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Preface

In the study of tsunamis, researchers have traditionally analyzed tide-gauge records
and surveyed inundation areas. In addition to these coastal observations, sea-bottom
pressure gauges are now widely deployed in deep oceans. Offshore observations can
detect tsunamis promptly near the source, and short-wavelength tsunamis can be
clearly observed using these records. After the 2011 Tohoku-Oki earthquake, obser-
vations were carried out at array stations inside the earthquake focal area in order to
detect tsunamis more rapidly. At the stations inside the focal area, tsunami signals
are recorded simultaneously with seismic waves.

The tsunami data have changed dramatically as the methods of observation have
changed. A theory should also be developed for the effective use of the new records.
We can use dispersive theory to analyze offshore records. Seismic-wave theory
would be helpful for analyzing the tsunami records inside the focal area. At the
forefront of tsunami research, new application studies and numerical methods are
advancing greatly, as reported in journals. However, description of fundamental
theories and the derivation of basic equations are often skipped in the reports, but
deriving the equations is not always straightforward. Textbooks may be a more
suitable venue for explaining the fundamental theories.

When I started doing tsunami research, it was difficult for me to find books that
explain in detail how to derive fundamental equations and how to apply numerical
methods from tsunami generation to propagation, although there are many excellent
textbooks about fluid dynamics and tsunamis at present. This book focuses on the
quantitative modeling of earthquake tsunamis using real data and mathematical
representations. Considering that seismic waves cannot be neglected in tsunami
observations, we treat both fluid dynamics and elastic dynamics. I tried to reasonably
organize the seismology and tsunami research to construct a theoretical framework
for tsunami generation due to earthquakes.

I could not have completed this book without the help and encouraging words of
my supervisors and colleagues. Kenji Satake carefully reviewed the draft and gave
important comments. I thank Takashi Furumura, Yuichiro Tanioka, Takuto Maeda,
Hiroyuki Kumagai, and Eiichi Fukuyama. Their comments and suggestions are very
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important in the study of earthquakes and tsunamis. Kentaro Emoto and Tatsuya
Kubota helped me very much with their comments about seismic waves and
tsunamis. Daisuke Inazu, Toshitaka Baba, Hiroaki Tsushima, Ryota Hino, Takayuki
Miyoshi, Satbyul Kim, Shunsuke Takemura, and Nelson Pulido worked with me on
tsunami, for which I am very grateful. I express my deepest gratitude to Haruo Sato.
His enthusiasm for his research and teaching helped make geophysics enjoyable for
me. I thank all those who held discussions with me and provided valuable comments
on the research.

Tsukuba, Japan Tatsuhiko Saito
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Chapter 1
Introduction

Abstract Tsunami research has been advanced by developments in theory and in
the methods of observation. Coastal records such as tide gauges and inundation
surveys have played an important role for a long time. Offshore observations have
been undertaken widely across deep oceans. After the 2011 Tohoku-Oki earthquake,
dense and wide offshore tsunami observation was begun. We now expect tsunami
generation to be observed inside the focal areas of huge earthquakes. New observa-
tions require new theoretical frameworks. In Sect. 1.1, we briefly introduce the
development of offshore observation using ocean-bottom pressure gauges.
Section 1.2 illustrates the 2011 Tohoku-Oki earthquake tsunami. This is to show
what we know and what we do not know about that huge earthquake and tsunami.
Section 1.3 introduces a new observation network that was deployed after the
Tohoku-Oki earthquake. This observation network is designed for the detection of
tsunamis inside the focal area. In Sect. 1.4, we present the focus of this book. The
wide use of ocean-bottom pressure gauges and the construction of new observation
network can greatly advance our understanding of tsunami. This book is aimed to
illustrate theoretical frameworks in analyzing these records.

Keywords Fluid dynamics · Elastic dynamics · Offshore observations · The 2011
Tohoku-Oki earthquake

1.1 Offshore Tsunami Observations

Tide gauge records have played a significant role in tsunami studies. However, tide
gauges, which are located inside harbors and bays, can record only tsunamis that are
near the coast. Those records are considerably affected and distorted by the complex
geometries of bays and harbors. Practically, it is difficult to extract detailed infor-
mation regarding the tsunami source and propagation only from coastal observations
because the site corrections for harbors and bays are not straightforward.

If a tsunami can be observed in an offshore region before it enters harbors and
coastal areas, this greatly contributes to our understanding of tsunamis. For example,

© Springer Japan KK, part of Springer Nature 2019
T. Saito, Tsunami Generation and Propagation, Springer Geophysics,
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to reveal the generation mechanism, we should observe tsunamis near or inside the
earthquake focal region. If we try to model the propagation precisely in the deep
ocean, we should use records that are free from strong site effects. Even if we intend
to study the mechanisms of tsunami inundation into coasts, we should first describe
the tsunami in the deep ocean and compare the offshore tsunami with the tsunami
near the coast. Although the amplitudes hence the signals in the offshore region are
much smaller than those near coasts, there are many merits to offshore observations.

There are various kinds of sensors that can observe tsunamis in offshore regions,
such as GNSS buoy and satellite altimeter techniques. These are already in use and
are expected to be deployed more widely in the near future (e.g., Kato et al. 2000;
Inazu et al. 2016). Among the sensors used in offshore observations, the ocean-
bottom pressure gauge is one of the most popular technologies in tsunami studies at
present.

The development of ocean-bottom pressure gauges started in the 1960s, and some
field trials were conducted in the 1980s. The history of this development is well
summarized in Bernard and Meinig (2011), Mungov et al. (2013), and Rabinovich
and Eble (2015). The experiments proved that ocean-bottom pressure gauges could
clearly record tsunamis even if the signal was very small. Figure 1.1 shows an ocean-
bottom pressure record during the Petatlan earthquake (MW 7.6) in 1979 observed
off the California Peninsula (Filloux 1982). The record showed the pressure change
caused by the high-frequency seismic waves (Rayleigh wave) and low-frequency
tsunami. The tsunami amplitude was very small (less than 1 cm in height), but it was
clearly recorded due to the significant difference between the dominant periods of
the seismic waves and tsunami.

The Deep-ocean Assessment and Reporting of Tsunamis (DART), a real-time
tsunami monitoring system, is one of the most representative tsunami observation
networks that uses ocean-bottom pressure gauges (e.g., Bernard and Meinig 2011). It
was developed by the Pacific Marine Environmental Laboratory (PMEL) in the
1980s. The DART system has progressed from the first generation to the fourth
generation (Fig. 1.2). Stations are now deployed not only in the Pacific Ocean but
also other oceans (Fig. 1.3). The data obtained all over the world are available in real
time and are publicly accessible on the Internet. Thanks to this data set, many
researchers can analyze the ocean-bottom pressure change in the deep sea, and this
has greatly contributed to the advancement of tsunami research. DART was
designed as a tsunami early warning system (Titov et al. 2005). Before the intro-
duction of DART, tsunami warnings were usually issued mainly based on the
earthquake magnitude as estimated by seismogram analysis (e.g., Tatehata 1997).
On the other hand, by using DART, tsunami prediction is being done without
estimating the earthquake magnitude but rather by estimating the initial tsunami
height distribution by analyzing ocean-bottom pressure records. This predicts the
tsunami height and inundation near the coast more reliably (e.g., Tang et al. 2012).

Observations made using seafloor cables can record sea-bottom pressure changes
with mm-order resolution in height with a high-frequency sampling rate
(~1–100 Hz) in real time. In Japan, the Meteorological Research Institute (MRI)
and National Research Institute for Earth Science and Disaster Resilience (NIED)
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deployed tsunami and seismic observation stations using seafloor cables (e.g.,
Eguchi et al. 1998). The Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) is one of the leading institutes operating the stations connected with
seafloor cables (e.g., Hirata et al. 2002). Tsushima and Ohta (2014) well summarized
the offshore tsunami observation systems in Japan. Figure 1.4 shows cable-based
ocean-bottom pressure gauges deployed off Shikoku and off Hokkaido by
JAMSTEC. Those ocean-bottom pressure gauges were used for tsunami detection
(e.g., Baba et al. 2004) and also for coseismic slip detection (Mikada et al. 2006).
Baba et al. (2006) estimated the afterslip distribution of the 2003 Tokachi-Oki
earthquake using the ocean-bottom pressure gauges as geodetic sensors. The
JAMSTEC also developed the Dense Oceanfloor Network system for Earthquakes
and Tsunamis (DONET), which includes thermometers, hydrophones, and seismo-
graphs in addition to pressure gauges (Fig. 1.5). A high-frequency sampling rate of
tsunami and seismic observations is useful for rapid source estimation for earth-
quakes and tsunamis that occur near coasts. The DONET data is also used to
correctly determine earthquake hypocenter locations and the mechanisms of small
earthquakes (e.g., Nakano et al. 2015). Determining the hypocenters of small
earthquakes is useful for estimating the plate geometry.

Fig. 1.1 An ocean-bottom pressure record during the 1979 Petatlan earthquake (Mw 7.6) off the
southern coast of Mexico. Arrows marked E and T show the earthquake origin time and the arrival
time of the tsunami, respectively. Rw indicates the Rayleigh wave. The map indicates the locations
of the earthquake epicenter (cross) and the ocean-bottom pressure gauge (square). (Modified from
Filloux 1982) (Rabinovich and Eble 2015, copyright by Springer)
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Fig. 1.2 DART4G system.
Ocean-bottom pressure
change is recorded by a
bottom pressure recorder
and transmitted to tsunami
warning centers through a
surface buoy and satellite.
(Cited from DART4G
product brochure, http://
nctr.pmel.noaa.gov/Pdf/
brochures/dart4G_
Brochure.pdf accessed
2017-08-15)

Fig. 1.3 DART station distribution. (Cited from http://nctr.pmel.noaa.gov/Dart/ accessed 2017-08-
15)

4 1 Introduction

http://nctr.pmel.noaa.gov/Pdf/brochures/dart4G_Brochure.pdf
http://nctr.pmel.noaa.gov/Pdf/brochures/dart4G_Brochure.pdf
http://nctr.pmel.noaa.gov/Pdf/brochures/dart4G_Brochure.pdf
http://nctr.pmel.noaa.gov/Pdf/brochures/dart4G_Brochure.pdf
http://nctr.pmel.noaa.gov/Dart


1.2 The 2011 Tohoku-Oki Earthquake

Offshore observation technology has greatly advanced tsunami research. However,
we could not effectively mitigate the disaster caused by the 2011 Tohoku-Oki
earthquake tsunami. One of the reasons for this devastating disaster is that we do
not fully understand what a tsunami is. Some people might think that tsunamis are
well understood as a topic in natural science. This is partly true because the tsunami
propagation process is very precisely reproduced by fluid dynamics with reliable
bathymetry data. It is easier to reproduce tsunami propagation than seismic waves
because simulated seismic waves inevitably have model errors due to the larger

Fig. 1.4 Location of the ocean-bottom pressure gauges (triangles) of JAMSTEC. The lines
connecting the pressure gauges offshore represent the main submarine cables. (Baba et al. 2004,
copyright by the American Geophysical Union)
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uncertainties of the subsurface structure. However, we should note that the tsunami
generation process is much less understood than the propagation process. This is
mainly because we could not make enough observations inside the generation
region.

A large amount of high-quality seismic and tsunami data was obtained for the
2011 Tohoku-Oki earthquake. By analyzing these data, researchers are gradually
coming to understand the Tohoku-Oki earthquake. Summarizing our present view of
the Tohoku-Oki earthquake may clarify what we know and what we do not know
about this huge earthquake and tsunami.

The earthquake was so huge (MW 9.0) that estimating its precise characteristics
using routine analyses just after the earthquake was not so straightforward. After
examining the data carefully and conducting detailed field investigations,
researchers have gradually constructed a description of the huge Tohoku-Oki earth-
quake. Although there are still some debates about the Tohoku-Oki earthquake, one
plausible scenario is as follows.

Off the Pacific coast of northeastern Honshu, Japan, the Pacific plate subducts
beneath the North American plate at a rate of ~8 cm/year toward the west. There has
been active seismicity including small and large earthquakes along the plate

Fig. 1.5 Offshore tsunami and seismic stations in Japan, DONET1 and DONET2. (Cited from
http://www.jamstec.go.jp/donet/e/index.html access 2017-08-15)
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boundary. A historical document (titled Sandai Jitsuroku) reported that there was a
huge earthquake in 869 AD, which is referred to as the Jogan earthquake (e.g.,
Imamura 1934). Tsunami deposit surveys revealed that the magnitude was larger
than MW 8.6 (Namegaya and Satake 2014). After the Jogan earthquake, huge
earthquakes and tsunamis caused devastating damage repeatedly in this area includ-
ing the 1611 Keicho Sanriku earthquake. Although the 1611 Keicho Sanriku
earthquake was one of the largest such events in Japan, the source location and
size are not well known. A more recent huge earthquake was the 1896 Meiji Sanriku
earthquake (MW 8.4, e.g., Tanioka and Satake 2001; Satake et al. 2017). While some
earthquakes often released the stress accumulated along the plate interface, the stress
gradually but steadily was increasing due to the subducting Pacific plate.

We cannot measure the total stress (or slip deficit) accumulated along the plate
interface. However, the rate of slip deficit can be detected from the crustal deforma-
tion observed by Global Navigation Satellite System (GNSS) observations
(Fig. 1.6). The rate of the slip deficit around the source area of the Tohoku-Oki

Fig. 1.6 Slip-deficit rate distribution. The blue and red contours show the slip-deficit and slip-
excess rates at intervals of 3 cm/year. The arrows indicate the relative plate motion (Hashimoto et al.
2009, copyright by Springer)
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earthquake is ~6 cm/year (e.g., Hashimoto et al. 2009). If we assume that the rate
was constant from 896 to 2011, the total slip deficit is estimated to be ~67 m.

On March 11, 2011, the accumulated slip deficit was abruptly released. This was
the Tohoku-Oki earthquake. Figure 1.7 shows the slip distribution. The rupture
initiated from the deep part of plate interface and reached the trench, resulting in a
whole rupture of the seismogenic zone from the deep to shallow parts (e.g., Fujii
et al. 2011; Koketsu et al. 2011). The deep rupture area corresponded to the slip area
of the 869 Jogan earthquake and the shallow rupture area to that of the 1896 Meiji
Sanriku earthquake (Fujii et al. 2011; Satake et al. 2013; Satake et al. 2017). The
magnitude of the Tohoku-Oki earthquake was MW 9.0. This was the third largest
event in the world and the largest event in Japan among the earthquakes for which
seismograms are available. The seismic waves of the Tohoku-Oki earthquake
propagated globally. Strong ground motion was observed all over Japan (Fig. 1.8)

Fig. 1.7 The slip
distribution of the 2011
Tohoku-Oki earthquake.
The contour interval is 4 m.
The white star indicates the
epicenter of the rupture
imitation point. The fault
models of the 1896 Sanriku
earthquake and the
869 Jogan earthquake are
shown with blue lines. The
locations of four nuclear
power stations (NPS)
around the source area are
also shown. (Satake et al.
2013, copyright by the
Seismological Society of
America)
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(e.g., Furumura et al. 2011; Suzuki et al. 2011). Submarine landslide might also have
been triggered during the earthquake (e.g., Tappin et al. 2014).

This huge earthquake caused a large vertical displacement of ~10 m at the sea
bottom. A massive volume of seawater was uplifted by the sea-bottom displacement
inside the focal area. This is the source of the tsunami. A large tsunami arrived at the
coasts all over northeastern Honshu, Japan. A tsunami more than 5 m in height was
observed even at some offshore stations (Fig. 1.9), and a large tsunami inundated the
Pacific coasts of Japan (Fig. 1.10). The tsunami was so large that it was observed not
only in Japan but also on the coasts of other Pacific countries. Across the Pacific
Ocean, a tsunami was detected by DART ocean-bottom pressure gauges (Fig. 1.11).
The DART successfully estimated the tsunami source energy and predicted the
tsunami height arriving on the coasts of Hawaii (Tang et al. 2012). The tsunami
propagated with the velocity of ~0.2 km/s. It arrived on the coasts of Chile about
1 day after the earthquake occurred (e.g., Inazu and Saito 2013; Watada et al. 2014).
The tsunami energy was so huge that the energy was trapped within the Pacific
Ocean for a long time and a higher signal level than usual remained throughout the
Pacific Ocean for more than 1 week (Saito et al. 2013).

When the earthquake occurred, the Japan Meteorological Agency (JMA) rapidly
determined the magnitude of the earthquake as MJMA 7.9. This was estimated from

Fig. 1.8 Snapshots of seismic wave propagation during the 2011 Tohoku-Oki earthquake (MW

9.0), Japan. The amplitudes of ground-velocity motion are shown for times of 60, 110, 160, 210,
260, and 310 s. The star shows the hypocenter of this earthquake. (Furumura et al. 2011, copyright
by Springer)
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the amplitude of the observed seismograms, but not from a waveform analysis.
According to this rapid estimation of the magnitude, the JMA issued “Major
Tsunami” warnings for the coasts of Japan (Iwate, Miyagi, and Fukushima pre-
fectures) within 3 min of the earthquake occurrence (Ozaki 2011). However, the
estimated MJMA of 7.9 was much smaller than the moment magnitude of MW 9.0
defined by the final slip of the earthquake. As a result, the tsunami height was
estimated to be considerably smaller than the tsunami that actually arrived on the
coasts.

This may show the limitation of the present forecasting system using only the
seismic wave amplitude or the seismic intensity. Considering the success of tsunami
forecasting using the DART system (e.g., Titov et al. 2005; Tang et al. 2012), ocean-
bottom pressure gauges are one of the main candidates for improving the tsunami
warning system. It is a challenge to build a more reliable tsunami forecasting system
and algorithm for the coasts near the hypocenter where a tsunami is expected to
arrive within 5–30 min. To accomplish this, observations made adjacent to the focal
area and an understanding of the tsunami generation process are both important.

Fig. 1.9 Relative sea height trace recorded at TM1 (thin line) and TM2 (thick line) stations for the
2011 Tohoku-Oki earthquake. (Maeda et al. 2011, copyright by Springer)
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1.3 Observation Inside Earthquake Focal Area

After the Tohoku-Oki earthquake, the National Research Institute for Earth Science
and Disaster Resilience (NIED) started to construct a dense and wide observation
network named Seafloor observation network for earthquake and tsunamis along the
Japan Trench (S-net), in and around the source region of the Tohoku earthquake
(Fig. 1.12). This network is intended to detect seismic and tsunami signals more
rapidly and to issue more reliable seismic and tsunami warnings in the event of huge
future earthquakes. The S-net is a new observation that can observe tsunamis inside
the focal area with densely deployed sensors. Algorithms suitable for this observa-
tion have been newly proposed and extensively developed since the Tohoku-Oki
earthquake (e.g., Tsushima et al. 2012; Ohta et al. 2012; Maeda et al. 2015;
Yamamoto et al. 2016; Tanioka 2017).

Dense ocean-bottom observation networks such as S-net and DONET can
observe the tsunami generation process inside the focal area. This situation is totally

Fig. 1.10 Maximum measured local tsunami heights plotted versus latitude with previous tsunami
records (circle, 2011 Tohoku tsunami; diamond, 1933 Sanriku tsunami; triangle, 1896 Meiji
Sanriku tsunami). (Mori et al. 2011, copyright by the American Geophysical Union)
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different from that before the Tohoku-Oki earthquake. The data inside the focal area
would contain important information about the tsunami source that cannot be
obtained by observations made far from the source. Therefore, it is important to
revisit the mechanisms of tsunami generation and propagation in order to fully
interpret those records. In particular, in order to theoretically understand the mech-
anism of tsunami generation, the theories of elastic dynamics are necessary in
addition to fluid dynamics. Actually, ocean-bottom pressure records contain consid-
erable amounts of seismic and ocean acoustic waves (e.g., Nosov 1999, Nozov and
Kolesov 2007, Matsumoto et al. 2012). It would be more reasonable to employ
elastic dynamics to analyze these waves.

1.4 Focus of This Book

Tsunami science involves a broad range of fields such as geology, engineering, and
social science (e.g., Levin and Nosov 2009; Satake 2015). This book treats the
geophysical aspect of tsunamis. Our understanding of the geophysics of tsunamis
has been developed mainly based on tsunami observations made at coastal sites and
deep ocean sites. This trend is likely to continue in the future. There are already
many excellent reviews and books about tsunami generation and propagation (e.g.,
Okal 1988; Geist 1998; Levin and Nosov 2009; Satake 2015). However,

Fig. 1.11 (a) Timeline for assessment of the 2011 Tohoku-Oki earthquake and tsunami. (b and c)
Snapshots of tsunami propagation at the elapsed times of 30 and 60 min after the earthquake. (Tang
et al. 2012, copyright by the American Geophysical Union)
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observations made inside the focal area would substantially drive the development of
the tsunami theory. Therefore, it is useful at present to revisit the mechanisms of
tsunami generation and propagation to prepare for the use of dense and deep ocean
observation networks in the next generation. This book focuses on this point based
on fluid and elastic dynamics.

This book devotes more pages to the topics of seismology and elastic dynamics
than other tsunami books. We explain tsunami generation and propagation using
mathematical equations. At the same time, we show real data and observed wave-
forms as much as possible because the mathematical models are based on these data.
We try to reasonably organize seismology and tsunami research (or elastic dynamics
and fluid dynamics) to give a theoretical framework in order to obtain additional
viewpoints on the phenomenon of tsunami generation.

134˚ 136˚ 138˚ 140˚ 142˚ 144˚ 146˚
32˚

34˚

36˚

38˚

40˚

42˚

44˚

100 km

DONET2
DONET1

S−net

Fig. 1.12 Offshore tsunami and seismic stations in Japan (DONET1, DONET2, and S-net).
Observed data are transmitted to data centers by seafloor cables
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Chapter Structure
The present chapter explained the motives of this book by briefly summarizing the
background of tsunami research. The Tohoku-Oki earthquake is used to illustrate our
present understanding. A new offshore tsunami observation network constructed
after the earthquake is introduced. The main objective of this book is the quantitative
modeling of tsunami generation and propagation.

Chapter 2 describes an overview of tsunami generation and propagation by
visualizing the simulation results of a huge earthquake. We use an earthquake
scenario that is anticipated to occur in southwestern Japan. We concisely explain
tsunami generation and propagation but do not go into the details. This chapter is
intended as a guide to the following chapters.

Chapter 3 theoretically investigates wave propagation in a continuum medium.
Wave theories of fluid and elastic dynamics are important for the propagation of
tsunami and seismic waves. The theories are basics of tsunami and earthquake
researches. In addition, comparisons between tsunami and seismic waves are useful
to deepen our understanding of wave phenomena.

Chapter 4 introduces several topics of seismology that are closely related to
tsunamis. A description of earthquake fault motion is given, as it is important for
modeling tsunami generation. We also explain a practical method for performing
seismic wave simulation and its use for modeling tsunami generation. The topics
include a description of earthquake faults, a scaling law of fault geometry, permanent
displacement, and ocean acoustic waves.

Chapter 5 explains a theory of tsunami generation. By assuming that seawater is
an incompressible medium, we derive the intrinsic nature of tsunami generation
caused by sea-bottom displacement. Based on mathematical representations, we
theoretically investigate the mechanism of the generation process. Also, the theory
links the generation process to the propagation process.

Chapter 6 describes methods for calculating tsunami propagation with realistic
bathymetry. Depending on the conditions and the order of the approximations,
various types of 2-D tsunami equations are derived from the 3-D equation of motion.
We explain how to numerically solve these tsunami equations in practice. Some
simulation results are also shown as examples.

Chapter 7 summarizes tsunami generation and propagation. Also, we briefly
mention additional important topics that we do not fully treat in this book.
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Chapter 2
Overview of Tsunami

Abstract When a large earthquake occurs in an offshore region, a tsunami is
generated. The generation and propagation can be mathematically described based
on equation of motion. This chapter visualizes and overviews tsunami generation
and propagation to obtain an overall grasp of tsunamis and elucidate their funda-
mental nature. Section 2.1 illustrates the tsunami generation and propagation caused
by a huge earthquake. We use a dynamic rupture scenario constructed for an
anticipated huge earthquake in the Nankai Trough, Japan. Section 2.2 shows a
simple model for the generation and propagation. While the generation is basically
independent of gravity, gravity is the main force to move tsunami. Section 2.3
describes the fundamental properties of the propagation. Tsunami propagation
depends on the wavelength and sea depth. Also, when the sea depth is very shallow,
tsunami becomes to show nonlinear characteristics. Section 2.4 summarizes the main
points of tsunami generation and propagation.

Keywords Earthquake rupture · Seismic wave · Permanent displacement ·
Nonlinear tsunami

2.1 Earthquakes and Tsunami: A Possible Scenario
in Nankai Trough, Japan

In order to obtain an overview of tsunamis, we propose a huge earthquake scenario
that can possibly occur in southwestern Japan as an example, and we simulate and
visualize the results.

2.1.1 Nankai Trough, Japan

At the Nankai Trough (Fig. 2.1), the Philippine Sea Plate subducts underneath the
Eurasian Plate. Great (M � 8) earthquakes have occurred repeatedly along the plate

© Springer Japan KK, part of Springer Nature 2019
T. Saito, Tsunami Generation and Propagation, Springer Geophysics,
https://doi.org/10.1007/978-4-431-56850-6_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-4-431-56850-6_2&domain=pdf


interface with a recurrence interval on the order of 100 years (e.g., Ando 1975;
Kumagai 1996). The rupture process and area of each historical earthquake are not
clearly known. The 1707 Hoei earthquake was believed to involve a rupture of the
whole area from Hyuganda to the Tokai area (Furumura et al. 2011). The 1944
Tonankai (M 7.9) and the 1946 Nankai (M 8.0) earthquakes caused serious tsunami
damage along the Pacific coast of Japan around this area.

2.1.2 Earthquake Rupture Model

We used an earthquake rupture scenario constructed by a numerical simulation (Hok
et al. 2011). Since an earthquake occurs when the stress reaches or excesses a critical
level (strength), the earthquake size is strongly controlled by the stress accumulated
along the plate interface between the Philippine Sea Plate and the Eurasian Plate. By
using the rate of the stress accumulation (or slip deficit) estimated by the geodetic
data and assuming that the stress has been constantly accumulated for 100 years,
Hok et al. (2011) estimated the accumulated stress along the plate boundary. They

Fig. 2.1 Nankai Trough in southwest Japan. The abbreviations “sm,” “pzr,” and “c” stand for
subducted seamount, subducted paleo-Zenisu ridge, and cape, respectively (Hok et al. 2011,
copyright by the American Geophysical Union)
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used this stress distribution as an initial condition of their dynamic rupture simula-
tion. The spatial and temporal variation of the dynamic rupture was simulated based
on the equation of motion and the frictional constitutive law along the plate interface.

Figure 2.2 shows the temporal change of the stress distribution calculated by the
rupture simulation. This represents a rupture scenario that is similar to the 1946
Nankai earthquake that occurred after the 1944 Tonankai earthquake. The rupture

Fig. 2.2 Earthquake fault model used in the tsunami generation and propagation simulation. The
fault model was derived by a dynamic rupture simulation (Hok et al. 2011). (a) Initial shear stress
distribution. The overshoot area of the stress for initiation appears in red. Lines indicate 10-km-
depth contours of plate boundary (black), coast line (pink), and sea depth of 250 m (light blue). (b)
Final slip distribution and rupture time contours every 5 seconds. Arrows denote the slip direction of
the slab. (c) Snapshots of the stress during the rupture propagation (Hok et al. 2011, copyright by the
American Geophysical Union)
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started at the high stress portion off the southern tip of the Kii Peninsula (Fig. 2.2a).
The rupture propagated westward releasing the stress accumulated in the offshore
region (see the snapshots at the elapsed times of 14, 28, and 56 s in Fig. 2.2c). At the
elapsed time of 119 s, the rupture ended at the central part of Shikoku.

One of the most important quantities that characterizes an earthquake is the
moment magnitude Mw. The moment magnitude is defined by the seismic moment
M0 as

Mw ¼ 1
1:5

logM0 N m½ � � 9:1ð Þ ð2:1Þ

and the seismic moment M0 is given by

M0 ¼ μ

ZZ
S
u ξð Þ½ �dS ξð Þ ¼ μDS ð2:2Þ

where μ is the rigidity or shear modulus of the solid earth, [u(ξ)] is the final slip
distribution on the fault, S represents the fault area, and D is the final slip averaged
over the fault area. For the scenario shown in Fig. 2.2, the fault area, average slip,
rigidity, and seismic moment are about S¼ 260 � 130 km2, D¼ 4 m, μ ¼ 40 GPa,
and M0 ¼ 5.2 � 1021 N m, respectively. The moment magnitude of this rupture
model is Mw 8.4.

Another important aspect of the earthquake rupture is its time scale. There are two
kinds of parameters that characterize the time scale. One is the rupture time. The
rupture time is the total duration of the rupture. Figure 2.2 indicates that the rupture
ends at the elapsed time (time measured from rupture initiation) of about 120 s. Thus,
the rupture time is 120 s. The other is the rise time. The rise time is the duration of the
slip at a point on the fault. Figure 2.3 shows a time history of the slip at a point on the
fault. The slip starts at the elapsed time of 60 s and increases as the time increases.
After an elapsed time of 100 s, the slip becomes almost constant. In this case, the rise
time is about 40 s (¼100 s � 60 s).

The moment magnitude and the time scales of the rupture are important param-
eters in tsunami study. The moment magnitude strongly controls the permanent
sea-bottom displacement and the magnitude of the tsunami. Roughly speaking, the

Fig. 2.3 An example of the
time history of the slip at a
point on the fault model
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magnitude of the tsunami is almost determined by the moment magnitude. The
tsunami is not strongly affected by the time scales of the rupture. Nevertheless, the
time scale is definitely important in tsunami studies because it controls the excitation
of seismic waves. Seismic waves play various roles in tsunami studies. By analyzing
seismic waves, we can estimate the earthquake magnitude and location. We often
use the earthquake focal information to predict the height of the tsunami on the coast
for the purpose of issuing warnings. Besides, in the next-generation tsunami obser-
vation, which detects tsunamis inside the focal area, seismic waves can be noise for
tsunami signals.

• Earthquakes are characterized by static and kinematic parameters.
• The seismic moment (M0 ¼ μDS) describes the size of the earthquake.
• The rupture time and rise time describe the kinematics of the earthquake fault.

2.1.3 A Two-Step Method for Simulating Tsunami
Generation and Propagation

Tsunami generation and propagation from the earthquake rupture is simulated by a
two-step method (Fig. 2.4). In the first step, a seismic wave simulation is conducted
with the earthquake rupture model used as input data. The simulation numerically
calculates the sea-bottom motion. The second step is a tsunami simulation using the
sea-bottom motion calculated in the first step as the tsunami source. The details are
explained in Appendix A.

2.1.4 Seismic Waves and Permanent Sea-Bottom
Displacement

The seismic wave simulation is conducted using the earthquake rupture model
shown in Fig. 2.2 as the source. The slip on the fault (dislocation) is equivalent to
the body force distribution and is represented as a stress glut in the seismic wave
simulations. The details of the earthquake fault and seismic wave propagation are

Fig. 2.4 A flowchart of the
simulation of tsunami
generation due to an
earthquake and its
propagation
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described in Chap. 4: Earthquakes. Figure 2.5 shows the simulated vertical displace-
ment at the ground surface and the sea bottom for various elapsed times. At the
elapsed time of 10 s, the vertical displacement begins to appear on the sea bottom.
The displacement extends westward as the time increases. During the rupture from
40 to 100 s, the seismic wave propagating northward is clearly recognized. The
propagation velocity is ~3 km/s (the wave propagates about 200 km during the time
of 40–100 s). This wave is a seismic surface wave called a Rayleigh wave. The
displacement caused by seismic waves is transient, i.e., displacement returns to zero
after the passage of seismic waves. In addition to this transient Rayleigh wave
displacement, there is a large vertical displacement that does not propagate but
persists above the earthquake focal area (see a snapshot at the elapsed time of 100 s).

Figure 2.6 shows the distribution of the vertical displacement when enough time
elapsed (300 s). This distribution persists permanently, and so it is referred to as
permanent displacement. A significant uplift higher than 0.5 m extends ~200 km in
length and ~100 km in width in the offshore region, and subsidence larger than 0.5 m
is recognized in the land area.

Both the Rayleigh wave and the permanent displacement cause significant
sea-surface height and sea-bottom displacement changes. Note that the tsunami is

Fig. 2.5 Results of seismic wave simulations using the 1946 Nankai-like earthquake rupture model
of Hok et al. (2011). Vertical displacements at the ground surface and at the sea bottom at various
elapsed times
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excited mainly by the permanent displacement, but not by the Rayleigh wave. The
permanent displacement sustains the sea surface uplifted until the sea-surface dis-
placement collapses as a tsunami. On the other hand, Rayleigh waves do not sustain
the sea-surface displacement but just oscillate the sea surface.

• Seismic waves and permanent displacement are excited by an earthquake.
• Seismic waves represent transient displacements propagating a long distance.
• Permanent displacement appears only near the earthquake fault. This functions as

the tsunami source.

2.1.5 Tsunami Generation and Propagation

By using the sea-bottom motion calculated by the seismic wave simulation
(Fig. 2.5), we conducted tsunami simulation. In this simulation, we calculated the
sea-surface height change or vertical displacement at the sea surface.

Figure 2.7 shows the sea-surface height distribution calculated by the tsunami
simulation. At the elapsed time of 1.5 min, the sea surface is uplifted more than
~0.5 m for an area extending ~200 km in length and ~100 km off Shikoku. This is
caused by the permanent sea-bottom displacement by the earthquake. A wave

Fig. 2.6 Vertical
displacement distribution at
the elapsed time of 300 s.
This is considered a
permanent displacement due
to the earthquake
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propagating cylindrically outward from the hypocenter is also recognized at this time
t ¼ 1.5 min. This is the Rayleigh wave.

At t ¼ 5 min, the sea-surface displacement by the Rayleigh wave already moved
away from the simulation region. The Rayleigh wave does not contribute to tsunami
excitation. Only the sea-surface displacement caused by the permanent sea-bottom
displacement exists. The uplifted sea surface cannot keep its shape due to gravity,
and the sea surface collapses with increasing the time. As a result, the sea-surface
displacement propagates as a tsunami. This clearly illustrates that gravity plays an
important role in tsunami propagation. If there was no gravity, the tsunami would not
propagate, and the sea surface uplifted by the sea-bottom deformation would main-
tain its shape permanently. Hence, it is natural that the tsunami propagation speed is
controlled by the gravitational acceleration g0(¼9.8 m/s2). Actually, the tsunami
velocity c is given by using the gravitational acceleration as

c ¼
ffiffiffiffiffiffiffi
g0h

p
, ð2:3Þ

where h is the sea depth. We will show this derivation in Chap. 3: Propagation
of Tsunami and Seismic Waves. Equation (2.3) predicts that a tsunami would

Fig. 2.7 Results of tsunami simulations using the 1946 Nankai-like earthquake rupture model of
Hok et al. (2011). Sea-surface height distribution at various elapsed times
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propagate faster in the deep ocean and slower in a shallow sea. Figure 2.7 also shows
that the tsunami propagates in the offshore region with higher velocity. In the Pacific
Ocean, the average sea depth is ~4000 m. At that depth, the tsunami propagates with
a velocity of ~200 m/s. This is much slower than the seismic waves (seismic waves
propagate with a velocity of a few km/s). When a tsunami propagates in a shallow
sea with a depth of ~50 m, it propagates more slowly, with a velocity of ~20 m/s.

In general, when the wave propagates more slowly, the wave amplitude increases
so as to conserve the energy flux along the ray of the wave (e.g., Sect. 3.2.3 Energy
Density and Energy Flux Density for Incompressible Fluid). Tsunamis then show
height amplification when they propagate from a deep (fast) to shallow sea (slow).
Figure 2.8 shows the maximum tsunami height distribution of the simulation. A
tsunami height higher than 1.5 m appeared near coasts as well as at the source area.
Even if the tsunami height is lower in the offshore region, it becomes amplified when
the tsunami approaches the coast.

• Permanent sea-bottom displacement and gravity cause tsunamis.
• Tsunamis propagate with a velocity of about < ~100 m/s at a depth of 1000 m.
• Tsunamis propagate faster in deeper oceans.
• Tsunamis propagate slower and the height becomes larger when tsunamis

approach coasts.

Fig. 2.8 Maximum
sea-surface height
distribution
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2.1.6 Slow Rupture

Many earthquakes show a relatively rapid slip on the fault characterized by a rupture
with a short duration. Some earthquakes show a relatively slow slip on the fault
characterized by a long rise time and a long rupture time (e.g., Kanamori and
Kikuchi 1993). We simulated a slow rupture by extending the time scale of the
fault model two times longer than in the original model. Figure 2.9 shows the time
history of the slip at a point on the fault model for a slow rupture (solid line) together
with that for the original standard rupture (dashed line). The start of the slip changed
from 60 to 120 s, the rise time increased from 40 to 80 s, and the slip rate (the slope
during the rise time) became small, while the final slip did not change.

Figure 2.10 shows the results of the seismic wave simulation with the earthquake
fault of a long duration. Permanent uplifted sea-bottom displacement higher than
0.5 m and subsidence lower than �0.5 m occur near the earthquake fault. This
permanent displacement distribution is identical to the original one shown in
Fig. 2.6. However, the excitation of the Rayleigh wave (seismic wave) is consider-
ably smaller than that in the original model. It is hard to recognize the Rayleigh wave
in Fig. 2.10. This is because the excitation of the seismic wave is strongly controlled
by the slip rate rather than by the slip itself (we will treat the excitation of the seismic
waves in Chap. 4: Earthquakes). Hence, even though the two rupture models have
the same seismic moment, the Rayleigh wave becomes small if the moment rate is
smaller due to a long source duration.

Figure 2.11 shows the tsunami simulation results with an earthquake fault of a
long duration. Basically, tsunami propagation was almost the same as in Fig. 2.7.
The difference in the rise times of 40 s and 80 s did not significantly affect the results
of tsunami simulation. Actually, we obtained similar maximum amplitude distribu-
tions in the cases of short- and long-duration earthquake ruptures (Fig. 2.12).

Tsunamis caused by short-duration and long-duration earthquake ruptures are
almost similar, whereas seismic waves are quite different. We call the earthquake
that excites tsunami much larger than the one expected from the seismic wave
amplitude as a tsunami earthquake (Kanamori 1972). Therefore, the earthquake
with long duration can be a tsunami earthquake. Also, we should note that the

Fig. 2.9 Time history of the
slip at a point on the fault
model. The cases of short
duration (dashed line) and
long duration (solid line).
The short duration
corresponds to the 1946
Nankai-like earthquake
rupture model of Hok et al.
(2011). The long-duration
fault model is obtained by
multiplying the time axis
by two
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records can be quite different between short- and long-duration earthquakes.
Figure 2.13 shows synthesized ocean-bottom pressure records at a station (indicated
by a white triangle) for short-duration and long-duration rupture models. We use
mH2O as the unit of the pressure change instead of Pa. A pressure of 1 mH2O refers
to the hydrostatic pressure at the sea bottom due to water that is 1 m deep, i.e.,
1 mH2O ¼ 9.8 MPa. For a short-duration rupture (blue line), a large-amplitude
Rayleigh wave is recognized during the elapsed time from 0 to ~300 s. The tsunami
then arrives at an elapsed time of ~300 s. The tsunami is ~0.5 m height. For a long-
duration rupture (red line), the pressure change caused by the Rayleigh wave is
considerably smaller than that for the short-duration rupture. These findings indicate
that the tsunamis are similar but the ocean-bottom pressure records are substantially
different. This is crucially important for tsunami early warnings, as it would be
difficult to predict tsunami height just by looking at the records. We should discrim-
inate between the tsunami and seismic wave components. This discrimination is easy
when the observation station is located far from the source, because seismic waves
arrive at observation points much earlier than the tsunami. However, when the
observation station is inside the source region, the seismic waves are overlapped
with tsunamis. If we misunderstand the seismic waves as the tsunami, the tsunami

Fig. 2.10 Results of seismic wave simulations using the long-duration earthquake rupture model
(corresponding to the black line in Fig. 2.9). Vertical displacements at the ground surface and at the
sea bottom at various elapsed times
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prediction would be incorrect. We investigate the details of the ocean-bottom
pressure records in Sect. 5.4.2: Synthesis of Ocean-Bottom Pressure Records.

• Excitation of seismic waves strongly depends on the time scale of the fault
rupture.

• Excitation of the tsunami does not strongly depend on the time scale of the fault
rupture.

• Observed records look quite different due to seismic waves even if the same
tsunami signals are included.

2.2 Tsunami Generation

In order to understand the mechanisms underlying tsunamis, we investigate the
generation and propagation processes separately by assuming simple model settings.

We consider tsunami generation due to sea-bottom displacement where incom-
pressible fluid and a constant sea depth of h0 are supposed. In that case, the tsunami
generation and propagation caused by the sea-bottom displacement is given by

Fig. 2.11 Results of tsunami simulations using the long-duration earthquake rupture model
(corresponding to black line in Fig. 3.8). Sea-surface height distribution at various elapsed times
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analytical solutions (e.g., Takahashi 1942; Kajiura 1963; Saito 2013, see also
Chap. 5: Tsunami Generation). By using the analytical solutions, we visualize the
tsunami generation and propagation caused by an earthquake in Fig. 2.14.

When an earthquake occurs, the sea bottom deforms largely above the earthquake
fault (elapsed times of 20 s and 60 s). At the same time, a seismic wave radiated from
the fault propagates horizontally. The seismic wave is clearly recognized at elapsed
times of 60, 80, and 100 s. The seismic wave propagates fast (about 4 km/s) and
moves away from the earthquake fault region swiftly, while the permanent
sea-bottom displacement remains near the earthquake fault region.

The sea-bottom deformation displaces the seawater, and the sea surface is uplifted
(elapsed times of 20 and 60 s). The permanent sea-bottom deformation keeps the sea
surface uplifted in the focal area for a short time (elapsed times of 60–80 s).
However, as the time elapses (100–200 s), gravity causes the uplifted sea surface
to collapse. The collapsed water volume displaces a massive water volume in the
horizontal direction, and the sea-surface displacement propagates as a long-
wavelength wave. This water wave is the tsunami. Note that the sea-surface height
change caused by the propagating seismic waves should not be referred to as a
tsunami because the driving force of the wave propagation is different from that of
the tsunami. Seismic wave propagation is mainly due to the elasticity of the medium.
We consider the tsunami to be a surface water wave caused by gravity.

Fig. 2.12 Maximum
sea-surface height
distribution for the long-
duration earthquake rupture
model
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• Excitation of the tsunami is strongly controlled by the permanent sea-bottom
displacement.

• The tsunami is caused by the collapse of the sea-surface height distribution due to
gravity.

• Gravity causes tsunami propagation, while elasticity causes seismic wave
propagation.

2.3 Tsunami Propagation

Tsunami propagation is described as long-wavelength surface-wave propagation
through an incompressible fluid with a free surface under gravity. The details of
the theoretical background and the practical numerical methods are treated in
Chap. 3: Propagation of Tsunami and Seismic Waves and Chap. 6: Propagation
Simulation. By using the simulation results, this section illustrates the fundamental
nature of tsunami propagation.

