in the data
from the Human Genetic Diversity Panel (HGDP; Cann et al. 2002), for African
populations the genotyping tag only 67% of SNPs with MAF above 5% and the
power to detect positive selection is lower than for European samples, where 90% of
such SNPs are tagged. It has been proved that haplotype diversity is more represen-
tative than individual SNP heterozygosity in the HGDP data (Conrad et al. 2006),
suggesting that the ascertainment schemes affect more individual variants than
haplotypes.

Nowadays, more studies obtain genotype information through NGS which does
not suffer any ascertainment bias. However, the SFS is highly dependent on the
coverage (read depth) used for sequencing. The power to detect rare variants
increases with coverage (The 1000 Genomes Project Consortium 2012). Moreover,
the genotype information may also depend on the sequencing center, its technology,
and the SNP calling algorithm used. Therefore, for population genetics studies, one
should be cautious when merging data from different datasets and control for the
coverage across the genome.
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2.2.2 The Confounding Factor of Background Selection

Background selection (BGS) is a process by which neutral variation is removed from
the population when linked to deleterious variants (Charlesworth et al. 1993).
Therefore, BGS reduces levels of polymorphisms in regions with many functional
elements and low recombination. The lower level of polymorphisms in an extended
region is often attributed as a result of positive selection because it is a molecular
pattern expected under the hard sweep model. It is consequently important to correct
for BGS. One straightforward approach when analyzing protein-coding regions is to
look for lower levels of neutral variation near functional substitutions, i.e. at func-
tional sites where a mutation has been fixed in a set of species, which is evidence for
positive selection while not being expected under BGS. However, this approach is
biased towards protein-coding regions, and would just detect events of positive
selection acting on mutations with a priori known function. An alternative to this
approach would be to correct for several genomic variables that correlate with BGS,
such as levels of recombination rate and functional constraint. Measuring functional
constraint is not straightforward but one can use the density of coding sequences
(CDS), conserved coding sequences (CCDS), conserved non-coding sequences, and
untranslated regions (UTRs). Moreover, Enard et al. recently found that GC content
presents a strong correlation with levels of neutral diversity (Enard et al. 2014).
Although BGS has been seen as mimicking positive selection at a molecular level,
after the article by Charlesworth, Morgan, and Charlesworth (1993), tests based on
LD—namely XPEHH and iHS—show insensitivity to BGS (Enard et al. 2014;
Fagny et al. 2014), and therefore, their extreme deviations may directly be attributed
to recent hard sweeps.

2.2.3 Demography Can Mimic Positive Selection

Many neutral mechanisms can affect the genetic diversity in populations or species,
among which several demographic processes can lead to molecular patterns
expected under a positive selection scenario (Table 2.2).

2.2.3.1 Migration and Structure

The neutral model assumes that any cross-gender individual pair has the same
probability to reproduce in the population. However, there may be population
subdivision due to geographic distance, social, linguistic, or economical barriers
(e.g., in India with the caste system). Barriers to random mating are likely not to be
absolute, and a number of migrants can move between subpopulations each gener-
ation. When hidden population subdivision is occurring and panmixia is improperly
assumed, the genetic variability is higher than expected with an excess of variants at
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intermediate frequency. Migration from an external population causes a higher
variability with an excess of rare variants is expected.

2.2.3.2 Population Expansion

During population expansion, a new generation has a greater number of individuals
than the previous one. A well-described human population expansion event occurred
after the Neolithic transition. One possible cause is that the agriculturist way of life
may have provided a more reliable mode of sustenance and allowed settlements to
increase in size. A population with expansion will show an excess of singletons at
low frequency as compared to a population with constant size due to recent muta-
tions which have not increased in frequency through genetic drift, and remain almost
individual specific (Keinan and Clark 2012). This also implies a lower genetic
variability than expected for the population size.

2.2.3.3 Population Bottleneck

A bottleneck is the phenomena through which population size decreases suddenly,
followed by a recovery, or increase, of the original population size in a few
generations. One striking example is the Black Death plague faced by Asian and
European populations in the fourteenth century. Plague is thought to be responsible
for several large epidemics with death rates of up to 30–50% of the European

Table 2.2 Some demographic processes can leave molecular patterns expected under positive
selection

Process Description Molecular pattern

Migration Individuals move from one population
to another

Increased genetic variability within
each population and lower genetic dif-
ferentiation among populations

Isolation One population is isolated from the
others and drifts on its own

Increased genetic differentiation among
populations

Population
structure

The studied population is actually
structured into several subpopulations

Higher variability than expected

Population
expansion

The population increases rapidly in size Increased number of rare variants and
decreased variability

Population
bottleneck

The population decreases rapidly in size
and rebounds to its original size after
several generations

Increased number of rare variants and
derived alleles at high frequency with
decreased variability

Founder
effect

A new population is founded by a small
number of individuals from a larger
population and the new population then
increases in size

Gene surfing: Mutations that occur on
the frontier of a growing population are
more likely to expand and get fixed
since only a few individuals are
founding the population
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population and lingering thereafter in Europe for several centuries (McEvedy 1988).
Many alleles from the original population, mostly at low frequency, will either
disappear or become very frequent during the decreasing size phase, thus reducing
the genetic variability. During the recovery phase, as in population expansion, an
excess of rare variants will arise.

2.2.3.4 Founder Effect

A founder effect occurs when a small subpopulation leaves its former habitat to
establish a new one. This can be seen as a particular case of a bottleneck. Modern
humans likely colonized geographic areas out-of-Africa through several founder
effects (Reich et al. 2001). One more recent example would be the colonization of
Quebec, Canada ~400 years ago by ~8500 French settlers. Such event allows
variants to rapidly reach fixation through genetic drift, a phenomena called gene
surfing (Hallatschek and Nelson 2008), which mimics genetic hitchhiking.

2.2.4 Has a Region of Interest Evolved Under Positive
Selection?

One major challenge in assessing whether a region of interest has evolved under the
action of positive selection is to circumvent the confounding factors of past demo-
graphic processes as well as data ascertainment bias. For that purpose, one can
compute the statistic designed to detect footprints of positive selection and estimate
its significance by comparison to a reference distribution. This reference distribution
must reflect the expected score under selectively neutral evolution with the data
used. Indeed, values of statistics are not absolute but are relative to the studied
population and to the kind of data analyzed. There are two main approaches to
defining reference distributions: simulations and the outlier approach.