Fig. 2.13 The waveforms of the short-duration (blue) and long-duration (red) earthquake fault
models. The temporal change of the sea-surface height off Muroto is plotted (the location is
indicated by a triangle on the map)
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2.3.1 Propagation Speed

Figure 2.15a displays the tsunami propagation in a shallow sea (depth of 1 km). At
the elapsed time of 0 s, the tsunami height distribution has a peak at a distance of
0 km. As time elapses, the tsunami propagates both rightward and leftward. At the
elapsed times of 500, 1000, and, 2000 s, the peak arrives at distances of 50, 100, and
200 km, respectively. The propagation velocity is then estimated to be 0.1 km/s. On
the other hand, Figure 2.15b shows the tsunami propagation in a deeper sea (depth of
4 km). At elapsed times of 500 and 1000 s, the peak arrives at distances of 100 and
200 km, respectively. The propagation velocity is 0.2 km/s. The tsunami propagates
faster in deeper oceans. The tsunami phase velocity c0 is approximately given by
c0 ¼

ffiffiffiffiffiffiffiffiffi
g0h0

p
where g0 ¼ 9.8 m/s2 is the gravitational acceleration and h0 is the sea

depth when the tsunami wavelength is much longer than the sea depth (the derivation
is shown in Chap. 3).

In principle, for waves (not only tsunamis but also other waves such as elastic
waves), the restoring force is fundamentally important. Since the tsunami phase

Fig. 2.14 Tsunami generation and propagation caused by an earthquake fault. Seismic waves
radiated from the fault propagate horizontally (elapsed times from 20 to 100 s). The sea surface is
uplifted by the sea-bottom deformation. As time elapses (after 80 s), the uplifted sea surface
collapses due to gravity. The sea-surface height propagates as a tsunami (elapsed times from
150 to 500 s)
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Fig. 2.15 Tsunami propagation in (a) shallow sea (1 km depth) and (b) deep sea (4 km depth)
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velocity is represented using gravitational acceleration g0, it can easily be realized
that the gravitational force is the restoring force of tsunami propagation. The
gravitational force is determined not only by g0 but also by the water volume.
Hence, it is reasonable that the phase velocity be represented using the sea depth
h0 in addition to g0. We should note that the tsunami propagation velocity is given by
c0 ¼

ffiffiffiffiffiffiffiffiffi
g0h0

p
only when the tsunami wavelength is much longer than the sea depth.

However, in general, the phase velocity depends on the tsunami wavelength and
tsunami height as well.

The tsunami propagations of short- and long-wavelength tsunamis are compared
in Fig. 2.16. We set the initial height distribution (elapsed time of 0 s) by using a
Gaussian function as

η0 x; tð Þ ¼ 4ffiffiffi
π

p
Lc

exp � 16x2

L2c

� �
, ð2:4Þ

where a parameter Lc controls the tsunami wavelength. In the case of the long-
wavelength tsunami (Lc ¼ 40 km) (Figure 2.16a), the tsunami height distribution
keeps the same shape during the propagation (compare the height distribution at the
elapsed times of 500 and 1500 sec). On the other hand, in the case of the short-
wavelength tsunami (Lc ¼ 4 km) (Figure 2.16b), the tsunami height distribution
changes as the travel distance increases. We also find that the longer-wavelength
component leads to faster propagation by noticing that the long-wavelength tsunami
propagates a longer distance in the same time (see 1500 s in Figure 2.16b). This
shows that the velocity changes according to the wavelength. This is called
dispersion.

The water wave theory (we will treat this in Chap. 3: Propagation of Tsunami and
Seismic Waves) predicts that the wavenumber k and the angular frequency ω satisfy

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0k tanh kh0ð Þ

p
: ð2:5Þ

When the relation between k and ω is given by Eq. (2.5), the phase velocity c is
calculated as

c ¼ω

k
¼

ffiffiffiffiffiffiffiffiffi
g0h0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh kh0ð Þ

kh0

s

¼
ffiffiffiffiffi
g0
k

r
kh0 � 1ffiffiffiffiffiffiffiffiffi

g0h0
p

kh0 � 1

8<
: ¼

ffiffiffiffiffiffiffi
g0λ

2π

r
λ � h0ffiffiffiffiffiffiffiffiffi

g0h0
p

λ � h0,

8<
:

ð2:6Þ

where we used an asymptotic relation
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Fig. 2.16 Tsunami propagation. (a) Long-wavelength tsunami (Lc ¼ 40 km) and (b) short-
wavelength tsunami (Lc ¼ 4 km) for a sea depth of 4 km
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tanh kh0ð Þ ¼ 1 kh0 � 1
kh0 kh0 � 1:

�

Equation (2.6) indicates that the phase velocity depends on the wavelength
λ ¼ 2π/k. The phase velocity represented by c ¼ ffiffiffiffiffiffiffiffiffi

g0h0
p

is an approximation when
the tsunami wavelength is much greater than the sea depth h0 (λ � h0). Figure 2.17
shows the phase velocity as a function of the tsunami wavelength.

Equation (2.6) also indicates that a “long” wave means that the wavelength is
long compared to the sea depth h0. When the tsunami wavelength is short enough,
the velocity is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0λ=2π

p
, which is independent of the sea depth h0. The

velocity depends only on the tsunami wavelength.
Why does the tsunami speed depend on the sea depth h0 and the tsunami

wavelength λ? The dependence of the phase velocity on the wavelength
(Fig. 2.17) can be interpreted as follows. First, we consider a short wavelength
(λ � h0). In this case, because the wavelength is very small compared to the sea
depth, the wave motion does not occur in a deep part of the sea but only in a shallow
part of the sea layer. Therefore, the volume of the water in motion is limited to the
shallow part of the sea. Since the gravitational force is proportional to the volume in
motion, the gravitational force is relatively small when the wavelength is short.
When the gravitational force is small, the propagation velocity becomes slow. The
phase velocity is hence slower for shorter-wavelength tsunami. As the tsunami
wavelength becomes longer, the volume of the moving water gets larger. As a result,
the gravitational force gets larger, and the phase velocity increases with increasing
wavelength. However, when the wavelength greatly exceeds the sea depth, the
volume of moving water does not increase but stops growing due to the finite sea
depth h0. When the tsunami wavelength is much longer than the sea depth h0
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Fig. 2.17 Tsunami phase
velocity as a function of the
tsunami wavelength at a sea
depth of 4 km
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(λ � h0), the phase velocity becomes independent of the wavelength and becomes
dependent on the sea depth.

As shown above, the restoring force is a key to wave propagation. For seismic
waves, the restoring force originates from the elasticity of the medium. Hence, a
softer medium results in a smaller restoring force and a slower wave speed. Note that
this is an interpretation and that these mechanisms are not treated quantitatively in
this chapter. In general, we should rely on theory and mathematical operations in
order to derive rigorous solutions. We perform a quantitative treatment in Chap. 3:
Propagation of Tsunami and Seismic Waves.

2.3.2 Amplification

The tsunami propagation speed changes depending on the sea depth when the sea
depth is shallow compared to the tsunami wavelength. At the same time, the tsunami
height also changes depending on the sea depth. As the tsunami approaches the coast
propagating across a shallower sea, the tsunami height becomes greater. A simple
case is shown in Fig. 2.18. The peak tsunami height at the time of 0 s is located at a
sea depth of 4 km. The sea depth linearly decreases as it approaches the coast, and
the sea depth is zero at the coast. The coast is located at a distance of 300 km from the
point where the tsunami peak is located at the time of 0 s. As time elapses, the
tsunami approaches the coast. Since the sea depth is shallower near the coast, the
tsunami propagation speed becomes slower nearer the coast. The tsunami propagates
about 100 km in the elapsed time from 0 to 600 s, whereas it propagates about 50 km
in the elapsed time from 1500 to 2000 s. The tsunami height becomes greater as the

Fig. 2.18 Tsunami amplification near coast. The sea depth at a distance of 0 km is 4 km. The sea
depth decreases linearly with the distance. The coast is located at a distance of 300 km. The dashed
line is the track of the peak tsunami height

36 2 Overview of Tsunami



tsunami approaches the coast. The tsunami height at the coast is about two times
larger than that located offshore. It should also be noted that the dominant tsunami
wavelength becomes shorter when the tsunami approaches the coast.

The tsunami height η and the velocity c are closely related with the conservation
of the tsunami energy flux. The tsunami energy flux density is given by

J ¼ ρ0g0 ηj j2c ¼ ρ0g0 ηj j2
ffiffiffiffiffiffiffiffiffi
g0h0

p
, ð2:7Þ

when the tsunami wavelength is much greater than the sea depth. The derivation is
explained in Sect. 3.2.3 Energy Density and Energy Flux Density for Incompressible
Fluid. The energy flux density is an important quantity from the viewpoint of energy
conservation. When we assume that the reflected tsunami does not appear during
tsunami propagation, we may consider that the energy flux density J is constant
irrespective of the location and the sea depth. This can be expressed as

η x1ð Þj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0h x1ð Þ

p
¼ η x2ð Þj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0h x2ð Þ

p
, ð2:8Þ

and

η x2ð Þj j ¼ h x1ð Þ
h x2ð Þ
����

����
1
4

η x1ð Þj j ð2:9Þ

where η(x) and h(x) are the tsunami height and the sea depth at the location x,
respectively. When the point x2 is located near the coast and the sea depth is
shallower than the point x1, i.e., h(x2) < h(x1), the tsunami height η(x2) near the
coast is then larger than η(x1) in the offshore region. This is often referred to as
Green’s law (Green’s law is different from Green’s function which is often used in
mathematical physics). Green’s law is derived in an idealistic situation where a
reflected wave does not exist. However, in practice, a reflected tsunami usually
appears (e.g., Hayashi 2010). Hence, Eq. (2.9) is not always quantitatively correct,
but it provides a good estimation of tsunami amplification mechanisms.

2.3.3 Nonlinearity

When a tsunami propagates across a shallow sea, it has a nonlinear nature.
Figure 2.19a shows the tsunami propagation across a shallow sea with a depth of
10 m. The tsunami height distributions at various elapsed times are plotted together.
The tsunami propagates rightward. The peaks are located at about 5, 10, and 15 km
at the times of 500, 1000, and 1500 s, respectively. The velocity is ~10 m/s, which is
almost the same as the theoretical phase velocity c ¼ ffiffiffiffiffiffiffiffiffi

g0h0
p

derived based on the
linear long-wave equations. Some features of the nonlinear long-wave tsunami
propagation can be seen in Figure 2.19a. One is that the shape of the tsunami
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Fig. 2.19 Simulation results of tsunami propagation across a shallow sea (depth of 10 m). The
tsunami height distributions at the elapsed times of 0, 500 1000, and 1500 s are plotted. (a) A
simulation using nonlinear long-wave equations given by Eqs. (2.10) and (2.11), (b) using
nonlinear long-wave equations but omitting the tsunami height η in the second term in Eq. (2.10),
(c) using nonlinear long-wave equations with the bottom friction (Cf ¼ 0) in Eq. (2.11), (d) using
nonlinear long-wave equations but omitting the advection term in Eq. (2.11), and (e) using linear
long-wave equations
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deforms more as the travel distance increases. The slope of the front side becomes
steeper than the back side (or the head of the tsunami falls forwardly) during the
propagation. Another is that the peak height slightly decreases with increasing travel
distance.

The nonlinear tsunami propagation shown in Figure 2.19a was simulated based
on the 1-D nonlinear long-wave equations

∂η x; tð Þ
∂t

þ ∂
∂x

h xð Þ þ η x; tð Þ½ �u x; tð Þf g ¼ 0, ð2:10Þ

and

∂u x; tð Þ
∂t

þ u
∂u x; tð Þ

∂t
¼ �g0

∂η x; tð Þ
∂x

� C f
u2

hþ η
ð2:11Þ

where η(x, t) is the spatial and temporal variation of the sea-surface height or
tsunami, u(x, t) is the horizontal velocity of the water particle, h is the sea depth,
g0 is the gravitational acceleration, and Cf is the friction coefficient. The derivation of
these equations is shown in Chap. 6: Propagation Simulation. These equations are
nonlinear for the tsunami height η(x, t). The superposition principle does not hold for
η(x, t): for example, when η1(x, t) and η2(x, t) satisfy the equations of system, the
function η1(x, t) + η2(x, t) does not always satisfy the equations of the system. The
nonlinearity is caused by three terms: the second term in Eq. (2.10), the second term
on the left-hand side of Eq. (2.11), and the second term on the right-hand side of
Eq. (2.11). If those nonlinear terms are excluded, the equations become linear as
follows:

∂η x; tð Þ
∂t

þ ∂
∂x

h xð Þu x; tð Þf g ¼ 0 ð2:12Þ

∂u x; tð Þ
∂t

¼ �g0
∂η x; tð Þ
∂x

ð2:13Þ

The second term in Eq. (2.10), ∂x{[h(x) + η(x, t )]u(x, t)}, indicates the finiteness
of the sea-surface height η(x, t ) with respect to the sea depth h(x). When the
sea-surface height η(x, t) is much smaller than the sea depth, Eq. (2.10) can be
approximated as Eq. (2.12). Figure 2.19b shows the simulation result when
Eq. (2.12) is used instead of Eq. (2.10). The height distribution is different from
those in Figure 2.19a and b. The tsunami front becomes steep due to the finiteness of
the sea-surface height ∂x{[h(x) + η(x, t )]u(x, t)}. When the finite tsunami height is
included, the tsunami propagation velocity is theoretically given by

c�
ffiffiffiffiffiffiffiffiffi
g0h0

p
1þ 3ηð Þ= 2h0ð Þð Þ, ð2:14Þ

when the sea depth is constant h(x)¼ h0 (see Appendix B). Higher tsunamis (large η)
propagate faster than lower tsunamis (small η). Therefore, if considering the finite
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tsunami height, the tsunami peak (high tsunami) propagates faster than the other
parts (low tsunami). This mechanism causes the peak to fall forwardly during the
propagation.

The second term on the right-hand side of Eq. (2.11), �Cf u
2/(h + η), represents

the bottom friction. When this term is neglected in the nonlinear long-wave equa-
tions (Eq. (2.11)), we obtain the result shown in Figure 2.19c. The peak amplitude
does not decrease in Figure 2.19c, whereas the peak amplitude decreases with the
travel distance in Figure 2.19a. This term represents the energy dissipation which
causes the attenuation of the tsunami. Equation (2.11) indicates that the term
contributes to the temporal change of the horizontal velocity as

∂u x; tð Þ
∂t

�� C f
u2

hþ η
ð2:15Þ

if the other terms are neglected. Equation (2.15) indicates that the horizontal velocity
decreases more with increasing time when the horizontal velocity is larger or the
water column height of h + η is smaller. Since the horizontal velocity change per unit
time is proportional to u2, the system is nonlinear. Therefore, a larger-amplitude
tsunami attenuates at a higher rate.

The second term on the left side of Eq. (2.11), u ∂u(x, t)/∂t, is referred to as the
advection term. This term comes from the total time derivative

Du

Dt
¼ ∂u

∂t
þ u

∂u
∂x

: ð2:16Þ

This term is excluded from Eq. (2.11). The simulation result is plotted in
Figure 2.19d. The difference between Figure 2.19a and d is small. The tsunami
peak also bends forward in Figure 2.19d, but the peak bends more in Figure 2.19a.

Finally, the simulation result of the linear long-wave equations is plotted in
Figure 2.19e. Contrary to the result of the nonlinear long-wave equations, the peak
does not bend forward nor does the peak become attenuated when the linear long-
wave equations are used. The propagation speed is slightly slower.

2.3.4 Inundation

Tsunami inundation and tsunami run-up into land areas are also nonlinear. Since the
process should be closely related to the three-dimensional water flow and the
excitation of turbulence, the process is considerably complicated compared to
offshore propagation. It is not straightforward to describe the process rigorously.
While it is not rigorously correct in the three-dimensional water flow, we can
approximate the inundation process as a moving boundary condition in the 2-D
horizontal propagation simulation. Figure 2.20 shows the simulation results of the

40 2 Overview of Tsunami



inundation around Sendai Plain for the 2011 Tohoku-Oki earthquake, where the
inundation is reproduced as a moving boundary condition. The tsunami simulation
method is described in Chap. 6: Propagation Simulation. In the 2011 Tohoku-Oki
earthquake, the tsunami reached ~5 km from the coast on Sendai Plain. This 2-D
simulation roughly reproduces the inundation of the Tohoku-Oki earthquake.

• The sea depth controls tsunami propagation.
• The propagation process also depends on the tsunami wavelength.
• Near coasts, nonlinear nature appears: a higher tsunami propagates faster and the

energy dissipates.
• Tsunami inundation is a nonlinear process. It can be modeled as a moving

boundary condition between land and sea.

2.4 Points of Tsunami Generation and Propagation

In this chapter, we have illustrated the general and fundamental features of tsunamis
by using simulation results and some simple equations. The following points
summarize the noteworthy features of tsunamis:

• Permanent displacement at the sea bottom controls tsunami size.
• Gravity collapses the initial sea-surface height distribution and works as the main

force to move tsunami.
• Tsunami velocity is primarily determined by sea depth, but it also depends on the

wavelength and tsunami height.

Fig. 2.20 Simulation results for inundation around Sendai Plain during the 2011 Tohoku-Oki
earthquake. Nonlinear dispersive tsunami equations are used for the simulation. (Saito et al. 2014,
copyright by the American Geophysical Union)
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• Tsunamis propagate considerably slower (~0.1 km/s for sea depth of 1 km) than
seismic wave propagation (~3 km/s for Rayleigh wave).

• Tsunami propagation is well described by linear theories in deep oceans, whereas
nonlinear theories are necessary for the propagation in shallow seas near the
coast.

Offshore tsunami observation is being developed, and we expect that tsunami
observations inside the generation area will be in practical use in the near future. In
such cases, the seismic waves and tsunami coexist inside the generation area.
Therefore, it is important to know the mechanisms by which the seismic waves
affect the tsunami and tsunami observations. The following attributes of seismic
waves are closely related to tsunami studies.

• Not only tsunamis but also seismic waves excite sea-surface displacement.
• The excitation of seismic waves strongly depends on the time scale of the

earthquake rupture.

In the following chapters, we illustrate the mechanisms of these tsunami features
based on fundamental theories with mathematical derivations.

Appendices

Appendix A: Simulation Method of Tsunami Generated by
an Earthquake

There are various methods for simulating tsunamis. This appendix explains one of
the methods for simulating tsunami induced by an earthquake. The method involves
two steps (Fig. 2.21). In the first step, we conduct a simulation of seismic waves
caused by an earthquake. Then, we conduct tsunami simulation across the sea using
the seismic simulation result as input data.

First, we perform seismic wave simulation in 3-D space. A finite earthquake fault
is divided into numerous small subfaults. Each small subfault is approximately
represented by a point dislocation source. The point dislocation source is given by

Fig. 2.21 A flowchart of
tsunami generation and
propagation excited by an
earthquake (same as
Fig. 2.4)
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a stress change or stress glut τ sij (see Chap. 4: Earthquakes). The equation of motion
in the earth medium is

ρ
∂2ui
∂t2

¼ ∂
∂x j

τij þ τ sij

� �
, ðA:1Þ

where ρ is the density, ui is the displacement, and τij is the stress tensor. A
constitutive law or the generalized Hooke’s law gives the relation between the
displacement and the stress as

τij ¼ λδijuk,k þ 2μ ui, j þ u j, i
	 
 ðA:2Þ

for an isotropic medium, where λ and μ are referred to as Lamé parameters. We
numerically simulate the spatial and temporal distribution of the motion ui(x, t) based
on Eqs. (A.1) and (A.2) by using, for example, the finite difference method (the
method is described in Sect. 4.3, Seismic Wave Simulation). We obtain the vertical
velocity at the sea bottom vbotz ¼ _u i x; y; z

bot; t
	 


where zbot indicates the location of
the sea bottom.

In the second step, we use the velocity at the sea bottom vbotz x; y; tð Þ as source of
tsunami. According to the incompressible fluid theory (see Chap. 5: Tsunami
Generation), when the vertical displacement ubot

z x; yð Þ occurs at the sea bottom,
the sea-surface height is given by

η0 x; yð Þ ¼ 1

2πð Þ2
ZZ 1

�1
dkxdky exp i kxxþ kyy

	 
� � ~u bot
z kx; ky

	 

cosh kh0ð Þ , ðA:3Þ

where ~u bot
z kx; ky

	 

is the 2-D Fourier transform of the vertical displacement at the

bottom ubot
z x; yð Þ. Therefore, the sea-surface elevation Δη(x, y, t) caused by the

sea-bottom displacement during a fractional duration Δt at the time t is given by

Δη x; y; tð Þ ¼ 1

2πð Þ2
ZZ 1

�1
dkxdky exp i kxxþ kyy

	 
� � ~v bot
z kx; ky; t

	 

cosh kh0ð Þ Δt, ðA:4Þ

where~v bot
z kx; ky; t

	 

is the 2-D Fourier transform of the vertical velocity at the bottom

vbotz x; y; tð Þ. The sea-surface elevation Δη(x, y, t) is added as η(x, y, t) ¼ η∗(x, y,
t) + Δη(x, y, t) where η∗(x, y, t) is the tsunami height distribution numerically calcu-
lated at each time step in the simulation. We use the 2-D nonlinear long-wave
equations

∂η x; y; tð Þ
∂t

þ ∂
∂x

hþ ηð Þv avx
� �þ ∂

∂�y
hþ ηð Þv avy

h i
¼ 0, ðA:5Þ
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∂v avx x; y; tð Þ
∂t

þ v avx
∂v avx
∂x

þ v avy
∂v avx
∂y

þ g0
∂η
∂x

¼ 0, ðA:6Þ

∂v avy x; y; tð Þ
∂t

þ v avx
∂v avy
∂x

þ v avy
∂v avy
∂y

þ g0
∂η
∂y

¼ 0: ðA:7Þ

The parameter η is the tsunami or vertical displacement at the sea surface, v avx and
v avy are the horizontal velocity averaged from the sea bottom to the sea surface, is the
sea depth, and g0 is the gravitational acceleration. We numerically calculate the
spatial and temporal evolution of the tsunami η(x, y, t) based on Eqs. (A.5), (A.6),
and (A.7) by using the finite difference method (see Chap. 6: Propagation
Simulation).

Appendix B: Phase Velocity in Nonlinear Long-Wave
Equations: The First-Order Approximation Method

One-dimensional nonlinear tsunami propagation in a sea with a constant depth h0 is
described by the following equations:

∂η x; tð Þ
∂t

þ ∂
∂x

h0 þ η x; tð Þ½ �u x; tð Þf g ¼ 0, ðB:1Þ

and

∂u x; tð Þ
∂t

þ u
∂u x; tð Þ

∂x
þ g0

∂η x; tð Þ
∂x

¼ 0, ðB:2Þ

where η(x, t) is tsunami height, u(x, t) is horizontal velocity, and g0 is the gravita-
tional acceleration.

The tsunami height and horizontal velocity are written as

η x; tð Þ ¼ η0 x; tð Þ þ η1 x; tð Þ, and u x; tð Þ ¼ u0 x; tð Þ þ u1 x; tð Þ ðB:3Þ

where η0(x, t) and u0(x, t) satisfy the following linear equations:

∂η0

∂t
þ h0

∂u0

∂x
¼ 0, ðB:4Þ

and
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∂u0

∂t
þ g0

∂η0

∂x
¼ 0: ðB:5Þ

We assume that |η1|� |η0| and |u1|� |u0|. In other words, we consider a situation
in which the tsunami propagation is roughly described by the linear equations but
also includes the nonlinear effects.

The linear equations of (B.4) and (B.5) give a wave equation for η0 as

∂2η0

∂x2
� 1

c20

∂2η0

∂t2
¼ 0, ðB:6Þ

where c0 is given by c0 ¼
ffiffiffiffiffiffiffiffiffi
g0h0

p
. A plane wave η0 ¼ exp [�iω(t � x/c0)] satisfies

Eq. (B.6) where c0 works as the phase velocity. Substituting η0 ¼ exp [�iω(t � x/
c0)] into (B.5), we obtain

∂u0

∂t
¼ �g0

iω

c0
e
�iω t� x

c0

� �
: ðB:7Þ

Then, we suppose u0 as

u0 ¼ g0
c0

e
�iω t� x

c0

� �
¼ g0

c0
η0 ¼ c0

h0
η0: ðB:8Þ

The η0 ¼ exp [�iω(t � x/c0)] and u0 ¼ (c0/h0)η
0 satisfy Eqs. (B.4) and (B.5).

Substituting u0 ¼ (c0/h0)η
0 into Eq. (B.4), we obtain

∂η0

∂t
þ c0

∂η0

∂x
¼ 0: ðB:9Þ

Substituting (B.3) and (B.8) into (B.2) gives

∂
∂t

c0
h0
η0 þ u1

� �
þ c0

h0
η0 þ u1

� �
∂
∂t

c0
h0
η0 þ u1

� �
þ g0

∂
∂x

η0 þ η1
	 
 ¼ 0, ðB:10Þ

and we calculate as

∂u1

∂t
¼�c0

h0

∂η0

∂t
� c0

h0

� �2

η0
∂η0

∂x
� u1

c0
h0

∂η0

∂t

� η0
c0
h0

∂u1

∂t
� u1

∂u1

∂t
� g0

∂η0

∂x
� g0

∂η1

∂x
:

ðB:11Þ
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Considering that |η1|� |η0| and |u1|� |u0| and neglecting the small terms containing
|η1| or |u1| on the right-hand side, we approximate (B.11) as

∂u1

∂t
� �c0

h0

∂η0

∂t
� c0

h0

� �2

η0
∂η0

∂x
� g0

∂η0

∂x
: ðB:12Þ

Using Eq. (B.9), we calculate (B.12) as

∂u1

∂t
� c20
h0

∂η0

∂x
� c0

h0

� �2

η0
∂η0

∂x
� g0

∂η0

∂x

¼� c0
h0

� �2
η0

∂η0

∂x

¼ c0
h20
η0

∂η0

∂t

¼ c0
2h20

∂
∂t

η0
	 
2

:

ðB:13Þ

As a result, we obtain

u1 � c0
2h20

η0
	 
2

: ðB:14Þ

Substituting (B.8) and (B.14) into (B.1), we calculate

∂η x; tð Þ
∂t

¼�h0
∂
∂x

c0
h0
η0 þ c0

2h20
η0
	 
2" #

� ∂
∂x

η0 þ η1
	 
 c0

h0
η0 þ u1

� � �

¼�c0
∂η0

∂x
� c0
2h0

∂
∂x

η0
	 
2 � c0

h0

∂
∂x

η0
	 
2

� ∂
∂x

η1
c0
h0
η0

� �
� ∂
∂x

u1η0
	 
� ∂

∂x
η1u1
	 


:

ðB:15Þ

If we neglect the smaller terms on the right-hand side, we obtain

∂η x; tð Þ
∂t

� �c0
∂η0

∂x
� 3c0
2h0

∂
∂x

η0
	 
2

:

This is rewritten as

∂η x; tð Þ
∂t

� � ∂
∂x

c0 þ 3η0

2h0

� �
η0

 �
: ðB:16Þ
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Comparing (B.16) with (B.9), we find that η(x, t) propagates with the phase
velocity as

c � c0 þ 3η0

2h0

� �
η0: ðB:17Þ
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Chapter 3
Propagation of Tsunami and Seismic Waves

Abstract Tsunamis and seismic waves are generated by earthquakes. We often
reflexively discriminate the waves into tsunami and seismic waves. However, what
is the difference between tsunami and seismic waves? What is a tsunami? This is a
very simple but meaningful question. This chapter investigates the propagation
process of tsunami and seismic waves. Section 3.1 introduces the general mathe-
matics that is commonly used in wave theory. The basic theory involves continuum
mechanics. Section 3.2 illustrates how we define tsunami. The fundamental nature of
tsunami including the dispersion, particle motion, velocity distribution, and energy
flux is theoretically investigated. Section 3.3 contains an investigation of seismic
waves based on elastic dynamics. We define P, S, and Rayleigh waves. Also, ocean
acoustic waves are classified as seismic wave. In Section 3.4, we summarize the
similarities and differences between tsunami and seismic waves.

Keywords Tsunami · Seismic wave · Ocean acoustic wave · Equation of motion ·
Constitutive law

3.1 Governing Equations

3.1.1 Stress and Strain

In order to study waves, we need to devise a method for representing force and
deformation mathematically. The stress and strain tensors are used to represent the
force and deformation in continuum media (e.g., Aki and Richards 2002; Shearer
2009).

3.1.1.1 Stress

The force in a continuum medium is described by the stress tensor. In 3-D Cartesian
coordinates (x, y, z), the stress tensor is given by
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τ ¼
τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

0@ 1A: ð3:1Þ

Each component of the stress tensor represents the force per unit area. Consider a
virtual cube in a continuum medium as shown in Fig. 3.1a. The component τij
represents the stress (force per unit area) in the ith direction exerted on the plane of
which the normal vector is in the jth direction. For example, τxy represents force per
unit area in the x direction exerted on the plane of which the normal vector is in the
positive y direction. In particular, the component of the stress that is normal to the
plane (e.g., τxx) is called normal stress, and the stress that is parallel to the plane (e.g.,
τxy) is called shear stress. The force per unit area exerted on a plane is given by a
vector, which is referred to as traction. When the normal vector of a plane is given by
�n ¼ nx; ny; nz

� �
(�n is a unit vector; �nj j ¼ 1), the tractionT

�
�n
�
on the plane is given by

T
�
�n
� ¼ τ�n ¼

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

0@ 1A nx
ny
nz

0@ 1A: ð3:2Þ

In a continuum medium, the traction T
�
�n
�
depends on the plane direction �n in

addition to the location x. We need to specify not only the location x but also the
plane direction �n on which plane the force acts when specifying the force given by
the stress tensor in a continuum medium.

Fig. 3.1 (a) Each component of stress tensor τij indicates the traction in the ith direction exerted on
the plane of j. Traction is force per unit area exerted on a plane. (b) Traction T

�
�n
�
on a plane of

which the normal vector is �n. Traction has a dimension of force per area
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Stress in a fluid medium is a special case of the stress in a continuum medium. In
an ideal fluid, the shear stress is zero. The pressure P at a location in the fluid does
not depend on the direction of the plane on which the pressure acts. The
corresponding stress tensor is then represented as

τ ¼
�P 0 0
0 �P 0
0 0 �P

0@ 1A or τij ¼ �Pδij: ð3:3Þ

The negative sign in Eq. (3.3) is due to the definition of the difference in the signs of
the stress and pressure. Positive stress represents tensional force, whereas positive
pressure represents compressional force. Substituting Eq. (3.3) into Eq. (3.2), we
obtain the traction as T

�
�n
� ¼ �P�n. This indicates that traction is always perpendic-

ular to the plane (T
�
�n
� / �n

�
without shear stress. The amplitude of the traction is

given by P, which does not depend on the plane orientation �n.

3.1.1.2 Strain

We then consider deformation. We suppose that a particle in the medium is displaced
by the deformation where the particle moves from location x to x'. Then, the
displacement at x is defined as

u xð Þ ¼ x0 � x: ð3:4Þ

The deformation in a continuum medium is represented by the displacement vector
field u(x). If we consider that the displacement field is uniform in space as u
(x) ¼ const., the medium moves but does not show any deformation. Hence, the
deformation should be defined by using the spatial variation of the displacement field
(note that the spatial variation of the displacement does not always produce defor-
mation. Rotation of a rigid body gives spatial variation of the displacement but does
not give deformation). The deformation of the medium is represented by the strain
tensor defined by the spatial derivatives of the displacement as

eij ¼ 1
2

∂ui
∂x j

þ ∂u j

∂xi

� �
ð3:5Þ

and

e ¼
exx exy exz
eyx eyy eyz
ezx ezy ezz

0@ 1A: ð3:6Þ
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Let us examine a simple deformation/displacement field to introduce the strain
tensor.

3.1.1.3 Extensional Strain

Suppose the displacement field given by

ux ¼ αxþ x0, uy ¼ 0, uz ¼ 0: ð3:7Þ

The displacement field is illustrated in Fig. 3.2. The displacement occurs only in the
x direction and becomes large at large values of x with a constant rate of α (>0). In
Fig. 3.2, we suppose two points at x and x + Δx separated by the distance Δx at the
same z in a medium. Due to this displacement field, the two points move to x + ux(x)
and x + Δx + ux(x + Δx), respectively. The distance between the two points after this
deformation Δx

0
is given by

Δx0 ¼ xþ Δxþ ux xþ Δxð Þ � xþ ux xð Þð Þ ¼ 1þ αð ÞΔx: ð3:8Þ

This means that the medium is extended in the x direction with a constant rate of α
and the rate does not depend on the location x. The corresponding stress tensor is
exx ¼ α. This strain field exx (>0) is referred to as extensional strain.

Fig. 3.2 An example of
extensional strain
represented by the
displacement ux ¼ αx + x0 in
the (x, z) plane. The distance
Δx between two points at
x and x + Δx extends to
(1 + α)Δx
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3.1.1.4 Dilatation

Suppose the deformation where extensional strain occurs in all three axes, i.e., the x-,
y-, and z-axes, characterized by the strain tensor

e ¼
exx 0 0
0 eyy 0
0 0 ezz

0@ 1A: ð3:9Þ

When a cube whose sides are given by Δx, Δy, and Δz deforms due to the strain
tensor of Eq. (3.9), the three sides Δx, Δy, and Δz change to (1 + exx)Δx, (1 + eyy)Δy,
and (1 + ezz)Δz, respectively. Hence, the volume of the cube changes from
V ¼ ΔxΔyΔz to V + ΔV ¼ (1 + exx)(1 + eyy)(1 + ezz)ΔxΔyΔz. The ratio of the
volume change is given by

ΔV
V

¼ 1þ exxð Þ 1þ eyy
� �

1þ ezzð ÞΔxΔyΔz� ΔxΔyΔz
ΔxΔyΔz

� exx þ eyy þ ezz ¼ ∇ � u:
ð3:10Þ

This value is referred to as dilatation, which is given by the divergence of the
displacement field.

In tsunami modeling, seawater is usually assumed to show no dilatation. It is also
referred to as incompressible fluid in fluid dynamics, and the condition is given by

∇ � u ¼ exx þ eyy þ ezz ¼ 0: ð3:11Þ

3.1.1.5 Shear Strain

Suppose the displacement field given by

ux ¼ αz: ð3:12Þ

The displacement field is described in Fig. 3.3. The rectangle OABC changes into a
parallelogram OAB’C0 according to this displacement field. The stress tensor of the
displacement field of Eq. (3.12) is given by

e ¼
0 0

1
2
α

0 0 0
1
2
α 0 0

0BB@
1CCA: ð3:13Þ

This deformation is referred to as shear strain. The shear strain does not show the
volume change as — � u ¼ 0.
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Shear strain is an important factor in earthquakes because an earthquake can be
considered a sudden release of the shear strain accumulated in elastic solid earth.

3.1.2 Equation of Motion and Constitutive Laws

3.1.2.1 Equation of Motion

When considering an infinitesimal cube in a medium and supposing an equilibrium
of the total forces including the inertial force, traction, and the body force, we obtain
an equation of motion as

ρ
∂2ui x; tð Þ

∂t2
¼ ∂τik

∂xk
þ f i, ð3:14Þ

where ρ is the density of the medium and fi is the body force, that is, force applied per
unit volume. For example, gravity works as the body force for the medium, which is
given by f¼ (0, 0,�ρg0) where g0 is gravitational acceleration and the z-axis is taken
vertically upward. Also, the body force is often used as a source in seismic wave
excitation because an earthquake fault, or shear dislocation source, has been proved
to be represented by an equivalent body force distribution (see Chap. 4: Earth-
quakes). We use the Einstein summation convention: the summation is taken for a
repeated index. For example, k in Eq. (3.14) is a repeated index. Equation (3.14) is
then the same as

ρ
∂2ui x; tð Þ

∂t2
¼
X3
k¼1

∂τik
∂xk

þ f i

¼ ∂τix
∂x

þ ∂τiy
∂y

þ ∂τiz
∂z

þ f i, i ¼ x, y, z:

The equation of motion is one of the most fundamental equations for understanding
tsunamis and earthquakes.

Fig. 3.3 An example of
shear strain
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3.1.2.2 Laws of Medium Properties: Constitutive Law

The constitutive law, which determines the properties of the medium, is another
fundamental equation. For an elastic medium, it describes the relation between the
stress and the strain; in other words, it determines the elasticity of the medium: how
soft or hard the material is. The linear relationship between the strain and stress is
assumed to be

τij ¼ cijklekl, ð3:15Þ

where cijkl is referred to as the elastic tensor. This relation is referred to as generalized
Hooke’s law. If we assume that the elasticity of the medium is isotropic, the elastic
tensor is represented as

cijkl ¼ λδijδkl þ μ δilδ jk þ δikδ jl

� � ð3:16Þ

where λ and μ are referred to as Lamé parameters. With Eqs. (3.15), (3.16), and (3.5),
the stress tensor and strain tensor (or displacement) are related as

τij ¼ λδijekk þ 2μeij ¼ λδijuk,k þ μ ui, j þ u j, i
� �

, ð3:17Þ

where

ui, j ¼ ∂ui
∂x j

and uk,k ¼ ∂ux
∂x

þ ∂uy
∂y

þ ∂uz
∂z

:

The parameter μ is also referred to as the shear modulus or rigidity that relates
shear strain and shear stress as

τij ¼ 2μeij when i 6¼ j

This represents how hard the material is for shearing. The average value of μ in the
earth’s crust is 30–40 GPa. On the other hand, the parameter λ by itself does not have
a simple meaning. The constitutive law of Eq. (3.17) is often used for the elastic
earth medium (e.g., Aki and Richards 2002; Shearer 2009).

We here introduce the bulk modulus. Supposing a sphere in a medium with
pressure p, the sphere would shrink more with increasing pressure p + Δp. The bulk
modulus K is then defined as

Δp ¼ �K
ΔV
V

, ð3:18Þ
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where ΔV/V indicates the change in the volume with respect to the original volume.
This means that the bulk modulus represents how hard the material is for
compressing. Using Eq. (3.17), we calculate τxx + τyy + τzz as

τxx þ τyy þ τzz ¼ 3λþ 2μð Þ exx þ eyy þ ezz
� �

: ð3:19Þ

Since ekk + eyy + ezz ¼ ΔV/V and τxx + τyy + τzz ¼ � 3Δp, Eq. (3.19) is rewritten as

Δp ¼ � λþ 2
3
μ

� �
ΔV
V

: ð3:20Þ

Comparing (3.20) with (3.18), we obtain

K ¼ λþ 2
3
μ: ð3:21Þ

3.1.2.3 Compressible Fluid

For seawater, the resistance of the material with respect to shear strain is zero. The
resistance occurs only for the dilatation/compression. The corresponding constitu-
tive relation is given by

τij ¼ Kδijekk ¼ Kδijuk,k: ð3:22Þ

When modeling ocean acoustic waves, the seawater is usually approximated as
compressible fluid.

3.1.2.4 Incompressible Fluid

In an incompressible fluid, there is no dilatation. The properties of the medium are
represented as

∇ � u x; tð Þ ¼ 0: ð3:23Þ

In such media, Eq. (3.23) describes the material properties instead of the constitutive
law. When modeling tsunamis, the seawater is usually approximated as an incom-
pressible fluid without elasticity.
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3.1.2.5 Boundary Conditions

As a boundary condition of the earth surface, the traction at the surface is assumed to
be zero as

T x; y; z ¼ zsurð Þ ¼ 0: ð3:24Þ

where z ¼ zsur(x, y, t) represents the surface. This is referred to as free surface.
At the boundary between two different materials, both the traction vectors and the

displacement vectors are assumed to be continuous. For seismic wave problems, we
often encounter the boundary between seawater (fluid) and crust (solid). Since the
shear stress is zero in the seawater, the shear stress on the boundary between the
seawater and the crust is zero. Also, large shear strain is acceptable in the seawater
adjacent to the boundary since the shear modulus is zero in the seawater. This gives
that the tangential component of the displacements in the seawater and the crust can
be discontinuous. Only the normal component of the displacement is continuous at
the boundary between seawater and crust. For tsunami propagation problems, the
crust is often assumed to be rigid body where the normal component of the
displacement at the sea bottom is set as zero.

By using the equation of motion, the constitutive law, and boundary conditions,
we describe the wave propagation of tsunamis and seismic waves. The equation of
motion is common in tsunamis and seismic waves, whereas the constitutive laws are
different for tsunamis and seismic waves. We investigate tsunami propagation in
Sect. 3.2 Tsunami: Dynamics of Incompressible Fluid and seismic wave propagation
in Sect. 3.3 Seismic Waves: Elastic Dynamics.

3.2 Tsunami: Dynamics of Incompressible Fluid

3.2.1 Fundamental Equations of Tsunami

Tsunamis can be represented as surface-wave motion in incompressible sea.
The velocity in the water medium v(x, t) is given by the time derivative of the
displacement u(x, t) as

v x; tð Þ ¼ ∂u x; tð Þ
∂t

: ð3:25Þ

For tsunami modeling, the seawater is assumed to be an incompressible fluid, which
means the medium does not show dilatation (Eq. 3.23):

∇ � v x; tð Þ ¼ 0: ð3:26Þ
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Also, we assume that the velocity field v(x, t) is given by using the velocity potential
ϕ(x, t) as

v x; tð Þ ¼ ∇ϕ x; tð Þ: ð3:27Þ

This means that the velocity field does not contain the rotation component
(rot v(x, t) ¼ 0). Substituting Eq. (3.27) into Eq. (3.26), we obtain the Laplace
equation with respect to the velocity potential as

Δϕ x; tð Þ ¼ 0: ð3:28Þ

In seawater, there exists no shear stress. We represent the stress tensor as

τij ¼ �pδij, ð3:29Þ

where p is the pressure. Substituting Eq. (3.29) into the equation of motion
(Eq. 3.14), we obtain

∂v x; tð Þ
∂t

¼ � 1
ρ0

∇p x; tð Þ þ g0 ð3:30Þ

where ρ0 is the seawater density. We consider gravity as the body force: g0 is the
vector of gravitational acceleration. When we use the Cartesian coordinate where the
z-axis is taken as positive in the vertically upward direction and (x, y) space is in the
horizontal plane as shown in Fig. 3.4, the vector g0 is given by g0¼ � g0ez (g0¼ 9.8
m/s2 and ez is the unit base vector for the z-axis).

Let us consider a case when the system is in equilibrium. We describe it,
assuming no time dependence in Eq. (3.30), as

0 ¼ � 1
ρ0

∇p0 xð Þ þ g0, ð3:31Þ

where p0(x) is the pressure distribution in the static state, referred to as hydrostatic
pressure. We represent the total pressure p(x, t) in Eq. (3.30) as the sum of the
hydrostatic pressure p0(x) and excess pressure pe(x, t) as

p x; tð Þ ¼ p0 xð Þ þ pe x; tð Þ: ð3:32Þ

Substituting Eq. (3.32) into Eq. (3.30) and using Eq. (3.31), we obtain

∂v x; tð Þ
∂t

¼ � 1
ρ0

∇pe x; tð Þ:

Substituting Eq. (3.27) into this equation, we obtain
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∇
∂ϕ
∂t

þ 1
ρ0
pe x; tð Þ

� �
¼ 0:

This gives the excess pressure pe(x, t) as

pe x; tð Þ ¼ �ρ0
∂ϕ x; tð Þ

∂t
þ X tð Þ:

Since pe(x, t) should be zero when there is no velocity (ϕ ¼ const.), we represent the
excess pressure pe(x, t) using the velocity potential as

pe x; tð Þ ¼ �ρ0
∂ϕ x; tð Þ

∂t
: ð3:33Þ

As shown in Fig. 3.4, the sea surface at rest is set at z ¼ 0, and the sea-surface
height distribution is represented as z¼ η(x, y, t). We assume that the pressure is zero
at the sea surface, using p(x, y, z¼ η, t)¼0 as the boundary condition. When η(x, y, t)
is small enough, we consider it a linear problem. We treat only the linear problem in
this chapter, although some nonlinear problems are treated in Chap. 6. The pressure
at the sea surface z ¼ η is represented as

p x; y; η; tð Þ � p x; y; 0; tð Þ þ ∂p
∂z

���
z¼0

η

¼ p0 z ¼ 0ð Þ þ dp0
dz

���
z¼0

ηþ pe x; y; 0; tð Þ þ ∂pe
∂z

���
z¼0

η

¼�ρ0g0ηþ pe x; y; 0; tð Þ þ ∂pe
∂z

���
z¼0

η

��ρ0g0ηþ pe x; y; 0; tð Þ:

We neglected the higher-order term ∂zpe|z ¼ 0η. Then, the condition p(x, y, η, t)
¼0 gives the boundary condition of pe at z ¼ 0 as

pe x; y; z ¼ 0; tð Þ ¼ ρ0 g0η x; y; tð Þ: ð3:34Þ

Fig. 3.4 Coordinates used
in the formulation of water
waves
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Substituting Eq. (3.33) into Eq. (3.34), we obtain the boundary condition with
respect to the velocity potential as

∂ϕ x; tð Þ
∂t

����
z¼0

þ g0η x; y; tð Þ ¼ 0: ð3:35Þ

Since this boundary condition determines the relation between the force and
sea-surface motion, this is referred to as the dynamic boundary condition. On one
hand, the sea surface is assumed to be continuous; in other words, wave breaking
does not occur. Then, there exists a relation between the sea-surface height and the
velocity at the sea surface as ∂η/∂t ¼ vz at the sea surface, as the first-order
approximation (see also the second-order approximation as described in (6.11)).
The relation is given by using the velocity potential as

∂η x; y; tð Þ
∂t

����
z¼0

¼ ∂ϕ x; tð Þ
∂z

����
z¼0

: ð3:36Þ

This is referred to as a kinematic boundary condition. By using Eqs. (3.35) and
(3.36) and eliminating η(x, y, t), we represent the boundary condition with respect to
the velocity potential at z ¼ 0 as

∂2ϕ x; tð Þ
∂t2

�����
z¼0

þ g0
∂ϕ x; tð Þ

∂z

����
z¼0

¼ 0: ð3:37Þ

The sea bottom is assumed to be a rigid boundary. Then, only horizontal flow
exists, but vertical flow is not allowed at the boundary. Then, the boundary condition
at the sea bottom (z ¼ � h0) is given by

∂ϕ x; tð Þ
∂z

����
z¼�h0

¼ 0: ð3:38Þ

As a result, the velocity potential ϕ(x, t) needs to satisfy the Laplace equation
(Eq. 3.28) and the boundary condition at the sea surface (Eq. 3.37) and the sea
bottom (Eq. 3.38). In other words, to find the velocity potential ϕ(x, t) that satisfies
these equations is a mathematical problem in the wave theory of incompressible
fluids.

3.2.2 Tsunami

Suppose a constant sea depth and the sea bottom are located at z ¼ � h0. Let us
consider that the sea surface η(x, y, t) propagates along the x-axis as a monochromatic
plane wave with the angular frequency ω and the wavenumber k as
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η x; y; tð Þ ¼ η0e
i kx�ωtð Þ: ð3:39Þ

We seek a solution of the velocity potential ϕ(x, t) that satisfies the Laplace
equation (Eq. 3.28) and the boundary conditions of Eqs. (3.37) and (3.38). In
addition to these requirements, the sea-surface height η is represented as
Eq. (3.39). This represents the sea surface η(x, y, t) as complex number. Taking the
real part of the solution, we can synthesize or visualize the wavefield that is
comparable to actual records.

Since the wave propagation along the x-axis is represented as exp[i(kx� ωt)], the
velocity potential ϕ(x, t) may be represented as

ϕ x; tð Þ ¼ f zð Þei kx�ωtð Þ: ð3:40Þ

Substituting this into the Laplace equation of ϕ(x, t) (Eq. 3.28) gives an ordinary
differential equation with respect to z as

d2f zð Þ
dz2

¼ k2f zð Þ: ð3:41Þ

The general solution of this equation is given by

f zð Þ ¼ Acosh kzð Þ þ Bsinh kzð Þ, ð3:42Þ

where A and B are the coefficients. These coefficients are to be determined so as to
satisfy the boundary conditions. The velocity potential is then represented as

ϕ x; tð Þ ¼ Acosh kzð Þ þ Bsinh kzð Þ½ �ei kx�ωtð Þ: ð3:43Þ

Consider a boundary condition such that the vertical velocity is zero at the sea
bottom (Eq. 3.38):

∂ϕ x;tð Þ
∂z

���
z¼�h0

¼ Aksinh kzð Þ þ Bkcosh kzð Þ½ �z¼�h0
ei kx�ωtð Þ

¼ �Aksinh kh0ð Þ þ Bkcosh kh0ð Þ½ �ei kx�ωtð Þ

¼ 0:

ð3:44Þ

Since this always needs to be satisfied for any values of x and t, we find

B ¼ sinh kh0ð Þ
cosh kh0ð ÞA:

The velocity potential is then written as

ϕ x; tð Þ ¼ A cosh kzð Þ þ sinh kh0ð Þ
cosh kh0ð Þ sinh kzð Þ

� �
ei kx�ωtð Þ: ð3:45Þ
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By substituting this into the boundary condition at the sea surface (Eq. 3.37), we
obtain

�ω2A cosh kzð Þ þ sinh kh0ð Þ
cosh kh0ð Þ sinh kzð Þ

h i
z¼0

ei kx�ωtð Þ

þ g0A ksinh kzð Þ þ k sinh kh0ð Þ
cosh kh0ð Þ cosh kzð Þ

h i
z¼0

ei kx�ωtð Þ ¼ 0:
ð3:46Þ

This gives

�ω2 þ g0k
sinh kh0ð Þ
cosh kh0ð Þ

� �
Aei kx�ωtð Þ ¼ 0:

Hence, to satisfy this equation, we obtain the relation between the angular frequency
ω and the wavenumber k as

ω2 ¼ g0k tanh kh0ð Þ: ð3:47Þ

This is the dispersion relation. Furthermore, by using the dynamic boundary condi-
tion at the sea surface (Eq. 3.35), the sea-surface height η(x, y, t) is given by

η x; y; tð Þ ¼ � 1
g0

∂ϕ x;tð Þ
∂t

���
z¼0

¼ iωA

g0
cosh kzð Þ þ sinh kh0ð Þ

cosh kh0ð Þ sinh kzð Þ
� �

z¼0

ei kx�ωtð Þ

¼ iωA

g0
ei kx�ωtð Þ

ð3:48Þ

Comparing this with η(x, y, t) ¼ η0 exp [i(kx � ωt)] (Eq. 3.39), we determine the
coefficient A. Finally, we obtain the velocity potential as

ϕ x; tð Þ ¼ g0η0
iω

cosh kzð Þ þ sinh kh0ð Þ
cosh kh0ð Þ sinh kzð Þ

� �
ei kx�ωtð Þ

¼ g0η0
iω

cosh k zþ h0ð Þ½ �
cosh kh0ð Þ ei kx�ωtð Þ

ð3:49Þ

This velocity potential satisfies the Laplace equation (Eq. 3.28) and all the boundary
conditions Eqs. (3.37), (3.38), and (3.39).

The velocity and pressure change from the hydrostatic pressure are represented
by using the velocity potential as

v x; tð Þ ¼ ∇ϕ x; tð Þ, ð3:27Þ

and

pe x; tð Þ ¼ �ρ0
∂ϕ x; tð Þ

∂t
, ð3:33Þ
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respectively. Then, when the sea surface propagates along the x-axis as η(x, y, t) ¼
η0 exp [i(kx � ωt)], vx(x, t) is given by the gradient of the velocity potential
(Eq. 3.27) as

vx x; tð Þ ¼ ∂ϕ x; tð Þ
∂x

¼ g0η0k

ω

cosh k zþ h0ð Þ½ �
cosh kh0ð Þ ei kx�ωtð Þ

¼ωη0
g0k

ω2

cosh k zþ h0ð Þ½ �
cosh kh0ð Þ ei kx�ωtð Þ

and by using the dispersion relation (Eq. 3.47)

vx x; tð Þ ¼ ωη0
cosh k zþ h0ð Þ½ �

sinh kh0ð Þ ei kx�ωtð Þ: ð3:50Þ

Similarly, we obtain

vy x; tð Þ ¼ 0, ð3:51Þ

and

vz x; tð Þ ¼ �iωη0
sinh k zþ h0ð Þ½ �

sinh kh0ð Þ ei kx�ωtð Þ: ð3:52Þ

An integration of the velocity with respect to time gives the displacement as

ux x; tð Þ ¼ iη0
cosh k zþ h0ð Þ½ �

sinh kh0ð Þ ei kx�ωtð Þ, ð3:53Þ

uy x; tð Þ ¼ 0, ð3:54Þ

and

uz x; tð Þ ¼ η0
sinh k zþ h0ð Þ½ �

sinh kh0ð Þ ei kx�ωtð Þ: ð3:55Þ

Figure 3.5 which illustrates Eqs. (3.53) and (3.55) shows the spatial distributions
of the sea-surface height η(x, y, t) ¼ η0 exp [i(kx � ωt)] and the displacement vector
(ux, uz). We made this figure by taking the real part of the sea-surface height η(x, y, t)
and the water particle displacement vector (ux, uz). The sea depth is set as h0 ¼ 4 km,
and the wavelength is set as λ ¼ 40 km. Due to the dispersion relation, ω2

¼ g0k tanh (kh0) (Eq. 3.47), the angular frequency (or wave period T ) ω ¼ 2π/T is
uniquely determined when the wavelength is given by λ ¼ 2π/k. The wave period is
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T~210 s for the wavelength λ ¼ 40 km at the sea depth of 4 km. This wave is long-
wavelength wave or shallow-water wave.

At t ¼ 0 s, the peak height of 1 m is located at x ¼ 0 km. The peak moves
rightward (positive x direction) with increasing time. At the time of t¼ 60 s, the peak

Fig. 3.5 Spatial distributions of the sea-surface height η(x, y, t) ¼ η0 exp [�i(ωt � kx)] (η0 ¼ 1m)
and the water particle displacement vector (ux, uz) for elapsed times of 0, 10, 20, 30, 40, 50, and 60 s.
The sea depth is 4 km. The wavelength of the ocean wave is 40 km
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arrives at the point x~12 km, which corresponds to a phase velocity of 0.2 km/s. If
we confine our attention to a single water particle located at (x, z) ¼ (0 km, 0 km), at
the time of t ¼ 0 s, the water particle is displaced vertically upward. Then, as time
elapses, the displacement vector rotates in a clockwise direction. At the time of about
50–60 s, the vector points in the positive x direction. It takes T~210 s for one
rotation. Because the wave propagates toward the positive x direction, this particle
motion is referred to as prograde rotation (Figure 3.6).

Figure 3.7 displays the spatial distributions of the sea-surface height and the water
particle displacement vector for the short-wavelength wave given by λ ¼ 10 km. A
peak sea-surface height of 1 m located at x¼ 0 km at the time of t¼ 0 s arrives at the
point x~7.5 km at the elapsed time of t ¼ 60 s. This corresponds to a phase velocity
of 0.125 km/s. This phase velocity is slower than that of the long wavelength
(0.2 km/s for λ ¼ 40 km). The particle motion rotates in the clockwise direction as
in the case of the long wavelength (prograde rotation), but the displacement is
smaller. In particular, for the displacements in deep ocean (e.g., z ¼ � 2 and �3
km), there is large discrepancy between the long-wave and short-wave cases
(Figs. 3.5 and 3.7). Figure 3.7 indicates that the particle motion is limited within
the shallower part (z¼ � 2 - 0 km) when the wavelength is short. This contrasts with
the fact that the motion of the water particle extends the whole water layer in the case
of the long wavelength.

3.2.2.1 Phase Velocity

The equations for ux and uz (Eqs 3.53 and 3.55) indicate that the wave propagates in
the positive x direction according to exp[i(kx� ωt)]. The phase velocity c is given by
c ¼ ω/k, where the dispersion relation is given by ω2 ¼ g0k tanh (kh0) (Eq. 3.47).
Then, the phase velocity is

Fig. 3.6 Rotation directions. (a) When the rotation direction is the same as the direction of the
rolling wheel in the propagation, the rotation direction is referred to as prograde rotation. (b) When
the rotation direction is the opposite of that of the rolling wheel in the propagation, the rotation
direction is referred to as retrograde rotation
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Fig. 3.7 Spatial distributions of the sea-surface height η(x, y, t) ¼ η0 exp [�i(ωt � kx)] (η0 ¼ 1m)
and the water particle displacement vector (ux, uz) for the elapsed times of 0, 10, 20, 30, 40, 50, and
60 s. The sea depth is 4 km. The wavelength of the ocean wave is 10 km

66 3 Propagation of Tsunami and Seismic Waves



c ¼ ω

k
¼

ffiffiffiffiffiffiffiffiffi
g0h0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh kh0ð Þ

kh0

s
¼

ffiffiffiffiffi
g0
k

r
for kh0 � 1ffiffiffiffiffiffiffiffiffi

g0h0
p

for kh0 � 1

8<:
¼

ffiffiffiffiffiffiffi
g0λ

2π

r
for λ � h0ffiffiffiffiffiffiffiffiffi

g0h0
p

for λ � h0

8<: : ð3:56Þ

Figure 3.8 plots the phase velocity c as a function of the wavenumber
k normalized by the sea depth h0. For a sea depth of 4 km, the wavelengths
λ ¼ 40 km and 10 km correspond to the normalized values of kh0 ¼ 2πh0/λ¼ 0.63
and 2.5, respectively. Figure 3.8 indicates that the phase velocity is ce0:95 ffiffiffiffiffiffiffiffiffi

g0h0
p

(0.19 km/s) and 0:63
ffiffiffiffiffiffiffiffiffi
g0h0

p
(0.125 km/s) for kh0 ¼ 2πh0/λ¼ 0.63 (λ ¼ 40 km) and

2.5 (λ ¼ 10 km), respectively. These estimated phase velocities were confirmed in
Figs. 3.5 and 3.7.

3.2.2.2 Particle Orbit

Figures 3.9a and b shows the orbit of the particle motion at various depths of z¼
0, �1, �2, �3, �3.9 km for the wave of η0 ¼ 1 m.

Fig. 3.8 Phase velocity as a function of kh0, where k is the wavenumber of the ocean wave and h0 is
the sea depth
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First, we consider the case when the wavelength is relatively long given by λ¼
40 km in a sea depth of 4 km (kh0¼ 0.63). When the wavelength is relatively longer
than the sea depth (kh0 < 1) (and note that k(h0 + z) < kh0 < 1 because z is always
negative), the real part of the water particle displacements is approximated as

ux x; tð Þ ¼ η0
cosh k zþ h0ð Þ½ �

sinh kh0ð Þ sin ωt � kxð Þ

� η0
kh0

1þ 1
2
k2 zþ h0ð Þ2

� �
sin ωt � kxð Þ for kh0 � 1,

ð3:57Þ

and

uz x; tð Þ ¼ η0
sinh k zþ h0ð Þ½ �

sinh kh0ð Þ cos ωt � kxð Þ

� η0 1þ z

h0

� �
cos ωt � kxð Þ for kh0 � 1:

ð3:58Þ

These waves are long waves or shallow-water waves. At the sea surface (z ¼ 0),
these are given by

ux x; y; z ¼ 0; tð Þ � η0
kh0

1þ 1
2
kh0ð Þ2

� �
sin ωt � kxð Þ

� η0
kh0

sin ωt � kxð Þ,
ð3:59Þ

and

uz x; y; z ¼ 0; tð Þ � η0 cos ωt � kxð Þ for kh0 � 1: ð3:60Þ

Fig. 3.9 Orbits of the particle motion at various depths of 0, 1, 2, 3, and 3.9 km for a sea depth of
4 km. (a) The wavelength λ is 40 km and (b) 10 km
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The orbit is an ellipse with a long horizontal axis of η0/kh0~1.6 m and a short vertical
axis of η0 ¼ 1 m. The horizontal displacement is longer than the vertical displace-
ment at any depth from the sea surface to the sea bottom. In the deeper portion,
the vertical short axis decreases appreciably. It becomes zero at the sea bottom
(z ¼ -4 km). Since the horizontal and vertical displacements are represented using
sin(ωt � kx) and cos(ωt � kx), respectively, the particle motion shows a
clockwise rotation for all depths.

We then consider the case when the wavelength is short. Figure 3.9b shows the
orbit of the particle motion for the wavelength λ ¼ 10 km with a sea depth of 4 km
(kh0¼2.5). When the wavelength is relatively shorter than the sea depth (kh0 � 1),
the real parts of the water particle displacements are approximated as

ux x; tð Þ ¼ η0
cosh k zþ h0ð Þ½ �

sinh kh0ð Þ sin ωt � kxð Þ
� η0e

kz sin ωt � kxð Þ for kh0 � 1,
ð3:61Þ

and

uz x; tð Þ ¼ η0
sinh k zþ h0ð Þ½ �

sinh kh0ð Þ cos ωt � kxð Þ
� η0e

kz cos ωt � kxð Þ for kh0 � 1:
ð3:62Þ

At the sea surface (z¼ 0 km), the orbit is a circle with a radius of η0¼ 1 m. In the
deeper portion, both the horizontal and vertical displacements rapidly decrease as
exp(kz). This indicates that the wave motions are localized only within a shallow sea
depth (�1/k < z < 0) for short wavelengths. These waves are short-wavelength waves
or deep water waves.

3.2.2.3 Pressure Change

Ocean-bottom pressure gauges are among the most useful and common sensors for
the detection of tsunamis. Therefore, it is important to derive the relation between the
ocean wave height η(x, y, t) ¼ η0 exp [i(kx � ωt)] and the ocean-bottom pressure
change pe(x, y, z ¼ � h0, t). The pressure caused by the wave motion is represented
using the velocity potential (Eq. 3.49), pe(x, t) ¼ � ρ0∂ϕ(x, t)/∂t (Eq. 3.33) as

pe x; tð Þ ¼ ρ0g0η0
cosh k zþ h0ð Þ½ �

cosh kh0ð Þ ei kx�ωtð Þ: ð3:63Þ

For the sea-bottom pressure change, substituting z ¼ � h0, we obtain the
sea-bottom pressure change due to the ocean wave height (Eq. 3.39) as

pe x; y;�h0; tð Þ ¼ ρ0g0η0
cosh kh0ð Þ e

i kx�ωtð Þ: ð3:64Þ
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If the tsunami wavelength is much longer than the sea depth, this is approximated
as

pe x; y;�h0; tð Þ � ρ0g0η0e
i kx�ωtð Þ for kh0 � 1

¼ ρ0g0η x; y; tð Þ: ð3:65Þ

The factor 1/ cosh (kh0) (in Eq. 3.64) represents the effect of the water layer on the
ocean-bottom pressure change. Figure 3.10 shows the factor 1/ cosh (kh0) as a
function of the wavelength normalized by the sea depth h0. When the wavelength
λ is ten times greater than the sea depth (kh0 ¼ 2πh0/λ~0.6), the pressure change at
the sea bottom is about 83% of the value predicted by the simple relation ρ0g0η. For
tsunamis, the wavelength is usually much longer than the sea depth, so that the
hydrostatic relation of pe(x, y, t)~ρ0g0η(x, y, t) (Eq. 3.65) may be a good approxima-
tion. However, it should be noted that it would be necessary to use Eq. (3.64) instead
of the simple hydrostatic relation (3.65) in analyzing short-wavelength tsunamis.

The pressure change described here is caused by the tsunami propagation only. In
addition to this effect, a pressure change is also brought about by the tsunami
generation. This effect is important when using pressure sensors installed inside
the focal area. We treat this mechanism in Chap. 5: Tsunami Generation.

3.2.2.4 Tsunamis as Band-Limited Ocean Waves: Group Velocity

We have treated tsunami propagation as a monochromatic plane wave. Actually, a
tsunami is a transient wave that is represented by the sum of monochromatic waves
with different frequencies.

An idealistic impulsive wave is represented by the delta function as

f tð Þ ¼ δ tð Þ: ð3:66Þ

Fig. 3.10 The factor of
1/ cosh (kh0) as a function of
the wavenumber
k normalized by the sea
depth h0
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The impulsive wave represented by the delta function is composed of the entire
angular frequency band ranging from ω ¼ � 1 to ω ¼ 1 as

f tð Þ ¼ 1
2π

Z 1

�1
bf ωð Þe�iωtdω, ð3:67Þ

where

bf ωð Þ ¼ 1 for all ω: ð3:68Þ

An actual tsunami is a transient wave and is considered as a wave packet with a
limited band of angular frequency. As a simple model, we consider the wave packet
for which the frequency content is characterized by the dominant angular frequency
ω0 with a bandwidth of Δω as shown in Fig. 3.11.

The frequency content, for example, is given by the Gaussian function as

bf ωð Þ ¼ e
� ω�ω0ð Þ2

Δω=4ð Þ2 : ð3:69Þ

A monochromatic ocean wave is represented by exp[i(kx � ωt)] where the angular
frequency ω and the wavenumber k need to satisfy the dispersion relation ω2

¼ g0k tanh (kh0) (Eq. 3.47). Hence, the sea-surface height η which is composed of
finite-band frequency contents is given by

f x; tð Þ ¼ 1
2π

Z 1

�1
bf ωð Þei kx�ωtð Þdω, ð3:70Þ

where the wavenumber k is a function of ω according to the dispersion relation, k¼ k
(ω) (Eq. 3.47). By substituting the frequency component bf ωð Þ given by Eq. (3.69)
into Eq. (3.70), we describe the ocean waves composed of a finite-frequency band.
However, a rigorous integration with respect to ω in Eq. (3.70) is difficult, because
k is a function of ω.

To gain a clear perspective on wave description, we use an approximation method
instead of a rigorous integration. A function ωt � kx in the exponent in Eq. (3.70) is

Fig. 3.11 Spectrum of a
wave packet. It is
characterized by the
dominant angular frequency
ω0 with the bandwidth of
Δω
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expanded around the dominant angular frequency ω ¼ ω0 by a Taylor series (e.g.,
Snieder and van Wijk 2015) as

ωt � kx ¼ ω0t � k0xð Þ þ d ωt�kxð Þ
dω

���
ω¼ω0

ω� ω0ð Þ þ O ω� ω0ð Þ2

� ω0t � k0xð Þ þ t � dk
dω

��
ω¼ω0

x

 �

ω� ω0ð Þ

¼ ω0t � k0xð Þ þ t � x

U0

� �
ω� ω0ð Þ

ð3:71Þ

where we defined

U ¼ 1
dk
dω

, ð3:72Þ

and k0 ¼ k(ω0) and U0 ¼ U(ω0). Substituting (3.71) into Eq. (3.70) gives

f x; tð Þ � 1
2π

ei k0x�ω0tð Þ
Z 1

�1
bf ωð Þe�i t� x

U0


 �
ω�ω0ð Þ

dω ð3:73Þ

where bf ωð Þ is given by Eq. (3.69). Then, we calculate the following:

f x; tð Þ � 1
2π

ei k0x�ω0tð Þ
Z 1

�1
e
� ω�ω0ð Þ2

Δω=4ð Þ2 e
�i t� x

U0


 �
ω�ω0ð Þ

dω

¼ 1
2π

ei k0x�ω0tð Þ
Z 1

�1
e
� ω02

Δω=4ð Þ2e
�i t� x

U0


 �
ω0
dω0

¼ Δω
8
ffiffiffi
π

p ei k0x�ω0tð Þe
�1
4

Δω
4

� �2
t � x

U0


 �2
:

ð3:74Þ

Figure 3.12 plots the waveforms calculated with Eq. (3.74) for the travel distances
x¼ 400, 500, and 600 km across a sea of 4 km in depth using black lines. The
frequency content bf ωð Þ is set with ω0 ¼ 0.029 s�1 and Δω ¼ 0.0071 s�1. The
dominant angular frequency corresponds to the wavelength λ ¼ 40 km in a sea of
4 km in depth. The dominant period of the waves is given by T0 ¼ 2π/ω0~215 s.

Eq. (3.74) indicates that the envelope of the waveform is given by

g x; tð Þ ¼ Δω
8
ffiffiffi
π

p e
� Δω

8ð Þ2 t� x
U0


 �2

¼ Δω
8
ffiffiffi
π

p e
� 1

4
32
Δωð Þ�2

t� x
U0


 �2

: ð3:75Þ

The envelopes are also plotted using gray lines in Fig. 3.12. Equation (3.75)
indicates that the envelope duration is determined by the bandwidth of Δω; the
duration is given by ~ 32/Δω. The envelope peak propagates with the velocity of U0
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where U0 ¼ U(ω0) is derived by Eq. (3.72) with the dispersion relation (Eq. 3.47).
The velocity U is referred to as the group velocity. Differentiating the dispersion
relation (Eq. 3.47) with respect to ω gives

2ω ¼ dk

dω

d

dk
g0ktanh kh0ð Þ½ �

¼ dk

dω
g0tanh kh0ð Þ þ g0kh0

cosh2 kh0ð Þ

� �
¼ dk

dω

ω2

k
þ h0ω2

cosh kh0ð Þsinh kh0ð Þ
� �

,

and

2 ¼ dk

dω

ω

k
þ 2h0ω
sinh 2kh0ð Þ

� �
: ð3:76Þ

Thus, by using Eqs. (3.72) and (3.76), we represent the group velocity as

U ¼ dk

dω

� ��1

¼ 1
2
ω

k
1þ 2kh0

sinh 2kh0ð Þ
� �

¼ c

2
1þ 2kh0

sinh 2kh0ð Þ
� �

, ð3:77Þ

where c is the phase velocity given by Eq. (3.56).

Fig. 3.12 Waveforms at the distance of x¼ 400, 500, and 600 km. Each waveform is composed of
the frequency contents characterized by the dominant angular frequency of ω0 ¼ 0.029 s�1 and the
bandwidth of Δω ¼ 0.0071 s�1 in Eq. (3.69). The blue line and blue dashed line indicate the group
velocity of U ¼ 0.166 km/s and the phase velocity of c ¼ 0.19 km/s, respectively
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The phase velocity is plotted as a function of the normalized wavenumber in
Fig. 3.8. In practice, we observe tsunami waveforms as functions of time. Hence,
treating the phase velocity and the group velocity as functions of frequency is useful.
The dispersion relation (Eq. 3.47) is approximated as Eq. (3.78)

ω2 ¼ g0ktanh kh0ð Þ ¼ g0k kh0ð Þ for kh0 � 1
g0k for kh0 � 1:

�
ð3:78Þ

Figure 3.13a plots the relation between the wavelength and the wave frequency
based on the dispersion relation. When the wave frequency is very low, the relation
between the frequency and the wavenumber is given by ω2 � g0k(kh0) or
ω � ffiffiffiffiffiffiffiffiffi

g0h0
p

k. Then, the wavelength is approximately given by
λ ¼ 2π=k � 2π

ffiffiffiffiffiffiffiffiffi
g0h0

p
=ω ¼ ffiffiffiffiffiffiffiffiffi

g0h0
p

=f . On the other hand, when the wave frequency
is very high, the dispersion relation becomes ω2� g0k. The wavelength is then given
by λ � g0/(2πf

2), indicating that the wavelength does not depend on the sea depth.
The phase velocity and group velocity are given by

c ¼ ω

k
¼

ffiffiffiffiffiffiffiffiffi
g0h0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh kh0ð Þ

kh0

s
¼

ffiffiffiffiffiffiffiffiffi
g0h0

p
for kh0 � 1ffiffiffiffiffiffiffiffiffi

g0=k
p

for kh0 � 1

�
ð3:79Þ

and

U ¼ dk

dω

� ��1

¼ c

2
1þ 2kh0

sinh 2kh0ð Þ
� �

¼
ffiffiffiffiffiffiffiffiffi
g0h0

p
for kh0 � 1

1
2

ffiffiffiffiffi
g0
k

r
for kh0 � 1

8<: : ð3:80Þ

Fig. 3.13 (a) Wavelength as a function of wave frequency for the sea depths of 1 km (blue line) and
4 km (black line) derived by the dispersion relation (Eq. 3.47). (b) Phase velocity for the sea depths
of 1 km (blue solid line) and 4 km (black solid line) and group velocity for the sea depths of 1 km
(blue dashed line) and 4 km (black dashed line)
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In Figure 3.13b, the group velocity (Eq. 3.80) is plotted by dashed lines. At a low
frequency or a long wavelength (kh0 � 1), the group velocity becomes the same as
the phase velocity, which does not depend on the frequency. At a high frequency
(or a short wavelength, kh0 � 1), the group velocity decreases with increasing wave
frequency and is independent of the sea depth. The group velocity is generally
smaller than the phase velocity and half of the phase velocity when the frequency
is very high.

It is interesting to consider why the tsunami propagation velocity depends on the
frequency in high-frequency waves and depends on the sea depth in low-frequency
waves (see Eqs. (3.79) and (3.80)). We may intuitively interpret it from the view-
point of the restoring force. The restoring force of the ocean waves is gravity. When
the wavelength is short enough compared to the sea depth (kh0 � 1), the particle
motions of the ocean waves are confined to near the sea surface given by �1/
k < z < 0, because of the exponential decaying factors of exp(kz) (Eqs. 3.61 and
3.62). In this case, the waves do not detect the sea bottom (Figure 3.14a). As a result,
the phase and group velocities are independent of the sea depth h0 and depend on the
wavenumber or the wavelength. When considering the ocean wave oscillation, the
water volume of ~ λ/2π � S is oscillating (Figure 3.14a), where S is the area in the
horizontal plane. The force due to the gravity on this region is proportional to the
volume λ/2π � S. This means that when the wavelength is longer, the restoring force
becomes large. The large restoring force results in wave propagation at a higher
velocity. If you suppose elastic wave propagation (which we also treat in Sect. 3.3
Seismic Waves: Elastic Dynamics), you may consider the role of this oscillating
volume λ/2π � S in ocean wave propagation as the role of the elastic coefficient. A
large-volume oscillating body in the ocean waves or a hard elastic material in elastic
waves gives a high restoring force, which results in fast wave propagation.

When the wavelength becomes much longer than the sea depth (kh0 � 1), the
particle motions of the ocean waves are distributed from the sea bottom to the sea
surface (�h0 � z � 0). Since the sea depth is finite, the oscillating body has a
limitation even if the wavelength increases (Figure 3.14b). As a result, the phase and
group velocities become independent of the wavelength when the wavelength is
much longer than the sea depth but depend on the sea depth h0.

Fig. 3.14 (a) When the wavelength of the ocean waves is short (kh0 � 1), the shallow part of the
water layer (~ � λ/2π < z < 0) is in motion, but the ocean wave does not reach deeper part. The
portion in motion increases with increasing wavelength. (b) When the wavelength of the ocean
waves is long (kh0 � 1)), the whole water layer (�h0 < z < 0) is in motion
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3.2.3 Energy Density and Energy Flux Density
for Incompressible Fluid

It is fundamentally important to introduce energy density and energy flux density in
wave theory. These parameters satisfy a continuity equation in an incompressible
fluid medium.

Substituting Eq. (3.32) into Eq. (3.30) and using Eq. (3.31), we rewrite the
equation of motion for the ith component as

∂vi x; tð Þ
∂t

¼ � 1
ρ0

∂pe x; tð Þ
∂xi

: ð3:81Þ

We consider complex number for the velocity and the pressure in this formulation as
in Eq. (3.39). Multiplying v∗i x; tð Þ by Eq. (3.81) (* indicates complex conjugate),

v∗i
∂vi x; tð Þ

∂t
¼ � 1

ρ0
v∗i

∂pe x; tð Þ
∂xi

,

and adding its complex conjugate gives

v∗i
∂vi
∂t

þ vi
∂v∗i
∂t

¼ � 1
ρ0

v∗i
∂pe
∂xi

þ vi
∂p∗e
∂xi

� �
:

This is calculated as Eq. (3.82)

ρ0
∂
∂t

viv
∗
i

� � ¼� ∂pe
∂xi

v∗i þ ∂p∗e
∂xi

vi

� �
¼� ∂

∂xi
pev

∗
i

� �� pe
∂v∗i
∂xi

þ ∂
∂xi

p∗e vi
� �� p∗e

∂vi
∂xi

� �
¼� ∂

∂xi
pev

∗
i þ p∗e vi

� �
,

ð3:82Þ

where we assumed that the seawater is incompressible (∂vk)/(∂xk) ¼ 0. We here
define energy density E(x, t) and energy flux density vector J(x, t) as

E x; tð Þ ¼ 1
2
ρ0viv

∗
i , ð3:83Þ

and

Ji x; tð Þ ¼ 1
2

pev
∗
i þ p∗e vi

� �
, ð3:84Þ

respectively. Energy density E(x, t) represents the energy per unit volume (e.g., J/m3),
and the energy flux density vector J(x, t) represents the amount of energy passing
through a unit area perpendicular to the propagation direction per unit time (e.g.,
J/m2/s). Substituting Eqs. (3.83) and (3.84) into Eq. (3.82), we obtain
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∂E x; tð Þ
∂t

þ div J x; tð Þ ¼ 0: ð3:85Þ
This equation represents a continuity equation of energy.

Equation (3.85) is integrated in space over volume V0 as

∂
∂t

ZZZ
V0

E x; tð ÞdV xð Þ ¼ �
ZZZ

V0

div J x; tð ÞdV xð Þ

¼ �
ZZ

S0

J x; tð Þ � �n dS xð Þ ð3:86Þ

in which Gauss’s theorem (the divergence theorem) was used. This equation means
that the increasing rate of the total energy inside the volume V0 (the left-hand side) is
given by the total energy flowing into the volume through its surface S0 (the right-
hand side) (Figure 3.15).

Equation (3.86) represents the conservation of energy in infinite three-
dimensional space. Because tsunami propagation involves horizontal propagation
but does not propagate along the vertical direction, it is useful to derive the energy
conservation in the two-dimensional (horizontal) space in tsunami problems. In the
Cartesian coordinates shown in Fig. 3.4, Eq. (3.85) is integrated over the vertical
direction from the sea bottom to the sea surface as

0 ¼ ∂
∂t

Z0
�h0

E x; tð Þdzþ
Z0
�h0

div J x; tð Þdz

¼ ∂
∂t

Z0
�h0

E x; tð Þdzþ
Z0
�h0

∂Jx x; tð Þ
∂x

þ ∂Jy x; tð Þ
∂y

� �
dz

þJz x; y; 0; tð Þ � Jz x; y;�h0; tð Þ

ð3:87Þ

From the definition of the energy flux density in 3-D space (Eq. 3.84) and the
boundary conditions at z ¼ 0 (Eqs. 3.35 and 3.36), the energy flux density in the
z component Jz(x, y, z, t) at the surface z ¼ 0 is calculated as

Fig. 3.15 Energy flux
density J(x, t) flows into a
region of volume V0 with the
surface S0. The unit vector
normal to the surface is
given by �n. The positive sign
of �n means that the vector is
directed outward from the
volume. Then, the flux that
flows into the volume
through the small surface
dS0 is given by
�J x; tð Þ � �n dS0
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Jz x; y; 0; tð Þ ¼ 1
2
pev

∗
z þ p∗e vz

� �����
z¼0

¼ 1
2

ρ0g0η
∂ϕ∗

∂z
þ ρ0g0η

∗ ∂ϕ
∂z

� �����
z¼0

¼ 1
2
ρ0g0 η

∂η∗

∂t
þ η∗

∂η
∂t

� �
¼ 1

2
ρ0g0

∂
∂t

ηη∗ð Þ:
ð3:88Þ

The energy flux density in the z component at the surface z ¼ 0 is represented using
the sea-surface height η for incompressible fluid. Equation (3.87) is then rewritten as
Eq. (3.89)

0 ¼ ∂
∂t

Z0
�h0

E x; tð Þdzþ
Z0
�h0

∂Jx x; tð Þ
∂x

þ ∂Jy x; tð Þ
∂y

� �
dz

þ1
2
ρ0g0

∂
∂t

ηη∗ð Þ � Jz x; y;�h0; tð Þ

¼ ∂
∂t

Z0
�h0

E x; tð Þdzþ 1
2
ρ0g0ηη

∗

264
375þ ∂

∂x

Z0
�h0

Jx x; tð Þdzþ ∂
∂y

Z0
�h0

Jy x; tð Þdz

ð3:89Þ

where we assumed that the vertical velocity is zero at the sea bottom and set it as
Jz(x, y,�h0, t) ¼ 0. We then define the energy density E2D(x, y, t) and energy flux
density J2D(x, y, t) in the two-dimensional horizontal space as Eq. (3.90)

E2D x; y; tð Þ ¼
Z0
�h0

E x; tð Þdzþ 1
2
ρ0g0 ηj j2

¼ 1
2
ρ0

Z 0

�h0

vxj j2 þ vy
�� ��2 þ vzj j2


 �
dzþ 1

2
ρ0g0 ηj j2,

ð3:90Þ

and

J2D,x x; y; tð Þ ¼ 1
2

Z 0

�h0

pev
∗
x þ p∗e vx

� �
dz,

J2D,y x; y; tð Þ ¼ 1
2

Z 0

�h0

pev
∗
y þ p∗e vy


 �
dz:

ð3:91Þ

Then, Eq. (3.89) represents a continuity equation of energy in 2D form as

∂E2D x; y; tð Þ
∂t

þ∇xy � J2D x; y; tð Þ ¼ 0, ð3:92Þ

where — xy� is the divergence in the two dimensional (x, y) space. The energy flux
density J2D in the two-dimensional horizontal space (Eq. 3.91) may be considered a
straightforward extension from the three-dimensional space (Eq. 3.84). On the other
hand, the energy density E2D in the two-dimensional horizontal space includes the
additional term ρ0g0|η|

2/2 compared to the three-dimensional space (Eq. 3.83). We
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may consider the term ρ0g0|η|
2/2 as potential energy density stored in the sea layer,

whereas the first term in Eq. (3.90) can be considered the kinetic energy density in
the sea layer. The sum of potential and kinetic energy gives the energy density in the
two-dimensional horizontal space.

3.2.3.1 Tsunami Energy and Energy Flux

As derived in the previous Sect. 3.2.2, for a monochromatic tsunami propagating
along the positive x-axis, the wavefield is represented by the following solutions as

η x; y; tð Þ ¼ η0e
i kx�ωtð Þ, ð3:39Þ

vx x; y; z; tð Þ ¼ ωη0
cosh k zþ h0ð Þ½ �

sinh kh0ð Þ ei kx�ωtð Þ, ð3:50Þ

vz x; y; z; tð Þ ¼ �iωη0
sinh k zþ h0ð Þ½ �

sinh kh0ð Þ ei kx�ωtð Þ, ð3:52Þ

and

pe x; y; z; tð Þ ¼ ρ0g0η0
cosh k zþ h0ð Þ½ �

cosh kh0ð Þ ei kx�ωtð Þ: ð3:63Þ

Substituting the solutions of Eqs. (3.39), (3.50), and (3.52) into Eq. (3.90), the
energy density for a plane wave is obtained as

E2D x; y; tð Þ ¼ ρ0
2

ω2η20
sinh2 kh0ð Þ

Z0
�h0

cosh2 k zþ h0ð Þ½ � þ sinh2 k zþ h0ð Þ½ � �
dz

þ 1
2
ρ0g0 ηj j2

¼ ρ0
2

ω2η20
sinh2 kh0ð Þ

Z0
�h0

cosh 2k zþ h0ð Þ½ �dzþ 1
2
ρ0g0 ηj j2

¼ ρ0
4
ω2η20
k

sinh 2kh0ð Þ
sinh2 kh0ð Þ þ

1
2
ρ0g0 ηj j2

¼ ρ0
4
ω2η20
k

2 sinh kh0cosh kh0
sinh2 kh0ð Þ þ 1

2
ρ0g0 ηj j2

¼ ρ0η
2
0

2
ω2

k

1
tanh kh0ð Þ þ

1
2
ρ0g0 ηj j2

¼ ρ0g0η
2
0

2
þ 1
2
ρ0g0 ηj j2

¼ ρ0g0 ηj j2,

ð3:93Þ
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where the dispersion relation ω2 ¼ g0k tanh (kh0) (Eq. 3.47) and an identity

sinh 2kh0 ¼ 2 sinh kh0 cosh kh0 are used. The first term of Eq. (3.93) (ρ0=2 �
Z 0

�h0

vxj j2 þ vy
�� ��2 þ vzj j2


 �
dz ) represents the kinetic energy, and the second term (ρ0/

2 � g0|η|2) is the potential energy. This calculation indicates that for a propagating
plane ocean wave, the kinetic energy density is identical to the potential energy
density. The total energy density that is the sum of the kinetic and potential energy
density is given by ρ0g0|η|

2. The total energy density is proportional to the squared
amplitude of the surface height.

Substituting the solutions of Eqs. (3.50) and (3.63) into Eq. (3.91) gives the
energy flux density as

J2D,x x; y; tð Þ ¼ 1
2

Z 0

�h0

pev
∗
x þ p∗e vx

� �
dz

¼ R 0�h0
ρ0g0η0

cosh k zþ h0ð Þ
cosh kh0

ωη0
cosh k zþ h0ð Þ

sinh kh0
dz

¼ ρ0g0η
2
0ω

cosh kh0ð Þsinh kh0ð Þ
Z 0

�h0

cosh2k zþ h0ð Þdz

¼ ρ0g0η
2
0ω

2 cosh kh0ð Þsinh kh0ð Þ h0 þ 1
2k
sinh 2kh0

� �
¼ ρ0g0η

2
0ω

sinh 2kh0ð Þ h0 þ 1
2k
sinh 2kh0

� �
¼ ρ0g0η

2
0
1
2
ω

k
1þ 2kh0

sinh 2kh0ð Þ
� �

:

ð3:94Þ

We should remember that the group velocity of the ocean wave is given by

U ¼ 1
2
ω

k
1þ 2kh0

sinh 2kh0ð Þ
� �

: ð3:80Þ

Then, the energy flux density of Eq. (3.94) is represented by the product of the
energy density and the group velocity as

J2D,x x; y; tð Þ ¼ UE2D: ð3:95Þ

Hence, we may consider that the group velocity is the velocity of the energy
propagation.

Considering the case when the wavelength is much longer than the sea depth,
kh0 � 1, Eqs. (3.50) and (3.63) indicate that the velocity and pressure fields become
independent of z. The velocity is approximated as

vx x; y; z; tð Þ � v avx x; y; tð Þ ¼ ω

kh0
η x; y; tð Þ for kh0 � 1 ð3:96Þ
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where v avx x; y; tð Þ denotes the average horizontal velocity that is independent of the
depth z. The excess pressure is then approximated as

pe x; y; z; tð Þ � ρ0g0η x; y; tð Þ for kh0 � 1: ð3:97Þ

Equation (3.91) is then rewritten as

J2D,x x; y; tð Þ � 1
2
ρ0g0h0 vav

∗

x ηþ η∗v avx


 �
for kh0 � 1

¼ ρ0g0h0Re vav
∗

x η
� �

¼ ρ0g0
ffiffiffiffiffiffiffiffiffi
g0h0

p
ηj j2:

ð3:98Þ

We have considered a plane wave propagation along the x-axis. It is straightforward
to extend this to a plane wave propagation in any direction in the (x, y) plane. The
energy flux density J2D in the (x, y) plane for 2-D horizontal particle velocity vector
v ¼ (vx, vy) and tsunami height η is given by

J2D x; y; tð Þ � ρ0g0h0ηv for kh0 � 1: ð3:99Þ

By using this equation, the energy flux density of the tsunami is visualized based
on the simulation. Figure 3.16 shows the energy flux density for the tsunami
(average flux density during the first hour after the first tsunami arrival) in the
2011 Tohoku-Oki earthquake (Fine et al. 2013). The energy flux density is directed
toward the southeast and decreases with travel distance. The decrease occurs due to
the geometrical spreading, the backward scattering of waves, and the intrinsic energy
absorption. Fine et al. (2013) estimated that the total energy flux density decreases
with distance r according to exp[�r/4, 700 km].