2.2.4.1 Using Simulations Accounting for Demography

Since the development of coalescence theory (Hudson 1991; Kingman 1982;
Wakeley 2008) and the recent wealth in computational capacity, simulations have
become a powerful approach in population genetics. It is now possible to generate
large independent data sets through simulations of genetic data that mimic popula-
tion demographics. Those data sets are, in turn, used to assess the statistical signif-
icance of empirical data accurately. Particularly, one can simulate sets of genetic data
under a neutral model with appropriate demographic parameters to infer what the
empirical data would look like without the action of positive selection, and then, a
significance threshold at a given false positive rate (FPR) can be estimated. In this
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case, any putative biases from empirical data are eliminated. Furthermore, in order to
evaluate the reliability of the estimated threshold, simulations can incorporate
selective events to the neutral model to infer the power of the approach.

The simulation software that has been implemented so far can be divided into
those based on coalescent theory and on forward simulation. Coalescent simulation
is the first approach widely used to simulate genetic data at the sequence level and, as
the name suggests, is based on coalescent theory. First introduced by John Kingman
in 1982 (Kingman 1982), it relies on a backward model describing the characteristics
of joining lineages back in time to the most recent common ancestor (MRCA). It
represents the theoretical background for most neutral genetic models, as well as the
estimation of many population genetic parameters. The coalescence theory provides
computational efficiency with several coalescence simulation software available,
such as FastCoal (Marjoram and Wall 2006), CoaSim (Mailund et al. 2005), SelSim
(Spencer and Coop 2004), cosi (Schaffner et al. 2005), ms (Hudson 2002), and msms
(Ewing and Hermisson 2010).

For many of the underlying coalescent models, parameters have been calibrated
to fit empirical data in order to retrieve the past demographic history of human
populations. For example, Schaffner et al. used HapMapIII data to infer the demo-
graphic history of three populations through the calibration of their model by making
the simulated data match empirical data for pairwise FST values, LD decay (how LD
for pairwise SNPs decreases with physical distance in the genome), and SFS
(Schaffner et al. 2005). Further implementations used more complex empirical
data features, such as the joint SFS across populations (Gravel et al. 2011). Those
programs simulate genomic regions spanning a few megabases in hundreds of
samples without large computational costs in time or resources. This is particularly
useful when computing large simulated distributions of the statistics to estimate the
statistical significance for a genomic region. However, coalescent simulations pre-
sent several limitations. Most importantly they have limited accuracy in simulating
the number of recombination and gene conversion events, and the ability to imple-
ment possible recombination patterns. As a consequence, a realistic recombination
map incorporated into the model increases the computational cost and therefore
reduces the size of the simulated region. With a simplistic recombination map, the
simulated genomic regions can be longer but the model is unlikely to be accurate.
Another traditional issue with coalescent simulations is the incorporation of selective
events. Attempts to improve coalescent simulations (Ewing and Hermisson 2010;
Grossman et al. 2010; Spencer and Coop 2004) have usually come at the cost of
over-simplifying other aspects of the model such as recombination map, population
changes, sample size, and length of the simulated genomic regions.

To circumvent the limitations, the forward simulation approach has been pro-
posed as an alternate. Genomic data is simulated forward in time from an ancestral
status, allowing more flexibility to the model including complex recombination
patterns and other genomic features (gene content, background selection; for an
example, see SFS_CODE, Hernandez 2008). The demographic processes included
in the model can also present a much higher layer of complexity (e.g., see dadi,
Gutenkunst et al. 2009; Uricchio and Hernandez 2014). However, these approaches
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require the simulation of whole populations and, therefore, are very computationally
expensive, preventing the generation of large data sets. For a neutral model of human
demography, Excoffier and colleagues implemented a coalescent model,
fastsimcoal2, which allows for a high level of demographic complexity, with serial
founder effects, range expansions, and admixture among populations (Excoffier
et al. 2013). This model overpasses forward simulation models such as dadi
(Gutenkunst et al. 2009) which is arguably the reference in the field. The models
are calibrated to make the simulated data fit the empirical data. Therefore, when the
empirical data contains ascertainment bias, it is important to either correct for it
(Nielsen et al. 2004) or to take it into account in the estimation procedure (Pickrell
et al. 2012; Wollstein et al. 2010). Although it is not an easy task the calibrated
model can inaccurately reflect past demography if ignored (Excoffier et al. 2013). In
addition, most models rely on a priori assumptions on demographic events and
therefore accurate models are available for a reduced number of well-studied
populations.

2.2.4.2 Outlier Approach

As mentioned before, constructing a neutral model using simulations is computa-
tional expensive and the model is not likely to incorporate all the layers of demo-
graphic and genomic complexity. One may prefer to use the outlier approach: an
empirical distribution of statistics to detect positive selection built from a large
number of loci across the genome. The loci located in the extreme tail(s) of
the distribution, i.e. outliers, are considered as possible targets of positive selection.
The assumption behind this framework is that demography stochastically affects the
whole genome evenly while positive selection, a deterministic process, affects only a
few loci and does not distort the distribution. This approach also allows correction
for ascertainment bias and the confounding effect of background selection, as long as
the reference loci are accurately sampled. It is important to note that the genome can
be seen as a mosaic of several chunks, each with its own history, and although the
population definition is accurate, the chunk demographics may be very different with
some specific genomic regions exhibiting extreme molecular patterns that mimic
positive selection. This may be inaccurately identified as under positive selection
resulting in false positives (Kelley et al. 2006). Inaccuracies occur particularly in the
case of positive selection targeting recessive alleles, standing variation, and popula-
tion bottlenecks (Teshima et al. 2006). Another difficulty of the outlier approach is
the arbitrary threshold used to consider a score’s significance. Setting thresholds
require a priori definition of the proportion of the genome expected to be under
positive selection. For example, if the 5% most extreme scores are considered to be
under putative positive selection, the underlying assumption is that 5% of the
genome is expected to be under selection. However, no accurate estimate is available
for many organisms and it remains one of the main questions in studying positive
selection. Finally, the outlier approach only identifies the most extreme case of
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positive selection, many of the selected alleles, especially those with a relatively low
selection coefficient, are likely to be false negatives.