The energy flux density is an important idea from the viewpoint of conservation
law. When we assume that the reflected tsunami does not appear during tsunami
propagation, in other words, when we consider multiple forward scattering but
neglect backward scattering, the energy flux density J (Eq. 3.98) should be constant
irrespective of the location and the sea depth. This leads to

ρ0g0 η x1ð Þj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0h x1ð Þ

p
¼ ρ0g0 η x2ð Þj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0h x2ð Þ

p
,

and

η x2ð Þj j ¼ h x1ð Þ
h x2ð Þ
���� ����14 η x1ð Þj j, ð3:100Þ

where η(x) and h(x) are the tsunami height and the sea depth at the location x,
respectively. When the point x2 is located near the coast and the sea depth is
shallower than the point x1, h(x2) < h(x1), the tsunami height η(x2) at location x2 is
then larger than η(x1) at location x1. This is called as Green’s law. Note that this does
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not consider reflected waves, whereas reflected tsunamis usually appear in observa-
tions. Nevertheless, the Green’s law provides a good perspective of the tsunami
amplification mechanisms. Hayashi (2010) investigated the relationship between the
tsunami heights obtained at offshore and coastal stations by introducing an addi-
tional parameter into Green’s law. Understanding the relation between offshore and
coastal tsunamis would be useful for rapidly forecasting the tsunami height on the
coast using the tsunami height recorded at offshore stations.

3.3 Seismic Waves: Elastic Dynamics

Section 3.2 investigated tsunami or water waves with seawater assumed to be
incompressible. This means that the elasticity of the medium (or stress due to strain)
was neglected. However, the earth medium also works as an elastic body in which
compressional and shear stress are excited by strain. The stress works as a restoring
force for seismic waves. Furthermore, a surface Rayleigh wave is excited due to a

Fig. 3.16 Energy flux averaged over 1 h during the passage of the front of the 2011 Tohoku-Oki
earthquake tsunami. Black contours mark the distance (in km) from the tsunami source (Fine et al.
2013, copyright by Springer)
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stress-free boundary. These elastic wave excitations and propagations have been
extensively described in books on seismology (e.g., Aki and Richards (2002),
Shearer (2009), Saito (2009a, b), Sato et al. (2012)). Hence, this section does not
thoroughly describe elastic waves in general but focuses on the points closely related
to tsunami generation and propagation. For example, the Love wave, which is
accompanied by displacement only in its horizontal components but not in its
vertical component, is not treated here.

3.3.1 P, S, and Rayleigh Waves

By substituting the stress-displacement relation in an isotropic medium (Eq. 3.17)
into the equation of motion (Eq. 3.14), we rewrite the equation of motion as a system
of equations with respect to the displacement ui:

ρ
∂2ui x; tð Þ

∂t2
¼ ∂

∂xk
λδikul, l þ μ ui,k þ uk, ið Þ½ � þ f i: ð3:101Þ

An earthquake fault is represented by the body force fi as a source (Chap. 4:
Earthquakes). This section considers the wave propagation in a homogeneous
medium but does not consider the wave excitation by setting the body force to
zero ( fi ¼ 0). When the medium is homogeneous, Eq. (3.101) is then rewritten as

ρ
∂2u x; tð Þ

∂t2
¼ λþ μð Þ∇ ∇ � uð Þ þ μ∇2u: ð3:102Þ

Here, note that — 2u is given by the identity:

∇2u ¼ ∇ ∇ � uð Þ �∇	 ∇	 uð Þ: ð3:103Þ

With this equation, the equation of motion in an isotropic homogeneous medium is
given by the differential equation:

ρ
∂2u x; tð Þ

∂t2
¼ λþ 2μð Þ∇ ∇ � uð Þ � μ∇	 ∇	 uð Þ, ð3:104Þ

with respect to the displacement vector u.
Taking the divergence of the equations of motion (Eq. 3.104), we calculate

ρ
∂2

∂t2
∇ � uð Þ ¼ λþ 2μð Þ∇ �∇ ∇ � uð Þ � μ∇ �∇	 ∇	 uð Þ

¼ λþ 2μð Þ∇2 ∇ � uð Þ
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and obtain a wave equation

1

V2
P

∂2

∂t2
∇ � uð Þ ¼ ∇2 ∇ � uð Þ, ð3:105Þ

where

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
: ð3:106Þ

Because the value of — � u is a scalar quantity representing dilatation or the ratio of
the volume change (ΔV/V, Eq. (3.10)), Eq. (3.105) indicates a wave equation of the
dilatation. The volume change propagates as a wave with the velocity of VP. The
wave is referred to as the longitudinal wave, compressional wave, and P wave.

On one hand, when taking the rotation of the equations of motion (Eq. 3.104), we
calculate

ρ
∂2

∂t2
∇	 uð Þ ¼ λþ 2μð Þ∇	∇ ∇ � uð Þ � μ∇	∇	 ∇	 uð Þ

¼ �μ∇	∇	 ∇	 uð Þ
¼ �μ∇ ∇ � ∇	 uð Þ½ � þ μ∇2 ∇	 uð Þ
¼ μ∇2 ∇	 uð Þ

and obtain a wave equation

1

V2
S

∂2

∂t2
∇	 uð Þ ¼ ∇2 ∇	 uð Þ ð3:107Þ

where

VS ¼
ffiffiffi
μ

ρ

r
: ð3:108Þ

The value of — 	 u is a vector representing the rotation and does not show the
volume change. It propagates with the velocity of VS. The wave is referred to as the
transverse wave, shear wave, or S wave.

3.3.1.1 Plane Wave Propagation

The P wave and S wave propagate through an isotropic homogeneous medium.
These are classified as body wave. Moreover, a stress-free surface is intrinsically
important for seismic wave propagation, which enables the waves to propagate along
the surface. This is called the surface wave. A coupling of plane P and S waves with
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the free surface results in a surface wave referred to as the Rayleigh wave. A plane
wave propagation is considered in order to investigate surface waves. The Cartesian
coordinates (x, y, z) shown in Fig. 3.17 are used where the x- and y-axes are in the
horizontal plane and the z-axis is in the vertical direction. When the vector normal to
the wave front is in the (x, z) plane, variation with respect to the y-axis does not occur
in the propagation. The equation of motion (Eq. 3.104) is then simplified as

ρ
∂2ux
∂t2

¼ λþ μð Þ ∂
∂x

∂ux
∂x

þ ∂uz
∂z

� �
þ μ

∂2ux
∂x2

þ ∂2ux
∂z2

 !
, ð3:109Þ

ρ
∂2uy
∂t2

¼ μ
∂2uy
∂x2

þ ∂2uy
∂z2

 !
, ð3:110Þ

and

ρ
∂2uz
∂t2

¼ λþ μð Þ∂
∂z

∂ux
∂x

þ ∂uz
∂z

� �
þ μ

∂2uz
∂x2

þ ∂2uz
∂z2

 !
: ð3:111Þ

3.3.1.2 SH Wave

The displacement in the y-axis, uy, appears only in Eq. (3.110) which is rewritten as

1

V2
S

∂2uy
∂t2

¼ ∂2uy
∂x2

þ ∂2uy
∂z2

ð3:112Þ

Fig. 3.17 Coordinates used in the formulation. The x- and y-axes are in the horizontal plane and the
z-axis is in the vertical direction (upward positive). The vector normal to the wave front is in the (x,
z) plane
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where VS ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
. This is a wave equation for uy. We consider a plane wave

propagation with the horizontal slowness p and the vertical slowness η. The wave is
described as

uy ¼ exp �iω t � px� ηzð Þ½ �: ð3:113Þ

We consider the case in which the horizontal slowness p is real and p > 0 (the
wave propagates toward and along the positive x-axis). If p is not real but purely
imaginary, the wave does not propagate horizontally (along the x-axis) as a wave.
Substituting Eq. (3.113) into the wave equation (Eq. 3.112), we obtain the following
relation:

1

V2
S

¼ p2 þ η2: ð3:114Þ

We consider the case in which the value of η is real when 0 < p < 1/VS. The
horizontal slowness p is represented as

p ¼ sinϕ
VS

ð3:115Þ

where ϕ is the angle between the z-axis and the wave propagation direction
(Fig. 3.18).

Then, the vertical slowness η is represented as

η ¼ cosϕ
VS

: ð3:116Þ

Fig. 3.18 A plane wave
propagation. The
propagation direction lies in
the (x, z) plane. The angle
between the direction of the
propagating wave and the z-
axis is ϕ
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3.3.1.3 P-SV Wave

Unlike the case of uy, the displacements of ux and uz appear in the two equations
(Eqs. 3.109 and 3.111). Hence, the components of ux and uz are coupled, and we
need to simultaneously solve two equations:

ρ
∂2ux
∂t2

¼ λþ μð Þ ∂
∂x

∂ux
∂x

þ ∂uz
∂z

� �
þ μ

∂2ux
∂x2

þ ∂2ux
∂z2

 !
, ð3:109Þ

and

ρ
∂2uz
∂t2

¼ λþ μð Þ∂
∂z

∂ux
∂x

þ ∂uz
∂z

� �
þ μ

∂2uz
∂x2

þ ∂2uz
∂z2

 !
: ð3:111Þ

We intend to find a solution for plane wave propagation with a horizontal
slowness of p (or an apparent horizontal velocity of 1/p) along the x direction as

ux x; z; tð Þ ¼ u0exp �iω t � px� qzð Þ½ �,
uz x; z; tð Þ ¼ exp �iω t � px� qzð Þ½ �: ð3:117Þ

Substituting Eq. (3.117) into Eqs. (3.109) and (3.111), the parameter q, or vertical
slowness, is given by

q ¼ 
ξ, 
 η, ð3:118Þ

where

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
P

� p2

s
and η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
S

� p2:

s
ð3:119Þ

The parameter u0 in Eq. (3.117) is given by

u0 ¼ 
p

ξ
, � η

p
, ð3:120Þ

corresponding to each value of q in Eq. (3.118). Then, the solution of Eqs. (3.109)
and (3.111) is given by a linear combination of the four waves as

ux x; z; tð Þ ¼ p Aeiωξz � Be�iωξz
� �þ η �Ceiωηz þ De�iωηz

� �� �
e�iω t�pxð Þ,

uz x; z; tð Þ ¼ ξ Aeiωξz þ Be�iωξz
� �þ p Ceiωηz þ De�iωηz

� �� �
e�iω t�pxð Þ,

ð3:121Þ

where A, B, C, and D are constants. In Eq. (3.121), the constants A, B, C, and D were
multiplied by ξ or p for a simple representation.
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As shown in Eq. (3.119), the variables ξ and η correspond to the vertical
slownesses of the P wave and S wave, respectively. Therefore, Eq. (3.121) means
that the wavefield is represented as a sum of P waves and S waves.

3.3.1.4 P Wave

Let us consider the wave represented by the constants A and B by setting C ¼ 0 and
D ¼ 0 in Eq. (3.121):

ux x; z; tð Þ ¼ p Aeiωξz � Be�iωξz
� �

e�iω t�pxð Þ,
uz x; z; tð Þ ¼ ξ Aeiωξz þ Be�iωξz

� �
e�iω t�pxð Þ,

ð3:122Þ

where

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
P

� p2

s
and VP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
: ð3:123Þ

This wave represents a P wave. Consider the case when ξ is real. The first terms of
Eq. (3.122), which include the term exp[�iω(t � px � ξz)], indicate a plane P wave
propagating in the direction ( p, ξ) with a velocity of VP. The second term indicates
the plane P wave propagating in the direction ( p,�ξ). The horizontal slowness p is
given by p ¼ sin θ/VP when the angle between the wave propagation direction and
the z-axis is θ. Then, the slowness along the z-axis is ξ ¼ cos θ/VP.

As shown in Fig. 3.19, consider the plane P wave with a positive vertical
slowness by setting B ¼ 0:

ux x; z; tð Þ ¼ pAe�iω t�px�ξzð Þ,
uz x; z; tð Þ ¼ ξAe�iω t�px�ξzð Þ:

ð3:124Þ

The displacement along the propagation direction (radial component) W and the
displacement perpendicular to the propagation direction (transverse component)
U are calculated as

W ¼ ux sin θ þ uz cos θ ¼ A p sin θ þ ξ cos θð Þ ¼ A=VP

U ¼ ux cos θ � uz sin θ ¼ A p cos θ � ξ sin θð Þ ¼ 0
ð3:125Þ

where p ¼ sin θ/VP and ξ ¼ cos θ/VP are used. The P wave in an isotropic
homogeneous medium has displacement only in the propagation direction.
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3.3.1.5 SV Wave

Let us consider the wave represented by the constants C and D by setting A ¼ 0 and
B ¼ 0 in Eq. (3.121). This wave is the S wave.

ux x; z; tð Þ ¼ η �Ceiωηz þ De�iωηz
� �

e�iω t�pxð Þ,
uz x; z; tð Þ ¼ p Ceiωηz þ De�iωηz

� �
e�iω t�pxð Þ,

ð3:126Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
S

� p2

s
and VS ¼

ffiffiffi
μ

ρ

r
: ð3:127Þ

Consider the case when η is real. The first terms of Eq. (3.126), which include the
term exp[�iω(t � px � ηz)], denote a plane S wave propagating in the direction
( p, η) with a velocity of VS. The second term indicates a plane S wave propagating in
the direction ( p,�η). The horizontal slowness p is given by p ¼ sin ϕ/VS when the
angle between the wave propagation direction and the z-axis is ϕ. Then, the slowness
along the z-axis is η ¼ cos ϕ/VS.

Consider the plane S wave with positive vertical slowness (D ¼ 0):

ux x; z; tð Þ ¼ �ηCe�iω t�px�ηzð Þ

uz x; z; tð Þ ¼ pCe�iω t�px�ηzð Þ ð3:128Þ

The displacement along the propagation direction W and the displacement perpen-
dicular to the propagation direction U (Fig. 3.19) are calculated as

W ¼ ux sinϕþ uz cosϕ ¼ C �η sinϕþ p cosϕð Þ ¼ 0
U ¼ ux cosϕ� uz sinϕ ¼ C �η cosϕ� p sinϕð Þ ¼ �C=VS

ð3:129Þ

Fig. 3.19 A plane wave
propagation. The
propagation direction lies in
the (x, z) plane. The angle
between the direction of the
propagating wave and the z-
axis is θ or ϕ. The radial and
transverse components of
the displacement are W and
U, respectively
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where p ¼ sin ϕ/VS and η ¼ cos ϕ/VS are used. The S wave in an isotropic
homogeneous medium has displacement only in the direction perpendicular to the
propagation direction.

3.3.1.6 Rayleigh Wave

In an infinite elastic medium, the P and S waves propagate through the medium.
Now, setting a free surface (i.e., the traction is zero on the surface), we consider a
wave propagating along the surface (surface wave). The free surface is one of the
most important inhomogeneities of the earth medium.

A free surface is set at z ¼ 0, and the homogenous half medium exists in the
region z < 0 as shown in Fig. 3.20. Although in the above section we considered the
case in which the vertical slownesses ξ and η are real for P and Swaves, respectively,
we here consider that ξ and η are imaginary in Eq. (3.121):

ux x; z; tð Þ ¼ p Aeiωξz � Be�iωξz
� �þ η �Ceiωηz þ De�iωηz

� �� �
eiω px�tð Þ,

uz x; z; tð Þ ¼ ξ Aeiωξz þ Be�iωξz
� �þ p Ceiωηz þ De�iωηz

� �� �
eiω px�tð Þ:

ð3:121Þ

When waves do not propagate vertically (along the z-axis) but propagate horizon-
tally (along the x-axis), the vertical slowness is imaginary. The vertical slowness is
represented as imaginary as follows:

ξ ¼ ibξ, bξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

V2
P

s
, η ¼ ibη, bη ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

V2
S

,

s
ð3:130Þ

where bξ > 0 and bη > 0. Substituting Eq. (3.130) into Eq. (3.121), we will obtain a
solution for the Rayleigh wave. Constants A and C need to be zero so that the
displacement becomes zero when z ¼ � 1. Then, Eq. (3.121) is calculated as

ux x; z; tð Þ ¼ �ipB0eωbξz þ ibηDeωbηz�eiω px�tð Þ,

uz x; z; tð Þ ¼ �bξB0eωbξz þ pDeωbηz�eiω px�tð Þ:
ð3:131Þ

Fig. 3.20 The coordinates
(x, z). The free surface is
located at z ¼ 0
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By using the constitutive law and the displacement given by Eq. (3.131), the stress
τxz is calculated as

τxz x; z; tð Þ ¼ μ
∂ux
∂z

þ ∂uz
∂x

� �
¼ μ 2iωpbξB0

eωbξz þ iω
�bη2 þ p2

�
Deωbηz� �

eiω px�tð Þ:

By using μ ¼ ρV2
S (Eq. 3.108) and Eq. (3.130) and introducing a parameter γ as

γ ¼ 2V2
Sp

2 ð3:132Þ

we obtain

τxz x; z; tð Þ ¼ 2iωρV2
SpbξB0eωbξz � iωρ 1� γð ÞDeωbηz� �

eiω px�tð Þ: ð3:133Þ

Similarly, using λ ¼ ρ V2
P � 2V2

S

� �
, we calculate

τzz x; z; tð Þ ¼ λ
∂ux
∂x

þ λþ 2μð Þ∂uz
∂z

¼ �λωp2 þ λþ 2μð Þωbξ2
 �
B0eωbξz þ �λωpbη þ λþ 2μð Þωpbηð ÞDeωbηz� �

eiω px�tð Þ

and obtain

τzz x; z; tð Þ ¼ �ωρ 1� γð ÞB0eωbξz þ 2ωρV2
SpbηDeωbηz� �

eiω px�tð Þ: ð3:134Þ

On the surface (z ¼ 0), the traction is set as zero as follows: τxz(x, 0, t) ¼ 0 and
τzz(x, 0, t)¼ 0. Substituting the stress tensor of Eqs. (3.133) and (3.134) into this free
surface condition, we obtain

2V2
SpbξB0 � 1� γð ÞD ¼ 0,

� 1� γð ÞB0 þ 2V2
SpbηD ¼ 0:

ð3:135Þ

These are homogeneous equations. These have a nontrivial solution (a solution other
than B

0 ¼ 0 and D ¼ 0) only when the determinant of the simultaneous equation of
Eq. (135) is zero:

ΔR pð Þ ¼ 1� γð Þ2 � 4V4
Sp

2bξbη ¼ 1� γð Þ2 � 2V2
Sγbξbη ¼ 0: ð3:136Þ
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This is referred to as the Rayleigh function. Because bξ is a function of VP and bη is a
function of VS, the Rayleigh function gives the horizontal slowness p as a function of
VP and VS. It is difficult to represent an analytical solution for p, but we can
numerically estimate the slowness p. The corresponding phase velocity (along the
surface), in other words, the phase velocity of the Rayleigh wave, is given by the
inverse of the horizontal slowness as cR ¼ 1/p. When λ ¼ μ or VP ¼ ffiffiffi

3
p

VS (Poisson
solid), the phase velocity of the Rayleigh wave is given by cR ¼ 0.92VS.

Representing the coefficientD by B' using Eq. (3.135) and cR¼ 1/p, Eq. (3.131) is
represented as

ux x; z; tð Þ ¼ ipB0 eωbξz þ 1� γ

γ
eωbηz� �

exp �iω t � x

cR

� �� �
,

uz x; z; tð Þ ¼ bξB0 eωbξz þ γ

1� γ
eωbηz� �

exp �iω t � x

cR

� �� �
:

ð3:137Þ

In order to display the wave propagation, only the real parts of Eq. (3.137) are
taken as

ux x; z; tð Þ ¼ pB0 eωbξz þ 1� γ

γ
eωbηz� �

sinω t � x

cR

� �
uz x; z; tð Þ ¼ bξB0 eωbξz þ γ

1� γ
eωbηz� �

cosω t � x

cR

� �
:

ð3:138Þ

By using Eq. (3.138), the wavefield of the Rayleigh wave is visualized in
Fig. 3.21. The elastic medium was characterized by VS¼ 4.0 km/s and VP¼
6.93 km/s, and the angular frequency is set as ω ¼ 2π/T¼ 0.63 s�1 (T¼ 10 s). By
taking a look at the shape of the surface, we notice that the wave propagates
rightward. The minimum height is located at x¼ 0 km at the time of 0 s. The
minimum arrives at x~ 22.5 km at the time of 6 s. Hence, the (horizontal) velocity
is roughly estimated to be 3.7 km/s. This estimation is reasonable because the phase
velocity should be cR¼ 0.92VS¼ 3.68 km/s. Then, we expect a wavelength of 37 km
(¼ 3.7 km/s	 10 s) from the phase velocity of 3.7 km/s and the wave period of 10 s.
The corresponding wavelength is confirmed in Fig. 3.21. The particle motion at the
surface (z ¼ 0) indicates counterclockwise rotation. Since the wave now propagates
rightward, this is retrograde motion (see Figure 3.6). On the other hand, the particle
motion at the deeper part (e.g., z ¼ 15 km) becomes prograde motion. Figure 3.22
shows the particle orbit for various depths. It is interesting that the particle motions
of Rayleigh wave and tsunami are opposite to each other near the surface z ¼ 0 km,
although they both propagate along a free surface. The particle motion of a tsunami
does not depend on depth and always shows prograde motion (Figure 3.5).
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Fig. 3.21 Spatial distribution of the particle displacement caused by the Rayleigh wave for elapsed
times of 0, 2, 4, 6, and 8 s. The medium is characterized by VS¼ 4.0 km/s and VP¼ 6.93 km/s. The
angular frequency is set as ω ¼ 2π/T¼ 0.63 s�1 (T¼ 10 s)
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3.3.2 Ocean Acoustic Waves

When an earthquake occurs in an offshore region, a P wave that propagates in a sea
layer is excited in addition to P, S, and Rayleigh waves in solid earth. The Pwave in the
sea layer is called an ocean acoustic wave. We derive the properties of ocean acoustic
waves in this section. Because the ocean acoustic wave is nothing but a P wave in the
sea layer, it is represented by the equation of motion in an elastic medium.

3.3.2.1 Acoustic Waves in Seawater

The equation of motion in an elastic medium is given by

ρ0
∂2ui x; tð Þ

∂t2
¼ ∂

∂xk
τik, ð3:139Þ

where we set ρ0 as the density of seawater. This is assumed to be constant. We do not
consider the source term since we focus on the propagation. The constitutive law of
seawater (3.22) is

Fig. 3.22 Orbits of the
particle displacement caused
by the Rayleigh wave for
various depths. The medium
is characterized by VS¼
4.0 km/s and VP¼ 6.93 km/
s. The angular frequency is
set as ω ¼ 2π/T¼ 0.63 s�1

(T¼ 10 s)
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τij ¼ Kδijuk,k , ð3:140Þ

where K is the bulk modulus of seawater. An equivalent equation can be obtained if
the rigidity is set as zero μ ¼ 0 in the constitutive law of an elastic medium
(Eq. 3.17). As shown by Eq. (3.140), in the seawater, the shear stress is always
zero τij ¼ 0 (i 6¼ j) even when there exists a large shear strain eij (i 6¼ j). Substituting
Eq. (3.140) into Eq. (3.139) and taking the divergence, we obtain

Δ ∇ � uð Þ � 1
c20

∂2 ∇ � uð Þ
∂t2

¼ 0, ð3:141Þ

where a constant c0 is defined as

c0 ¼
ffiffiffiffiffi
K

ρ0

s
: ð3:142Þ

Equation (3.141) is a wave equation with respect to dilatation — � u with a phase
velocity of c0.

We introduce the displacement potential ϕ(x, t) as

u ¼ ∇ϕ or ui ¼ ∂ϕ=∂xi: ð3:143Þ

In seismology, ϕ(x, t) is often referred to as the P wave scalar potential (e.g., Shearer
2009). By using the displacement potential, the wave equation (Eq. 3.141) is
written as

Δ� 1

c20

∂2

∂t2

 !
ϕ ¼ 0: ð3:144Þ

We introduce pe as the pressure change caused by the acoustic wave. The relation
between the pressure change and the stress change is given by τij ¼ � peδij. Then,
Eq. (3.140) is represented by using the potential as

pe ¼ �KΔϕ: ð3:145Þ

By using (3.144) and (3.145), the pressure change is also represented as

pe ¼ �ρ0
∂2ϕ

∂t2
: ð3:146Þ

We here consider a plane wave propagating along the z-axis with the angular
frequency ω and the wavenumber k, which is represented as
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ϕ x; y; z; tð Þ ¼ A0e
i kz�ωtð Þ: ð3:147Þ

Using Eq. (3.146), the pressure change accompanying the plane wave is rewritten as

pe ¼�ρ0
∂2ϕ

∂t2

¼ ρ0ω
2A0ei kz�ωtð Þ ¼ ρ0ω

k
�iωð ÞikA0e

i kz�ωtð Þ

¼ ρ0c0
∂
∂t

∂ϕ
∂z

¼ ρ0c0
∂uz
∂t¼ ρc0vz,

ð3:148Þ

where c0 ¼ ω/k is used. This indicates that the pressure change due to the ocean
acoustic waves is proportional to the particle velocity vz ¼ ∂uz/∂t.

3.3.2.2 Ocean Acoustic Waves: P Waves in a Sea Layer

We then suppose a constant water layer lying on a rigid crust. Note that the actual sea
bottom is not rigid but shows elasticity, but here we suppose a rigid crust for
simplicity. The Cartesian coordinates shown in Fig. 3.23 are used: the z-axis runs
vertically upward from the sea surface at z ¼ 0, the sea depth is at z ¼ � h0, and the
(x, y) axes are in the horizontal plane. In addition to the wave equation (Eq. 3.144),
the displacement potential ϕ satisfies the boundary conditions at the sea surface and
the sea bottom. At the sea surface, the traction is free or the pressure is zero:

pe x; y; z ¼ 0; tð Þ ¼ 0: ð3:149Þ

At the sea bottom, the vertical displacement is zero:

uz x; y; z ¼ �h0; tð Þ ¼ 0, ð3:150Þ

when the crust is assumed to be rigid. These boundary conditions are rewritten using
the displacement potential as

∂2ϕ

∂t2

�����
z¼0

¼ 0, ð3:151Þ

and

∂ϕ
∂z

����
z¼�h0

¼ 0: ð3:152Þ
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We then seek a solution of ϕ that satisfies Eqs. (3.144), (3.151), and (3.152).
Suppose a monochromatic plane wave that propagates horizontally with the
wavenumber vector (kx, ky) in the (x, y) coordinate plane as

ϕ x; y; z; tð Þ ¼ bϕ kx; ky; z
� �

ei kxxþkyy�ωtð Þ: ð3:153Þ

Using Eq. (3.153), the wave Eq. (3.144) is rewritten as

d2

dz2
bϕ þ ω2

c20
� k2

� �bϕ ¼ 0 ð3:154Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the amplitude of the horizontal wavenumber. Introducing κ

as

κ2 ¼ ω2

c20
� k2, ð3:155Þ

we rewrite (3.154) as

d2

dz2
bϕ þ κ2bϕ ¼ 0: ð3:156Þ

At first, we assume that κ2 is positive. The general solution of Eq. (3.156) is then
given by

bϕ ¼ C1 cos κzð Þ þ C2 sin κzð Þ: ð3:157Þ

We estimate the coefficients C1 and C2 so that the solution (3.157) satisfies the
boundary conditions (Eqs. 3.151 and 3.152). The boundary condition at the sea
surface (Eq. 3.151) gives C1 ¼ 0. The boundary condition at the sea bottom
(Eq. 3.152) gives

κC2 cos κh0ð Þ ¼ 0: ð3:158Þ

Fig. 3.23 Coordinates for
propagating ocean
acoustic wave
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In order to obtain a nontrivial solution (κ 6¼ 0) that satisfies Eq. (3.158), we obtain

κh0 ¼ π n� 1
2

� �
, n ¼ 1, 2, � � �: ð3:159Þ

Using Eqs. (3.155) and (3.159), we get the dispersion relation

ω2

c20
� k2 ¼ π

h0
n� 1

2

� �� �2
, n ¼ 1, 2, � � �: ð3:160Þ

We then assume that κ2 is negative, i.e., κ2 ¼ � κ'2 where κ' is real. In this case,
the general solution is given by

bϕ ¼ D1cosh κ0zð Þ þ D2sinh κ0zð Þ:

We cannot find a nontrivial solution that satisfies the boundary conditions of
Eqs. (3.151) and (3.152) in this case.

Equation (3.160) represents a dispersion relation (k � ω relation) for acoustic
waves in the sea layer. In order for the acoustic waves to propagate horizontally, the
horizontal wavenumber k needs to be real. Otherwise, the waves are trapped within
the source region due to the exponential terms in Eq. (3.153). Hence, we obtain

k2 ¼ ω2

c20
� π

h0
n� 1

2

� �� �2
> 0, n ¼ 1, 2, � � �: ð3:161Þ

Equation (3.161) limits the range of the angular frequency ω (>0) as follows:

ω > π n� 1
2

� �
c0
h0

, n ¼ 1, 2, � � �: ð3:162Þ

This indicates that the minimum angular frequency and minimum frequency for
horizontally propagating ocean acoustic waves are given by

ωmin ¼ π

2
c0
h0

, and fmin ¼
c0
4h0

, ð3:163Þ

respectively. In a sea layer with finite depth and a rigid sea bottom, ocean acoustic
waves can propagate horizontally for a long distance only when the frequency is
higher than fmin. This critical frequency is often used in the analysis of ocean-bottom
pressure records (e.g., Nosov and Kolesov 2007; Matsumoto et al. 2012; Saito
2017). Using Eq. (3.161), the phase velocity of the plane wave in the horizontal
space c ¼ ω/k is given by
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c

c0
¼ 1� 1

4
n� 1

2

� �2 c0=h0
f

� �2
" #�1=2

¼ 1 for f = c0=h0ð Þ ! 1=2 n� 1=2ð Þ
1 for f = c0=h0ð Þ ! þ1:

� ð3:164Þ

Figure 3.24 shows the phase velocity of the horizontally propagating ocean acoustic
wave in the case of n¼ 1, 2, 3, and 4. This indicates that for a fixed wave frequency,
there exist different and discrete phase velocities. The discrete set of phase velocities
originates from the rigid sea-bottom boundary condition. Equation (3.162) indicates
that the frequency f needs to be larger than f > (c0/h0) (1/2) (n � 1/2). When the
frequency f is slightly larger than (c0/h0) (1/2) (n � 1/2), the phase velocity is
infinitely larger. Setting f ¼ (c0/h0)[ (1/2) (n � 1/2) + E] (E � 1), we obtain

c

c0
� 4E

n� 1=2

� ��1=2

for f = c0=h0ð Þ ¼ 1=2 n� 1=2ð Þ þ E: ð3:165Þ

As the frequency f increases, the phase velocity decreases. It converges to the phase
velocity of the ocean acoustic wave c0 when f is much larger than c0/h0.

Fig. 3.24 Phase velocity of the horizontally propagating ocean acoustic wave with a sea depth of h0
for the case of n¼ 1, 2, 3, and 4, where c0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=ρ0

p
(K is the bulk modulus and ρ0 is the density of

seawater). The asymptotic equation c/c0~(4E/(n � 1/2))�1/2 is plotted by dashed lines
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Ocean acoustic waves are usually a dominant signal in ocean-bottom pressure
records of a large earthquake. Figure 3.25a shows the ocean-bottom pressure records
observed at PG1 located off Hokkaido for the 2011 Tohoku-Oki earthquake
(Matsumoto et al. 2012). Figure 3.25b shows a spectrogram of the pressure record.
It shows a dominant wave energy around 0.1 Hz and a clear shadow of low-wave
energy below 0.05 Hz. This suggests the minimum frequency for the ocean acoustic
wave excitation. Matsumoto et al. (2012) noticed that the observed minimum
frequency is slightly lower than the theoretical prediction of Eq. (3.163). The real
sea bottom should be modeled as soft sediment rather than a rigid body, which
predicts a lower minimum frequency (Nosov and Kolesov 2007).

3.3.3 Energy Density and Energy Flux Density for Elastic
Medium

We define the energy density and the energy flux density of the elastic waves. The
equation of motion is written with the velocity vi as follows:

ρ
∂vi x; tð Þ

∂t
¼ ∂τik x; tð Þ

∂xk
ð3:166Þ

Fig. 3.25 (a) Ocean-bottom pressure record observed at station PG1 located off Hokkaido for the
2011 Tohoku-Oki earthquake. (b) Spectrogram of the ocean-bottom pressure record. The dashed
line indicates the frequency predicted by f ¼ c0/4h0 where c0 is the phase velocity of the ocean
acoustic wave and h0 is the sea depth. (Matsumoto et al. 2012, copyright by Fuji Technology Press
Ltd)
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After multiplying both sides of the equations of motion by vi

ρvi
∂vi
∂t

¼ vi
∂τik x; tð Þ

∂xk
ð3:167Þ

we calculate the equation as Eq. (3.168)

∂
∂t

1
2
ρvivi

� �
¼ ∂
∂x j

viτij
� �� ∂vi

∂x j
τij ¼ ∂

∂x j
viτij
� �� ∂eij

∂t
τij

¼ ∂
∂x j

viτij
� �� ∂eij

∂t
cijklekl

¼ ∂
∂x j

viτij
� �� 1

2
cijkl

∂eij
∂t

ekl þ cijkl
∂eij
∂t

ekl

� �
¼ ∂
∂x j

viτij
� �� 1

2
∂
∂t

cijkleijekl
� �

¼ ∂
∂x j

viτij
� �� 1

2
∂
∂t

eijτij
� �

,

ð3:168Þ

where the generalized Hooke’s law τij ¼ cijklekl (Eq. 3.15) was used. We finally
obtain

∂
∂t

1
2
ρv2i þ

1
2
τijeij

� �
¼ ∂

∂x j
viτij
� � ð3:169Þ

By defining the energy density as

E ¼ 1
2
ρv2i þ

1
2
eijτij ð3:170Þ

and the energy flux density as

J j ¼ �viτij, ð3:171Þ

we obtain an equation for the balance of the energy density and energy flux density
as

∂E x; tð Þ
∂t

þ∇ � J ¼ 0: ð3:172Þ

3.4 Waves in Continuum Medium

We have explained the waves that can exist in the continuum earth medium. As
summarized in Fig. 3.26, these include P waves, S waves, Rayleigh waves, ocean
acoustic waves, and tsunami. In addition to these waves, there also exist other kinds
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of waves such as Love waves in elastic earth and Kelvin waves in the ocean.
Numerous excellent books have explained the details of various waves (e.g., Aki
and Richards 2002; Pedlosky 2003). This book treats only the minimum set of waves
that are related with tsunami generation due to an earthquake.

For the P wave, the restoring force is the stress generated mainly by the dilatation
(volume change) of the elastic medium. The propagation velocity is represented by
using Lamé parameters as VP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2μð Þ=ρp
. The P wave propagates through the

earth’s crust at ~6 km/s. The particle motion of the P wave is in the same direction as
the propagation direction. The P wave is also referred to as the longitudinal wave.

For the S wave, the restoring force is the shear stress of the elastic medium.
Hence, the S wave does not propagate through the sea layer where the shear stress
vanishes. The S wave does not accompany the dilatation, unlike the P wave. The
S wave velocity is represented by using shear modulus as VS ¼

ffiffiffiffiffiffiffiffi
μ=ρ

p
. The S wave

propagates through the earth’s crust at ~4 km/s. The particle motion of the S wave is

Fig. 3.26 Waves in a continuum medium treated in this chapter. The characteristics of each wave
are briefly summarized as follows. The P wave in the crust has longitudinal particle motion with a
propagation velocity ~6 km/s. The S wave in the crust has transverse motion with a phase velocity
of ~4 km/s. The Rayleigh wave is composed of P and S waves with existence of the free surface. It
shows retrograde motion at the surface with a horizontal phase velocity of ~3.6 km/s. The ocean
acoustic wave is a P wave in the sea layer. The phase velocity is ~1.6 km/s. Horizontally
propagating modes exist in the high-frequency range f > c0/4h0. The restoring force of the P, S,
Rayleigh, and ocean acoustic waves is the elasticity of the medium. The tsunami shows prograde
motion. The phase velocity depends on the sea depth, which is approximately given by c ¼ ffiffiffiffiffiffiffi

g0h
p

.
The restoring force of the tsunami is gravity
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perpendicular to the propagation direction. The S wave is also referred to as the
transverse wave.

The Rayleigh wave is a seismic surface wave. When a free surface exists, the
P and S waves with the same horizontal velocity cause a wave propagating along the
surface as the Rayleigh wave. The Rayleigh wave propagates at ~3.6 km/s along the
surface of the earth’s crust. The particle motion of the Rayleigh wave shows
retrograde motion at the surface. The amplitude of the motion decreases with
increasing depth, and the particle motion changes to prograde motion in the
deeper part.

The ocean acoustic wave is considered to be a P wave in the sea layer. The
restoring force of the ocean acoustic wave is the compressibility of seawater. It
propagates with a phase velocity of c0 ¼ ~1.6 km/s. Considering a sea layer with a
finite depth, discrete sets of horizontally propagating modes exist. The minimum
frequency of the ocean acoustic wave is given by fmin ¼ c0/(4h0). If the wave
frequency is low (i.e., the wavelength is long), a significant portion of the energy
would penetrate into the crust, which should be classified as a P wave because the
restoring force of this long-period wave would come from the crust rather than the
sea layer.

Tsunamis propagate by gravity as the restoring force. They show prograde
motion from the sea surface to the sea bottom. The phase velocity depends on the
sea depth, which is approximately given by c ¼ ffiffiffiffiffiffiffi

g0h
p

when the wavelength is much
longer than the sea depth, while it depends on the wavelength given by c ¼ ffiffiffiffiffiffiffiffiffi

g0h0
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh kh0ð Þ= kh0ð Þp
in general. A longer-wavelength tsunami propagates faster than a

shorter-wavelength tsunami.
In many practical applications, we may treat tsunami (waves due to gravity) and

seismic waves (waves due to elasticity) separately because the dominant wave
frequency/period is considerably different between them. This book, hence, treats
the tsunami without considering the elasticity and treats seismic waves without
considering the gravity. However, the elasticity of the crust and seawater compress-
ibility affect tsunami propagation, although the effect is usually very small (e.g.,
Nakamura 1961; Ward 1980; Okal 1982). Recent observations proved that the
elastic crust makes the tsunami propagation velocity slightly smaller than that
theoretically predicted from a rigid crust (e.g., Watada et al. 2014). Also, we need
to take into account gravity in addition to elasticity to synthesize long-period seismic
waves (e.g., Aki and Richards 2002). In such cases, we need to employ a theory that
includes gravity and elasticity simultaneously.
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Chapter 4
Earthquakes

Abstract Describing earthquake fault motion is indispensable to understanding the
mechanism of tsunami generation. Moreover, seismic waves, excited by the fault
motion, are analyzed in order to estimate the magnitude and location of earthquakes.
The information is used to perform rapid tsunami calculations and predictions. At the
same time, we should note that seismic waves sometimes function as noise among
tsunami signals. This chapter introduces earthquake seismology, which is closely
related to tsunami phenomena, and illustrates a practical method of seismic wave
simulation. Section 4.1 explains a mathematical representation of an earthquake fault
as a point source in order to quantitatively describe the relation between the fault
motion and seismic waves. Section 4.2 explains an empirical scaling law
representing the fault size from small to large earthquakes. We also introduce the
idea of earthquake stress change (stress drop) as a mechanism behind the scaling
law. Section 4.3 illustrates the finite difference method as a practical method of
seismic wave simulation. By using this numerical method, we investigate seismic
waves, ocean acoustic waves, and the permanent displacement caused by an earth-
quake. The simulation results can be used in the simulation of tsunami propagation.

Keywords Shear dislocation · Moment tensor · Equivalent body force · Scaling
law · Finite difference method

4.1 A Point Source and Seismic Wave Excitation

4.1.1 A Point Shear Dislocation Source: Equivalent Body
Force and Moment Tensor

Prior to seeking a representation of the displacement field due to an earthquake fault,
we consider the displacement field due to a point source. Suppose an impulsive unit
body force in the n direction is applied at x ¼ η at the time t ¼ τ in a homogeneous
medium. This body force is represented as δinδ(x � η)δ(t � τ). Body force means
force per unit volume. The displacement Gin(x, t;η, τ) in the ith direction at x at the
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time t from the impulsive unit body force satisfies the following equation derived by
the equation of motion (Eq. (3.14)) and Hooke’s law (Eq.(3.15)):

ρ
∂2

∂t2
Gin x; t;η; τð Þ � cijkl

∂2

∂x j∂xl
Gkn x; t;η; τð Þ ¼ δinδ x� ηð Þδ t � τð Þ, ð4:1Þ

where cijkl is elastic tensor (Eq. (3.16)). The displacement field Gin(x, t;η, τ) for the
unit body force is referred to as the Green function. As shown in Fig. 4.1, for an
infinite medium where the body force is distributed as fp(η, τ), the displacement field
caused by the body force distribution is represented with the convolution of the
source and the Green function based on the superposition principle as

un x; tð Þ ¼
Z 1

�1
dτ

ZZZ 1

�1
Gnp x; t;η; τð Þf p η; τð Þdη: ð4:2Þ

Note that we here suppose an infinite medium but do not suppose a surface boundary
of the volume.

We then consider how an earthquake fault is represented. An earthquake fault is
represented by displacement discontinuity on a plane or a surface as shown in
Fig. 4.2. A surface Σ has two sides Σ+ and Σ�, where the normal vector ν of the
surface Σ is pointing from Σ� to Σ+. The displacement distributions on the Σ+ and Σ�

planes are denoted by u ξ; τð ÞjΣþ and u ξ; τð ÞjΣ� , respectively. The displacement
distributions of u ξ; τð ÞjΣþ and u ξ; τð ÞjΣ� are not equal, but there exists displacement
discontinuity across the plane. The displacement discontinuity is given by
ui ξ; τð Þ½ � � ui ξ; τð ÞjΣþ � ui ξ; τð ÞjΣ� . An earthquake fault is represented as the dis-
placement discontinuity [ui(ξ, τ)] on a plane Σ.

Considering the displacement discontinuity on a plane as a boundary condition,
one can derive the relation between the displacement discontinuity on a plane
[ui(ξ, τ)] and the displacement at the location x, u(x, t). The displacement field u
(x, t) due to the displacement discontinuity on a surface Σ is given by using the Green
function as

Fig. 4.1 The displacement
from a point body force
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un x; tð Þ ¼
Z 1

�1
dτ

ZZ
Σ
ui ξ; τð Þ½ �cijpqν j

∂
∂ξq

Gnp x; t; ξ; τð ÞdΣ ξð Þ: ð4:3Þ

This derivation is not short and is not explained in this book. We use the resultant
equation. Seismology textbooks (e.g., Aki and Richards 2002) illustrate the details
of the derivation of Eq. (4.3). We may consider that the second tensor quantity
[ui(ξ, τ)]cijpqνj represents a source, and the derivative of the Green function with
respect to the source location ∂Gnp/∂ξq represents the propagation process from the
source to the receiver. We may notice that ∂Gnp/∂ξq appears in Eq. (4.3), while the
propagation process is usually simply given by Gnp(x, t; ξ, τ) (e.g., as in Eq. (4.2)).
This implies that the displacement discontinuity (Eq. 4.3) is not simply represented
by a single force vector. An earthquake fault source can be effectively given by force
couples (e.g., Aki and Richards 2002).