2.2.4.3 Combination of Different Tests

Assessing statistical significance for a given score through either simulations or the
outlier approach is necessary to determine whether a genomic region has been
evolving under positive selection. However, it is delicate to make sure that a
significant score is not actually a false positive and especially difficult when drawing
conclusions from only a single method that a locus has been targeted by positive
selection. To reduce the risk of false positives, it is wise to use different methods
developed to detect the impact of positive selection at a molecular level. Particularly,
one may use methods based on different kinds of molecular footprints left by a
selective sweep (SFS, LD, and genetic differentiation). This way, the false discovery
rate is likely to be reduced: the false positives from individual methods are unlikely
to overlap, since each method is sensitive to different demographic processes. Zeng
et al. implemented two compound tests, DH (Zeng et al. 2006) and DHEW (Zeng
et al. 2007), which combine the SFS-based methods Fay and Wu’s H and Tajima’s
D specifically the Ewens–Watterson test (Watterson 1978) for DHEW. The under-
lying idea of DH is that Fay and Wu’s H and Tajima’s D are sensitive to population
bottlenecks and expansions, respectively (Zeng et al. 2006), while insensitive to the
other demographic process. Thus, combining the two tests is robust to both demo-
graphic processes. The idea is very simple; using neutral simulations, a significance
threshold for both tests is set for a given FPR. Afterwards, if a region of interest is
significant for both tests, it is identified as a target of positive selection. The original
method relies on neutral simulations with rather simplistic demography using ms,
but the framework suggested by Zeng et al. can extend it to an outlier approach as in
Luisi et al. (2015) where Fay and Wu’s H and Tajima’s D are computed in a large
number of genomic regions to make the reference distribution and estimate of the
join threshold significant.

A more simplistic method is to use any combination test, i.e. a test that combines
K individual test’s P-values, such as the Fisher combination’s test:

ZF ¼ �2
XK

i¼1

log Pi

where Pi is the P-value associated to the score of the ith test.
Following this idea, Grossman et al. implemented a Composite Multiple Score

(CMS; Grossman et al. 2010) which multiplies P-values of five individual tests
based on long haplotypes—XPEHH, ΔiHH, and iHS—and genetic differentiation—
FST andΔDAF. The main improvement from a rather simplistic combination score is
that they computed P-values from simulations using the demographic model
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calibrated by Schaffner et al. (2005) under a neutral scenario and with a selective
event. Then, the CMS is obtained as the following:

CMS ¼
Q5

i¼1
P si j selectedð Þ � π

P si j selectedð Þ � πþ P si j unselectedð Þ � 1� πð Þ

where si is the score of the ith method, the P-values are obtained from reference
distributions from simulations under either neutral (unselected) or selective scenar-
ios and π is the uniform prior probability of selection.

CMS and other combination tests (e.g., Fisher’s combination) cannot use any
kind of individual tests since they rely on the assumption of the independence among
tests. Moreover, they attribute equally to the combined score. In Pybus et al.
(submitted), an alternative framework, Boosting, incorporates the information from
different methods. Based on Boosting functions (Lin et al. 2011), this framework
allows detection and classification of selective events. Boosting is a Support Vector
Machine (SVM; Schapire 1990) which is trained on simulated data to estimate the
best regression function of scores from different individual methods to distinguish
between two scenarios. The algorithm begins with a neutral demographic model
(Schaffner et al. 2005) to which a selective sweep scenario can be incorporated
(Grossman et al. 2010); thousands of genomic regions have been simulated under a
selectively neutral scenario and 45 selective ones. Then, two Boosting functions
have been trained to distinguish among the scenarios, (1) evolution under either pure
genetic drift or with a partial selective sweep (where the selected mutation reaches a
final allele frequency (FAF) of 0.2 or 0.4); (2) evolution with an incomplete selective
sweep (FAF¼ 0.6 or 0.8); and (3) evolution with a complete sweep (FAF¼ 1). Two
further boosting functions have been built to classify regions evolving under a
complete or incomplete sweep into recent or ancient sweep categories (Fig. 2.4).
Those functions are included in a classification tree as shown in Fig. 2.5. This
framework uses the combination of different, although relatively correlated, tests
to classify the mode of positive selection for the detected selective events. As seen in
Fig. 2.6, the standardized coefficients for each test give valuable insight into the
methods that contribute the most when distinguishing between two given scenarios,
and thus, on their ability to detect a given selective event. Moreover, the boosting
coefficients are quite similar for the three populations analyzed (African (AFR),
European (EUR), and Asian (ASN)), and thus seems quite robust to demography.

2.2.5 Selection Not Only by Hard Sweep

On the one hand, clear evidence of morphological and physiological adaptations in
modern human populations exists, such as pigmentation for solar radiation, body
size for thermal condition, and blood flow and oxygen delivery for high altitude. On
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the other hand, there are few examples of fixed, or almost fixed, genetic differences
among populations and/or validated cases of adaptive mutations (see Sect. 3 for an
overview). Moreover, Hernandez et al. (2011) showed that hard sweeps may have
been rare during human evolution (but see Sect. 3.3.3). This striking inconsistency
between the number of known phenotypic and genotypic adaptive examples may be
explained by the simplistic way that positive selection has been researched. Indeed,
until now, most studies of natural selection relied on the hard sweep model making
use of methods designed to detect molecular patterns expected to remain in the
genome under this model. In order to have a complete picture of adaptation and its
genomic processes, it is important to consider other modes of positive selection. The
other types of positive selection do not leave the same molecular footprints as a hard
sweep. These alternate modes of positive selection require theoretical development
but are beginning to be studied after being overlooked for many decades (Pritchard
et al. 2010).

2.2.5.1 Soft Sweep

Recently, empirical (Colosimo et al. 2005; Hamblin and Di Rienzo 2000; Jeong et al.
2008; Scheinfeldt et al. 2009; Tishkoff et al. 2007) and theoretical (Hermisson and
Pennings 2005; Innan and Kim 2004; Orr and Betancourt 2001; Pennings and
Hermisson 2006; Przeworski et al. 2005) studies indicate the importance of soft
sweeps which can occur through two different modes of adaptation:

Fig. 2.4 Simulation scenarios. Simulations were run following a calibrated human demography
that resembles population genetic data from three reference continental populations (European
(EUR), Asian (ASN), and African (AFR), from left to right) [45]. Nine different time-spanning
selective sweeps were simulated (grouped as Neutral, Recent, Recent Long, and Ancient) allowing
for five different final allele frequencies (FaF ¼ 0.2, 0.4, 0.6, 0.8, and 1.0)
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• Selection on a standing variant. In opposition to a hard sweep, selection on a
standing variant does not rely on the appearance of an advantageous mutation to
arise in the population, but rather targets a variant already segregating at a
relatively important frequency when a change of environment occurs.