As a source, the moment density tensor mpq is introduced as

mpq ξ; τð Þ ¼ ui ξ; τð Þ½ �cijpqν j: ð4:4Þ

Equation (4.3) is then rewritten as a convolution of the source term of mpq and the
propagation term ∂Gnp/∂ξq as

un x; tð Þ ¼
Z 1

�1
dτ

ZZ
Σ

∂
∂ξq

Gnp x; t; ξ; τð Þ
� �

mpq ξ; τð ÞdΣ ξð Þ: ð4:5Þ

This equation represents the displacement field due to the moment density tensor.
When the elastic medium is isotropic and homogeneous, the elastic constant cijpq

is represented with Lamé parameters as cijpq¼ λδijδpq + μ(δipδjq + δiqδjp) (Eq. (3.16)).
The moment density tensor (Eq. (4.4)) is then given by

mpq ξ; τð Þ ¼ λνk uk ξ; τð Þ½ �δpq þ μ νp uq ξ; τð Þ� �þ νq up ξ; τð Þ� �� �
: ð4:6Þ

Fig. 4.2 The displacement
from the displacement
discontinuity on a plane.
The displacement
discontinuity represents an
earthquake fault
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As a model of a typical earthquake, the direction of the displacement discontinuity,
or the direction of the slip on the fault, is parallel to the fault plane. This type of
displacement discontinuity is referred to as shear dislocation. In that case, the slip
vector [u] is perpendicular to the fault normal vector ν. The scalar product
ν � [u] ¼ νk � [uk] of the first term in Eq. (4.6) then becomes zero. The moment
density tensor of shear dislocation in an isotropic homogeneous medium is given by

mpq ξ; τð Þ ¼ μ νp uq ξ; τð Þ� �þ νq up ξ; τð Þ� �� �
: ð4:7Þ

In Eq. (4.5), the displacement un(x, t) is represented by the integration over an
area Σ. By using the delta function, the areal integration is changed to a volume
integration as

un x; tð Þ ¼
Z 1

�1
dτ

ZZZ 1

�1
dη

∂
∂ηq

Gnp x; t;η; τð Þ
" #ZZ

Σ
mpq ξ; τð Þδ η� ξð ÞdΣ ξð Þ:

ð4:8Þ

By integrating Eq. (4.8) with respect to η in part, we obtain the equation

un x; tð Þ ¼ �
Z 1

�1
dτ

ZZZ 1

�1
dηGnp x; t;η; τð Þ

ZZ
Σ
mpq ξ; τð Þ ∂

∂ηq
δ η� ξð ÞdΣ ξð Þ:

ð4:9Þ

Comparing Eqs. (4.9) and (4.2), we found that the term

f p η; tð Þ ¼ �
ZZ

Σ
mpq ξ; tð Þ ∂

∂ηq
δ η� ξð ÞdΣ ξð Þ ð4:10Þ

functions as the body force distributed in space and time. This indicates that the
displacement discontinuity is equivalent to the body force distribution defined in
Eq. (4.10). The force is referred to as the equivalent body force (Maruyama 1963;
Burridge and Knopoff 1964).

We consider that the characteristic length of the fault plane L is small. One may
consider L as the fault length or radius, for example. When the fault scale L is much
smaller than the wavelength λ of the seismic wave (L � λ), the seismic waves
radiating from each subfault dΣ arrive at an observation point with the same phase
(in phase). In this case, we may consider the finite size of the earthquake fault plane
as a point source by neglecting the variation of ∂Gnp/∂ξq with respect to the location
on the fault ξ. Then, we simplify Eq. (4.3) by neglecting the integration of ∂Gnp/∂ξq
over the fault plane Σ:

108 4 Earthquakes



un x; tð Þ �
Z 1

�1
dτ

∂
∂ξq

Gnp x; t; ξ; τð Þ
� �

ξ¼ξe

ZZ
Σ
mpq ξ; τð ÞdΣ ξð Þ

¼
Z 1

�1
dτ

∂
∂ξq

Gnp x; t; ξe; τð Þ
� �

Mpq ξe; τð Þ

¼
Z 1

�1
dτ

∂
∂ξq

Gnp x; t � τ; ξe; 0ð Þ
� �

Mpq ξe; τð Þ

¼ Mpq ξe; tð Þ∗ ∂
∂ξq

Gnp x; t; ξe; τð Þ, ð4:11Þ

where ξe represents the centroid of the fault, and moment tensorMpq is introduced as
an integration of the moment density tensor on the fault plane:

Mpq ξe; τð Þ ¼
ZZ

Σ
mpq ξ; τð ÞdΣ ξð Þ

¼ μ

ZZ
Σ

νp uq ξ; τð Þ� �þ νq up ξ; τð Þ� �� �
dΣ ξð Þ: ð4:12Þ

Thus, the displacement field u is then simply given by the convolution of the
moment tensor and the propagation process ∂Gnp/∂ξq as

un x; tð Þ ¼ Mpq ξe; tð Þ∗ ∂
∂ξq

Gnp x; t; ξe; 0ð Þ: ð4:13Þ

The average slip over the fault is given by

ui tð Þ½ � �
RR
Σ ui ξ; τð Þ½ �dΣ ξð Þ

S
, ð4:14Þ

where S is the area of the fault plane Σ. Then the moment tensor (Eq. 4.12) is
calculated as

Mpq tð Þ ¼ μS νp uq tð Þ� � þ νq up tð Þ� �n o
: ð4:15Þ

For example, when the plane Σ lies in the plane z ¼ 0 with a normal vector of
ν ¼ (0, 0, 1) and the slip occurs only in the x direction ( u tð Þ½ � ¼ �u tð Þ; 0; 0ð Þ), the
moment tensor becomes

M ¼
0 0 μ�u tð ÞS
0 0 0

μ�u tð ÞS 0 0

0@ 1A ¼
0 0 M tð Þ
0 0 0

M tð Þ 0 0

0@ 1A: ð4:16Þ
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The quantity appearing in the component of the moment tensor M tð Þ ¼ μ�u tð ÞS is
referred to as the moment time function. In particular, when the final displacement
discontinuity, or total slip, is given by D ¼ �u t ¼ 1ð Þ, the corresponding moment
time function becomes

M0 ¼ M t ¼ 1ð Þ ¼ μDS: ð4:17Þ

This is referred to as the seismic moment. The seismic moment represents the
magnitude of an earthquake. This is one of the most important quantities used to
characterize earthquakes. Actually, the seismic moment is related to the moment
magnitude MW as follows:

logM0 N �m½ � ¼ 1:5MW þ 9:1: ð4:18Þ

In the next section (Sect. 4.1.2) below, we show an analytical solution for the
displacement field un(x, t) from a point shear dislocation source. On the other hand,
we will consider the numerical simulation of seismic wave propagation from a point
source in 4.3. Seismic Wave Simulation. For the numerical simulation, it is useful to
represent a point source as an equivalent body force. Equation (4.11) is calculated as

un x; tð Þ ¼
Z 1

�1
dτ

∂
∂ξq

Gnp x; t � τ; ξ; 0ð Þ
� �

Mpq ξ; τð Þ

¼
Z 1

�1
dτ

ZZZ 1

�1
dη

∂
∂ηq

Gnp x; t � τ;η; 0ð Þ
" #

Mpq ξ; τð Þδ η� ξð Þ

¼ �
Z 1

�1
dτ

ZZZ 1

�1
dηGnp x; t � τ;η; 0ð Þ ∂

∂ηq
Mpq ξ; τð Þδ η� ξð Þ� �

:

ð4:19Þ

Then, comparing this with Eq. (4.2), we obtain the body force equivalent to the point
moment tensor source as

f p x; tð Þ ¼ � ∂
∂xq

Mpq ξ; tð Þδ x� ξð Þ� �
, ð4:20Þ

Note that Eq. (4.10) is for a finite fault size, but Eq. (4.20) is for a point source. We
will use Eq. (4.20) in 4.3. Seismic Wave Simulation.

4.1.2 Displacement Field from a Point Source

When the elastic constant is given by Lamé parameters as
cijpq ¼ λδijδpq + μ(δipδjq + δiqδjp), the Green function in a homogeneous, isotropic,
infinite elastic medium that satisfies Eq. (4.1) is given by
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Gjk x; t; ξ; τð Þ ¼ γ jγk
4πρV2

Pr
δ t � τ � r

VP

� 	
þ δ jk � γ jγk

4πρV2
Sr

δ t � τ � r

VS

� 	
þ 3γ jγk � δ jk

4πρr3
t � τð Þ H t � τ � r

VP

� 	
� H t � τ � r

VS

� 	� �
,

ð4:21Þ
and

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
and VS ¼

ffiffiffi
μ

ρ

r
, ð4:22Þ

where r is the distance from the source to the receiver as r ¼ |x � ξ| and γj is the jth
component of the direction cosine for the vector x � ξ:

γ j ¼
x j � ξ j

r
ð4:23Þ

and H(t) is a step function defined as H(t) ¼ 1 when t > 0 and H(t) ¼ 0 when t < 0.
Equation (4.21) is obtained if we set X0(t) as X0(t) ¼ δ(t) in Eq. (4.23) of Aki and
Richards (2002) using a formal equation:

f tð Þ ¼
Z r=VS

r=VP

τδ t � τð Þdτ

¼ t for r=VP � t � r=VS

0 for others

�
¼ t H t � r

VP

� 	
� H t � r

VS

� 	� �
:

When the slip on the fault is ui½ � ¼ �u tð Þsi (si is a unit vector representing slip
direction), substituting the Green function of (4.21) and the moment tensor (4.15)
into (4.13), we obtain displacement field un(x, t) as

un ¼ 2 γ � sð Þ γ � νð Þγn
4πρV3

Pr
μS �u

˙
t � r

VP

� 	
þ�2 γ � sð Þ γ � νð Þγn þ γ � sð Þνn þ γ � νð Þsn

4πρV3
Sr

μS �u
˙

t � r

VS

� 	
þ 12 γ � sð Þ γ � νð Þγn � 2 γ � sð Þνn � 2 γ � νð Þsn

4πρV2
Pr

2
μS�u t � r

VP

� 	
þ�12 γ � sð Þ γ � νð Þγn þ 3 γ � sð Þνn þ 3 γ � νð Þsn

4πρV2
Pr

2
μS�u t � r

VS

� 	
þ 30 γ � sð Þ γ � νð Þγn � 6 γ � sð Þνn � 6 γ � νð Þsn

4πρr4

Z r=VS

r=VP

τμS�u t � τð Þdτ:

ð4:24Þ
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Using the vector representation and the moment time function:

M tð Þ ¼ μ�u tð ÞS, ð4:25Þ

Eq. (4.24) is rewritten as

u x; tð Þ ¼ AFP

4πρV3
Pr

_M t � r

VP

� 	
þ AFS

4πρV3
Sr

_M t � r

VS

� 	
þ AIP

4πρV2
Pr

2
M t � r

VP

� 	
þ AIS

4πρV2
Sr

2
M t � r

VS

� 	
þ AN

4πρr4

Z r=VS

r=VP

τM t � τð Þdτ,

ð4:26Þ

where the vector coefficients are

AFP ¼ 2 γ � sð Þ γ � νð Þγ
AFS ¼ �2 γ � sð Þ γ � νð Þγþ γ � sð Þνþ γ � νð Þs
AIP ¼ 12 γ � sð Þ γ � νð Þγ� 2 γ � sð Þν� 2 γ � νð Þs
AIS ¼ �12 γ � sð Þ γ � νð Þγþ 3 γ � sð Þνþ 3 γ � νð Þs
AN ¼ 30 γ � sð Þ γ � νð Þγ� 6 γ � sð Þν� 6 γ � νð Þs:

ð4:27Þ

Equation (4.26) represents the displacement field excited by a point shear dislocation
source. Each term has each vector coefficient, such as AFP and AFS. The terms
including AFP and AFS are called far-field terms (far-field P and S, respectively)
because Eq. (4.26) shows that those terms decay slowly as 1/r and become dominant
far from the source. The terms including AIP and AIS are called intermediate terms.
The terms including AN are called near-field terms. These coefficients are given by
using the unit vectors of ν, γ, and s representing the fault normal direction, source-to-
receiver direction, and slip direction, respectively. Therefore, these vector coeffi-
cients represent a radiation pattern from a source or functions depending on the
direction. Also, each term represents different characteristics of the displacement
field.

4.1.2.1 Permanent Displacement Field

The displacement field due to a shear dislocation motion is constituted by various
terms (Eq. (4.26)). We first focus on the displacement that persists after enough time
elapses. By substituting t ¼ 1 into Eq. (4.26), we obtain
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u x; t ¼ 1ð Þ ¼ AIP

4πρV2
Pr

2
M 1ð Þ þ AIS

4πρV2
Sr

2
M 1ð Þ þ AN

4πρr4

Zr=VS

r=VP

τM 1ð Þdτ

¼ AIP

4πρV2
Pr

2
M 1ð Þ þ AIS

4πρV2
Sr

2
M 1ð Þ

þ AN

4πρr4
M 1ð Þ

2
r

VS

� 	2

� r

VP

� 	2
" #

¼ M 1ð Þ
4πρr2

AIP

V2
P

þ AIS

V2
S

þ AN

2
1

V2
S

� 1

V2
P

� 	� �
/ M0

r2
:

ð4:28Þ

We may consider that the moment time function becomes a non-zero constant
M(1) ¼ M0 and the time derivative of the moment time function becomes zero
_M 1ð Þwhen enough time elapses. The displacement field of Eq. (4.28) is referred to
as permanent displacement. Equation (4.28) indicates that the permanent displace-
ment field u(x, t ¼ 1) is proportional to the seismic moment M0. Since it decreases
rapidly with an increasing hypocentral distance according to r�2, the permanent
displacement appears only near the hypocenter. We can rewrite (4.28) as

u x; t ¼ 1ð Þ ¼M 1ð Þ
4πρr2

AIP

V2
P

þ AIS

V2
S

þ AN

2
1

V2
S

� 1

V2
P

� 	� �
¼ DS

4πr2
V2
S

V2
P

AIP þ AIS þ AN

2
1� V2

S

V2
P

� 	� �
,

ð4:29Þ

where D is the total slip and S is the area of the fault plane. The medium parameter of
VP/VS appears in the permanent displacement.

4.1.2.2 Propagating Seismic Waves: Far-Field Terms

Equation (4.26) indicates that the first two terms decrease with an increasing
hypocentral distance according to r�1 more slowly than other terms. The first two
terms, namely,

uFar x; tð Þ ¼ AFP

4πρV3
Pr

_M t � r

VP

� 	
þ AFS

4πρV3
Sr

_M t � r

VS

� 	
ð4:30Þ

become more dominant as the hypocentral distance r gets longer. These terms are
referred to as far-field terms. The first and second terms in Eq. (4.30) correspond to
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the P and S waves, respectively, and represent the propagation with velocities of VP

and VS. Equation (4.30) indicates that each far-field term is proportional to the time
derivative of the moment time function:

_M tð Þ

This is called the moment rate function. Both the P and S waves show the same
function shape as the moment rated function _M tð Þ.

Equation (4.30) indicates that the P and S waves have radiation patterns
represented by AFP and AFS, respectively, as defined in Eq. (4.27). Consider the
case in which the fault normal is given by ν ¼ (1, 0, 0) and the slip direction is
s ¼ (0, 1, 0). If we use the spherical coordinates (r, θ,ϕ) as shown in Fig. 4.3.

er ¼ sin θ cosϕ ex þ sin θ sinϕ ey þ cos θ ez ¼ γ,
eθ ¼ cos θ cosϕ ex þ cos θ sinϕ ey � sin θ ez,
eϕ ¼ � sinϕ ex þ cosϕ ey,

ð4:31Þ

the radiation patterns are represented as

AFP ¼ 2er sin θ sinϕ sin θ cosϕ,

AFS ¼ 1
2
sin 2θ sin 2ϕ eθ þ sin θ cos 2ϕ eϕ:

ð4:32Þ

Figure 4.4 plots the radiation pattern of the P and S waves from the shear dislocation
source (Eq. 4.32). The P wave shows a four-lobe pattern. The eϕ component of the S
wave also shows a four-lobe pattern, and the eθ component shows eight lobes. The
radiation pattern of both the P and S waves is a highly symmetric pattern. Actually,
even if we take the normal vector ν ¼ (0, 1, 0) and the slip direction vector
s¼ (1, 0, 0) instead of ν¼ (1, 0, 0) and s¼ (0, 1, 0), we obtain the identical radiation
patterns AFP and AFS for the P and S waves, respectively. This means that it is
impossible to determine the fault plane uniquely from the two fault planes by
performing far-field P and S wave analysis.

Fig. 4.3 The location of the
point source ξ is set as the
origin. The spherical
coordinates (r, θ,ϕ) are
introduced. (er, eθ, eϕ) are
unit base vectors
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The ratio of the S wave amplitude to the Pwave amplitude is given by (VP/VS)
3~5

if a Poisson solid is assumed, VP=VS ¼
ffiffiffi
3

p
, indicating that the S wave is dominant

over the P wave for a shear dislocation source. We also note that the far-field terms
become zero when enough time has elapsed:

uFar x;1ð Þ ¼ 0, ð4:33Þ

because the moment time function becomes constant _M t ! 1ð Þ ¼ 0 when the
earthquake rupture ends.

4.1.2.3 Centroid Moment Tensor (CMT) Solution

As explained above, far-field P and S waves each have specific radiation patterns
depending on the earthquake fault direction (strike, dip, rake), and the displacement
waveforms are proportional to the moment rate function of the fault motion. There-
fore, if we analyze the observed seismograms based on a point shear dislocation
model, we can estimate the parameters of a point shear dislocation source. Because
the location of the point source corresponds to a centroid of the earthquake fault
motion, the point source is referred to as the centroid moment tensor (CMT) solution.
Aki (1966) estimated the seismic moment of a large earthquake by analyzing the
seismograms of the 1964 Niigata earthquake, Japan. His study proved the usefulness
of modeling seismograms to obtain the parameters of the earthquake fault motion.

In actual situations, seismometers observe surface waves in addition to the P and
S waves, and the subsurface structure is not uniform but inhomogeneous. Recent
studies usually supposed a 1D or 3D subsurface structure and synthesized
seismograms including surface waves and other waves for the estimation of the
CMT solutions. Automated analysis of seismograms recorded globally and region-
ally is currently being performed. The Global CMT project has reported the CMT
solutions of earthquakes that have occurred throughout the world (Fig. 4.5). Those
estimated CMT solutions provide fundamental information for earthquake science.

Fig. 4.4 Radiation patterns of P and Swaves from a point shear dislocation source. The amplitudes
of the coefficients of er, eθ, and eϕ in Eq. (4.32) are plotted
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The CMT solution can be used for rapid tsunami evaluation. It provides infor-
mation on the fault orientation and its moment M0 ¼ μDS where D is the total slip
and S is the area of the fault plane. Using this information, we roughly calculate the
permanent sea-bottom displacement as a tsunami source. However, note that the
CMT solution cannot determine a unique fault plane but rather two fault plane
candidates, nor can it give the fault area S and dislocation D independently. A
scaling law of earthquake faults may be useful as a reasonable method to estimate
the fault area. We will explain the scaling law in the following sections.

4.2 Finite Fault Model and Scaling Law

When a huge earthquake occurs, we analyze seismograms recorded at some seismic
stations to infer the earthquake’s source process. The seismic moment can be stably
estimated by automated seismogram analysis by assuming a point source model.
This is because a point source model (explained in Sect. 4.1) works nicely for
synthesizing long-period far-field P, S, and surface waves of which wavelength is
longer than the earthquake fault length.

On the other hand, it is usually not so straightforward to estimate the earthquake
fault size (S¼ LW, where L andW are the length and width of the fault, respectively)
by an automated analysis. Equation (4.56) indicates that the moment tensor per unit
volume Mnþ1=2

pq δ x� ξð Þ functions as a stress change. By carefully analyzing the

Fig. 4.5 The centroid moment tensor (CMT) solutions (1976–2005) determined by the Global
CMT project. This was operated as the Harvard CMT project from 1982 to 2006. This gives a
catalog of CMT solutions for large earthquakes (M > 5) around the world. (Cited from www.
globalcmt.org, accessed 17 Aug 2017)
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seismograms, such as by analyzing the rupture directivity effects and pulse shape
carefully, we can estimate the fault size S and the slip D separately.

In order to reliably predict tsunami height near coasts, we need to set an
appropriate earthquake fault model. In particular, for an automated tsunami predic-
tion system, we need to make reasonable assumptions about earthquake fault size. A
scaling law applicable to earthquake fault size is useful for assuming the fault size in
the automated tsunami prediction system.

A scaling law simply predicts that a large earthquake has a large fault area and a
small earthquake has a small fault area. Kanamori and Anderson (1975) made plots
of the fault area S and the seismic moment M0 by compiling the observations of
numerous earthquakes with magnitudes ranging from 5.9 to 9.3 (Fig. 4.6). The plot
clearly indicates that the fault area S increases as the seismic moment M0 increases.

What is the physical mechanism behind this observation? Kanamori and Ander-
son (1975) suggested that the observed relation between fault area and magnitude is
reproduced if the stress change on the fault before and after the earthquake is
independent of the seismic moment M0. The stress change is usually referred to as
the stress drop.

Fig. 4.6 Relation between fault area S and seismic moment M0. The lines show the theoretical
relation based on a constant stress drop Δσ on a circular fault. (Kanamori and Anderson 1975,
copyright by the Seismological Society of America)
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4.2.1 Stress Drop

The seismic moment M0 is one of the most important parameters with which to
characterize the earthquake fault:

M0 ¼ μDS, ð4:17Þ

where D is the average slip on the fault and S is the fault area. The stress drop Δσ is
defined as the average difference between the shear stresses on a fault before an
earthquake σ0 and after the earthquake σ(t ¼ 1) as

Δσ ¼ 1
S

ZZ
Σ
σ0 � σ t ¼ 1ð Þ½ �dΣ: ð4:34Þ

Since the stress drop is defined only by the status before and after the earthquake
faulting and it is not affected by how fast the dislocation occurs, it is a static
parameter. The stress drop is in general given in the following form:

Δσ ¼ C0μ
D

a
, ð4:35Þ

where C0 is a constant depending on the fault shape, such as a rectangular or circular
shape, and a is a characteristic length of the fault plane such as the length of a
rectangular fault or the diameter of a circular fault.

As the simplest example, a circular fault buried in an infinite homogeneous
medium is considered. At the beginning, we consider an infinite homogeneous
medium where uniform shear stress exists in the whole space. Taking the Cartesian
coordinates shown in Fig. 4.7, we consider the displacement field given by

ux x; y; zð Þ ¼ σ0
μ
z, uy ¼ 0, uz ¼ 0: ð4:36Þ

This displacement field causes uniform shear stress in the whole space (Figure 4.7b):

τxz ¼ σ0: ð4:37Þ

Then, in the uniform stress field, we assume that an earthquake fault occurs
at z ¼ 0 and x2 + y2 � a (Fig. 4.7c). After the earthquake occurs, the stress on the
fault decreases. We assume that the stress becomes zero on the circular fault after the
earthquake. This is given by a boundary condition of the stress as
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τxz x; y; 0ð Þ ¼ 0 for z ¼ 0, x2 þ y2 � a: ð4:38Þ

The circular fault is also referred to as a crack. Now, on the fault, the stress changes
from σ0 to 0 in association with the earthquake occurrence. Then, the stress drop Δσ
is Δσ ¼ σ0 according to the definition of the stress drop (Eq. 4.34). Still, the stress
field far from the fault is not affected by this earthquake. Hence, the displacement far
from the earthquake remains the same as that before the earthquake occurred as

ux x; y; zð Þ ¼ σ0
μ
z, for z ¼ 	1: ð4:39Þ

When we consider an equilibrium state (no temporal change) after the earthquake
occurs, the equation of motion is given by the equilibrium equation

0 ¼ ∂τxx
∂x

þ ∂τxy
∂y

þ ∂τxz
∂z

: ð4:40Þ

The stress tensor needs to satisfy Eq. (4.40) in the whole space except on the fault.
We now seek a solution for the displacement field excited by the circular fault. In

other words, we solve for the displacement field ux(x, y, z) that satisfies Eqs. (4.38),
(4.39), and (4.40). We might expect there to be an analytical solution for the
displacement field ux(x, y, z). Actually, in a 2-D problem (i.e., τxz(x, y, 0) ¼ 0
for � a � x � a, � 1 � y � 1 instead of Eq. (4.38)), the analytical solution is
given by using the elliptic functions (e.g., Hasegawa et al. 2015). However, to my
knowledge, no simple analytical solution to the 3-D problem has been found.

Fig. 4.7 (a) A homogeneous medium is considered. The displacement is zero in the whole region.
(b) The medium is deformed. When the displacement field is given by ux(x, y, z) ¼ Δσz/μ, a
homogeneous stress field τxz ¼ Δσ occurs in the whole space. (c) A circular fault with radius
a (under a stress-free condition) is made at z ¼ 0 in the medium. The displacement and stress fields
are perturbed by the fault. The displacement is discontinuous at the up and down sides of the fault,
ux(x, y, 0+) 6¼ ux(x, y, 0�)
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If we do not attempt to represent the displacement field in the whole space but
only the displacement discontinuity on the circular fault, there is an analytical
solution. Eshelby (1957) derived the analytical solution by developing a smart
technique. He showed the displacement discontinuity on an elliptical fault when
uniform stress is applied. This corresponds to the dislocation caused by the stress
change of σ0 � σ(t ¼ 1) ¼ σ0. The dislocation on a circular fault with a uniform
stress drop Δσ is given by

Δux x; yð Þ ¼ ux x; y; 0þð Þ � ux x; y; 0�ð Þ
¼ 24
7π

Δσ
μ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 þ y2

a2

r
for x2 þ y2 < a2,

ð4:41Þ

(see Eq. (5.7) in Eshelby (1957)). We should note that the dislocation Δux that gives
a uniform stress drop is not uniform, but the dislocation is spatially varying.
Figure 4.8a shows the dislocation distribution on a circular fault given by
Eq. (4.41). The dislocation is at its maximum at the center and decreases to zero at
the edge of the circle. The maximum dislocation becomes larger as the size of the
fault increases (radius a).

It is not difficult to numerically estimate the displacement field once we know the
dislocation source representation of Eq. (4.41). The displacement field ux(x, y, z) is
calculated using the code of Okada (1992), where we represent the uniform dislo-
cation as the sum of small subfaults with uniform dislocation. Figures 4.8 b and c
show the displacement ux(0, 0, z) before and after the earthquake, respectively.
Before the earthquake, ux(x, y, z) is given by ux(x, y, z) ¼ (σ0/μ)z, indicating a
constant gradient with respect to the z-axis. After the earthquake (or after the stress
drop occurs), the displacement discontinuity occurs at z ¼ 0, and the gradient
becomes small, becoming zero near the fault (z~ � 100 	 0 km in Fig. 4.6c). This
means that the strain (stress) is released by the dislocation given by Eq. (4.41).

When the dislocation on the fault is given by Eq. (4.41), the average dislocation
on the circular fault is calculated as

D ¼ 1
πa2

ZZ
x2þy2�a2

Δux x; yð Þdxdy

¼ 1
πa2

Z a

0
dr

Z π

�π
rdθ

24
7π

Δσ
μ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2

r
¼ 16
7π

Δσ
μ

a:

ð4:42Þ

This indicates that the stress drop Δσ can be described by using the average slip
D and the fault size 2a as
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Fig. 4.8 (a) The distribution of dislocation given by Eq. (4.41) with Δσ ¼ 5 MPa, μ ¼ 50 GPa,
a ¼ 10 km. (b) The displacement ux(0, 0, z) before an earthquake occurs. The displacement field is
set as ux(x, y, z) ¼ (Δσ/μ)z. This gives a uniform shear stress τxz ¼ Δσ in the whole space. (c) The
displacement after an earthquake. The earthquake is represented by the dislocation distribution
shown in (a) set at (x, y, z) ¼ (0 km, 0 km,�100 km). The gradient of the displacement is almost
zero at z ¼ � 100 	 E km, suggesting that the shear strain τxz is almost zero
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Δσ ¼ 7π
8
μ
D

2a
: ð4:43Þ

This is consistent with the relation between the stress drop and the average slip given
by Δσ ¼ C0μD/a (Eq. 4.35).

4.2.2 Scaling Law

When a constant stress change �Δσ occurs in a circular region with a radius a,
Eq. (4.42) gives the average slip D on a circular crack as

D ¼ 16
7π

aΔσ
μ

¼ 16

7π3=2
Δσ
μ

ffiffiffi
S

p
, ð4:44Þ

where S is the crack area. Substituting Eq. (4.44) into M0 ¼ μDS (Eq. 4.17) gives

M0 ¼ 16

7π3=2
ΔσS3=2 � 0:41ΔσS3=2: ð4:45Þ

An earthquake model of a constant stress change �Δσ predicts that M0 / S3/2. This
reproduces the observed S � M0 relation in Fig. 4.6 nicely when assuming that the
stress drop Δσ ranges from 10 bar (1MPa) to 100 bar (10 MPa) for a wide range of
seismic moments M0 from 1018 to 1023 N m (1025–1030 dyn cm) (MW is from 5.9 to
9.3). Figure 4.6 suggests that the stress drop Δσ caused by earthquakes does not
systematically vary irrespective of the earthquake fault size.

If we assume that Δσ is constant and the fault length L is proportional to the width
W as L / W, Eq. (4.44) gives D / L. Thus, the assumption of a constant stress drop
and of similarity in the fault geometry gives the following relations:

S ¼ LW / M2=3
0 ,

D / S1=2 / M1=3
0 ,

ð4:46Þ

and the scaling laws are given by

S ¼ LW ¼ C1M
2=3
0

D ¼ C2M
1=3
0

ð4:47Þ

where C1 and C2 are the constants.
Scaling laws have been investigated in many studies. For example, Murotani et al.

(2013) derived the scaling laws by compiling the earthquake fault parameters
estimated from tsunami and geodetic data including the huge 2004 Sumatra and
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2011 Tohoku earthquakes. The relation between the fault area S and M0 and that
between D and M0 are plotted in Fig. 4.9a and b, respectively.

Figure 4.9 indicated that M0 / S3/2 and D / M1=3
0 . The regression analysis gives

the coefficients C1 and C2 as

S km2
� � ¼ LW ¼ 1:34
 10�10M2=3

0 Nm½ � ð4:48Þ

and

D m½ � ¼ 1:66
 10�7M1=3
0 Nm½ �: ð4:49Þ

The moment magnitude MW is defined by using the seismic moment as

logM0 N �m½ � ¼ 1:5MW þ 9:1: ð4:18Þ

If the moment magnitude is MW 9 (M0 ¼ 4.0 
 1022 Nm), the scaling law
(Eq. (4.48)) finds that the fault area S¼ 15.7 
104 [km2]. If we assume L ¼ 2W,
the length of the fault and width are L ¼ 560 km and W ¼ 280 km. Equation (4.49)
gives the slipD¼ 6 m. The fault width ofW¼ 280 kmmay be too large compared to
the actual MW ~9 earthquakes such as the 2004 Sumatra earthquake and the 2011
Tohoku-Oki earthquake. We should note that the scaling law can give only a rough
description of the average fault geometries.

Let us consider that the moment magnitude MW changes to MW + ΔMW. The
definition of the moment magnitude (Eq. 4.18) gives the seismic moment M0

'

corresponding to the moment magnitude MW + ΔMW as

Fig. 4.9 (a) Relation between fault area S and seismic moment M0. (b) Relation between average
slip D and seismic moment M0. Red lines indicate the regression lines, and dashed lines show the
standard deviation on a log-log scale. (Murotani et al. 2013, copyright by the American Geophysical
Union)
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logM0
0 N �m½ � ¼ 1:5 MW þ ΔMWð Þ þ 9:1 ¼ logM0 þ 1:5ΔMW,

M0
0 ¼ 101:5ΔMWM0:

ð4:50Þ

When the moment magnitude decreases by 1 (ΔMW ¼ � 1), the seismic moment
decreases by a factor of 10�1.5~1/32. Since the seismic moment is M0 / DLW, the
length L, width W, and slip D decrease by a factor of (10�1.5)1/3 ¼ 10�0.5~1/3. The
earthquake fault geometry of the MW 8 is then given by the length L ¼ 180 km, the
width W ¼ 90 km, and the slip D ¼ 2 m.

4.2.3 Using the Scaling Law for Tsunami Simulation

The scaling law of the earthquake fault is very useful for rapid tsunami prediction.
We can estimate the CMT solution by analyzing seismic waveforms. Also, the
seismic wave, which propagates much faster than the tsunami, can deliver the
earthquake source information earlier than the tsunami. Hence, we estimate the
magnitude of the earthquake by analyzing the observed seismograms promptly
after the earthquake and can predict the tsunami height at the coast before the
tsunami arrival.

As shown in Sect. 4.1, for far-field P or S waves in seismograms, the seismic
source is effectively modeled as a point shear dislocation source. We can obtain the
seismic moment and the moment tensor by far-field seismogram analysis. Actually,
automated analysis of the global and regional seismograms can estimate the moment
tensor for large earthquakes (e.g., Global CMT (http://www.globalcmt.org), USGS
CMT (https://hdds.usgs.gov), F-net (Japan) (http://www.fnet.bosai.go.jp/top.php?
LANG¼en)).

The most important parameters in tsunami simulations are the seismic moment
and the location of the centroid moment. The next important parameter is the fault
size. To estimate the fault size from the seismic moment, the scaling law is quite
useful. By using the CMT solution and the scaling law of the earthquake fault, we
roughly set the fault geometry in an automated tsunami prediction algorithm. Some
tsunami prediction systems are operating by employing this idea and using the
regional and global seismic networks (e.g., Gusman and Tanioka 2014). Tsunami
forecast systems using CMT solutions are being operated by the Pacific Tsunami
Warning Center (PTWC) (e.g., Wang et al. 2012) and the French Polynesia Tsunami
Warning Center (CPPT: Centre Polynésien de Prévention des Tsunamis) (e.g.,
Clément and Reymond 2015; Jamelot and Reymond 2015). Figure 4.10 shows an
example of automated tsunami prediction (Inazu et al. 2016).

The CMT solution cannot determine the fault plane uniquely but can give two
candidates for the fault plane because of the symmetry of the moment tensor
representations. We need to select an appropriate one from the two candidates. We
should note that the scaling law gives only the average fault geometry. Hence, the
fault parameters predicted from the scaling law and the actual earthquakes differ
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somewhat. Also, mechanical fault models (constant stress change over the fault)
with a stress-free surface boundary condition indicate that uniform slip models
underestimate the tsunami height (e.g., Geist 1998; Geist and Dmowska 1999).
For example, the scaling law predicted an average slip of 6 m for an earthquake of
MW 9, whereas significant slip heterogeneity (the maximum slip was larger than
40 m) was observed at the 2011 Tohoku-Oki earthquake (e.g., Fujii et al. 2011).

4.3 Seismic Wave Simulation

This section illustrates numerical simulations for the excitation of seismic waves and
permanent displacement due to a finite earthquake fault. We are able to intuitively
understand the seismic wave propagation through animations of the simulation
results. The finite difference method is introduced as a numerical simulation method.
This method shows the general versatility of numerical methods and is one of the
most widely used methods in seismology and tsunami studies. The numerical
simulations show that the seismic wavefield drastically changes depending on the

Fig. 4.10 Tsunami simulation using earthquake information. (Inazu et al. 2016, copyright by
Springer)
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time scale of the earthquake rupture; seismic and ocean acoustic waves are excited
more when the dislocation occurs more rapidly. On the other hand, the permanent
displacement does not depend on the slip rate but depends on the final amount of
slip. The balance of the seismic wave excitation and the permanent displacement are
important for tsunami monitoring. Strong seismic wave excitation can create noise
that interferes with tsunami observation. In contrast, if seismic wave is less excited as
in a tsunami earthquake, it would be difficult (but not impossible) to estimate theMW

by automated rapid seismogram analyses.

4.3.1 Finite Difference Method

The equations of motion in a 3-D elastic medium are

ρ
∂vx
∂t

¼ ∂τxx
∂x

þ ∂τxy
∂y

þ ∂τxz
∂z

þ f x,

ρ
∂vy
∂t

¼ ∂τyx
∂x

þ ∂τyy
∂y

þ ∂τyz
∂z

þ f y,

ρ
∂vz
∂t

¼ ∂τzx
∂x

þ ∂τzy
∂y

þ ∂τzz
∂z

þ f z,

ð4:51Þ

and the constitutive laws are

∂τxx
∂t

¼ λþ 2μð Þ∂vx
∂x

þ λ
∂vy
∂y

þ λ
∂vz
∂z

,

∂τyy
∂t

¼ λ
∂vx
∂x

þ λþ 2μð Þ∂vy
∂y

þ λ
∂vz
∂z

,

∂τzz
∂t

¼ λ
∂vx
∂x

þ λ
∂vy
∂y

þ λþ 2μð Þ∂vz
∂z

,

∂τyz
∂t

¼ μ
∂vy
∂z

þ ∂vz
∂y

� 	
,

∂τzx
∂t

¼ μ
∂vz
∂x

þ ∂vx
∂z

� 	
,

∂τxy
∂t

¼ μ
∂vx
∂y

þ ∂vy
∂x

� 	
:

ð4:52Þ

The Lamé parameters of λ and μ are represented as λ ¼ ρ V2
P � 2V2

S

� 
and μ ¼ ρV2

S

when the density ρ and the P and S wave velocities VP and VS are given.
We use a staggered grid setting as shown in Fig. 4.11 to represent the differen-

tiation as a finite difference form. The z-axis goes vertically downward. The x- and y-
axes run to the north and east, respectively. This coordinate system is often used in
seismology (e.g., Aki and Richards 2002). The grid point (i, j, k) is located at (x, y,
z) ¼ (iΔx, jΔy, kΔz). The medium parameters of ρ, λ, μ are defined at the grid point
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(i, j, k). Dependent variables of vp and τpq are defined at the corresponding grid
location as follows:

vnx, ijk ¼ vx iþ 1=2ð ÞΔx; jΔy; kΔz; nΔtð Þ,
vny, ijk ¼ vy iΔx; jþ 1=2ð ÞΔy; kΔz; nΔtð Þ,
vnz, ijk ¼ vz iΔx; jΔy; k þ 1=2ð ÞΔz; nΔtð Þ,
τnþ1=2
xx, ijk ¼ τxx iΔx; jΔy; kΔz; nþ 1=2ð ÞΔtð Þ,
τnþ1=2
yy, ijk ¼ τyy iΔx; jΔy; kΔz; nþ 1=2ð ÞΔtð Þ,
τnþ1=2
zz, ijk ¼ τzz iΔx; jΔy; kΔz; nþ 1=2ð ÞΔtð Þ,
τnþ1=2
xy, ijk ¼ τxy iþ 1=2ð ÞΔx; jþ 1=2ð ÞΔy; kΔz; nþ 1=2ð ÞΔtð Þ,
τnþ1=2
yz, ijk ¼ τyz iΔx; jþ 1=2ð ÞΔy; k þ 1=2ð ÞΔz; nþ 1=2ð ÞΔtð Þ,
τnþ1=2
zx, ijk ¼ τzx iþ 1=2ð ÞΔx; jΔy; k þ 1=2ð ÞΔz; nþ 1=2ð ÞΔtð Þ:

ð4:53Þ

For example, the finite difference approximation with respect to the time deriv-
ative of vx in Eq. (4.51) is given by

Fig. 4.11 Staggered grid setting for the finite difference approximation
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vnþ1
x, ijk ¼ vnx, ijk þ

Δt
ρ

∂τnþ1=2
xx

∂x
þ ∂τnþ1=2

xy

∂y
þ ∂τnþ1=2

xz

∂z
þ f x

 !
: ð4:54Þ

This is the second-order approximation in time. Remembering that a point source
located at ξ with the moment tensor Mpq is represented as the body force equivalent
(Eq. 4.20) as

f p x; tð Þ ¼ � ∂
∂xq

Mpq tð Þδ x� ξð Þ� �
, ð4:20Þ

defining Mnþ1=2
pq ¼ Mpq nþ 1=2ð ÞΔtð Þ and substituting fx(x, t)

f x x; tð Þ ¼ � ∂
∂x

Mxx tð Þδ x� ξð Þ½ � � ∂
∂y

Mxy tð Þδ x� ξð Þ� �� ∂
∂z

Mxz tð Þδ x� ξð Þ½ �,

into Eq. (4.54), we obtain

vnþ1
x, ijk ¼ vnx, ijk þ

Δt
ρ

∂
∂x

τnþ1=2
xx �Mnþ1=2

xx δ x� ξð Þ
h i

þ ∂
∂y

τnþ1=2
xy �Mnþ1=2

xy δ x� ξð Þ
h i�

þ ∂
∂z

τnþ1=2
xz �Mnþ1=2

xz δ x� ξð Þ
h i�

¼ vnx, ijk þ
Δt
ρ

∂τ0nþ1=2
xx

∂x
þ ∂τ0nþ1=2

xy

∂y
þ ∂τ0nþ1=2

xz

∂z

( )
,

ð4:55Þ

where the stress tensor τ0nþ1=2
pq is defined as

τ0nþ1=2
pq ¼ τnþ1=2

pq �Mnþ1=2
pq δ x� ξð Þ: ð4:56Þ

Equation (4.56) indicates that the moment tensor Mnþ1=2
pq per unit volume functions

as a stress change. Because the minimum unit size of the finite difference represen-
tation using the grid points is given by a cubic cell with the volume ofΔV¼ΔxΔyΔz,
we may consider Mnþ1=2

pq δ x� ξð Þ as Mnþ1=2
pq =ΔV located at ξ as

τ0nþ1=2
pq ¼ τnþ1=2

pq �Mnþ1=2
pq =ΔV , ð4:57Þ

in the finite difference simulation. Equation (4.57) indicates that the earthquake
source represented by a moment tensor has the form of a stress change. Note that
Mnþ1=2

pq =ΔV is not the stress drop explained in Sect. 4.2.1 Stress Drop. This is often
referred to as a “stress glut” (Aki and Richards 2002).
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The spatial differentiation in Eq. (4.55) is then represented in the finite difference
form as

vnþ1
x, ijk ¼ vnx, ijk

þ Δt
ρ

τ0nþ1=2
xx, iþ1jk � τ0nþ1=2

xx, ijk

Δx
þ τ0nþ1=2

xy, ijk � τ0nþ1=2
xy, ij�1k

Δy
þ τ0nþ1=2

xz, ijk � τ0nþ1=2
xz, ijk�1

Δz

( )
ð4:58Þ

where the second-order finite difference approximation is used for the spatial
differentiation. Similarly, we obtain the finite difference form with respect to vnþ1

y, ijk

and vnþ1
z, ijk as

vnþ1
y, ijk ¼ vny, ijk

þ Δt
ρ

τ0nþ1=2
yx, ijk � τ0nþ1=2

yx, i�1jk

Δx
þ τ0nþ1=2

yy, ijþ1k � τ0nþ1=2
yy, ijk

Δy
þ τ0nþ1=2

yz, ijk � τ0nþ1=2
yz, ijk�1

Δz

( )
,

ð4:59Þ
and

vnþ1
z, ijk ¼ vnz, ijk

þ Δt
ρ

τ0nþ1=2
zx, ijk � τ0nþ1=2

zx, i�1jk

Δx
þ τ0nþ1=2

zy, ijk � τ0nþ1=2
zy, ij�1k

Δy
þ τ0nþ1=2

zz, ijkþ1 � τ0nþ1=2
zz, ijk

Δz

( )
:

ð4:60Þ
Equation (4.52) is represented in the finite difference form as

τnþ1=2
xx, ijk ¼ τn�1=2

xx, ijk

þ Δt λþ 2μð Þ v
n
x, ijk � vnx, i�1jk

Δx
þ λ

vny, ijk � vny, ij�1k

Δy
þ λ

vnz, ijk � vnz, ijk�1

Δz

� �
,

ð4:61Þ
τnþ1=2
yy, ijk ¼ τn�1=2

yy, ijk

þ Δt λ
vnx, ijk � vnx, i�1jk

Δx
þ λþ 2μð Þ v

n
y, ijk � vny, ij�1k

Δy
þ λ

vnz, ijk � vnz, ijk�1

Δz

� �
,

ð4:62Þ
τnþ1=2
zz, ijk ¼ τn�1=2

zz, ijk

þ Δt λ
vnx, ijk � vnx, i�1jk

Δx
þ λ

vny, ijk � vny, ij�1k

Δy
þ λþ 2μð Þ v

n
z, ijk � vnz, ijk�1

Δz

� �
ð4:63Þ
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τnþ1=2
yz, ijk ¼ τn�1=2

yz, ijk þ Δtμ
vny, ijkþ1 � vny, ijk

Δz
þ vnz, ijþ1k � vnz, ijk

Δy

� �
, ð4:64Þ

τnþ1=2
xz, ijk ¼ τn�1=2

xz, ijk þ Δtμ
vnx, ijkþ1 � vnx, ijk

Δz
þ vnz, iþ1jk � vnz, ijk

Δx

� �
, ð4:65Þ

τnþ1=2
xy, ijk ¼ τn�1=2

xy, ijk þ Δtμ
vnx, ijþ1k � vnx, ijk

Δy
þ vny, iþ1jk � vny, ijk

Δx

� �
: ð4:66Þ

By using these finite difference equations, we calculate the velocity field vp and the
stress field (τpq) with the increment of a factional time step as shown in the flow chart
in Fig. 4.12.

Usually, the velocity field and stress field at the time t¼ 0 are set at zero, and then
the stress tensor τpq at the time t ¼ Δt/2 becomes zero based on Eqs. (4.61, 4.62,
4.63, 4.64, 4.65, and 4.66). The stress tensor changes to τ'pq with the moment tensor
Mpq as the earthquake source according to Eq. (4.57). We then obtain the velocity
field vp at the time t ¼ Δt, (n ¼ 1) by using Eqs. (4.58), (4.59), and (4.60). By
repeatedly conducting these arithmetic calculations for the time increment of n, the
stress and velocity fields of τpq and vp can be numerically calculated by increasing
the time step.

4.3.1.1 Effective Medium Parameters

The density ρ and Lamé parameters of λ and μ are defined at the (i, j, k)th grid located
at (x, y, z) ¼ (iΔx, jΔy, kΔz) (Fig. 4.11). Because the stresses τxx, τyy, and τzz are also
defined at the same grid, Lamé parameters λ and μ of the (i, j, k)th grid located at
(x, y, z) ¼ (iΔx, jΔy, kΔz) are used for the calculation of τxx, τyy, and τzz. However,
when calculating the stress components of τyz, τxz, and τxy, which are not defined at
(x, y, z) ¼ (iΔx, jΔy, kΔz), we should not use the rigidity μ at (iΔx, jΔy, kΔz). For

Fig. 4.12 A flow chart for
the finite difference
numerical simulation
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example, we need to use the rigidity μi j + 1/2 k + 1/2 located at (iΔx, ( j + 1/2)Δy, (k + 1/
2)Δz) for the case of the stress τyz (Eq. 4.64):

τnþ1=2
yz, ijk ¼ τn�1=2

yz, ijk þ Δtμi jþ1=2 kþ1=2

vny, ijkþ1 � vny, ijk
Δz

þ vnz, ijþ1k � vnz, ijk
Δy

� �
:

Similarly, we need to use the rigidity μi + 1/2 j k + 1/2 for the stress τxz and the rigidity
μi + 1/2 j + 1/2k for the stress τxy. This also holds for the density ρ when calculating the
particle velocities vx, vy, and vz (Eqs. 4.58, 4.59, and 4.60).

The effective media parameters are used when calculating τyz, τxz, τxy, vx, vy,
and vz (see Graves 1996; Moczo et al. 2014). To determine the effective media
parameters, we must interpolate the medium parameters such as λ, μ, and ρ.
Considering the continuity of the traction and the displacement at the medium
discontinuities, the effective medium parameters are given by the harmonic average
or the arithmetic average as follows. The theoretical considerations were discussed
in Moczo (2002). We only describe the results here. Rigidity is given by the
harmonic average as

μi, jþ1=2,kþ1=2 ¼ 1
4

1
μijk

þ 1
μijþ1k

þ 1
μijkþ1

þ 1
μijþ1kþ1

� �h i�1
,

μiþ1=2, j,kþ1=2 ¼ 1
4

1
μijk

þ 1
μiþ1jk

þ 1
μijkþ1

þ 1
μiþ1jkþ1

� �h i�1
,

μiþ1=2, jþ1=2,k ¼ 1
4

1
μijk

þ 1
μiþ1jk

þ 1
μijþ1k

þ 1
μiþ1jþ1k

� �h i�1
:

ð4:67Þ

The density is given by the arithmetic average:

ρiþ1=2 j k ¼
1
2
ρiþ1 jk þ ρijk
� 

,

ρi jþ1=2 k ¼
1
2
ρijþ1k þ ρijk
� 

,

ρi j kþ1=2 ¼
1
2
ρijkþ1 þ ρijk
� 

:

ð4:68Þ

4.3.1.2 Moment Tensor Represented by Earthquake Fault Parameters

As shown in Fig. 4.13, a fault plane is defined by strike ϕS (the azimuth of the fault
measured clockwise from the north) and dip δ (the angle between the horizontal
surface and the fault plane). We consider only shear dislocation here. The slip vector
is defined by the motion of the hanging wall relative to the foot wall. The slip
direction is represented by rake λ (the angle between the slip vector and the strike).
The moment tensor of this point shear dislocation is given by (Aki and Richards
2002, Box 4.4)
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Mxx ¼ �M0 sin δ cos λ sin 2ϕS þ sin 2δ sin λ sin 2ϕSð Þ,
Mxy ¼ þM0 sin δ cos λ sin 2ϕS þ

1
2
sin 2δ sin λ sin 2ϕS

� 	
,

Mxz ¼ �M0 conδ cos λ cosϕS þ cos 2δ sin λ sinϕSð Þ ¼ Mzx,
Myy ¼ þM0 sin δ cos λ sin 2ϕS � sin 2δ sin λ cos 2ϕSð Þ,
Myz ¼ �M0 cos δ cos λ sinϕS � cos 2δ sin λ cosϕSð Þ ¼ Mzy,
Mzz ¼ þM0 sin 2δ sin λ:

ð4:69Þ

When considering tsunami excitation, the finite fault size or length and width also
matter in addition to the seismic moment, strike, dip, and rake. We may represent the
finite size with numerous point shear dislocation sources distributed on the fault
plane in order to simulate the permanent sea-bottom displacement and seismic
waves. For example, when the total seismic moment is M0, we may put N point
shear dislocation sources on the fault plane as shown in Fig. 4.14. Each shear
dislocation source has the moment of M0/N.

Fig. 4.13 Fault in Cartesian
coordinates

Fig. 4.14 A finite fault
represented by numerous
point sources
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4.3.1.3 Diminishing the Waves Reflected from the Simulation
Boundaries

In numerical simulations, we delimit the region for the calculation and set the
boundaries of the simulation region. Waves propagating and arriving at the bound-
aries are reflected at the boundaries. The waves reflected at the boundaries and
coming back to the simulation region contaminate the wavefields. These reflected
waves are artificial waves that we do not want to reproduce. We intend to minimize
the excitation of these unnecessary waves in order to focus the waves that have
physical meaning in the simulations. There are various ways of damping the waves
reflected at the boundaries of the simulation region such as the one-way propagation
method and perfectly matching layer method (e.g., Moczo et al. 2014). We here
explain the method of absorbing buffer region that is one of the simplest and most
stable methods for diminishing the wave reflection at the simulation boundaries
(e.g., Cerjan et al. 1985). The method also has an advantage in that it does not have a
high computational cost.

An attenuating medium is supposed where waves gradually attenuate with
increasing time as

dy

dt
¼ �αy ð4:70Þ

where y is the wave amplitude and Eq. (4.70) indicates that α(>0) is the attenuating
rate per unit time. The solution of this differential equation is

y tð Þ ¼ y 0ð Þexp �αtð Þ: ð4:71Þ
Also, the finite difference form of this equation is given by

ynþ1 ¼ yn exp �αΔtð Þ � 1� αΔtð Þyn, ð4:72Þ

where Δt is the time step of the simulation and yn ¼ y(nΔt). This indicates that the
wave amplitude is attenuated by multiplying (1� αΔt) with the amplitude during the
time step of Δt. As shown in Fig. 4.15, an attenuating medium is set surrounding the
simulation region. The attenuating rate α is set at zero at the start of the attenuation
region (i¼ N� Na) and increases continuously to a larger value more rapidly toward
the end of the simulation region (i ¼ Na):

α ¼ 0 for i < N � Na

C0 i� N � Nað Þ½ �2 for i � N � Na:

�
ð4:73Þ

4.3.1.4 Further Reading and Open Codes

Seismic wave propagation simulation has been developed rapidly. We explained
only the essential parts of the simulation method so that the reader can code it by
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themselves. The 2-D simulations are not realistic but are important for theoretical
studies. The relation between the 3-D and 2-D wave propagations is explained in
Appendix A. For the development of the codes, excellent textbooks (e.g., Fichtner
2010; Moczo et al. 2014) are available for further reading. Some excellent seismic
wave simulation codes are provided on the Internet. For example, Maeda et al.
(2017) provides OpenSWPC (https://github.com/takuto-maeda/OpenSWPC/
releases/).

4.3.2 Seismic Waves, Ocean Acoustic Waves, and Permanent
Displacement

By using the finite difference method of seismic wave simulation, this section
investigates seismic waves excited by a shear dislocation source. We conduct 2-D
space (x, z) simulation by assuming that there is no variation along the y-axis
(Appendix 4A). An elastic medium is constituted by the sea layer and the uniform
crust containing the earthquake fault. The stress is free at the sea surface.

4.3.2.1 Slow Faulting and Rapid Faulting

An earthquake fault with a width of 100 km and a dip of 15 degrees is set. The top of
the fault is located 5 km deep below the sea bottom (Fig. 4.16). Although the actual
earthquake rupture is characterized by wide-frequency contents from permanent
displacement to a high-frequency component (at least ~10 Hz), we employ a simple
source time function in order to investigate the mechanism of wave excitation
depending on the time scale. We assume that the moment rate _M tð Þ is given by
the Gaussian function as

Fig. 4.15 Absorption boundary

134 4 Earthquakes

https://github.com/takuto-maeda/OpenSWPC/releases
https://github.com/takuto-maeda/OpenSWPC/releases


_M tð Þ ¼ f tð Þ ¼ M0ffiffiffi
π

p 4
tc
exp � t � t0ð Þ2

tc=4ð Þ2
" #

: ð4:74Þ

The parameter tc controls the duration of the earthquake slip. The functions with tC¼
4 s and 40 s in Eq. (4.74) are plotted in Fig. 4.17 (a). The spectral amplitude of
Eq. (4.74) is

bf ωð Þ
��� ��� ¼ M0 exp �1

4
tc
4

� �2
ω2

� �
: ð4:75Þ

Figure 4.17 (b) shows the spectral amplitude as a function of the wave frequency.
Both the two spectral amplitudes of tC ¼ 4 s and 40 s are the same in the lower-
frequency limit since the moment M0 is the same in the two moment rate functions.
The short-duration or rapid faulting of tC¼ 4 s has a broader spectral content and has
much high-frequency components than the slow faulting of tC ¼ 40 s.

Fig. 4.16 An elastic medium constituted by a water layer and homogeneous crust. The finite size of
the earthquake fault is set in the crust

Fig. 4.17 (a) Functions of f(t) give the slip rate or moment rate. The parameter tC that characterizes
the duration is set at 4 s (dashed line) and 40 s (solid line) in Eq. (4.74). The parameter t0 is set at
60 s. (b) The spectral amplitudes of the slip rate functions of 4 s (dashed line) and 40 s (solid line).
(Saito 2017, copyright by Oxford)
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First, we conducted a seismic wave simulation when the earthquake faulting is
slow or the moment rate function is characterized by tc ¼ 40 s. For simplicity, we
neglected the rupture propagation, but the slip starts simultaneously on the fault. In
other words, we set the rise time to 40 s, and the rupture velocity was infinite.
Figure 4.18 shows the temporal and spatial distributions of the sea-surface height,
sea-bottom vertical displacement, and vertical velocity in the sea and crust. At the
time of 60 s (Fig. 4.18a), the vertical velocity exists above the earthquake fault,
which uplifts the sea bottom and sea surface. The vertical displacement at the sea
bottom and sea surface gradually increases with time. At the times of 80 s and 100 s
(Fig. 4.18b and c), the slip on the fault has ended, and the velocity distribution
caused by the earthquake disappears. If we observe the velocity distribution, we see

Fig. 4.18 Simulation results of the source duration given by tc¼ 40 s for various elapsed times, (a)
60 s, (b) 80 s, (c) 100 s, and (d) 200 s. Vertical displacement distributions at the sea surface (blue)
and sea bottom (black) are plotted in the upper bin. The vertical velocity distribution in the vertical
cross section is displayed with a color map in the lower bin. The sea depth is 4 km (0 < z < 4 km).
The black line in the crust indicates the earthquake fault. (Saito 2017, copyright by Oxford)
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that a long-wavelength wave propagates horizontally. However, the amplitude of the
wave at the sea bottom and sea surface is very small. The wave front is located at
80 km at the time of 80 s and 150 km at the time of 100 s (Fig. 4.18b and c). The
propagation velocity is ~3.5 km/s, corresponding to the Rayleigh wave. When the
time is 200 s (Fig. 4.18d), the sea-bottom displacement remains above the earth-
quake fault. This is permanent displacement. Since this simulation neglects gravity,
the sea surface does not collapse but remains as a permanent displacement.

Figure 4.19 shows the simulation results when the earthquake faulting occurs
quickly or the moment rate function is characterized by tc¼ 4s. The wave front of the
seismic waves is clearly recognized on the sea bottom (black line in the upper panel)
at x¼ 130 km at the time of 100 s (Fig. 4.19b) and at x¼ 200 km at the time of 120 s
(Fig. 4.19c). This shows that the Rayleigh wave propagates with a speed of ~3.5 km/
s. The velocity distribution in the cross section indicates that considerable amplitude
exists both in the sea and the crust for the Rayleigh wave at x ¼ ~100–~200 km in
Fig. 4.19c. Unlike the case of the long duration rupture (Fig. 4.18), the amplitude in
the sea is much larger than that in the crust for the later waves at 0 km < x < 80 km in
Fig. 4.19c and 100 < x < 300 km in Fig. 4.19d. The later waves are trapped within the
sea layer in the case of short-duration earthquake rupture. These waves are the ocean
acoustic wave. A simple water-layer model predicts that ocean acoustic waves exist
when the wave frequency is higher than fmin ¼ c0/(4h0)~0.1 Hz (Eq. (3.163) in Sect.
3.3.2 Ocean Acoustic Waves). As shown in Fig. 4.17b, the rapid earthquake rupture
characterized by tc¼ 4 s contains significant high-frequency components higher than
fmin¼ c0/(4h0)~0.1Hz. Hence, this excites considerable ocean acoustic waves, unlike
in the case of tc ¼ 40s.

Comparisons of the long-duration and short-duration earthquake ruptures
(Figs. 4.18 and 4.19) indicate that the excitation of the ocean acoustic waves strongly
depends on the time scale of the earthquake rupture. When the rupture duration is
short and the source spectrum contains high-frequency components, the ocean
acoustic wave is efficiently excited. On one hand, the permanent sea-bottom dis-
placements (or permanent sea-surface displacement) caused by the long- and short-
duration earthquakes are identical. These simulation results are very reasonable. This
is because the excitation of the seismic waves is proportional to the moment rate,
whereas the permanent displacement is proportional to the moment, as theoretically
derived using a simple earthquake source model in Sect. 4.1.2 Displacement Field
from a Point Source.

4.3.3 Bridging Seismic Wave Simulation to Tsunami
Propagation Simulation

In the previous section, we considered the sea-surface height and sea-bottom dis-
placement distributions caused by an earthquake without gravity. In reality, the
displaced sea-surface functions as the source of tsunami. Gravity works as the
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restoring force of tsunami propagation. We here illustrate two methods for bridging
the seismic wave simulation to tsunami propagation. One is to simulate tsunami
without seismic waves, and the other is to simulate both seismic waves and tsunami.

(i) Only Tsunami Propagation Modeling

This approach is basically the same as the method used in many tsunami studies.
Only the permanent displacement at the sea bottom is included but seismic waves are
neglected.

Fig. 4.19 Simulation results of the source duration are given by tc ¼ 4 s for various elapsed times:
(a) 80 s, (b) 100 s, (c) 120 s, and (d) 200 s. Vertical displacement distributions at the sea surface
(blue) and at the sea bottom (black) are plotted in the upper bin. Vertical velocity distribution in the
vertical cross section is displayed with a color map in the lower bin. The sea depth is 4 km
(0 < z < 4 km). The black line in the crust indicates the earthquake fault. (Saito 2017, copyright
by Oxford)
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The seismic wave propagation simulation gives the permanent vertical displace-
ment at the sea bottom as

d xð Þ ¼ uz x; z ¼ zbot; t ¼ 1ð Þ: ð4:76Þ

A gray line in Figure 4.20a shows the permanent vertical displacement for the
seismic wave simulation shown in Fig. 4.18. Note that the permanent displacements
calculated by the slow and rapid rupture (Figs. 4.18 and 4.19) are identical. The
maximum displacement reaches at 0.4 m, and the sea bottom ranging �100 km to
0 km is significantly displaced by the earthquake. When the crust is uniform, we can
also calculate the permanent vertical displacement d(x) by using the analytical
solutions (e.g., Okada 1992). The vertical displacement distribution obtained by
the analytical solution is plotted by red line. The excellent agreement between the
two lines supports that the seismic wave simulation can correctly calculate the
permanent displacement field.

When the sea is incompressible and the sea depth is constant h ¼ h0, the
sea-surface displacement η0(x) caused by the sea-bottom displacement d(x) is
given by

η0 xð Þ ¼ 1
2π

Z 1

�1
dk exp ikx½ �

bd kð Þ
cosh kh0ð Þ , ð4:77Þ

where bd kð Þ is the spatial Fourier transform of d(x) (e.g., Takahashi 1942; Kajiura
1963). Equation (4.77) indicates that the sea layer of h ¼ h0 works as a spatial
low-pass filter for the input of the sea-bottom displacement d(x) and the output of the
sea-surface displacement η0(x). The filter is often referred to as a Kajiura filter by
researchers. We treat this theoretical background in more detail in the next chapter
(Chap. 5: Tsunami Generation). The red line in Figure 4.20b shows the vertical
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Fig. 4.20 (a) The vertical displacement distribution at the sea bottom at the elapsed time of 180 s
for the simulation result of source duration tc ¼ 40 s (bold gray line) and the permanent sea-bottom
deformation calculated based on the static equation of Okada (1992) (thin red line); (b) vertical
displacement distribution at the sea surface at the elapsed time of 180 s for the simulation result of
source duration tc ¼ 40 s (bold gray line) and the sea-surface deformation calculated based on the
static equation and incompressible fluid theory. (Kajiura 1963) (thin red line) (Saito 2017, copyright
by Oxford)
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displacement η0(x) at the sea surface calculated from the sea-bottom displacement d
(x) with Eq. (4.77). The maximum displacement at the sea surface is slightly smaller
than that at the sea bottom, and the displacement distribution at the sea surface is
smoother than that at the sea bottom because of the spatial low-pass filter effects
(Kajiura filter). The gray line in Figure 4.20b shows the permanent vertical displace-
ment uz(x, z ¼ zsur, t ¼ 1) (z ¼ zsur is the location of the sea surface) numerically
calculated by the seismic wave simulation in Fig. 4.18. The excellent agreement
between the two lines indicates that we may use either the analytical method using
the Kajiura filter or numerical simulations of seismic wave propagation for calcu-
lating the initial tsunami height distribution.

In the tsunami propagation simulation, the sea-surface displacement given by
η0(x) (Eq. 4.77) is then used as the initial tsunami height distribution η(x, t¼ 0)¼ η0(x).
Alternatively, uz(x, z ¼ zsur, t ¼ 1) numerically calculated by the seismic wave
simulation can be used for the initial tsunami height distribution. The tsunami
propagation is calculated based on the 1-D linear dispersive equations:

∂η x; tð Þ
∂t

þ ∂
∂x

h0v x; tð Þð Þ ¼ 0, ð4:78Þ

and

∂v x; tð Þ
∂t

þ g0
∂η
∂x

¼ 1
3
h0

∂
∂t

∂2

∂x2
h0v x; tð Þð Þ, ð4:79Þ

where η(x, t) is the sea-surface height distribution, h0 is the sea depth, and v(x, t) is the
horizontal velocity averaged over the sea depth. The details of the derivation of
Eqs. (4.78) and (4.79) and the numerical calculation scheme are explained in
Chap. 6: Propagation Simulation. Figure 4.21 shows the sea-surface height distri-
bution calculated by the tsunami simulation. The sea-surface height η(x, t) propa-
gates horizontally as tsunami with the velocity of ~0.2 km/s (the tsunami propagates
about 180 km during 900 s). At the time t ¼ 600 and 900 s, we recognize a
dispersion; the short-wavelength tsunamis follow long-wavelength tsunami.

(ii) Both Seismic Wave and Tsunami Propagation Modeling

This approach intends to include the effects of seismic waves and ocean acoustic
waves in addition to tsunami for simulating sea-surface displacement. This method
assumes a compressible sea for calculating seismic waves and ocean acoustic waves
but assumes an incompressible sea for calculating tsunami.

The vertical velocity at the sea surface vz(x, zsur, t) is calculated by the seismic
wave simulation (Fig. 4.19). Then, we conduct a tsunami propagation simulation
using vz(x, zsur, t) as tsunami source. During the time Δt from ti � 1 ¼ (i � 1)Δt
to ti ¼ iΔt, the height change vz(x, zsur, ti)Δt is added to the sea-surface height as

η x; tið Þ ¼ η∗ x; tið Þ þ vz x; zsur; tið ÞΔt, ð4:80Þ
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where η∗(x, ti) is the tsunami height distribution numerically simulated from the
tsunami height and velocities at the previous time t ¼ ti � 1. The height change vz(x,
zsur, ti)Δt at each time step functions as the source.

Figure 4.22 shows the sea-surface height distribution calculated by this method.
Since we set the origin time as the zero in the moment rate function shown in
Fig. 4.17, no displacement appears at time t ¼ 0 s. At time t ¼ 64 s (4 s after the
moment rate function takes a peak value), a large sea-surface displacement appears.
This displacement is larger than the maximum height in the tsunami simulation in
Fig. 4.21. Also, we recognize short-wavelength waves in the times of t ¼ 70 � 150
s. These short-wavelength waves are seismic waves or ocean acoustic waves. After
the seismic and ocean acoustic waves moved away (t > ~400 s), the sea-surface
height is quite similar to those in the tsunami simulation results in Fig. 4.21.

Figure 4.23 compares the simulation results for these two approaches: (i) only
tsunami propagation modeling and (ii) both seismic wave and tsunami propagation
modeling. Because the moment rate function is included in the method (ii), the time
difference (60 s) between the two methods is corrected in Fig. 4.23. The comparison
indicates that at the time of 70 s (Fig. 4.23a), there is a significant discrepancy
between the two methods. The sea-surface height by the method (ii) (red line)
contains higher frequency and shorter wavelength components. This difference
comes from the ocean acoustic waves and seismic waves. At the elapsed time of
160 s (Fig. 4.23b), a difference still exists between the two methods. The difference
gradually decreases as the time elapses. At the time of 320 s (Fig. 4.23c), after the
seismic and ocean acoustic waves move away from the simulation region, the two
simulation results show excellent agreement.

This comparison also suggests that seismic waves and tsunami are almost inde-
pendent of each other. In discussing this, we should carefully use the terms “sea-
surface height change,” “tsunami,” and “seismic wave.” “Sea-surface height

Fig. 4.21 Tsunami propagation from the initial height distribution η0(x) (Eq. 4.77). The propaga-
tion in an incompressible sea is calculated with Eqs. (4.78) and (4.79)
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change” is considered to be the vertical displacement at the sea surface. “Tsunami” is
the wave caused by gravity as the restoring force. “Seismic wave” is the wave caused
by elasticity of the crust and compressibility of the seawater as the restoring force.
Note that, in general, the “seismic wave” is caused by elasticity, but gravity also
matters, in particular for long-period seismic waves. Also, elasticity matters some-
what for tsunamis. However, the dominant driving force is gravity for tsunami and is
elasticity for seismic waves. The sea-surface height change is not only caused by
tsunami. Also, seismic waves (< ~10 s) can considerably contribute to the
sea-surface height change, as shown in Fig. 4.23a. However, we can say that seismic
waves do not significantly affect tsunami because the tsunami plotted with red and
gray lines is almost identical in Fig. 4.23c. This means that we may consider only
tsunami without considering seismic waves when we assess tsunami inundation near
coasts or calculate tsunami far from the earthquake fault. However, when we analyze
the records observed near or inside the earthquake source (e.g., sea-surface displace-
ment and sea-bottom pressure change), we need to consider both seismic waves and
tsunami because the records contain both of them.

Fig. 4.22 Temporal and spatial change of the sea-surface displacement. These are calculated based
on the tsunami propagation in an incompressible sea Eqs. (4.78) and (4.79) with a source given by
Eq. (4.80) that includes seismic waves and ocean acoustic waves in compressible sea
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Appendix A: Seismic Wave Propagation in 2-D Space: P-SV
Problem

Seismic wave propagation in 2-D space is unrealistic. We should not directly
compare the seismograms simulated in 2-D space with observed seismograms
because the observed seismograms are in 3-D space. Nevertheless, the wave prop-
agation in 2-D space is very useful for studies of the physical mechanism of seismic
wave propagation. Since the 2-D and 3-D propagations have different dimensions,
we need to carefully define each parameter and its units. This appendix illustrates a
2-D seismic wave propagation problem by deriving the propagation equations and
source parameters from those of the 3-D simulation.

At the beginning, the 2-D space (x, z) is defined based on the 3-D space (x, y, z) as
shown in Fig. 4.24. An earthquake fault is supposed in 3-D space with the strike and
rake defined as ϕs ¼ π/2 and λ ¼ π/2, respectively (see also Fig. 4.14). Also, we
assume that the fault length L is much longer than the fault width W. Then, the fault
is located in the 3-D space (x, y, z) as shown in Fig. 4.24. In the (x, z) space, the fault
is represented as a line segment characterized by the length (width) W and the dip δ.
In the (x, y) space, the fault ranges from y ¼ � L/2 to y ¼ L/2 where L � W. The
moment time function is given by

Fig. 4.23 Sea-surface height distributions caused by the earthquake dislocation characterized by
the source duration tc¼ 4 s in Eq. (4.74). Both seismic waves and tsunamis are included with
Eq. (4.80) (red line), and only tsunami is included with Eq. (4.77) (gray line). Sea-surface heights at
the elapsed times of (a) 70 s, (b) 160 s, and (c) 320 s
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M tð Þ ¼ μLWD tð Þ ðA:1Þ
where D(t) is the slip on the fault. Defining the 2-D space (x, z) at the plane y ¼ 0 in
the 3-D space (x, y, z), we consider the wave propagation in the 2-D space (x, z).

Due to the symmetry of the problem (now we suppose λ ¼ π/2), the wavefield in
the 2-D space (x, z) is represented by (vx, vz) and vy ¼ 0, and the spatial derivative
with respect to the y-axis is zero ∂/∂y¼ 0. Then, the equation of motion (Eq. 4.51) is
reduced to

ρ
∂vx
∂t

¼ ∂τxx
∂x

þ ∂τxz
∂z

þ f x,

ρ
∂vz
∂t

¼ ∂τzx
∂x

þ ∂τzz
∂z

þ f z:
ðA:2Þ

The stress components τxx, τxz ¼ τzx, and τzz are given by the constitutive law
Eq. (4.52) as

∂τxx
∂t

¼ λþ 2μð Þ∂vx
∂x

þ λ
∂vz
∂z

,

∂τzz
∂t

¼ λ
∂vx
∂x

þ λþ 2μð Þ∂vz
∂z

,

∂τzx
∂t

¼ μ
∂vz
∂x

þ ∂vx
∂z

� 	
:

ðA:3Þ

Note that in our definition of the 2-D space, the dimensions of all the parameters in
(4A.2) and (4A.3) are common with those in the 3-D space. For example, the unit of

Fig. 4.24 Defining the 2-D (x, z) space from the 3-D space (x, y, z). We set the strike and rake to be
ϕs¼ π/2 and λ¼ π/2, respectively, in Fig. 4.14. Also, the fault length L is much longer than the fault
width W. We define the 2-D space (x, z) as the plane y ¼ 0 in the 3-D space (x, y, z)
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density ρ is [kg/m3], and that of the body force ( fx and fz) is [N/m
3] also in the 2-D

problem.
For the 3-D space (x, y, z), the body force fp(x, t) corresponding to the moment

tensor Mpq(t) is given by (4.20):

f p x; tð Þ ¼ � ∂
∂xq

Mpq tð Þδ x� ξð Þ� �
: ð4:20Þ

As shown in Fig. 4.25, the fault is divided into N subfaults along the fault length
(along the y-axis). For the jth subfault, the centroid is located at (ξx, ξyj, ξz). The
y coordinates ξyj change according to the index j. Each subfault is ΔL¼ L/N in length
and W in width. The equivalent body force for the jth subfault fp, j(x, t) is given by

f p, j x; tð Þ ¼ 1
N
f p x; t; ξyj
� 

, ðA:4Þ
where

f p x; t; ξyj
�  ¼ � ∂

∂x
Mpx tð Þδ x� ξxð Þδ y� ξyj

� 
δ z� ξzð Þ� �

� ∂
∂y

Mpy tð Þδ x� ξxð Þδ y� ξyj
� 

δ z� ξzð Þ� �
� ∂
∂z

Mpz tð Þδ x� ξxð Þδ y� ξyj
� 

δ z� ξzð Þ� �
:

ðA:5Þ

Summing up the contributions from each subfault, we obtain

f p x; tð Þ ¼
XN
j¼1

f p, j x; tð Þ ¼
XN
j¼1

1
N
f p x; t; ξyj
� 

¼
XN
j¼1

M tð Þ
N

f p x; t; ξyj
� 
M tð Þ

¼ μDW
XN
j¼1

L

N

f p x; t; ξyj
� 
M tð Þ

¼ μDW
XN
j¼1

ΔL
f p x; t; ξyj
� 
M tð Þ :

ðA:6Þ

Limiting N ! 1 gives

Fig. 4.25 Dividing a fault
into N small subfaults along
the y-axis. The centroid of
the jth subfault is located at
(ξx, ξyj, ξz)
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f p x; tð Þ ¼ μDW

Z L=2

�L=2
dξy

f p x; t; ξy
� 
M tð Þ

¼ μDW

Z L=2

�L=2
dξy � ∂

∂x
Mpx tð Þ
M tð Þ δ x� ξxð Þδ y� ξy

� 
δ z� ξzð Þ

� ��
� ∂
∂y

Mpy tð Þ
M tð Þ δ x� ξxð Þδ y� ξy

� 
δ z� ξzð Þ

� �
�∂
∂z

Mpz tð Þ
M tð Þ δ x� ξxð Þδ y� ξy

� 
δ z� ξzð Þ

� ��
:

ðA:7Þ

We calculate

f p x; tð Þ
¼ μDW � ∂

∂x
Mpx tð Þ
M tð Þ δ x� ξxð Þδ z� ξzð Þ

� �� �R L=2
�L=2 dξyδ y� ξy

� 
þμDW � Mpy tð Þ

M tð Þ δ x� ξxð Þδ z� ξzð Þ
� �� �R L=2

�L=2 dξy
∂
∂y

δ y� ξy
� 

þμDW � ∂
∂z

Mpz tð Þ
M tð Þ δ x� ξxð Þδ z� ξzð Þ

� �� �R L=2
�L=2 dξyδ y� ξy

� 
Finally, setting L ! 1, we obtain

f p x; tð Þ ¼ � ∂
∂x

μDW
Mpx tð Þ
M tð Þ δ x� ξxð Þδ z� ξzð Þ

� �
� ∂
∂z

μDW
Mpz tð Þ
M tð Þ δ x� ξxð Þδ z� ξzð Þ

� �
: ðA:8Þ

Since, in our problem, the subscript p takes the value p¼ x and z, substituting λ¼ π/
2 and ϕs ¼ π/2 into Eq. (4.62), we obtain

Mxx

M tð Þ ¼ � sin 2δ,

Mxz

M tð Þ ¼ � cos 2δ,

Mzz

M tð Þ ¼ sin 2δ:

ðA:9Þ

Substituting Eqs. (A.9) into (4A.8) and comparing the resultant equation with
Eq. (4.20), the moment tensor in the 2-D space (x, z) should be defined as
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M2D
xx ¼ �μDW sin 2δ,

M2D
xz ¼ M2D

zx ¼ �μDW cos 2δ,
M2D

zz ¼ μDW sin 2δ,
ðA:10Þ

when the fault width is W and the dip is δ (as shown in Fig. 4.24). We should note
that the dimension of the 2-D moment tensor defined in Eq. (A.10) is different from
that in 3-D space. In the 2-D space, the moment is defined asM2D ¼ μDW. The units
of M2D are given by [N], whereas the moment in 3-D space is [N m].

In summary, for the 2-D space (x, z), the earthquake fault is described by the fault
width W and the dip δ. The moment tensor [N] is given by Eq. (A.10). The
equivalent body force [Nm�3] in the 2-D space is given by

f p x; tð Þ ¼ � ∂
∂xq

M2D
pq ξ; tð Þδ x� ξð Þ

h i
, ðA:11Þ

which is in the same form as Eq. (4.20) in 3-D space, but the delta function is defined
in 2-D space, δ(x � ξ) ¼ δ(x � ξx)δ(z � ξz). The equation of motion and the
constitutive law are given by Eqs. (A.2) and (A.3), respectively.
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Chapter 5
Tsunami Generation

Abstract This chapter theoretically investigates tsunami generation. When an
earthquake occurs in an offshore region, seismic waves, ocean acoustic waves, and
tsunami are excited. Although the compressibility and elasticity of the sea layer are
important for the propagation of ocean acoustic waves and high-frequency seismic
waves, we may assume that the sea layer is incompressible for tsunami. This chapter
is based on incompressible fluid dynamics. The theory gives the analytical solutions
for tsunami generation and propagation, by which we would be able to understand
the mechanism behind these phenomena in addition to describing the motion.
Section 5.1 explains the difference between ocean acoustic waves and tsunami. In
Sect. 5.2, a linear potential theory is formulated for the tsunami generation process in
a water with uniform depth. Analytical solutions for the sea-surface displacement,
velocity, and pressure field in the seawater are derived. In Sect. 5.3, we examine the
analytical solutions for tsunami generation and propagation. The mathematical
equations can directly provide us with a clear perspective on the tsunami mechanism.
In Sect. 5.4, we bridge the gap between the analytical solutions derived under a
constant sea-depth assumption and tsunami simulations with realistic bathymetry.
The theoretical background of the initial conditions in the numerical simulations is
explained.

Keywords Linear potential theory · Incompressible fluid · Initial tsunami height
distribution · Dynamic pressure change · Static pressure change

5.1 Ocean Acoustic Waves and Tsunami: Different Driving
Forces

Earthquakes excite seismic waves and tsunami. Seawater is characterized by zero
rigidity. In other words, shear stress is zero in the sea, even if shear strain is
considerably large. As a result, the S wave that is excited by shear stress cannot
propagate through the sea layer. Only the P wave can propagate through the sea
layer. The ocean acoustic wave is nothing but the Pwave trapped within the sea layer
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from the viewpoint of elastic wave theory. If the period is longer, the P wave
wavelength becomes longer, which results in the energy extending significantly
into the crust. The wave may be considered as a seismic P wave rather than an
ocean acoustic wave, because the restoring force of the wave is mainly caused by the
elasticity of the crust rather than the water layer.

Let us roughly estimate the longest period of the ocean acoustic waves. When the
phase velocity of the ocean acoustic wave is c0 and the period is T0, the wavelength
is given by λ ¼ c0T0. Assuming a boundary condition at the sea surface as a stress-
free boundary and one at the sea bottom as a rigid boundary (fixed end), the
fundamental mode of the ocean acoustic wave is given by λ/4 ¼ h0 where h0 is the
sea depth (Fig. 5.1). This gives the period of the ocean acoustic wave as T0 ¼ 4h0/c0.
This is the period of the fundamental mode or the mode of the longest period in this
system. When considering the average depth of the Pacific Ocean to be h0 ¼ 4000 m
and the ocean acoustic wave velocity to be c0 ¼ 1.5 km/s, then the period is T0~10 s.
This indicates that the period of the ocean acoustic wave should be shorter than
T0 < ~10 s so that the P wave is trapped within the sea layer. When the sea depth
becomes smaller, the characteristic period becomes smaller. If the sea depth is
h0 ¼ 1000 m, the characteristic time is T0~2.5s. The derivation here is a very simple
one. Section 3.3.2 Ocean Acoustic Waves describes the theory of ocean acoustic
waves and their critical time based on a more general approach.

We then consider tsunami. Near the earthquake fault, the fault slip causes
permanent displacement. The gravity collapses the permanent displacement of the
sea surface as shown in Fig. 5.2. The sea layer cannot keep the displacement
distribution (deformation) at the sea surface since the water layer does not hold
shear stress. As a result, the water volume uplifted by the earthquake flows down-
ward. This downward flow of large volume of water causes long-wavelength
horizontal flow in the sea layer from the bottom to the surface. This volume
fluctuation propagates a long distance as a tsunami. Apparently, the main force
causing the tsunami is gravity. The tsunami propagation velocity is roughly given byffiffiffiffiffiffiffiffiffi

g0h0
p

when the wavelength is much longer than the sea depth (Chap. 3). If we
consider the tsunami wavelength to be λ ¼ 100 km and h0 ¼ 4000 m, the dominant
period is T0 ¼ λ=

ffiffiffiffiffiffiffiffiffi
g0h0

p e500s.

Fig. 5.1 A simple model
for a fundamental mode in a
region bounded by a free
end and a fixed end
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As stated above, earthquakes excite both ocean acoustic waves and tsunami. Note
that both ocean acoustic waves and tsunami produce the sea-surface displacement.
However, the excitation mechanisms are totally different. The difference originates
from the restoring force. The seismic wave (ocean acoustic wave) requires the
seawater to exhibit elasticity. Tsunami propagation requires gravity as a restoring
force. As a consequence, the time scale (the dominant period) of the tsunami is often
longer than ~10 min, which is much longer than that of the ocean acoustic wave <
~10 s. This substantial difference in the time scales allows us to consider the tsunami
and ocean acoustic waves separately in many practical cases. Section 4.3.2: Seismic
Waves, Ocean Acoustic Waves, and Permanent Displacement described the seismic
wave propagation in elastic media. This chapter considers tsunami.

5.2 Linear Potential Theory

The tsunami generation process is described by a linear incompressible fluid theory
in which the elasticity or compressibility of the seawater is neglected. Considering
appropriate boundary conditions at the sea surface using the gravitational accelera-
tion g0 and giving the sea bottom displacement as a source of the tsunami, the
tsunami generation theory describes the water motion in the sea layer. A solution
represented in the wavenumber-frequency domain was found in Takahashi (1942)
for the case of a constant sea depth. Kajiura (1963) derived an analytical solution for
the vertical displacement at the sea surface caused by instantaneous sea-bottom
deformation (i.e., the sea-bottom displacement represented by a step function with
respect to time). The analytical solution is often referred to as Kajiura’s equation,
which is frequently used in the setting of the initial tsunami height distribution for
tsunami propagation simulations (e.g., Tanioka and Seno 2001). The solutions are
applicable just after the sea-bottom deformation ends but cannot describe the
wavefield in the sea layer during the generation (e.g., Kervella et al. 2007). Saito
(2013) derived more general solutions, which can describe the water particle motion
through the sea layer during the tsunami generation. In the following sections, the
theory is illustrated.

Fig. 5.2 A schematic illustration of tsunami generation and propagation
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5.2.1 Governing Equations

Cartesian coordinates (Fig. 5.3) are used for the formulation. The z-axis runs
vertically upward, and the x- and y-axes lie in a horizontal plane. The sea surface
at rest is located at z¼ 0, and the flat sea bottom is at z¼�h0. The sea-surface height
is given by z ¼ η (x, y, t).

The particle velocity in the fluid is given by the vector v (x, t)¼ vxex + vyey + vzez
where x¼ xex + yey + zez and ex, ey, and ez are the basis unit vectors in the x-, y-, and
z-axes, respectively. The sea-surface height η(x, y, t) is assumed to be small enough
compared with the water depth, i.e., |η| � h0. An incompressible medium does not
allow dilatation as

∇ � v ¼ 0: ð5:1Þ

When an irrotational flow is assumed (rot v(x, t) ¼ 0), the velocity vector is
represented using the velocity potential ϕ(x, t) as

v x; tð Þ ¼ ∇ϕ x; tð Þ: ð5:2Þ

Substitution of Eq. (5.2) into Eq. (5.1) gives

Δϕ x; tð Þ ¼ 0: ð5:3Þ

In an incompressible medium, the velocity potential ϕ(x, t) needs to satisfy the
Laplace equation.

We then consider the equation of motion in the sea layer. The linear equation of
motion is given by

∂v x; tð Þ
∂t

¼ � 1
ρ0

∇p x; tð Þ þ g0, ð5:4Þ

where ρ0 is the water density that is assumed to be constant, p(x, t) is the pressure,
and g0 is the body force due to gravity. This equation is also derived if we assume a

Fig. 5.3 Coordinates used
in the formulation
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constant density through the medium and a shear-wave velocity or rigidity of zero in
the equation for the elastic medium (Eqs. (3.14) and (3.29)).

Consider a case when the pressure field is independent of time, that is, when the
water is static or in an equilibrium state. Equation (5.4) becomes

0 ¼ � 1
ρ0

∇p0 xð Þ þ g0: ð5:5Þ

The pressure p0(x) is referred to as hydrostatic pressure. The pressure p(x, t) in
Eq. (5.4) is represented by the sum of the hydrostatic pressure p0(x) and the
fluctuation pe(x, t) caused by the fluid motion as

p x; tð Þ ¼ p0 xð Þ þ pe x; tð Þ: ð5:6Þ

Substituting Eq. (5.6) into (5.4) and using Eq. (5.5) gives the following equation

∂v x; tð Þ
∂t

¼� 1
ρ0
∇p0 xð Þ � 1

ρ0
∇pe x; tð Þ þ g0

¼� 1
ρ0
∇pe x; tð Þ:

Then, using Eq. (5.2), we obtain

∇
∂ϕ x; tð Þ

∂t
¼ � 1

ρ0
∇pe x; tð Þ:

Since that pe(x, t) should be zero when the system is in an equilibrium state, the
pressure due to the motion pe(x, t) is represented by the velocity potential ϕ(x, t) as

pe x; tð Þ ¼ �ρ0
∂ϕ x; tð Þ

∂t
: ð5:7Þ

Let us consider the boundary condition of the velocity potential ϕ(x, t) at the sea
surface z ¼ 0. The vertical displacement at the surface η(x, y, t) is given by an
integration of the vertical velocity at the surface as

η x; y; tð Þ ¼
Z t

�1
vz x; y; z ¼ 0; tð Þdt:

By using the velocity potential (5.2), the surface η(x, y, t) is represented as
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η x; y; tð Þ ¼
Z t

�1

∂ϕ x; tð Þ
∂z

����
z¼0

dt: ð5:8Þ

Differentiating Eq. (5.8) with respect to time gives

∂η x; y; tð Þ
∂t

¼ ∂ϕ x; tð Þ
∂z

����
z¼0

: ð5:9Þ

This represents the relation between the motion and the shape of the surface. It is
referred to as the kinematic boundary condition.