• Selection on recurrent mutation. For selection on recurrent mutations to occur,
the derived and advantageous allele arises in the population several times inde-
pendently, as a result of recurrent mutations or gene flow from another popula-
tion. All copies of the derived allele increase in frequency until the allele reaches
fixation. However, if all copies of the derived allele have similar selective

Fig. 2.5 Implemented classification tree. The implemented classification tree was organized in two
levels: an unknown genomic region is firstly classified according to the completeness of the sweep,
as being Complete, Incomplete, or Unclassified. In the second step, it is then classified according to
the age of the sweep, being Ancient, Recent, or Unclassified. The algorithm can be described as
following: (1a) If the Complete Boosting score is above the 99th percentile of the distribution of the
Complete Boosting scores for the training simulations under the Neutral, Partial, and Incomplete
scenarios, the region is classified as Complete and go to step 2a, otherwise go to step 1b. (1b) If the
Incomplete Boosting score is above the 99th percentile of the distribution of the Incomplete
Boosting scores for the training simulations under the Neutral and Partial scenarios, the region is
classified as Incomplete and go to step 2b, otherwise go to step 1c. (1c) If not classified at iteration
1a or 1b, the genomic region is left unclassified and the algorithm stops. (2a) If the Ancient/Recent
Complete Boosting score is above the 99th percentile of the distribution of the Ancient/Recent
Complete Boosting scores for the training simulations under the Complete Recent scenario the
region is classified as Complete Ancient, while if it is below the 1st percentile of the distribution of
the Ancient/Recent Complete Boosting scores for the training simulations under the Complete
Ancient scenario the region is classified as Complete Recent, otherwise the region remains only
classified as Complete. (2b) If the Ancient/Recent Incomplete Boosting score is above the 99th
percentile of the distribution of the Ancient/Recent Incomplete Boosting scores for the training
simulations under the Incomplete Recent scenario the region is classified as Incomplete Ancient,
while if it is below the 1st percentile of the distribution of the Ancient/Recent Incomplete Boosting
scores for the training simulations under the Incomplete Ancient scenario the region is classified as
Incomplete Recent, otherwise the region remains only classified as Incomplete
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coefficients (because the genetic background has no affect through, for example,
intragenic epistasis), none of the haplotype carrying one of these copies will fix
during the selective event (Hermisson and Pennings 2005; Pennings and
Hermisson 2006). Actually, diferent haplotypes, each carrying one copie of the
advatageous allele, will increase in frequency until the allele has fixed in the
population.

Fig. 2.6 Standardized coefficients for the European (EUR), Asian (ASN), and African (AFR)
populations and for each implemented boosting function. Estimated coefficients for each population
in the four boosting functions used in the classification tree: Complete (a), Incomplete (b),
Complete Recent/Ancient (c), and Incomplete Recent/Ancient (d). The relevance of the positive
selection tests to classify the different scenarios is given by the strength of its standardized
coefficient
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In both cases different copies of the selected allele may belong to different
haplotypes: in the case of standing variation it was already segregating on different
haplotypes before the selective event, while in the recurrent mutation case, it arose
on different haplotypes. In both cases tests based on long haplotypes are not suited to
detect this mode of adaptation. However, if the selective pressure is population
specific, methods based on genetic differentiation may be able to detect it. In
addition, other haplotype patterns, beyond the EHH, can be informative (see below).

2.2.5.2 Polygenic Adaptation

Recent genome-wide association studies (GWASs) confirm the view of classic
quantitative genetics that many phenotypes are encoded by several dozens, hun-
dreds, or even thousands of genes, rather than a unique one (Fu et al. 2013). This
drastically contrasts with the idea that positive selection acts on a single advanta-
geous mutation to drive phenotypic adaptation. Therefore, more focus on polygenic
adaptation is required. Such a mode of adaptation would simultaneously cause a
limited shift in allele frequencies at several variants located in different genomic
regions and have small effects on fitness. This pattern is extremely difficult to
distinguish from pure genetic drift.

2.2.5.3 Recent Methodological Advances in Detecting Alternative Sweep
Scenarios

The molecular patterns expected to be left by soft sweeps and polygenic adaptations
are not as evident as those left by hard sweeps (Fig. 2.1). Therefore, a lack of
methods designed to detect such selective events at the genetic level exists. How-
ever, ongoing methodological development is in progress. Some already existing
methods can be used to detect soft sweeps. Indeed, as mentioned above, if the
selective pressure is population specific, a locus-based statistic of genetic differen-
tiation (e.g., FST) may be powerful provided the variant is segregating at low
frequency in the reference populations. iHS shows sensitivity when positive selec-
tion acts on a standing variant that was segregating at low frequency before the
selective event (Ferrer-Admetlla et al. 2014). Two other methods relying on specific
haplotype patterns have been recently developed (Ferrer-Admetlla et al. 2014; Garud
et al. 2014). First, nSL (Ferrer-Admetlla et al. 2014) is based on the comparison
between EHH for derived and ancestral alleles, as in iHS, but also takes into account
the length of the segment of haplotype homozygosity between a pair of haplotypes.
Besides showing greater power than iHS for scenarios where the advantageous allele
was already present in the population at frequency > 3%, it does not need any
genetic map and is robust to recombination rate and mutation rate. Second, the H12
and H2/H1 statistics (Garud et al. 2014) also rely on homozygosity of multiple
haplotypes. H12 use the combined frequency of the first and second most frequent
haplotypes observed in a genomic region as the following:
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H12 ¼ p1 þ p2ð Þ2 þ
X

i>2

pi2

where pi is the frequency of the ith most common haplotype in the sample.
The H12 statistic has power to detect hard sweeps and—not so—soft sweeps,

i.e. when the starting frequency is below 0.1%. In order to distinguish between those
two scenarios Garud et al. further developed the H2/H1 statistics (Garud et al. 2014):

H2=H1 ¼

P
i⩾ 2

p12

P
i⩾ 1

p12

where pi is the frequency of the ith most common haplotype in the sample.
While H1 is expected to be higher under the hard sweep model, H2 is expected to

be higher under the soft sweep scenario. Therefore H2/H1 increases with the softness
of the sweep, i.e. the number of haplotypes on which the advantageous mutation is
segregating prior to the selective event.

Those two recent methods demonstrate that accurate theoretical implementation
allows detection of soft sweeps despite difficulty in recognizing the molecular
patterns. Further theoretical work is required to increase the power to detect even
softer sweeps. Despite the fact that the reduced shift in allele frequency expected
under polygenic adaptation leaves very weak footprints in the genome, it could be
argued that increasing the sample size would increase the power, and implementing
methods using only genetic information seems a losing battle. For this reason, the
few methods that have been proposed include other kinds of information. First, the
BayENV (Coop et al. 2010; Günther and Coop 2013) method uses environmental
variables. It is based on the correlation between allele frequency and an environ-
mental variable observed in many populations. For each locus, it provides a Bayes
Factor which is the ratio between two Bayesian posterior probabilities:

• Under the null (neutral) model, the correlation we observe in allele frequencies
between different populations is just explained by demographic factors (genetic
drift, migration, and population size changes).

• Under the model where a specific environmental variable has caused a selective
pressure in (a) population(s) it may have caused an imbalance in the allele
frequency spectrum across the populations.

Therefore, this method detects variants that shifted similarly in allele frequency in
populations facing the same environmental pressures compared to their neighboring
populations. Parallel selection, recently theoretically analyzed by Ralph and Coop
(2010), is more likely to occur on ancient variants that are shared among worldwide
populations. Note that the signal of selection is driven by the shift in allele frequency
across populations rather than by its amplitude. This method corrects for population
structure and therefore is less sensitive to demography than a simple correlation
analysis. Indeed, the genetic differentiation among populations is directly related to
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their geographic distance (Gutenkunst et al. 2009) due to the isolation by distance
phenomena. However, retrieving environmental variables from many populations
may be challenging, especially because it relies on representative geo-localization.

An approach suggested by Mendizabal et al. (2012) includes phenotypic infor-
mation rather than selective pressure. More precisely, the authors have analyzed the
covariance between allele frequencies and height measurements to detect genetic
variants allowing Pygmy adaptation to the rainforest climate by better thermo
regulating with size reduction which is known as Bergmann’s rule. This approach
would require extensive phenotypic measurements but the authors implemented a
permutation procedure that only requires the average and variance of the phenotype
found in literature. This method can detect advantageous variants only if the
phenotype is hypothesized to be the result of an adaptive process.

H. Allen Orr suggested a sign test (Orr 1998), to determine whether the observed
number of plus (or minus) alleles at Quantitative Trait Loci (QTLs) is different in
two groups of individuals with different phenotypes, instead of being similar as
expected under genetic drift. Orr’s sign test has recently been used for expression
QTLs (eQTLs) where polygenic adaptation can be indicated by the accumulation of
many eQTL even if each eQTL has low effect on the phenotype (Fraser et al. 2011).
Similarly, an alternative is to use a set of SNPs associated with a given phenotype,
e.g. height in European populations (Turchin et al. 2012), and show systematic allele
frequency differences between populations with different phenotypic values that
better fit a model of adaptive evolution than genetic drift. Finally, Berg and Coop
(2014) have implemented a test using the mean additive genetic value, QX, estimated
from the additive effect size of loci associated with a given phenotype (GWAS loci).
The test is an extension of the BayENV method and determines whether the genetic
value (instead of the allele frequency) covaries with a given environmental variable.
They further developed a generalization of the QST/FST comparison (Leinonen et al.
2013). The QST/FST test of neutrality contrasts whether there is an excess of
quantitative trait differentiation (as measured by the QST index) to the genetic
differentiation among populations (as measured in a large set of loci by the FST

index), to identity traits that have evolved adaptively. In their implementation Berg
and Coop (2014) use the estimated QX instead of QST.

The theoretical development to identify variants with a small effect on fitness but
the basis of phenotypic adaptation through polygenic adaptation is progressing.
However, most of the methods rely on GWAS loci, and as a consequence, are still
limited. First they assume that the associated loci act in a strictly additive manner,
ignoring the putative dominance or epistasis among them. Second, GWAS loci are
unlikely to be the causal ones, but rather tag the true positives; since the LD patterns
are variable among populations, the GWAS loci may not be a good proxy of the
causal variant in all the studied populations. Third, the genetic values are relatively
accurate when calculated in a population where the association studies were
performed, but the GWAS loci may not be portable to all genetic backgrounds.

50 P. Luisi et al.



2.2.6 From Putative Advantageous Mutation to Increased
Fitness

Most studies attempt to identify advantageous mutations. This goal may be reached
if, at least, the four following steps are completed.

1. Identify candidate adaptive loci. The main issue is to disentangle whether a strong
statistical signal for detecting positive selection is truly due to positive selection
or alternative processes aforementioned.

2. Identify the underlying functional variant. Strong LD within a genomic region
with hitchhiking must be removed in order to pinpoint the variant targeted by
positive selection.

3. Quantify the phenotypic consequences of the candidate adaptive allele by
performing experiments in vivo with model organism (mouse, zebrafish, etc...),
in vitro using cell cultures, or genotype–phenotype association studies. An
alternative is to use the wealth of functional public databases to retrieve infor-
mation from the literature.

4. Clarify the relationship between phenotype and reproductive fitness in the pop-
ulation and environment where the allele has increased in frequency. This is a
complicated task because one must infer the relevant environment which selected
the variant in the ancestors of the studied population, and whether the phenotypic
change encoded by the functional variant is fitter than the ancestral one.

Few studies present conclusive results from the four steps together. Particularly,
the fourth step may result in story-telling and it is impossible to formally test such
relationship in humans. Therefore, it is important not to dismiss the possibility that a
locus is adaptive despite the inability to determine the past selective pressures and to
demonstrate that the phenotypic change resulted from an increase in fitness in past
populations.

In the future, the recent wealth in omics data will most probably allow partially to
bridge the gap between genotype and phenotype when studying adaptive evolution.
Indeed, thanks to NGS data, functional data has been produced in the past few years
in epigenomics, metabolomics, transcriptomics, and interactomics, among others.
For example, the Encyclopedia of DNA Elements (ENCODE) project (Dunham
et al. 2012) has identified functional elements across the genome, in coding and
non-coding regions. In order to identify the underlying functional variant, one may
use this emerging functional data, for example, through an integrative genomics
approach, along with results from population genetics of positive selection (Barrett
and Hoekstra 2011; Scheinfeldt and Tishkoff 2013).
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2.3 Current Knowledge on Positive Selection in the Human
Genome

The previous sections emphasize the practical challenges in (1) detecting positive
selection in the genome, (2) confirming the adaptive loci, and (3) linking the
genotype to the phenotype. Although research into human adaptation has many
challenges there have been several striking success stories since the beginning of the
genomic era one decade ago (Table 2.3). Studies of the impact of positive selection
can be divided between candidate gene studies and genome-wide scans.