We then consider the pressure at the surface. When the sea-surface height is η(x,
y, t), the pressure at z ¼ 0 is given by pe(z ¼ 0) ¼ ρ0g0η(x, y, t) (Eq. (3.34)).
Considering that the pressure is represented by the velocity potential in Eq. (5.7),
the velocity potential satisfies

�∂ϕ x; tð Þ
∂t

����
z¼0

¼ g0η x; y; tð Þ, ð5:10Þ

at z ¼ 0. Since this condition is related to the motion and the force (pressure), this is
referred to as the dynamic boundary condition. By using kinematic and dynamic
boundary conditions (Eqs. (5.9) and (5.10)) and deleting the surface height η(x, y, t),
we obtain

∂2ϕ x; tð Þ
∂t2

�����
z¼0

þ g0
∂ϕ x; tð Þ

∂z

����
z¼0

¼ 0, ð5:11Þ

as the boundary condition of the velocity potential ϕ(x, t) at the surface. The
boundary condition of Eq. (5.11) at the sea surface is common in fluid dynamics
(e.g., Kambe 2007; Pedlosky 2013).

Then, we consider the boundary condition at the sea bottom (z ¼ � h0). In many
fluid dynamic problems, assuming the continuity of the vertical displacement on a
rigid sea bottom, the vertical velocity is set as zero at the sea bottom. This is a
boundary condition for the propagation problem. On the other hand, in the tsunami
generation problem, we describe the motion at the sea bottom as the tsunami source
(e.g., Takahashi 1942). Supposing the permanent vertical displacement at the sea
bottom is given by d(x, y), the vertical velocity at the sea bottom is represented as d
(x, y)χ(t), where a function χ(t) has a dimension of inverse of the time. The function
χ(t) represents the time evolution of the displacement at the bottom. Since it
represents the rate of sea-bottom displacement, we refer to χ(t) as the rate function.
The boundary condition of the velocity potential at the bottom is given by

154 5 Tsunami Generation



vz x; y; z ¼ �h0; tð Þ ¼ ∂ϕ x; tð Þ
∂z

����
z¼�h0

¼ d x; yð Þχ tð Þ: ð5:12Þ

The rate function χ(t) needs to satisfy

Z1
�1

χ tð Þdt ¼ 1: ð5:13Þ

For example, when the sea-bottom deformation occurs with an infinitely short
duration time at t ¼ 0, the function χ(t) is given by the delta function:

χ tð Þ ¼ δ tð Þ: ð5:14Þ

On one hand, the sea-bottom deformation occurs during the finite duration tc, which
is closely related to the rise time in the earthquake fault motion. The function χ(t) is,
for example, given by

χ tð Þ ¼ 1ffiffiffi
π

p 4
tc
exp � t � t0

tc=4

� �2
" #

, ð5:15Þ

where tc determines the duration and t0 controls the time when the deformation rate
reaches its maximum. Figure 5.4a shows the function χ(t) when tc ¼ 40 s and
t0 ¼ 30 s.

We have listed all the ingredients of the tsunami generation formulation. The
wave motion v(x, t) and the pressure field pe(x, t) can be described by Eqs. (5.2) and
(5.7), respectively, using the velocity potential ϕ(x, t). The velocity potential ϕ(x, t)
satisfies the Laplace equation (Eq. (5.3)) through the water medium. The boundary
conditions at the surface and the bottom are given by Eqs. (5.11) and (5.12),
respectively. To find the solution of the velocity potential that satisfies Eqs. (5.3),
(5.11), and (5.12) is a mathematical problem in the study of tsunami generation and
propagation.

Fig. 5.4 (a) A rate function χ(t) and (b) an integration of χ(t) with respect to time t. The parameters
are set at tc ¼ 40 s and t0 ¼ 30 s in Eq. (5.15)
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5.2.2 Solving Laplace Equation with Boundary Conditions

By taking the 2-D Fourier transform in space-wavenumber domain and the Fourier
transform in time-angular frequency domain, we transform ϕ(x, y, z, t) tobϕ kx; ky; z;ω
� �

as,

bϕ kx; ky; z;ω
� � ¼ Z Z 1

�1
dxdy

Z 1

�1
dt e�i kxxþkyyð Þeiωtϕ x; y; z; tð Þ: ð5:16Þ

The corresponding inverse Fourier transform is

ϕ x; y; z; tð Þ ¼ 1

2πð Þ2
Z Z 1

�1
dkxdky

1
2π

Z 1

�1
dω ei kxxþkyyð Þe�iωtbϕ kx; ky; z;ω

� �
:

ð5:17Þ

By using this definition of the Fourier transform, we rewrite the Laplace equation
(Eq. (5.3)) as

d2

dz2
bϕ kx; ky; z;ω
� � ¼ k2bϕ kx; ky; z;ω

� �
, ð5:18Þ

where k2¼ kx
2 + ky

2. Since, in Eq. (5.18), the values of kx, ky, and ω are considered to
be constant values rather than independent variables, we used a representation of d/
dz instead of ∂/∂z. A general solution of this ordinary differential equation of (5.18)
is given by

bϕ kx; ky; z;ω
� � ¼ A cosh kzð Þ þ B sinh kzð Þ: ð5:19Þ

The coefficients A and B should be chosen so as to satisfy the boundary
conditions.

The boundary condition at the surface (Eq. (5.11)) is given by

d

dz
� ω2

g0

� �bϕ kx; ky; z;ω
� �����

z¼0

¼ 0, ð5:20Þ

and that at the bottom (Eq. (5.12)) is given by

d

dz
bϕ kx; ky; z;ω
� �����

z¼�h0

¼ bd kx; ky
� �bχ ωð Þ, ð5:21Þ

in the wavenumber-angular frequency domain when the Fourier transform
(Eq. (5.16)) is used, where bd kx; ky

� �
is the 2-D spatial Fourier transform of d(x, y)

and bχ ωð Þ is the Fourier transform of χ(t).
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Substituting Eq. (5.19) into Eq. (5.20) and Eq. (5.21) gives

�ω2

g0
Aþ kB ¼ 0,

and

�kA sinh kh0 þ kB cosh kh0 ¼ bd kx; ky
� �bχ ωð Þ:

Then, the coefficients A and B are given by

A ¼ 1

kω2=g0ð Þcosh kh0 � k2 sinh kh0
kbd kx; ky

� �bχ ωð Þ,

and

B ¼ 1

kω2=g0ð Þcosh kh0 � k2 sinh kh0

ω2

g0
bd kx; ky
� �bχ ωð Þ:

By substituting the estimated A and B into Eq. (5.19), we obtain

bϕ kx; ky; z;ω
� � ¼ 1

k

ω2 sinh kzð Þ þ g0k cosh kzð Þ
ω2 cosh kh0ð Þ � g0k sinh kh0ð Þ

bd kx; ky
� �bχ ωð Þ: ð5:22Þ

We then obtain a solution in time and space by the inverse Fourier transform as
follows:

ϕ x; y; z; tð Þ ¼ 1
2π

Z 1

�1
e�iωtbχ ωð Þdω 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ

1
k

ω2 sinh kzð Þ þ g0k cosh kzð Þ
ω2 cosh kh0ð Þ � g0k sinh kh0ð Þ

bd kx; ky
� �

:

ð5:23Þ

This is a formal expression of the velocity potential using the inverse Fourier
transform. This formal expression was shown in Takahashi (1942) using cylindrical
coordinates. This form is still not suitable for examining the mechanism of the
tsunami generation process. If the integration of the angular frequency ω were
performed, we would be able to interpret the analytical solution in order to under-
stand the mechanism of tsunami generation and propagation. The main difficulty
with respect to the integration of the angular frequency ω is that the residue theorem
is not applicable when χ(t) is an arbitrary function or is given by the delta function
χ(t) ¼ δ(t).

In order to conduct the integration with respect to the angular frequency using the
residue theorem, we first consider a special case in which the rate function χ(t) is
represented as
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χ tð Þ ¼
1
T

for 0 < t < T

0 for others

(
¼ 1
T
H tð Þ � H t � Tð Þ½ �,

ð5:24Þ

where a function H(t) is defined as

H tð Þ ¼ 0 for t � 0
1 for t > 0:

�
ð5:25Þ

The Fourier transform of the rate function is given by

bχ ωð Þ ¼
Z 1

�1
χ tð Þeiωtdt ¼ 1

iωT
eiωT � 1
� �

: ð5:26Þ

Substitution of Eq. (5.26) into Eq. (5.23) gives Eq. (5.27) and Eq. (5.28)

ϕ x; y; z; tð Þ

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ 1
k

bd kx; ky
� �

cosh kh0ð Þ
1
2π

i

T

Z 1

�1
dω e�iωt 1� eiωT

ω

ω2 sinh kzð Þ þ g0k cosh kzð Þ
ω2 � g0k tanh kh0ð Þ

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ 1
k

bd kx; ky
� �

cosh kh0ð Þ
1
2π

i

T

Z 1

�1
dω

e�iωt

ω

ω2 sinh kzð Þ þ g0k cosh kzð Þ
ω2 � g0k tanh kh0ð Þ

	
�
Z 1

�1
dω

e�iω t�Tð Þ

ω

ω2 sinh kzð Þ þ g0k cosh kzð Þ
ω2 � g0k tanh kh0ð Þ



:

ð5:27Þ

We perform an integration with respect to ω by using the residue theorem in the
complex ω plane by recognizing that the poles are located atω ¼ 0, � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0k tanh kh0ð Þp
(Fig. 5.5). The detailed procedure is illustrated in Appendix 5A. The result of the
integrations is

ϕ x; y; z; tð Þ

¼ � 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
k

cosh kzð Þ
sinh kh0ð Þ

H t � Tð Þ � H tð Þ
T

	
� cosh kzð Þ

sinh kh0ð Þ þ
sinh kzð Þ
cosh kh0ð Þ

� �
H tð Þ cos ω0tð Þ � H t � Tð Þ cos ω0 t � Tð Þð Þ

T



,

ð5:28Þ
where the angular frequency ω0 is given by
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ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0k tanh kh0ð Þ

p
: ð5:29Þ

Equation (5.29) is the dispersion relation of ocean waves propagating using gravity
as the restoring force (see Eq. (3.47)).

Now, defining a function ψ(x, y, z, t) as

ψ x; y; z; tð Þ ¼ � 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
k

cosh kzð Þ
sinh kh0ð Þ

	
� cosh kzð Þ

sinh kh0ð Þ þ
sinh kzð Þ
cosh kh0ð Þ

� �
cos ω0tð Þ



H tð Þ,

ð5:30Þ

we rewrite Eq. (5.28) as

ϕ x; y; z; tð Þ ¼ ψ x; y; z; tð Þ � ψ x; y; z; t � Tð Þ
T

: ð5:31Þ

Equations (5.30) and (5.31) represent the velocity potential for the sea-bottom
deformation when the rate function of the sea-bottom deformation is given by a
special form of Eq. (5.24).

5.2.2.1 Impulse Response

We then consider a general solution of the velocity potential for any rate function.
When T approaches zero in Eq. (5.24), the rate function χ(t) approaches the delta
function as

Fig. 5.5 Poles in the
complex ω plane for
tsunami generation and
propagation
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χ tð Þ ¼ lim
T!0

H tð Þ � H t � Tð Þ
T

¼ δ tð Þ: ð5:32Þ

Therefore, we obtain the velocity potential for the delta function type rate function
(or impulsive rate function) by making T approach zero in Eq. (5.31). The
corresponding velocity potential function ϕimpulse(t) is given by

ϕImpulse x; tð Þ ¼ lim
T!0

ψ x; tð Þ � ψ x; t � Tð Þ
T

¼ ∂ψ x; tð Þ
∂t

: ð5:33Þ

Substituting Eq. (5.30) into Eq. (5.33), we obtain

ϕImpulse x; tð Þ

¼ ∂ψ x; tð Þ
∂t

¼ � 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
k

cosh kzð Þ
sinh kh0ð Þ δ tð Þ

	
þ cosh kzð Þ

sinh kh0ð Þ þ
sinh kzð Þ
cosh kh0ð Þ

� �
ω0 sin ω0tð ÞH tð Þ

� cosh kzð Þ
sinh kh0ð Þ þ

sinh kzð Þ
cosh kh0ð Þ

� �
cos ω0tð Þδ tð Þ



¼ � 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
k

cosh kzð Þ
sinh kh0ð Þ δ tð Þ

	
þ cosh kzð Þ

sinh kh0ð Þ þ
sinh kzð Þ
cosh kh0ð Þ

� �
ω0 sin ω0tð ÞH tð Þ

� cosh kzð Þ
sinh kh0ð Þ þ

sinh kzð Þ
cosh kh0ð Þ

� �
δ tð Þ



,

where we set t¼ 0 in the term including δ(t). We calculate using a trigonometric sum
identity as

ϕImpulse x; tð Þ

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

cosh kh0ð Þ

�ω0

k
cosh kzð Þ cosh kh0ð Þ

sinh kh0ð Þ þ sinh kzð Þ
	 


sin ω0tð ÞH tð Þ þ 1
k
sinh kzð Þδ tð Þ

� �
¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

cosh kh0ð Þ

�ω0

k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð ÞH tð Þ þ 1
k
sinh kzð Þδ tð Þ

� �
:

ð5:34Þ
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Equation (5.34) is the solution of the velocity potential with respect to the delta
function or the impulse response. The solution with respect to any rate function χ(t)
is given by the convolution:

ϕ x; tð Þ ¼
Z 1

�1
ϕImpulse x; t � τð Þχ τð Þdτ: ð5:35Þ

5.2.2.2 Velocity Field

Since we have obtained an analytical representation of the velocity potential (5.34),
the velocity field is given by the gradient of the velocity potential (Eq. (5.2)). Using
the horizontal gradient —H defined as

∇H ¼ ∂
∂x

ex þ ∂
∂y

ey, ð5:36Þ

the horizontal velocity vector vH(x, t) is represented as the following equation

vH x; tð Þ ¼∇HϕImpulse x; tð Þ

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

cosh kh0ð Þ

�iω0
kH
k
f H k; z; h0ð Þ sin ω0tð ÞH tð Þ þ ikH

k
sinh kzð Þδ tð Þ

� �
,

ð5:37Þ

where kH is defined as kH � kxex + kyey and the function fH(k, z, h0) is defined as

f H k; z; h0ð Þ ¼ cosh k zþ h0ð Þ½ �
sinh kh0ð Þ : ð5:38Þ

The vertical velocity vz(x, t) is represented as

vz x; tð Þ ¼ ∂ϕImpulse x; tð Þ
∂z

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

cosh kh0ð Þ
�ω0f z k; z; h0ð Þ sin ω0tð ÞH tð Þ� þcosh kzð Þδ tð Þg,

ð5:39Þ

where the function fz(k, z, h0) is defined as
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f z k; z; h0ð Þ ¼ sinh k zþ h0ð Þ½ �
sinh kh0ð Þ : ð5:40Þ

The functions fH(k, z, h0) and fz(k, z, h0) indicate the velocity-amplitude distributions
for the horizontal and vertical components, respectively, at a depth z in a sea of a
constant depth h0. These velocity distributions are peculiar to the propagation
process. The same functions appear in Eqs. (3.53) and (3.55) for the propagation
problem in Chap. 3. The distribution functions will be explained later (Fig. 5.13).

The vertical displacement at the surface, or the tsunami height η(x, y, t), is given
by the velocity potential (see Eq. (5.10)) as

η x; y; tð Þ ¼ � 1
g0

∂ϕImpulse x; tð Þ
∂t

����
z¼0

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

cosh kh0ð Þ cos ω0tð ÞH tð Þ:
ð5:41Þ

The pressure change due to the fluid motion pe(x, t) is represented by the velocity
potential (Eq. (5.7)) as

pe x; tð Þ

¼ �ρ0
∂ϕImpulse x; tð Þ

∂t

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ ρ0bd kx; ky
� �

cosh kh0ð Þ
ω2
0

k

cosh k zþ h0ð Þ½ �
sinh kh0

cos ω0tð ÞH tð Þ
�

þω0

k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð Þδ tð Þ � 1
k
sinh kzð Þ � dδ tð Þ

dt

�
:

Using the dispersion relation ω2
0 ¼ g0k tanh kh0 (Eq. (5.29)), we rewrite Eq. (5.42),

pe x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky exp i kxxþ kyy

� � �
	 ρ0bd kx; ky

� �
cosh kh0ð Þ g0

cosh k zþ h0ð Þ½ �
cosh kh0

cos ω0tð ÞH tð Þ
�

�1
k
sinh kzð Þ � dδ tð Þ

dt

�
:

ð5:42Þ
In particular, the pressure change at the sea bottom z ¼ � h0 is given by Eq. (5.43)

pe x; tð Þjz¼�h0
¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky exp i kxxþ kyy

� � �
	 ρ0bd kx; ky

� �
cosh kh0ð Þ g0

cos ω0tð Þ
cosh kh0ð Þ H tð Þþ1

k
sinh kh0ð Þ � dδ tð Þ

dt

�� ð5:43Þ
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The analytical solutions of (5.37), (5.39), (5.41), and (5.42) describe the fluid and
surface motion for the tsunami generation and propagation. It is noteworthy that only
the tsunami height (Eq. (5.41)) is given by a single term that represents propagating
waves characterized by the dispersion relation of Eq. (5.29). The particle velocity
(Eqs. (5.37) and (5.39)) and the pressure (Eqs. (5.42) and (5.43)) are represented by
the two terms. One of the terms represents propagating waves characterized by the
dispersion relation of Eq. (5.29). The propagation term includes gravity acceleration
g0. The other term represents the contribution directly from the source. It is inde-
pendent of gravity and does not represent the propagating waves. This term is
necessary to reproduce the velocity and pressure field during the tsunami generation.
The analytical solutions clearly indicate the generation process and the propagation
process via the two different terms. Also, it is clear that gravity (g0) plays an
important role in the propagation, whereas the gravity does not appear in the
generation. We will discuss the resultant equations in more detail in 5.3.2. Analytical
Solutions.

5.3 Generation

5.3.1 Visualization

When computers were not sufficiently powerful, we relied mainly on analytical
solutions to obtain images of wavefields. However, advances have made it possible
for computers to visualize the wavefield, which greatly helps to our understanding
tsunamis. By conducting an integration over the wavenumber (kx, ky) in Eqs. (5.37),
(5.39), and (5.41) (a FFT subroutine is used for the integration), we can describe the
spatial and temporal distribution of the velocity field and sea-surface height. As a
simple example, sea-bottom motion is assumed to be given by the vertical velocity at
z ¼ � h0 as

vz x; tð Þjz¼�h0
¼ d0e

�x2= L=2ð Þ2 H tð Þ � H t � Tð Þ
T

, ð5:44Þ

where the permanent displacement at the sea bottom is given by d(x, y) ¼
d0 exp [�x2/(L/2)2] and the velocity does not change during the time T. The spatial
Fourier transform (defined by Eq. (5.16)) of d(x, y) is

bd kx; ky
� � ¼ ffiffiffi

π
p

d0L

2
e� Lkxð Þ2=16 � 2πδ ky

� �
,

where
Z 1

�1
dy exp �ikyð Þ ¼ 2πδ ky

� �
is used. Substituting bd kx; ky

� �
into Eqs. (5.37),

(5.39), and (5.41) and convoluting the corresponding rate function, we describe the
wavefield of tsunami generation. Discrete integration is conducted with respect to
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the wavenumber kx. We visualize two cases, large (long-wavelength) and small
(short-wavelength) source area cases, in the following.

To represent a large source area generating long-wavelength tsunamis, we set the
parameters in Eq. (5.44) as d0 ¼ 1 m, L ¼ 60 km, and T ¼ 31 s. This source region
(L ¼ 60 km) is sufficiently larger than the sea depth h0 (¼4 km). Figure 5.6 shows
the height η (upper panel) and the velocity distribution in the sea (lower panel) for
each elapsed time. As the sea bottom moves according to the boundary conditions in
Eq. (5.44) (T < 31 s), it produces a vertical flow through the sea layer from the
bottom to the surface over the source region (Fig. 5.6a, b, and c). The vertical flow
uplifts the sea surface. When the sea-bottom motion ends (T ¼ 31 s), the vertical
velocity induced by the sea bottom disappears. The uplifted sea surface then begins
to collapse, generating a descending flow (Fig. 5.6d). The descending water dis-
places a massive amount of water sideways from the source region, and the water
moves with a dominant horizontal flow (Fig. 5.6e, f). The horizontal propagation of
the displacement is the tsunami propagation. The horizontal velocity is always
positive (negative) where the location x is positive (negative). These snapshots
intuitively illustrate that gravity plays an important role in tsunami propagation. If
gravity did not exist (or g0 ¼ 0), the uplifted sea surface would not collapse and the
tsunami would not propagate.

We then consider a small source area generating short-wavelength tsunamis,
setting the parameter L ¼ 20 km, but the other parameters remain the same. The
results are shown in Fig. 5.7. As the sea bottom moves (T < 31 s), the vertical
velocity from the sea bottom produces a vertical flow of water over the source region
(Fig. 5.7a, b, and c). Note that the maximum height at the surface (0.8 m) is smaller
than in the case with a larger source (L ¼ 60 km, Fig. 5.6). This indicates that the
vertical velocity is less efficiently excited in a smaller source region. This is because
the horizontal flow is more excited (see the flow vector around the sea bottom in
Fig. 5.7a, b, and c). After the sea-bottom motion ends (T > 31 s), the collapse of the
uplifted sea surface accelerates, which causes a descending flow (Fig. 5.7d). The
descending water displaces the water sideways, and the water moves with a hori-
zontal flow. Unlike the large source case where the horizontal flow dominates
(Fig. 5.6), the vertical component of the velocity is also significant in Fig. 5.7e,
f. The water height at the surface indicates a dispersive character: a short-wavelength
tsunami propagates more slowly than a long-wavelength one. The horizontal com-
ponent of the velocity distribution oscillates between positive and negative values.
Prograde rotation of the velocity vector occurs near the surface. The velocity
distribution accompanied by the short-wavelength tsunami is localized near the
surface (Fig. 5.7f). This is because a short-wavelength tsunami cannot displace a
large volume of water unlike a long-wavelength tsunami. The comparison of
Figs. 5.6 and 5.7 shows that the tsunami generation and propagation characteristics
strongly depend on the source size/depth ratio (60/4 and 20/4 in Figs. 5.6 and 5.7,
respectively).
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Fig. 5.6 Surface height and velocity distribution for a large source (L ¼ 60 km). The permanent
sea-bottom deformation is given by d(x, y) ¼ d0 exp [�x2/(L/2)2], where d0 ¼ 1 m, and the source
duration is T ¼ 31 s. The water height at the surface is shown in the upper panel, and the velocity
distribution from the sea bottom to the sea surface is shown in the lower panel, for each elapsed time
t from the start of sea-bottom deformation, (a) t ¼ 1 s, (b) 10 s, (c) 30 s, (d) 90 s, (e) 400 s, and (f)
600 s. The vectors indicate the direction of the flow velocity in the fluid in the lower panel (Saito
2013, copyright by Springer)
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5.3.2 Analytical Solutions

Then, we investigate tsunami generation and propagation by examining the analyt-
ical solutions (Eqs. (5.37), (5.39), and (5.41)).
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Fig. 5.7 Surface height and velocity distribution for a large source (L ¼ 20 km). See Fig. 5.6 for
details
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5.3.2.1 Generation Process

We have considered tsunami generation to be caused by sea-bottom deformation.
This is schematically shown in Fig. 5.8a. The resultant analytical solutions for the
velocity potential, the horizontal components of the velocity field, the vertical
component of the velocity field, the tsunami height, and the sea-bottom pressure
change are listed again below.

ϕ tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
cosh kh0

�ω0

k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð ÞH tð Þ þ 1
k
sinh kzð Þδ tð Þ

� �
,

ð5:45Þ

vH x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
cosh kh0

�iω0
kH
k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð ÞH tð Þ
�

þ ikH
k

sinh kzð Þδ tð Þ
�
,

ð5:46Þ

vz x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
cosh kh0

�ω0
sinh k zþ h0ð Þ½ �

sinh kh0
sin ω0tð ÞH tð Þ þ cosh kzð Þδ tð Þ

� �
,

ð5:47Þ

η x; y; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
cosh kh0

cos ω0tð ÞH tð Þ, ð5:48Þ

Fig. 5.8 (a) Tsunami generation due to sea-bottom deformation and its propagation. (b) Tsunami
propagation from an initial tsunami height distribution (Saito 2013, copyright by Springer)
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pe x; tð Þjz¼�h0
¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ ρ0bd kx; ky
� �

cosh kh0

g0
cos ω0tð Þ
cosh kh0ð Þ H tð Þþ1

k
sinh kh0ð Þ � dδ tð Þ

dt

�
:

� ð5:49Þ

In contrast to this situation, if we set the initial tsunami height distribution η0(x, y)
as shown in Fig. 5.8b, we simulate only the propagation process without considering
the generation process. By comparing these two cases (Fig. 5.8a, b) and investigating
the difference, we can examine the generation process. The solutions obtained from
the initial tsunami height distribution η0(x, y) are (Appendix 5B)

ϕ0 tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

�ω0

k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð ÞH tð Þ
� �

,

ð5:50Þ

vH x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

�iω0
kH
k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð ÞH tð Þ
� �

,

ð5:51Þ

vz x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

�ω0
sinh k zþ h0ð Þ½ �

sinh kh0
sin ω0tð ÞH tð Þ

� �
,

ð5:52Þ

η x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

cos ω0tð ÞH tð Þ, ð5:53Þ

pe x; y; z ¼ �h0; tð Þ
¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þρ0g0bη0 kx; ky
� � cos ω0tð Þ

cosh kh0ð ÞH tð Þ,

ð5:54Þ

where bη0 kx; ky
� �

is the 2-D spatial Fourier transform of the initial tsunami height
distribution η0(x, y).

5.3.2.2 Gravity

Comparison of the solutions with and without the generation process (e.g., a
comparison of (5.45) and (5.50)) indicates that the generation process is described
by the term represented by the delta function in Eqs. (5.45, 5.46, 5.47), and (5.49).
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These terms do not contain the acceleration of gravity g0. The generation process is
basically independent of gravity. This is a fundamental feature of the generation
process in contrast to the propagation process. This theoretical consequence supports
the idea that the permanent sea-surface displacement calculated without considering
gravity (e.g., Okada 1985) works as an initial tsunami height distribution. We also
discuss the methods in 4.3.2 Seismic Waves, Ocean Acoustic Waves, and Permanent
Displacement.

5.3.2.3 Factor of 1/ cosh (kh0)

The factor bd kx; ky
� �

=cosh kh0ð Þ appears in the generation process, while bη0 kx; ky
� �

appears in the solutions without the generation process. This suggests that the factorbd kx; ky
� �

=cosh kh0ð Þ contains the information about the generation process. The
initial tsunami height distribution caused by the sea-bottom deformation is not
identical to the sea-bottom deformation. The factor 1/ cosh (kh0) works as a spatial
low-wavelength pass filter. This is often called Kajiura filter (Kajiura 1963).
Figure 5.9 shows the factor 1/ cosh (kh0). This filter removes the short-wavelength
components (k > 1/h0) as a low-wavelength pass filter. Due to this low-wavelength
pass filter, the initial tsunami height distribution (sea-surface displacement distribu-
tion) becomes smooth.

Kajiura (1963) conducted the integration over the wavenumber domain and
derived the analytical solution in the spatial domain as

η x; y; 0ð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ 1
cosh kh0ð Þ

¼ 1
2π

Z 1

0
dk J0 krð Þ k

cosh kh0ð Þ:

Using a series of exponential (Eq. (1.232.2) in Gradshteyn and Ryzihk 2000):

1
cosh x

¼ sech x ¼ 2
X1
n¼0

�1ð Þn exp � 2nþ 1ð Þx½ �,

we obtain

η x; y; 0ð Þ ¼ 1
π

X1
n¼0

�1ð Þn
Z 1

0
dk exp � 2nþ 1ð Þkh0½ �k J0 krð Þ

¼ 1
πr2

X1
n¼0

�1ð Þn
Z 1

0
d�k exp � 2nþ 1ð Þh0

r
�k

	 

�k J0

�
�k
�
:
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The integration is conducted using a formula (Eq. (6.623.2) in Gradshteyn and
Ryzihk 2000): Z 1

0
d�k exp

���h�k
�
�k J0

�
�k
� ¼ �h�

�h2 þ 1
�3=2 :

Then, we obtain

η x; y; 0ð Þ ¼ 1
πr2

X1
n¼0

�1ð Þn 2nþ 1ð Þh0
r

1

2nþ 1ð Þ2 h0=rð Þ2 þ 1
h i3=2

¼ 1

πh20

X1
n¼0

�1ð Þn 2nþ 1ð Þ
r=h0ð Þ2 þ 2nþ 1ð Þ2

h i3=2 : ð5:55Þ

This is the vertical displacement distribution at the sea surface for the sea-bottom
deformation occurring at a point given by dz(x, y) ¼ δ(x)δ( y). Equation (5.55) is
often referred to as Kajiura’s equation (Kajiura 1963). Figure 5.10 shows Eq. (5.55)
with respect to the distance normalized by the sea depth, r/h0.

Fig. 5.9 (a) A function of 1/ cosh (kh0) with respect to the normalized wavenumber kh0 where k is
the wavenumber of the sea-bottom deformation and h0 is the sea depth. (b) A function of
1/ cosh (kh0) with respect to the wavenumber k for the sea depth of h0 ¼ 4 km (solid line) and
1 km (dashed line). The function of 1/ cosh (kh0) works as a low-wavelength pass filter that removes
the high wavenumber components k 
 1/h0
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5.3.2.4 Conservation of Displaced Water Volume

When the sea-bottom displacement is given by d(x, y), the total volume brought by
the sea-bottom movement into the sea layer is given by the integral over 2-D
horizontal space asZ Z 1

�1
d x; yð Þdxdy ¼

Z Z 1

�1
dxdy

1

2πð Þ2
Z Z 1

�1
dkxdky bd kx; ky

� �
ei kxxþkyyð Þ

¼
Z Z 1

�1
dkxdky δ kxð Þδ ky

� �bd kx; ky
� �

¼ bd 0; 0ð Þ:
ð5:56Þ

On the other hand, the total displaced water volume at the sea surface is given byZ Z 1

�1
η x; y; 0ð Þdxdy ¼

Z Z 1

�1
dxdy

1

2πð Þ2
Z Z 1

�1
dkxdky

bd kx; ky
� �

cosh kh0ð Þ e
i kxxþkyyð Þ

¼
Z Z 1

�1
dkxdky δ kxð Þδ ky

� � bd kx; ky
� �

cosh kh0ð Þ
¼ bd 0; 0ð Þ:

ð5:57Þ
Even though the sea-surface height distribution η(x, y, 0) has fewer short-
wavelength components due to the spatial filtering effect of 1/ cosh (kh0), the total
displaced volume at the sea surface is identical to the total volume provided at the sea
bottom. This is because the theory assumes the seawater to be an incompressible

Fig. 5.10 Sea-surface
height distribution with
respect to the point source
vertical displacement at the
sea bottom given by δ(x)δ
( y). The distance r is given

by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and the

sea depth is h0
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fluid (no dilatation), which preserves the total volume of the medium. The total
displaced water volume is a conserved quantity for tsunami generation and propa-
gation. This volume can be a good measure for representing the magnitude of a
tsunami (e.g., Satake and Kanamori 1991). We should also note that during the
propagation, there is the energy conservation by the continuity equation of energy in
2-D form (3.2.3: Energy Density and Energy Flux Density for Incompressible
Fluid).

5.3.2.5 Initial Velocity Distribution

Equations (5.46) and (5.47) indicate that the velocity distribution has a term includ-
ing the delta function when the generation process is considered. On the other hand,
when the generation process is neglected and only the propagation process is
considered, the velocity distribution does not have the term including the delta
function (Eqs. (5.51) and (5.52)). These delta-function terms originate from the
delta function in the velocity potential (Eq. (5.45)), which represents the
sea-bottom deformation as the source. Figure 5.11 shows the amplitudes of the
horizontal components of the source terms (proportional to |sinh(kz)|, see
Eq. (5.46)) and the vertical component (proportional to |cosh(kz)|, see Eq. (5.47))
for the values of λ¼20 and 60 km, normalized by the vertical component at the sea
bottom (proportional to |cosh(kh0)|, see Eq. (5.47)). The vertical component (solid
line) decreases from the sea bottom to the sea surface. The horizontal component
(dashed line) decreases more rapidly than the vertical component and become almost
zero at the sea surface. These are the velocity distributions appearing only during the
source process time (see also figures a, b, and c in Figs. 5.6 and 5.7). These terms
become zero in the propagation process.

The first term including the step function H(t) in Eqs. (5.46) and (5.47) represents
the propagation, but the second term of the delta function δ(t) does not contribute to
the propagation. This indicates that the velocity field caused by the sea-bottom
deformation results in the initial tsunami height distribution but does not directly
contribute to the propagation. This may defy an intuitive sense that we should set the
initial horizontal velocity in the tsunami propagation simulation according to the
horizontal velocity distribution caused by the sea-bottom deformation. The analyt-
ical solutions of the incompressible fluid theory suggest that we need to set the initial
tsunami height distribution as

η x; y; 0ð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

cosh kh0ð Þ ,

and we need to set the initial velocity distribution to zero:

vz x; y; z; 0ð Þ ¼ 0, and vH x; y; z; 0ð Þ ¼ 0
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in tsunami propagation simulations in order to calculate the tsunami η and velocity vz
and vH outside the source duration (see Saito 2013). This procedure is the same as
that usually used in past studies involving 2-D tsunami simulations (e.g., Fujii and
Satake 2008; Saito and Furumura 2009) where the initial velocity distribution is set
at zero in the whole space. Equations (5.46) and (5.47) are fundamental equations
indicating that we need to make the initial velocity distribution zero but set only the
initial tsunami height distribution for the propagation process. These are derived
based on a constant sea-depth model. When the sea bottom is not flat, Tanioka and
Satake (1996) developed a method to include the horizontal “displacement” into the
initial tsunami height distribution. We explain this in Sect. 5.4: Bridging Generation
to Propagation. On one hand, Song et al. (2017) took the horizontal “velocity” also
into account as the initial condition for tsunami simulations. However, the numerical
simulations including earthquake faulting, tsunami generation, and propagation
suggest that the contribution of the horizontal velocity is negligible in the initial
condition for the tsunami simulations (Lotto et al. 2017).

5.3.2.6 Propagation

A comparison of Eqs. (5.46) and (5.51) indicates that they share the distribution
function of the horizontal velocity fH(k, z, h0) (Eq. (5.58)). The function, hence, is
peculiar to the propagation process. The same is true for the function of the vertical
velocity fz(k, z, h0) (Eq. (5.59)). The functions are

Fig. 5.11 Amplitude of the
source term in the horizontal
component (dashed lines)
and the vertical component
(solid lines) normalized by
the vertical component at the
sea bottom. The cases of
λ ¼ 20 and 60 km (which
correspond to k ¼ 0.3 and
0.1 km�1 when the sea
depth is set at 4 km) are
plotted (Saito 2013,
copyright by Springer)
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f H k; z; h0ð Þ � cosh k zþ h0ð Þ½ �
sinh kh0ð Þ , ð5:58Þ

and

f z k; z; h0ð Þ � sinh k zþ h0ð Þ½ �
sinh kh0ð Þ : ð5:59Þ

These indicate the velocity distributions for the horizontal and vertical components,
respectively, at a depth z in a sea layer of a constant depth h0. The same functions are
also derived in Eqs. (3.50) and (3.52) for the tsunami propagation process in
Chap. 3: Propagation of Tsunami and Seismic Waves. The propagation process is
typically classified into short-wavelength waves (surface- or deep-water waves) or
long-wavelength waves (shallow-water waves) in hydrodynamics (e.g., Gill 1982;
Kambe 2007). Figure 5.12a shows the distribution function of the horizontal velocity
fH(k, z, h0) for values of k ¼ 6.3, 16, 0.1 km�1. These values correspond to the
wavelengths of 1, 4, and 60 km for a water depth of 4 km. When the wavelength is
λ ¼ 1 km (short-wavelength waves), the horizontal component of the velocity is
distributed only in the shallower regions (z < 1 km). As the wavelength increases, the
distribution function extends deeper. When the wavelength is λ ¼ 60 km (long-
wavelength waves), much greater than the water depth h0 of 4 km, the horizontal
velocity component shows a large value (2.3~2.5) over the entire depth, suggesting
that horizontal flow occurs in the entire seawater layer. Figure 5.12b shows the
distribution function of the vertical velocity fz(k, z, h0). Similar to the case of the
horizontal component, when the wavelength is λ ¼ 1 km, the vertical component of
the velocity is distributed only in the shallower region (z < 1 km). Unlike in the case
of the horizontal components, when the wavelength is λ¼ 60 km, much greater than
the water depth, the vertical component of the velocity decreases with increasing
depth and becomes zero at the sea bottom.

5.3.3 Pressure Change

We investigate the pressure change at the sea bottom during tsunami generation
based on incompressible fluid theory. It should be noted that assuming a compress-
ible sea is more realistic than assuming an incompressible sea (e.g., Nosov 1999).
The seawater compressibility mainly affects the excitation of ocean acoustic waves
in high-frequency pressure change ( f > c0/(4h0)) where h0 is the sea depth and c0 is
the ocean acoustic wave phase velocity (see 3.3.2 Ocean Acoustic Waves). The
compressibility can also affect longer-period wavefield f� c0/(4h0), but the effect is
minor (e.g., Yamamoto 1982). Therefore, the tsunami generation theory that
assumes incompressible fluid provides us with a fundamental concept in tsunami
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generation. Here, we consider the ocean-bottom pressure change based on the
incompressible fluid theory. This is a good approximation for longer-period
wavefield f � c0/(4h0).

Considering the load due to the sea-surface height η(x, y, t) on the sea bottom,
most past tsunami studies employed a simple relation in the analysis of the ocean-
bottom pressure change pe at the sea bottom z ¼ � h as

pe x; y; z ¼ �h; tð Þ � ρ0g0η x; y; tð Þ, ð5:60Þ

where ρ0 is the seawater density and η is the sea-surface height change. This relation
works reasonably when the ocean-bottom pressure gauges are located far from the
source region. However, when the ocean-bottom pressure gauges are located inside
the source region or near the earthquake hypocenter, this relation is too simple to
represent the relation between the pressure change pe and the sea-surface height η.
We need to consider two additional effects in practice.

5.3.3.1 Permanent Sea-Bottom Deformation

As shown in Fig. 5.13, inside the source region, the vertical displacement perma-
nently remains on the sea bottom. The hydrostatic relation (Eq. (3.31)) gives the
pressure change Δp as

Fig. 5.12 Velocity distribution functions of (a) the horizontal component of the velocity
(Eq. (5.38)) and (b) the vertical component of the velocity (Eq. (5.40)), plotted as functions of
the depth, z, with a water depth of h0 ¼ 4 km. The distribution functions for λ ¼ 1, 4, and 60 km
(corresponding to k ¼ 6.28, 1.57, and 0.1 km�1, respectively) are plotted
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Δp x; y; zð Þ ¼ �ρ0g0Δz: ð5:61Þ

When an observation point at the sea bottom uplifts by uz(x, y, z¼ � h, t), the station
location changes from (x, y,�h) to (x, y,�h + uz). Then, the pressure at the sea
bottom changes by Δp ¼ � ρ0g0uz(x, y, z ¼ � h, t). Considering this effect in
Eq. (5.60), the pressure change is given by

pe x; y; z ¼ �h; tð Þ ¼ ρ0g0 η x; y; tð Þ � uz x; y; z ¼ �h; tð Þ½ �: ð5:62Þ

Note that the value of η(x, y, t) � uz(x, y,�h, t) is the net sea-depth change at (x, y).
Consider a case in which the sea-bottom deformation occurs instantaneously; in

other words, the rate function χ(t) is given by the delta function as χ(t) ¼ δ(t). At the
time just after the sea-bottom deformation ends, the tsunami height η is almost the
same as the sea-bottom displacement: η(x, y, t ! 0) � uz(x, y, z ¼ � h, t ! 0). The
slight difference between η(x, y, t ! 0) and uz(x, y, z ¼ � h, t ! 0) is due to a finite
sea-depth effect (Fig. 5.9). On the other hand, when we consider that enough time
elapses, t ! 1, the sea-surface height or tsunami disappears, η(x, y, t ! 1) ¼ 0
(Fig. 5.13). Hence, Eq. (5.62) predicts that the pressure change at the sea bottom
behaves as follows:

pe x; y; z ¼ �h; tð Þ ¼ 0 t ! 0
�ρ0g0uz x; y; z ¼ �h; tð Þ t ! 1:

�
ð5:63Þ

Figure 5.14 shows the observed ocean-bottom pressure records of the 2003 Tokachi-
Oki earthquake. In the records of PG1 and PG2, which were located inside the focal
area, we recognize that the pressure change behaves as predicted by Eq. (5.63): the
pressure change when the earthquake occurred (indicated by vertical dashed lines)
was minor, and an offset appeared when ~40 min elapsed.

If we look carefully around the time of the generation at station PG1, we also find
high-frequency pressure fluctuation. This pressure fluctuation is caused by another

Fig. 5.13 A schematic illustration of the sea-surface displacement η and the sea bottom displace-
ment uz. (Left) The total sea-depth change caused by the sea-surface and the sea-bottom displace-
ment is η � uz. (Right) When the time elapses, the sea-surface displacement η becomes zero. Then
the sea depth h0 changes to h0 � uz
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mechanism. This record shows that the pressure fluctuation is small compared to the
pressure changes caused by tsunami and permanent sea-bottom deformation. How-
ever, note that the theory described below predicts that this kind of pressure change
can be more significant depending on the earthquake rupture.