Table 2.3 Examples of positively selected genes supported by functional evidence. Caution: a
unique article is cited while for many genes, several studies were required to conclude about the
impact of positive selection and on the function of the putative selective allele

Gene Selected function(s)
Adapted
population Approach Reference

ABCC11 Ear wax secretion Asian Genome-
wide scan

Xue et al. (2009)

CASP12 Sepsis resistance Worldwide Candidate
gene

Xue et al. (2006)

CCR5 Bubonic plague or
smallpox resistance

European Candidate
gene

Sabeti et al. (2005)

CD5 Pathogen recognition East Asian Candidate
gene

Carnero-Montoro et al.
(2012)

DARC Malaria resistance African Candidate
gene

Hamblin and Di Rienzo
(2000)

EDAR Hair/teeth/sweat gland
development

Asian Genome-
wide scan

Sabeti et al. (2007)

EGLN1 Response to hypoxia Tibetan and
Sherpa

Genome-
wide scan

Jeong et al. (2014) and
Simonson et al. (2010)

EPAS1 Response to hypoxia Tibetan and
Sherpa

Genome-
wide scan

Beall et al. (2010) and Jeong
et al. (2014)

G6PD Malaria resistance African Candidate
gene

Tishkoff et al. (2001)

HBB Malaria resistance African Candidate
gene

Ayodo et al. (2007)

HERC2 Eye pigmentation European Candidate
gene

Wilde et al. (2014)

LCT Lactase persistence European
and African

Candidate
gene

Bersaglieri et al. (2004) and
Tishkoff et al. (2007)

SLC24A5 Skin pigmentation European Candidate
gene

Lamason et al. (2005)

SLC45A2 Skin pigmentation European Genome-
wide scan

Sabeti et al. (2007)

TLR5 Bacterial flagellin African Genome-
wide scan

Grossman et al. (2013)

TNFSF5 Malaria resistance African Candidate
gene

Sabeti et al. (2002a, b)

ZIP4 Zinc uptake West Africa Candidate
gene

Engelken et al. (2014)
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2.3.1 Candidate Gene Studies of Positive Selection

Candidate gene studies are driven by an a priori hypothesis about the implication of a
gene in a putatively adaptive phenotype. Before the recent wealth of genomic data,
this approach was most commonly used to detect positive selection. These studies
show the impact of positive selection on specific genomic regions, identify candidate
adaptive loci, and provide informative insights into the molecular basis of pheno-
typic adaptation across human populations. For example, several genes have been
identified as targets of positive selection with supporting functional evidence for and
a link to a phenotypic change conferring a fitness increase (Table 2.3): G6PD,
DARC, TNFS5, and HBB which provide malaria resistance in Africa (Ayodo et al.
2007; Hamblin and Di Rienzo 2000; Sabeti et al. 2002b; Tishkoff et al. 2007); LCT
which proffers lactose metabolism in populations with herder ancestors in Europe
(Bersaglieri et al. 2004) and Africa (Tishkoff et al. 2007); CASP12 which increases
resistance to sepsis (Xue et al. 2006); and CD5 which allows better pathogen
recognition (Carnero-Montoro et al. 2012).

Although the aforementioned successes in detecting variants that have been
selected, the candidate gene approach suffers from the three following main
drawbacks:

1. An a priori hypothesis is required about which genes have been under positive
selection, as well as knowledge of the relationship between genotype and phe-
notype. A candidate gene approach aims to pinpoint the functional variant, but the
goal is rarely reached. Furthermore, when the function of the adaptive allele is
established, it is difficult to determine how it confers a selective advantage to its
carriers.

2. The adaptive variant can be located far from the region spanning the gene either
within the coding or flanking region. In that case, if no previous knowledge on the
gene regulatory regions exist, it would be impossible to detect the adaptive locus
within a candidate gene framework.

3. In general, no sufficient biological knowledge on the molecular basis of adaptive
phenotypes (or even diseases) across most of the genome can make a good a
priori hypothesis of the underlying molecular bases of traits. Thus, a candidate
gene approach is reduced to the study of annotated genes encoding relatively
simple phenotypes.

For those reasons, and with the recent wealth of polymorphism data, an alterna-
tive approach has been developed: the genome-wide scan approach.

2.3.2 Genome-Wide Scans for Positive Selection

During the last decade, impressive technological progress in genotyping has been
made, from high-throughput genotyping arrays to NGS, resulting in the bulk of
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genotype data needed to perform population genetics analyses. Now, large catalogs
of genetic variability in worldwide human populations are publicly available
allowing the study of the impact of natural selection on our genome. A large number
of genome-wide scans of positive selection in different populations have been
published recently (reviewed in Akey 2009; Fu and Akey 2013; Scheinfeldt and
Tishkoff 2013). A top-down approach, with no a priori hypothesis on the adaptive
phenotype, avoids the limitations of candidate-gene studies. The first genome-wide
scan for positive selection in human populations was performed by Akey et al.
(2002) and was rapidly followed by more than 20 others (Akey 2009). Since 2002,
the number of individuals and markers available increases constantly and there has
been theoretical development and implementation of several new methods for hard
sweeps and alternative modes of positive selection. The boom of data and statistical
methods to detect positive selection has revealed many more genomic regions that
have putatively evolved in at least one population. In 2009, more than 5000 regions
in the genome spanning a total of 400 Mb and encompassing more than 4000
protein-coding genes were reported in a review of 21 genome-wide scans published
at that time (Akey 2009). Those 21 scans used methods designed to detect the
molecular patterns left by a hard sweep. They also relied on the outlier approach
and, therefore, established an a priori proportion of the genome under positive
selection in the studied populations, likely leading to a high FPR. In his review
(Akey 2009), Joshua Akey looked at the overlap of the genomic regions reported by
10 studies using the same data, but different statistics. Strikingly, only 14.1%, 5.3%,
and 2.5% of the overall regions were reported in two, three, or four studies,
respectively. Besides the FPR issue, it is clear that those genome-wide scans can
also miss real events of selection as suggested by the fact that neither G6PD nor
DARC has been reported by such studies.

Although the overlap among individual scans is low, more than 700 regions have
been identified encompassing previous candidate adaptive loci and new well-
supported ones (Table 2.3). Moreover, it appears that most signals of putative
positive selection are not shared among populations from different geographic
regions (for example, see Pickrell et al. 2009; Voight et al. 2006). This is expected
when considering that the scans mostly relied on the hard sweep model, and
therefore detected advantageous mutations that appear in the population just before
being selected for. Indeed, geographically distant populations present different
genetic backgrounds and have to adapt to very heterogeneous environmental
conditions.

Genome-wide scans can map the signals of putative positive selection and will
give great insights into how natural selection has shaped the human genome. They
will also continue to aid in the discovery of functional elements. However, it remains
challenging to extract the relevant information in the bulk of signals of positive
selection from genome-wide scans in order to understand how the human population
really evolved and what is at the molecular basis of phenotypic adaptation. Indeed,
although the genome-wide approach circumvents some limitations of the candidate
gene approach, it presents its own ones.
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1. Large scale studies do not allow the extensive control for many layers of
complexity. Indeed, in opposition to candidate gene approach, in a genome-
wide scan it is extremely difficult to build an accurate model including both
demographic and genomic processes that describe the evolution of a specific
genomic region or to investigate in depth the molecular mechanisms affecting the
genetic variability. Therefore, most scans rely on the outlier approach, and as
already mentioned, only detect the most extreme cases of positive selection as
well as suffering a likely high FPR (Teshima et al. 2006). As described before,
one solution to reduce the FPR is to cross the results from different scans
performed with different methods and/or on different populations.

2. Regions reported by genome-wide scans are usually large, spanning hundreds of
kilobases and containing several contiguous genes and regulatory regions. Some-
times signals can be located in intergenic regions where no function has been
reported yet. Therefore, it is often difficult to follow-up on the signals to identify
whether the selected variant and the phenotype putatively increase the fitness.

3. For most genes, a certain amount of speculative discussion (story-telling) is
necessary to determine which could be the adaptive phenotype.

For those reasons, most genome-wide scans focus on a reduced set of signals of
putative selection based on biological information for a follow-up analysis. This
practice is often referred as cherry picking. Hence, most of the signals already
reported remain unexplained.

The recent scan performed by Grossman et al. (2013) developed new standards to
overcome the aforementioned limitations and represents an important step toward
the identification of putative adaptive variants as well as the underlying phenotypes
increasing the fitness. This study made progress in several areas: (1) they used CMS
which pinpoints more accurately the selected variant (Grossman et al. 2010); (2) they
performed their analysis on the 1000 Genomes Project Pilot 1 re-sequencing data
(The 1000 Genomes Project Consortium 2010); and (3) they analyzed the putative
phenotypic implications of the selective variants by interrogating the ENCODE
database and the GWAS catalog (Hindorff et al. 2009).

2.3.3 Insights from Published Studies of Positive Selection
in Humans

All the studies aforementioned allowed the identification of putative adaptive loci,
but also provide interesting insights in the nature of the genomic regions that have
been preferentially targeted by positive selection in human populations. Allowing
exploration of the phenotypic differences among populations and species that are
induced from adaptation to new environments and which were the underlying
biological functions at play.
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2.3.3.1 Functional Categories for the Selected Protein-Coding Genes

A functional enrichment analysis is almost always performed after a genome-wide
scan for positive selection. Such analysis tests whether the set of variants located
within the regions of a signal for positive selection enrichment is in a biological
process or functional pathway by contrasting whether more variants belong to a
given functional class or pathway than expected by chance. To perform a functional
enrichment analysis, these following databases are available:

1. Gene Ontology (GO; The Gene Ontology Consortium 2000) groups genes
according to the features of the gene product. There are three main domains:
(1) cellular component, i.e. the parts of the cell or its extracellular environment
where the gene product is active; (2) molecular function, i.e. the elemental
activities of the gene product at the molecular level (e.g. binding, catalysis,
etc...); and (3) biological process, i.e. operations and sets of molecular events
with a defined beginning and end that is pertinent to the functioning of integrated
living units.

2. PANTHER (Protein Analysis Through Evolutionary Relationships; Mi et al.
2013) relies on annotation from GO among others and classifies proteins (and
the encoding genes) as one of the following: (1) family, i.e. groups of evolution-
arily related proteins and subfamilies (related proteins that also have the same
function); (2) molecular function of the protein by itself or with directly
interacting proteins at a biochemical level; (3) biological process, i.e. the function
of the protein in the context of a larger network of proteins that interact to
accomplish a process at the level of the cell or organism (e.g., mitosis); or
(4) pathway which explicitly specifies the relationships between the interacting
molecules.

3. KEGG (Kyoto Encyclopedia of Genes and Genomes; Kanehisa and Goto 2000) is
a collection of manually curated databases integrating genomes, biological path-
ways, diseases, drugs, and chemical substances.

4. Reactome Pathway Database (Croft et al. 2011) contains curated functional
pathway annotations that cover a diverse set of topics in molecular and cellular
biology.

Genome-wide scans of positive selection using polymorphism data in human
populations pointed to different categories enriched for genes that have evolved
under a selective scenario: skin pigmentation, immunity, hair density, sweat gland,
etc. (Kelley et al. 2006). Scans based on comparative genomics have revealed
categories such as immunity and pathogen defense or sensory perception (Kosiol
et al. 2008; Marques-Bonet et al. 2009).

However, functional enrichment analyses using such databases are biased toward
protein-coding genes. In addition, an assumption of these databases is that all genes
are independent and that all genes have the same level of importance within a
pathway or a functional category. Although functional enrichment analysis has
shed light on important functions and pathways that are preferentially targeted by
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positive selection, it does not provide a formal test for selection on a function. The
current approach commonly used for large genome-wide analysis of positive selec-
tion is to detect signals at individual genes or regions. However, selected loci are just
at the molecular basis of positive selection acting on the phenotypic level. Thus,
single mutations rarely act in isolation to improve a function or to contribute to the
acquisition of new ones. To overcome those limitations, Serra et al. created a new
method called the Gene Set Selection Analysis (GSSA) to detect significant differ-
ences in scores of natural selection over functionally related genes (Serra et al. 2011).
The method was applied genome-wide to coding regions of five mammals. But it still
has never been used to interrogate non-coding elements or for polymorphism data.

2.3.3.2 Complex Adaptive Traits

The studies listed above describe the first attempts to move from individual genes to
the biological modules they belong to. These studies start from individual genes or
loci to then integrate the information on functional systems. The idea is that many
loci will be involved in phenotypic adaptation, excluding Mendelian traits. This
implies that polygenic adaptation is likely to be the main adaptive force acting on the
human genome. First, Daub et al. used a gene-set enrichment test based on the FST

statistic (SUMSTAT) to test for functional pathways or gene sets enriched in differ-
entiated loci among populations (Daub et al. 2013). They found pathway enrichment
in immune response confirming the general idea that response to pathogens has been
a major selective force for human populations (for reviews, see Barreiro and
Quintana-Murci 2010; Quintana-murci and Clark 2013). They also observed evi-
dence of epistatic interactions between members of the same pathway. Specifically, a
genome-wide scan detected several signals of selection for genes involved in the
hypoxia-inducible factor 1 (HIF1) pathway which is involved in physiological
response to hypoxic conditions (Simonson et al. 2010).

In order to examine polygenic adaptation and soft sweeps, several studies used
methods better suited to study small shifts in allele frequency (Fumagalli et al. 2011;
Hancock et al. 2010, 2011). When looking at covariation of diet, subsistence, or
ecoregion, Hancock et al. found that pathways involved in starch and sucrose
metabolism are enriched with signals of polygenic adaptation to a diet rich in roots
and tubers, as well as an over-representation of signals associated to polar climate in
genes involved in energy metabolism pathways (Hancock et al. 2010). Applying the
same method with other environmental variables, they also described an enrichment
of signals in gene sets related to UV radiation, infection, and immunity (Hancock
et al. 2011). Conversely, Fumagalli et al. (2011), using a similar method, showed
that local adaptation has been driven by the diversity of the local pathogenic
environment while climate played a relatively minor role.

Berg and Coop, using the mean additive genetic value QX described several
complex traits likely to have evolved through the action of polygenic adaptation
(Berg and Coop 2014): height, pigmentation, and body mass index.
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2.3.3.3 The Importance of Regulatory Elements

Although the method proposed by Berg and Coop (2014) is limited by relying on
GWAS loci and the problem of portability among populations, it represents a major
shift in the field. It is becoming clear that focusing only on protein-coding elements
is not enough to understand adaptive evolution in humans. Although protein-coding
sequences are very well annotated, they only represent around 1.2% of the human
genome. Furthermore, the similarity between humans and chimpanzees in their
protein-coding gene sequences cannot explain the observed phenotypic differences.
In 1975, King and Wilson (King and Wilson 1975) suggested that differences in
gene regulation may largely account for those phenotypic differences among species
and populations. Since 1975, the relative contribution of variants located within
protein-coding genes and regulatory regions has been debated. Evidence of the
functionality of non protein-coding regions is the amount of conservation among
species across the genome. For instance, 5% of the genome has been estimated to be
largely conserved since the MRCA of mouse and human through the action of
purifying selection. Hence, the conserved proportion of the genome is likely to be
functional (Siepel et al. 2005). Since the proportion of conservation is higher than the
proportion of protein-coding sequences in the genome, a large fraction of the
elements with relevant biological function is non-coding.

Until recently, technical limitations have barred the exploration of the adaptive
role of non-coding elements. Annotation outside gene regions has been lacking
making it difficult to distinguish functional evidence of putative adaptation. This
makes comparative genomic studies difficult as they rely on the comparison of the
rate of substitution on functional versus non-functional elements and struggle to find
an equivalent to the non-synonymous and synonymous changes in these badly
annotated regions. In recent years, evidence indicates the role of regulatory elements
in adaptive evolution. Using putatively neutral elements as a reference, Haygood
et al. found that variants located in promoter regions had signatures of positive
selection in the human and chimpanzee lineages (Haygood et al. 2007). Strikingly,
they found an enrichment of signals of selection in nervous-system functions. Recent
population genetics studies also indicate similar findings. First, Kadaravalli et al.
using a genome-wide set of eQTLs and the statistic iHS they found that SNPs
showing signals of selection are more likely than random to be associated with
gene expression levels in cis (Kudaravalli et al. 2009). Second, with a similar study
design but taking advantage of the recent wealth in eQTL databases and the
ENCODE project, Hunter B. Fraser uses BayENV scores for polygenic adaptation
to perform the first genome-scale study on the hypothesis that changes in gene
expression have driven human adaptation (Fraser 2013). Third, Enard et al. observed
a greater correlation in the observed signatures of positive selection (as inferred by
iHS, XPEHH, and CLR) with the presence of regulatory sequences from ENCODE
than with amino acid substitutions (Enard et al. 2014). Fourth, Arbiza et al. (2014)
found a substantial amount of adaptive changes during human evolution affecting
transcription binding sites.
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All those studies suggest the functional importance of regulatory regions, their
implication in adaptive evolution, and thus a substantial proportion of adaptive
changes responsible for biological diversity are both inter and intra specific in
regulatory regions. The aforementioned observation that hard sweeps were rare
during human evolution (Hernandez et al. 2011) was based on a study design
focusing on protein-coding regions. Thus, although the relative scarcity in hard
sweeps pointed in this study is usually mentioned as a genomic trend and used
against the hard sweep model, we think that generalizing those results to the whole
genome is groundless.

2.4 Concluding Remarks

Identifying the molecular basis of phenotypic adaptation is a major challenge in
evolutionary biology. The insights from population genetics are paramount to
understanding human evolution through adaptive changes. However, most remain
to be discovered. An exhaustive detection of selected variants will only be possible
with tests for positive selection and in particular beyond the hard sweep model. We
have discussed in this chapter that other scenarios further than positive selection
must be considered. This is particularly true for the genes from the immune system
which demonstrates that balancing selection has been impacting genome variability.
Moreover, the examples of recently discovered regulatory adaptations and their
importance in human adaptive evolution strongly suggest that only considering
variants located within protein-coding regions is outdated. As genome annotation
is getting more precise every day we are able to discover more targets of natural
selection in non-coding regions. Moreover, while in this chapter we mostly focused
on studies of point mutation (i.e., SNPs), other kinds of mutations segregate in the
genome in large parts (i.e., structural variants) and have been overlooked by
population geneticists.

The identification of variants encoding phenotypic selective changes relies on the
downstream implementation of accurate models of neutral evolution that account for
the complex human demography which have affected the genetic variability within
and between populations. Those models must also integrate genomic mechanisms
influencing the molecular patterns across the genome (e.g., mutation, recombination,
and gene conversion).

Furthermore, the recent advances in many biological areas with the advent of the
omics (e.g., transcriptomics, metabolomics, epigenomics, proteomics, and geno-
mics) promise future groundbreaking discoveries. Although the rate at which data
is currently generated may seem overwhelming, it allows many layers of complexity
to come together which reduces the gap between the genotype and the phenotype.
Therefore, population genetics must now work within a multidisciplinary framework
in order to achieve its final goal of understanding the fitness consequences of
selective variants.
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