5.3.3.2 Dynamic Pressure Change

The solution of Eq. (5.49) predicts that the motion of the fluid excites a pressure
change. When the vertical velocity at the sea bottom is represented by the Fourier
transform as

Fig. 5.14 (a) Locations of stations of ocean-bottom pressure records PG1, PG2, TM1, and TM2
(black diamonds) and the source region of the 2003 Tokachi-Oki earthquake (black contours). Solid
contours show uplift, and dashed contours show subsidence. The contour interval is 0.1 m. The
epicenter is indicated by a star. (b) Ocean-bottom pressure records. The ocean tide was removed,
and a low-pass filter with a cutoff period of 60 s was applied (Tsushima et al. 2012, copyright by the
American Geophysical Union)
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vz x; y; z ¼ �h0; tð Þ ¼ d x; yð Þχ tð Þ
¼ 1

2πð Þ2
Z Z 1

�1
dkxdky e

i kxxþkyyð Þbd kx; ky
� �

χ tð Þ, ð5:64Þ

the sea-bottom pressure change is then rewritten as

pe x; tð Þjz¼�h0

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e
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Z t

�1
cos ω0 t � τð Þð Þ χ τð Þdτþ1

k
sinh kh0ð Þ �

Z 1

�1

dδ t � τð Þ
d t � τð Þ χ τð Þdτ

��
:

The integration of the second term on the right-hand side is calculated by partial
integration, and we obtain

pe x; tð Þjz¼�h0

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ ρ0bd kx; ky
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cosh kh0ð Þ
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Z t

�1
cos ω0 t � τð Þð Þ χ τð Þdτþ1
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sinh kh0ð Þ � dχ tð Þ
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¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ

ρ0g0bη kx; ky; t
� �

cosh kh0ð Þ þρ0h0
tanh kh0
kh0

ba bot
z kx; ky; t

� ���
,

ð5:65Þ

where bη kx; ky; t
� �

is the 2-D spatial Fourier transform of the tsunami height η(x, y, t)
as

bη kx; ky; t
� � ¼ Z Z 1

�1
dkxdky e

�i kxxþkyyð Þη x; y; tð Þ, ð5:66Þ

and ba bot
z kx; ky; t

� �
is the 2-D spatial Fourier transform of the vertical acceleration at

the sea bottom abot
z x; y; tð Þ (see Eq. (5.64)):

ba bot
z kx; ky; t

� �¼ Z Z 1

�1
dkxdky e

�i kxxþkyyð Þabot
z x; y; tð Þ

¼ bd kx; ky
� � dχ tð Þ

dt
:

ð5:67Þ

In particular, when the tsunami wavelength or the wavelength of the sea-bottom
deformation is much greater than the sea depth kh0 � 1, Eq. (5.65) is approximated
to
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pe x; tð Þjz¼�h0
� ρ0g0η x; y; tð Þ þ ρ0h0a

bot
z x; y; tð Þ for kh0 � 1: ð5:68Þ

Equations (5.65) and (5.68) indicate that the sea-bottom pressure change is caused
not only by the static loading caused by the tsunami height η(x, y, t) (the first term of
Eq. (5.65) or (5.68)) but also by the contribution of the acceleration at the sea bottom
(the second term of Eq. (5.65) or (5.68)). Since the second term is given by the
acceleration or motion of the sea bottom, we referred to this pressure change as the
dynamic pressure change. Results of numerical simulations also indicated that the
pressure change was caused not only by static pressure change but also by dynamic
pressure change (e.g., Kakinuma and Akiyama 2007).

Note that the dynamic pressure is independent of gravity but is excited by the
motion of the sea and the crust. In the term ρ0h0a

bot
z x; y; tð Þ, the value of ρ0h0 is the

mass of the water column per unit area (Fig. 5.15). Therefore, ρ0h0a
bot
z x; y; tð Þ is the

action-reaction force generated when the sea bottom is uplifted with the acceleration
abot
z x; y; tð Þ. Basically, this originates from the inertia of the water column

motion (Filloux 1982). The factor of tanhkh0/kh0 in Eq. (5.65) indicates the effect
of the finite size of the sea-bottom displacement wavelength relative k to the sea
depth h0.

Taking the pressure changes due to the permanent sea-bottom displacement
(i) into account in Eq. (5.65), we represent the sea-bottom pressure change caused
by the sea-bottom deformation uz(x, y,�h, t) as

pe x; tð Þjz¼�h0

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ

ρ0g0bη kx; ky; t
� �

cosh kh0ð Þ þρ0h0
tanh kh0
kh0

ba bot
z kx; ky; t

� ���
� ρ0g0uz x; y; z ¼ �h; tð Þ

� ρ0g0 η x; y; tð Þ � uz x; y;�hð Þf g þ ρ0h0a
bot
z x; y; tð Þ for kh0 � 1:

ð5:69Þ

Figure 5.16 shows an example of the actual observed ocean-bottom pressure
record (Kubota et al. 2015). A low-pass filter of 100 s was applied to the ocean-
bottom pressure records. This record clearly indicates a large dynamic pressure

Fig. 5.15 The mass of the
water column is ρ0h0 per
unit area where ρ0 is the
water density and h0 is the
water column height. The
vertical acceleration at the
bottom is abot

z x; y; tð Þ
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change caused by seismic waves in addition to the static pressure change caused by
the tsunami. The dynamic pressure change may function as significant noise when
analyzing the pressure records within a short elapsed time (a few minutes after the
earthquake occurs). On the other hand, because the dynamic pressure change
represents the sea-bottom acceleration, we expect that the dynamic component in
the ocean-bottom pressure records can be used for the estimation of the kinematic
parameters of the earthquake fault motion (e.g., rise time and source time duration).
Investigating how to use the dynamic component as seismic signals would be an
interesting challenge (e.g., An et al. 2017; Kubota et al. 2017).

5.3.3.3 Comparison with Elastic Dynamic Theory

The incompressible fluid theory has been employed without considering seawater
elasticity. It would be important to validate whether the dynamic pressure change
appears in the seismic wave simulations. Supposing a 2-D space composed of an
elastic water layer and an elastic crust (Fig. 5.17a), the sea-bottom pressure change
caused by earthquake fault motion was simulated. The gray line in Fig. 5.17b (under
the blue and red lines) shows the temporal variation of the sea-bottom pressure
change pe inside the focal area when the earthquake fault has a fault width
W ¼ 100 km and a rupture duration of tc ¼ 40 s (the station location is indicated
by a triangle in Fig. 5.17a). The dynamic pressure change begins to increase at 40 s
and takes a maximum value of 0.008 MPa at the elapsed time of 55 s. The blue line
indicates the temporal change of the sea-bottom acceleration abot

z x; y; tð Þ; here the
dimension is converted to pressure according to ρ0h0a

bot
z x; y; tð Þ. The red line

Fig. 5.16 Ocean-bottom pressure record observed at the gauge located ~50 km away from the
hypocenter of a moderate-size earthquake (MW 7.0) that occurred on July 10, 2011, offshore from
the coast of northeastern Honshu, Japan. The pressure change of 1 cmH2O corresponds to the
hydrostatic pressure due to a water depth of 1 cm (1 cmH2O¼ 98 Pa) (Kubota et al. 2015 Copyright
by the American Geophysical Union)
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Fig. 5.17 (a) A schematic illustration of the simulation settings. Elastic medium consisting of a
water layer and homogeneous crust. The finite size of the earthquake fault is set in the crust. A large
earthquake (fault width ofW ¼ 100 km) and small earthquake (W ¼ 5 km) are supposed. Locations
of hypothesized stations are plotted by triangles. (b) Sea-bottom pressure change (gray) on the sea
bottom inside the source region for the large earthquake (W ¼ 100 km). The pressure change
predicted by a simple relation ρ0h0a

bot
z (blue) and Eq. (5.65) assuming the incompressible fluid

theory (red) where abot
z is the acceleration on the sea bottom. (c) Same as (b) but for the small

earthquake (W ¼ 5 km). The red line and gray line (under the red line) are almost identical (Saito
2017 copyright by Oxford Academic)
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indicates the temporal change of the sea-bottom acceleration abot
z x; y; tð Þ where the

dimension is converted to pressure using a spatial low-pass filter of ρ0h0 tanh kh0/kh0
(see Eq. (5.65)). Excellent agreement among the three lines was confirmed for the
case of W ¼ 100 km.

A comparison is also shown for the case when the earthquake fault width is short
(W ¼ 5 km) in Fig. 5.17c. We found that the simple theoretical relation ρ0h0a

bot
z

(blue) does not agree with the sea-bottom pressure change (gray, but this is not
visible in the figure because the gray line is under the red line), while the pressure
change obtained by applying the spatial low-pass filter of ρ0h0 tanh kh0/kh0 to the
sea-bottom acceleration abot

z (red) shows good agreement with the sea-bottom
pressure change (gray). The prediction based on the incompressible fluid theory
can be confirmed in the elastic dynamic simulation. This supports the validity of the
incompressible fluid theory.

5.3.3.4 Dynamic Pressure Change and Static Pressure Change

When using ocean-bottom pressure gauges deployed inside the focal area, even after
removing the ocean acoustic waves with an appropriate low-pass filter, the pressure
records still include the contribution of the dynamic pressure change caused by the
sea-bottom acceleration. Figure 5.18 shows an example of a synthesized ocean-
bottom pressure record inside the focal area. The red line shows the pressure change
including both the dynamic and static contributions, whereas the bold gray line
shows the pressure change including only the static contribution. The static pressure
change (bold gray line) is zero at the elapsed time of zero because the vertical
displacements at the sea surface and sea bottom are almost the same. When enough
time elapses, the pressure change shows an offset value of �10 mH2O. This is
because the sea bottom is uplifted by 10 m. On the other hand, if we observe the
pressure change including the dynamic contribution (red line), it shows a large
impulsive signal at the elapsed time of 80 s. This does not reflect the sea-surface
height change, but this large impulsive signal is excited by the dynamic pressure
change. We should take care not to consider this pressure change to be the
sea-surface height change just by using a simple hydrostatic relation pe ¼ ρ0g0η.
The dynamic pressure change was actually observed by the ocean-bottom pressure
gauge deployed in deep ocean (see Fig. 5.16). If this dynamic pressure change is
mistakenly considered to be the tsunami height in real-time tsunami monitoring, it
may cause incorrect tsunami prediction at the coast. It would be challenging to
develop a method to distinguish the dynamic pressure change (seismic waves) and
the static pressure change (tsunami) in real time.

We examine the contribution to the dynamic pressure change made by the
sea-bottom acceleration ρ0h0a

bot
z ¼ ρ0h0€uz (uz is the vertical displacement at the

sea bottom) relative to the hydrostatic pressure change caused by the sea-surface
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height ρ0g0η(x, y, t). The ratio of the dynamic pressure change to the static pressure
change is given by

RD ¼ h0 €uzj j
g0 ηj j

: ð5:70Þ

If the dominant angular frequency of the vertical displacement at the bottom is ωc,
the acceleration is given by €uzj j ¼ ω2

C uzj j. The sea-surface height is approximately |η|
~|uz|. The ratio is approximately given by

RDe h0ω2
C uzj j

g0 uzj j ¼ h0ω2
c

g0
: ð5:71Þ

The duration of the sea-bottom deformation tc is approximately half of the dominant
period tc~π/ωc. The ratio is then

RDe π2h0g0t2c
e 10h0
g0t2c

: ð5:72Þ

This indicates that the contribution of the dynamic pressure change is basically
controlled by the duration of the sea-bottom deformation (or this corresponds to the
rise time) tc and decreases rapidly with increasing duration. For example, we
consider RD ¼ 1/2 to be a condition that the dynamic pressure change significantly
contaminates the static pressure change. The duration tc is about 90 s if we suppose
h0 ¼ 4000 m as an average ocean depth. This indicates that it is inappropriate to
assume hydrostatic approximation during ~90 s from the time the sea bottom begins
to rise.

Fig. 5.18 Synthesized ocean-bottom pressure gauge records. Ocean-bottom pressure change with
the dynamic pressure change (red) and without the dynamic pressure change (black). A pressure
change of 1 mH2O corresponds to the hydrostatic pressure due to a water depth of 1 m
(1mH2O ¼ 9.8 MPa) (Saito and Tsushima 2016, copyright by the American Geophysical Union)
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5.4 Bridging Generation to Propagation

Sections 5.1, 5.2, and 5.3 have investigated the fundamental mechanism of tsunami
generation by supposing a flat sea bottom. It is important to consider the effects of
bathymetry when analyzing or simulating realistic records. This section bridges the
gap between the analytical solutions derived under a constant sea-depth assumption
and tsunami simulations with realistic bathymetry.

5.4.1 Contribution of Sea-Depth Variation

When the flat sea bottom is assumed, the horizontal displacement is allowed to be
discontinuous at the boundary between the fluid and solid. Only the vertical com-
ponent of the displacement should be continuous at the boundary between the fluid
and solid (e.g., Ewing et al. 1957; Kennett 2001). Hence, the horizontal displace-
ment at the sea bottom does not excite vertical flow in the sea (note that the vertical
displacement at the sea bottom excites horizontal flow in the sea layer during the
generation. See Fig. 5.11). When the sea bottom is not flat but is curved, the
combination of the horizontal displacement and the sea-bottom topography can
excite vertical flow (e.g., Nosov and Kolesov 2011). This mechanism was first
taken into account in setting the initial tsunami height distribution by Tanioka and
Satake (1996). After the 2011 Tohoku-Oki earthquake, which showed a large
horizontal displacement near a deep trench (e.g., Ito et al. 2011), numerous studies
pointed out the contribution of the horizontal displacement to the tsunami excitation
(e.g., Gusman et al. 2012; Satake et al. 2013; Hooper et al. 2013). Here we introduce
the contribution of the sea-bottom horizontal displacement to the tsunami generation
process.

Consider the case where the sea bottom is not flat as shown in Fig. 5.19. The
displacement normal to the boundary between the sea and crust is continuous at the
boundary, whereas the tangential components of the displacement can be discontin-
uous. When the sea bottom (or top of the crust) is displaced by the displacement
vector u, the normal component un is continuous on the boundary between the fluid
and solid.

The unit vector �n normal to the sea bottom z ¼ � h(x, y) is given by

�n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂h=∂xð Þ2 þ ∂h=∂yð Þ2 þ 1

q ∂
∂x

h x; yð Þ; ∂
∂y

h x; yð Þ; 1
� �

: ð5:73Þ

Consider the displacement vector at the top of the crust, u(x, y,�h � 0). The
component of the displacement vector normal to the sea bottom is then given by
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un ¼ u � �n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂h=∂xð Þ2 þ ∂h=∂yð Þ2 þ 1

q ux
∂h
∂x

þ uy
∂h
∂y

þ uz

� �����
z¼�h�0

: ð5:74Þ

Since the normal component is continuous between the boundary, un(x, y,
�h + 0) ¼ un(x, y,�h � 0), the displacement vector at the bottom of the sea is
given by

u x; y;�hþ 0ð Þ ¼ un x; y;�h� 0ð Þ�n: ð5:75Þ

The vertical component of the sea-bottom displacement u(x, y,�h + 0) would
contribute to the vertical displacement at the sea surface. The projection of the
displacement vector u(x, y,�h + 0) to the vertical axis gives the vertical component
at the sea bottom as

uz x; y;�hþ 0ð Þ ¼ u x; y;�hþ 0ð Þ � ez
¼ un �n � ez
¼ 1

∂h=∂xð Þ2 þ ∂h=∂yð Þ2 þ 1
ux

∂h
∂x

þ uy
∂h
∂y

þ uz

� �����
z¼�h�0

:

ð5:76Þ

Equation (5.76) represents the vertical displacement at the bottom of the sea
uz(x, y,�h + 0) by using the displacement at the top of the crust (ux, uy, uz)|z ¼ � h � 0

and the sea depth z ¼ � h(x, y). When the sea depth varies smooth enough as

Fig. 5.19 The sea depth is given as a function of the horizontal coordinates (x, y), z ¼ � h(x, y).
The bottom of the sea is just above the boundary between the sea and crust, z¼ � h(x, y) + 0, while
the top of the crust is just below the boundary z¼ � h(x, y)� 0. The displacement vector at the top
of crust is u ¼ u(x, y,�h � 0). The bathymetry curve is characterized by the normal vector �n. The
displacement normal to the bathymetry is given by un ¼ u � �n, which is continuous between the
crust and sea. The vertical component at the bottom of the sea is uz(x, y,�h + 0)
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∂h
∂x

� �2

þ ∂h
∂y

� �2

� 1, ð5:77Þ

the vertical displacement at the bottom of the water layer is approximately given by

uz x; y;�hþ 0ð Þ � ux
∂h
∂x

þ uy
∂h
∂y

þ uz

� �����
z¼�h�0

: ð5:78Þ

We may consider the displacement (ux, uy, uz)|z ¼ � h � 0 (the right-hand side of
Eq. (5.78)) as the displacement vector on the sea bottom. This is often calculated as
the sea-bottom displacement with the code of Okada (1985) or other seismic
numerical codes. The vertical displacement uz(x, y,�h + 0) on the left-hand side is
an effective vertical component of the displacement vector generating the initial
tsunami height distribution. If we convolve uz(x, y,�h + 0) with Kajiura’s equation
(Eq. (5.55)), we obtain a reasonable initial tsunami height distribution for the 2-D
tsunami propagation simulations. Equation (5.78) is the same as the equation
originally proposed by Tanioka and Satake (1996).

Convincing evidence regarding the contribution of the horizontal displacement to
the tsunami excitation was observed during the 2011 Tohoku-Oki earthquake. The
black lines in Fig. 5.20a, b show the sea-surface height change observed at the two
tide gauges during the Tohoku-Oki earthquake. The blue lines show the theoretically
calculated sea-surface height that includes only the contribution from the vertical
displacement at the sea bottom. These theoretical calculations can reproduce some
parts of the observed records. On the other hand, if the horizontal components are
taken into account in setting the initial tsunami height distribution, the theoretically
calculated sea-surface height change (red line) successfully explains the overall
features of these observations. The two stations used in this comparison are located
on the western coast of Honshu, Japan (Fig. 5.20c), where a large tsunami coming
from the main tsunami source is blocked by the Japanese mainland. Also, as shown
in Fig. 5.20c and d, there were large horizontal displacement compared to vertical
displacement. These conditions made it possible to observe convincing evidence
indicating the contribution of horizontal displacement to the tsunami excitation.

The fault motion of the 2011 Tohoku-Oki earthquake causes a large horizontal
displacement around the deep and steep Japan Trench. Equation (5.78) indicates that
these two conditions (large horizontal displacement at a large bathymetry gradient)
would efficiently cause the initial tsunami height distribution. By considering the
horizontal displacement in calculating the initial tsunami height distribution in the
simulation, the tsunami simulation predicts a larger tsunami amplitude (Fig. 5.21).
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5.4.2 Synthesis of Ocean-Bottom Pressure Records

We often use the terms “tsunami waveforms” and “tsunami data.” Some people may
assume that the temporal change of sea-surface displacement is a tsunami waveform,
and others may suppose that the sea-bottom pressure change is a tsunami waveform.
It is important to recognize what sensor is being used when referring to tsunami data
or tsunami waveforms. If one uses tide gauges or GPS sensors, the tsunami wave-
form corresponds to the vertical sea-surface displacement uz(x, y, zsur, t) where z¼ zsur
is the sea surface. If ocean-bottom pressure gauges are used, the tsunami waveform
represents the pressure change at the sea bottom pe(x, y, zbot, t) where z ¼ zbot is the
sea bottom. In most cases, after an appropriate low-pass filter is applied, the two
values are simply related by a hydrostatic approximation as pe(x, y, zbot, t) ¼
ρ0g0uz(x, y, zsur, t) where ρ0 is the seawater density and g0 is the gravitational
acceleration. However, we cannot use this relation when the sensor is located near
the focal area where permanent sea-bottom displacement can occur and the seismic

Fig. 5.20 (a) Observed and calculated tsunami waveforms at Fukaura (location is plotted in (c)).
The black line shows the observed waveform. The red line is the waveform calculated from the total
vertical seafloor displacement including the effects of the horizontal displacement. The blue line is
the waveform calculated from the vertical displacement. (b) Observed and calculated waveforms at
Sado. (c) Vertical displacement and (d) horizontal displacement around Japan calculated from the
fault model of the 2011 Tohoku earthquake (Murotani et al. 2015 copyright by Springer)
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Fig. 5.21 Initial sea-surface height distribution. Red and blue contour colors represent the
sea-surface height distribution considering (a) the total vertical sea-bottom displacement including
both vertical and horizontal displacement, (b) the vertical displacement only, and (c) the vertical
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waves overlap tsunami. This section illustrates a method of synthesizing the ocean-
bottom pressure records by taking into account both the seismic waves and tsunami.

There are two methods by which to introduce a source in the tsunami simulations
(Fig. 5.22). In Chap. 4, by assuming that the sea layer is compressible ((b) in
Fig. 5.22), we synthesized the sea-surface displacement caused by the seismic
waves and tsunami. This section synthesizes the ocean-bottom pressure change.
We here assume an incompressible sea layer and employ the method shown in (a) in
Fig. 5.22. This is because it is reasonable to assume an incompressible sea when
calculating the static pressure change.

We propose a two-step method composed of linear and nonlinear simulations
(Fig. 5.22a, c). The flowchart is shown in Fig. 5.23. In this method, we decompose
the pressure change into two components. One is the pressure change caused by
gravity. This contribution is calculated by the tsunami simulation. This corresponds
to the static pressure change pstatic. The other is the pressure change caused by
seismic waves, which is excited even when gravity is zero. This is the dynamic
pressure change pdynamic. The total pressure change pe is represented as
pe ¼ pdynamic + pstatic.

In the first step, we calculate the spatial and temporal distribution of the
sea-bottom motion generated by an earthquake. This simulation also calculates the
sea-bottom pressure change corresponding to a dynamic pressure change. The
particle motion in an elastic medium satisfies the linear equations of motion:

ρ
∂2ui
∂t2

¼ τij, j þ f i, ð5:79Þ

and satisfies a constitutive law,

τij ¼ λδijuk,k þ μ ui, j þ u j, i
� �

, ð5:80Þ

where τij is the stress tensor in the medium. These equations are commonly used in
many seismological studies (e.g., Aki and Richards (2002)). The parameters λ and μ
are Lamé parameters, which represent the properties of the medium. An equivalent
body force of the double couple force system for a point dislocation source is used to
represent an earthquake (e.g., Eqs. (4.10) and (4.7) in Chap. 4). We saved the
simulation results of the spatial and temporal distribution of the vertical velocity at

⁄�

Fig. 5.21 (continued) displacement from the horizontal displacement and bathymetry effect. (d),
(e) Tsunami waveforms at two offshore sea-bottom pressure gauges. The blue lines show the
observed waveforms. The red lines show the waveforms calculated from the total vertical
sea-bottom displacement. The green dashed lines are the waveforms calculated from the vertical
displacement (Hooper et al. 2013, copyright by Elsevier)
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the sea bottom vbotz and used them as a source in the tsunami simulation in the next
step. Additionally, we saved the simulated vertical displacement ubot

z and the stress
(pressure) τ botzz at the sea bottom for the later synthesis of the ocean-bottom pressure
records.

Fig. 5.22 Incompressible sea model and compressible sea model for tsunami simulations. (a) The
sea is assumed to be an incompressible fluid. (b) The sea is assumed to be a compressible fluid. (c)
Tsunami propagation is calculated based on the tsunami equations in the incompressible sea

Fig. 5.23 Flowchart of the
ocean-bottom pressure
record synthesis
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In the second step, we calculate the tsunami propagation by using the velocity
field at the sea bottom vbotz as a source. According to the incompressible fluid theory,
when the vertical displacement at the sea bottom given by ubot

z x; yð Þ occurs instan-
taneously, the sea-surface height is given by Eq. (5.81) exp(..)

η0 x; yð Þ ¼ 1

2πð Þ2
Z Z 1

�1
dkxdky exp i kxxþ kyy

� � � ~u bot
z kx; ky

� �
cosh kh0ð Þ , ð5:81Þ

where ~u bot
z kx; ky

� �
is the 2-D Fourier transform of the vertical displacement distri-

bution at the bottom ubot
z x; yð Þ (e.g., Kajiura 1963; Saito and Furumura 2009). Note

that when we intend to include the horizontal displacement contribution, we should
use Eq. (5.78) for ubot

z x; yð Þ.
Then, the sea-surface elevation during a fractional duration Δt excited by the

time-dependent sea-bottom deformation is given by

Δη0 x; y; tð Þ ¼ 1

2πð Þ2
Z Z 1

�1
dkxdky exp i kxxþ kyy

� � � ~v bot
z kx; ky; t

� �
cosh kh0ð Þ Δt, ð5:82Þ

where ~v bot
z kx; ky; t

� �
is the 2-D Fourier transform of the vertical velocity distribution

at the bottom vbotz x; y; tð Þ. Substituting the vertical velocity at the sea bottom
calculated in the first step of the seismic wave simulation into Eq. (5.82), we obtain
the tsunami height increment Δη0(x, y, t) for the small time interval Δt at the time t.

The tsunami propagation is assumed to be described by the tsunami equations
(see Chap. 6: Propagation Simulation). The sea-surface elevation in a fractional
duration given by Eq. (5.82) is added to the sea-surface height distribution at each
time step. The simulated spatial and temporal distribution of the sea-surface height
η(x, y, t) is saved to synthesize the ocean-bottom pressure records.

Ocean-bottom pressure records are synthesized using the results of these seismic
and tsunami simulations. An ocean-bottom pressure change is considered to be
composed of static and dynamic components. The static component of the ocean-
bottom pressure change caused by gravity is given by

pstatic ¼ ρ0g0 η� ubot
z

� � ð5:83Þ

where the sea-surface height displacement η(x, y, t) and the vertical sea-bottom
displacement ubot

z x; y; tð Þ are calculated in the tsunami and seismic simulations,
respectively. On the other hand, the dynamic ocean-bottom pressure change is given
by

pdynamic ¼ �τ botzz x; y; tð Þ: ð5:84Þ

The stress at the bottom τ botzz is calculated in the seismic wave simulation. Note that
the sign of the pressure is opposite to that of the stress, and the stress is isotropic
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as τxx¼ τyy¼ τzz in the sea layer. The total pressure change at the sea bottom is given
by

pe ¼ pstatic þ pdynamic: ð5:85Þ

5.4.2.1 Synthesized Ocean-Bottom Pressure Waveforms

Figure 5.24a shows the ocean-bottom pressure records observed at a station near the
focal area of the 2011 Tohoku-Oki earthquake. The record shows the dominant high-
frequency component of the pressure change up to an elapsed time of ~500 s. These
are mainly ocean acoustic waves. Applying the low-pass filter with a cutoff fre-
quency of 60 s to the record, we remove the ocean acoustic waves and obtain
low-frequency component records (Fig. 5.24b). The ocean-bottom pressure change
caused by the tsunami is clearly recognized from the elapsed time of 0–1200 s.
Moreover, we recognize that the low-frequency wave also appears at the elapsed
time of ~100 s. This is the pressure change caused by low-frequency seismic waves.

Figure 5.24c shows the ocean-bottom pressure change simulated by the method
described in this chapter. We used a rectangle fault plane with a length of 200 km
and a width of 150 km with a uniform slip of 20 m. The depth of the centroid of the
fault is set at a depth of 50.5 km. The strike, dip, and rake are set at 200�, 30�, and
90�, respectively. The slip starts simultaneously on the fault, and the rise time is set
at tc ¼ 30 s. The simulated waveform indicates the pressure change due to the
seismic wave at around 100 s with an amplitude of ~2 mH2O, and the pressure
gradually increases. The maximum value was ~5 mH2O at ~900 s. The simulated
ocean-bottom pressure record roughly reproduced the observed record, even though
a uniform slip and simple source time function were assumed in the simulation.

Figure 5.25 compares the synthesized ocean-bottom pressure change for various
simulation settings. The light gray line represents the synthesized pressure change
including the ocean acoustic waves, low-frequency seismic waves, and tsunami. The
synthesized pressure change contains less high-frequency component than the
observed records (e.g., see Fig. 5.24a). This is mainly because the earthquake fault
model used in this synthesis was characterized by a smoother slip distribution than
the actual earthquake. By applying the low-pass filter to the synthesized pressure
change (light gray line) and removing the ocean acoustic waves, we obtain a red line
that contains low-frequency seismic waves and tsunami. The dark gray line repre-
sents the synthesized pressure change including only the tsunami component, i.e., the
static pressure change pstatic in Eq. (5.85). These comparisons clearly indicate that
both high- and low-frequency seismic waves significantly contribute to the ocean-
bottom pressure waveforms. Even if the low-pass filter is applied, the low-frequency
seismic wave still exists in the waveform. This suggests that low-frequency seismic
waves can function as noise when ocean-bottom pressure records are analyzed as
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tsunami signal. It is important to be especially careful when using ocean-bottom
pressure records in an automated tsunami analysis system so as not to mistake
low-frequency seismic waves as tsunami.

Appendices

Appendix 5A: Equation (5.28)

We derive Eq. (5.28) from Eq. (5.27). In Eq. (5.27), the residue theorem is used with
respect to the integration over the angular frequency. Since the poles are located on
the path of integration, we introduce artificial damping parameters to shift the poles
from the path and to integrate with the residue theorem. These artificial damping
parameters will be taken to be zero after the integration using the residue theorem.
An artificial damping parameter (ε1 > 0) is introduced in Eq. (5.10) as

Fig. 5.24 (a) Ocean-bottom pressure record of the 2011 Tohoku-Oki earthquake observed at
station P06 (a gray triangle in (d)). (b) Low-frequency component of the ocean-bottom pressure
record obtained by the low-pass filter with a cutoff frequency of 60 s. (c) Simulated ocean-bottom
pressure change at the station. (d) The locations of the station (triangle) and source model of the
2011 Tohoku-Oki earthquake (rectangle) (Saito and Tsushima 2016, copyright by the American
Geophysical Union)
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∂ϕ x; tð Þ
∂t

����
z¼0

þ g0η x; y; tð Þ ¼ �2ε1ϕ x; tð Þjz¼0: ð5:5A:1Þ

Using another surface boundary condition (Eq. (5.9)):

Fig. 5.25 (a) Simulated waveforms at a station inside the focal area (the location is indicated in
(b)). A synthesized ocean-bottom pressure change including ocean acoustic waves, low-frequency
seismic waves, and tsunami (light gray line). The low-pass filter with a cutoff period of 60 s is
applied to the simulated waveform (red lines and dark gray lines). The red line is the total pressure
change. The dark gray line shows the pressure change due to only the static component. (b) The
station location and the vertical displacement distribution (Saito and Tsushima 2016, copyright by
the American Geophysical Union)
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∂η x; y; tð Þ
∂t

¼ ∂ϕ x; tð Þ
∂z

����
z¼0

, ð5:5A:2Þ

and (5.5A.1), we obtain

∂2ϕ x; tð Þ
∂t2

�����
z¼0

þ g0
∂ϕ x; tð Þ

∂z

����
z¼0

¼ �2ε1
∂ϕ x; tð Þ

∂t

����
z¼0

, ð5:5A:3Þ

instead of Eq. (5.11) and

d

dz
� ω2 þ 2iE1ω

g0

� �bϕ kx; ky; z;ω
� �����

z¼0

¼ 0, ð5:5A:4Þ

instead of Eq. (5.20).
Additionally, another artificial damping parameter (ε2 > 0) is introduced in

Eq. (5.24) as

χ tð Þ ¼ 1
T

H tð Þ � H t � Tð Þ½ �e�ε2t: ð5:5A:5Þ

Then, we obtain

bχ ωð Þ ¼
Z 1

�1
χ tð Þeiωtdt ¼ 1

i ωþ iE2ð ÞT ei ωþiE2ð ÞT � 1
� �

: ð5:5A:6Þ

When Eqs. (5.5A.4) and (5.5A.6) are used, the equation corresponding to
Eq. (5.27) is written as

ϕ x; y; z; tð Þ

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ1
k

bd kx; ky
� �

cosh kh0ð Þ
1
2π

i

T

Z 1

�1
dωe�iωt 1� ei ωþiE2ð ÞT

ωþ iE2

ω2 þ i2E1ωð Þsinh kzð Þ þ g0k cosh kzð Þ
ω2 þ i2E1ωð Þ � g0k tanh kh0ð Þ

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ1
k

bd kx; ky
� �

cosh kh0ð Þ
1
2π

i

T

Z 1

�1
dω

e�iωt

ωþ iE2

ω2 þ i2E1ωð Þsinh kzð Þ þ g0k cosh kzð Þ
ω2 þ i2E1ωð Þ � g0k tanh kh0ð Þ

	

�
Z1
�1

dω
e�iω t�Tð Þe�E2T

ωþ iE2

ω2 þ i2E1ωð Þsinh kzð Þ þ g0k cosh kzð Þ
ω2 þ i2E1ωð Þ � g0k tanh kh0ð Þ

35:
ð5:5A:7Þ

We first consider the integration in the second term:
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Z 1

�1
dω

e�iω t�Tð Þe�ε2T

ωþ iε2

ω2 þ i2ε1ωð Þsinh kzð Þ þ g0k cosh kzð Þ
ω2 þ i2ε1ω� g0k tanh kh0ð Þ : ð5:5A:8Þ

Considering that the artificial damping is very small or the artificial damping
parameters are much smaller than the angular frequency ω for tsunamis, we employ
the residue theorem. The poles of Eq. (5.5A.8) are located at ω ¼ � iε1 � ω0

and � iε2 in the lower half of the ω-plane (Fig. 5.A.1), where

ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0k tanh kh0ð Þ

p
: ð5:5A:9Þ

When t � T < 0, we take the path of the integral in the upper half plane (path I in
Fig. 5.A.1) including no poles. In this case, then, the integration is zero as

Z 1

�1
dω

e�iω t�Tð Þe�ε2T

ωþ iε2

ω2 þ i2ε1ωð Þsinh kzð Þ þ g0k cosh kzð Þ
ω2 þ i2ε1ω� g0k tanh kh0ð Þ

¼ 0 for t � T < 0: ð5:5A:10Þ

When t � T > 0, we take the integral path in the lower half plane including the
poles (path II in Fig. 5.A.1). By setting ε1 ! 0, ε2 ! 0 and using the residue
theorem, we calculate Eq. (5.5A.8) as

-w0 w0o
Re w

Im w

Path I

Path II

- +

Fig. 5.A.1 Paths of integral
in the complex ω-plane for
Eq. (5.5A.8). The poles
(crosses) are located at
ω ¼ � iε1 � ω0 and � iε2
in the lower half plane
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Z 1

�1
dω

e�iω t�Tð Þe�ε2T

ωþ iε2

ω2 þ i2ε1ωð Þsinh kzð Þ þ g0k cosh kzð Þ
ω2 þ i2ε1ωð Þ � g0k tanh kh0ð Þ

�
Z1
�1

dω
e�iω t�Tð Þ

ωþ iε2

ω2sinh kzð Þ þ g0k cosh kzð Þ
ω� ω0 � iε1ð Þ½ � ω� �ω0 � iε1ð Þ½ �

¼ �2πi Res ω ¼ �iε2ð Þ þ Res ω ¼ ω0 � iε1ð Þ þ Res ω ¼ �ω0 � iε1ð Þ½ �
¼ �2πi

�g0k cosh kz

ω2
0

þ ω2
0 sinh kzþ g0k cosh kz

ω2
0

cos ω0 t � Tð Þ½ �
	 


ð5:5A:11Þ
Summarizing Eqs. (5.5A.10) and (5.5A.11), we obtainZ 1

�1
dω

e�iω t�Tð Þ

ω

ω2sinh kzð Þ þ g0k cosh kzð Þ
ω2 � g0k tanh kh0ð Þ

¼ 2πi
g0k cosh kz

ω2
0

� ω2
0 sinh kzþ g0k cosh kz

ω2
0

cos ω0 t � Tð Þ½ �
	 


H t � Tð Þ:

Using (5.5A.9), we haveZ 1

�1
dω

e�iω t�Tð Þ

ω

ω2sinh kzð Þ þ g0k cosh kzð Þ
ω2 � g0k tanh kh0ð Þ

¼ 2πi
cosh kz
tanh kh0

� cosh kz
tanh kh0

þ sinh kz

� �
cos ω0 t � Tð Þ½ �

	 

H t � Tð Þ:

ð5:5A:12Þ

The first term in the bracket in Eq. (5.5A.7) can also be calculated in a similar
way. The velocity potential (5.5A.7) is then given by

ϕ x; y; z; tð Þ

¼ � 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �

k cosh kh0

cosh kz
tanh kh0

H tð Þ � H t � Tð Þ
T

	
� cosh kz

tanh kh0
þ sinh kz

� �
H tð Þ cos ω0tð Þ � H t � Tð Þ cos ω0 t � Tð Þð Þ

T



¼ � 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ bd kx; ky
� �
k

cosh kz
sinh kh0

H tð Þ � H t � Tð Þ
T

	
� cosh kz

sinh kh0
þ sinh kz
cosh kh0

� �
H tð Þ cos ω0tð Þ � H t � Tð Þ cos ω0 t � Tð Þð Þ

T



ð5:5A:13Þ

This equation is identical to Eq. (5.28).
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Appendix 5B: Tsunami Propagation from an Initial Height
Distribution and Zero Velocity Distribution

Setting the initial conditions as

η x; y; t ¼ 0ð Þ ¼ η0 x; yð Þ, ð5:5B:1Þ

and

vH x; t ¼ 0ð Þ ¼ 0, and vz x; t ¼ 0ð Þ ¼ 0, ð5:5B:2Þ

the tsunami propagation is solved in the Cartesian coordinates (Fig. 5.B.1).
The velocity potential (v ¼ —ϕ) satisfies the Laplace equation (Eq. (5.3)):

Δϕ x; tð Þ ¼ 0: ð5:5B:3Þ

The velocity potential satisfies the boundary condition at the sea surface
(Eq. (5.11)):

∂2ϕ x; tð Þ
∂t2

�����
z¼0

þ g0
∂ϕ x; tð Þ

∂z

����
z¼0

¼ 0, ð5:5B:4Þ

and the boundary condition at the sea bottom:

∂ϕ x; tð Þ
∂z

����
z¼�h0

¼ 0: ð5:5B:5Þ

Note that the initial conditions (Eqs. (5.5B.1) and (5.5B.2)) and the bottom boundary
condition (Eq. (5.5B.5)) are different when compared with the tsunami generation
problem treated in 5.2.1.

In order to solve this problem, we introduce the Fourier transform as

Fig. 5.B.1 Coordinates
used in the formulation
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bϕ kx; ky; z; t
� � ¼ Z Z 1

�1
dxdy e�i kxxþkyyð Þϕ x; y; z; tð Þ: ð5:5B:6Þ

The corresponding inverse Fourier transform is

ϕ x; y; z; tð Þ ¼ 1

2πð Þ2
Z Z 1

�1
dkxdky e

i kxxþkyyð Þ bϕ kx; ky; z; t
� �

: ð5:5B:7Þ

Then, the Laplace equation (Eq. (5.5B.3)) and the boundary conditions
(Eqs. (5.5B.4) and (5.5B.5)) are rewritten as

d2

dz2
bϕ kx; ky; z; t
� � ¼ k2bϕ kx; ky; z; t

� �
, ð5:5B:8Þ

where k2 ¼ kx
2 + ky

2,

∂2bϕ kx; ky; z; t
� �
∂t2

�����
z¼0

þ g0
∂bϕ kx; ky; z; t

� �
∂z

�����
z¼0

¼ 0, ð5:5B:9Þ

and

∂bϕ kx; ky; z; t
� �

∂z

�����
z¼�h0

¼ 0: ð5:5B:10Þ

The general solution of Eq. (5.5B.8) is given by

bϕ kx; ky; z; t
� � ¼ A kx; ky; t

� �
cosh kzð Þ þ B kx; ky; t

� �
sinh kzð Þ: ð5:5B:11Þ

The coefficient B(kx, ky, t) is represented by A(kx, ky, t) by considering the bottom
boundary condition (Eq. (5.5B.10)). Then, Eq. (5.5B.11) is calculated as

bϕ kx; ky; z; t
� � ¼ A kx; ky; t

� � cosh k zþ h0ð Þ½ �
cosh kh0ð Þ : ð5:5B:12Þ

Substituting (5.5B.12) into (5.5B.9), we obtain

d2A kx; ky; t
� �
dt2

þ ω2
0 A kx; ky; t

� � ¼ 0, ð5:5B:13Þ

where
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ω2
0 ¼ g0k tanh kh0ð Þ: ð5:5B:14Þ

Equation (5.5B.14) represents the well-known dispersion relation (Eq. (3.47)).
The general solution of Eq. (5.5B.13) is

A kx; ky; t
� � ¼ C kx; ky

� �
cos ω0tð Þ þ D kx; ky

� �
sin ω0tð Þ: ð5:5B:15Þ

Then, the velocity potential of Eq. (5.5B.11) is given by

bϕ kx; ky; z; t
� � ¼ C cos ω0tð Þ þ D sin ω0tð Þ½ � cosh k zþ h0ð Þ½ �

cosh kh0ð Þ :

Considering the initial velocity condition of Eq. (5.5B.2), the coefficient of C needs
to be zero:

bϕ kx; ky; z; t
� � ¼ D kx; ky

� �
sin ω0tð Þ cosh k zþ h0ð Þ½ �

cosh kh0ð Þ : ð5:5B:16Þ

Then, the velocity potential is represented by the inverse Fourier transform as

ϕ x; y; z; tð Þ ¼ 1

2πð Þ2
Z Z 1

�1
dkxdky e

i kxxþkyyð ÞD kx; ky
� �

sin ω0tð Þ cosh k zþ h0ð Þ½ �
cosh kh0ð Þ :

ð5:5B:17Þ

The tsunami height is represented by the velocity potential as

η x; y; tð Þ ¼ � 1
g0

∂ϕ
∂t

����
z¼0

: ð5:5B:18Þ

By substituting (5.5B.17) into (5.5B.18), we get

η x; y; tð Þ ¼ � 1

2πð Þ2
1
g0

Z Z 1

�1
dkxdky e

i kxxþkyyð Þω0D kx; ky
� �

cos ω0tð Þ: ð5:5B:19Þ

Considering the initial tsunami height distribution (5.5B.1), we obtain

bη0 kx; ky
� � ¼ �ω0D kx; ky

� �
g0

,

or
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D kx; ky
� � ¼ �g0

ω0
bη0 kx; ky
� �

, ð5:5B:20Þ

where bη0 kx; ky
� �

is the Fourier transform of the initial tsunami height distribution
η0(x, y). Substituting Eq. (5.5B.20), we obtain the solution of the velocity potential as

ϕ x; y; z; tð Þ ¼ �1

2πð Þ2
Z Z 1

�1
dkxdky e

i kxxþkyyð Þ

g0
ω0

bη0 kx; ky
� �

sin ω0tð Þ cosh k zþ h0ð Þ½ �
cosh kh0ð Þ :

Using the dispersion relation (Eq. (5.5B.14)), we calculate

ϕ x; y; z; tð Þ ¼ �1

2πð Þ2

	
Z Z 1

�1
dkxdky e

i kxxþkyyð Þω0

k
bη0 kx; ky
� � cosh k zþ h0ð Þ½ �

sinh kh0ð Þ sin ω0tð Þ:

ð5:5B:21Þ

Using the velocity potential of Eq. (5.5B.21), we can represent the velocity, the
tsunami height, and the pressure change in the following.

vH x; tð Þ ¼ ∇Hϕ x; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

�iω0
kH
k

cosh k zþ h0ð Þ½ �
sinh kh0

sin ω0tð Þ
	 


,

ð5:5B:22Þ

where —H ¼ (∂/∂x)ex + (∂/∂y)ey, and kH ¼ kxex + kyey.

vz x; tð Þ ¼ ∂ϕ x; tð Þ
∂z

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

�ω0
sinh k zþ h0ð Þ½ �

sinh kh0
sin ω0tð Þ

	 

,

ð5:5B:23Þ

η x; tð Þ ¼ � 1
g0

∂ϕ
∂t

����
z¼0

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þbη0 kx; ky
� �

cos ω0tð Þ,

ð5:5B:24Þ

and
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pe x; y; z; tð Þ ¼ �ρ0
∂ϕ x; tð Þ

∂t

¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þρ0bη0 kx; ky
� �

ω2
0

k

cosh zþ h0ð Þ
sinh kh0ð Þ cos ω0tð Þ:

ð5:5B:25Þ

Using the dispersion relation (Eq. (5.5B.14)), we calculate

pe x; y; z; tð Þ ¼ 1

2πð Þ2
Z 1

�1

Z 1

�1
dkxdky e

i kxxþkyyð Þ

ρ0g0bη0 kx; ky
� � cosh zþ h0ð Þ

cosh kh0ð Þ cos ω0tð Þ:
ð5:5B:26Þ
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Chapter 6
Propagation Simulation

Abstract Tsunami propagation simulations are very useful in both theoretical and
application studies. Recent improvements in computer performance and the detailed
bathymetry surveys in local- and global-scale make numerical simulations more
feasible and reliable. This chapter treats the theoretical background and numerical
schemes underlying tsunami propagation simulations. Since tsunami wavelength is
usually greater than the sea depth, we approximate a 3-D equation of motion using
2-D tsunami equations. There are various kinds of tsunami equations according to
the approximations. Hence, it is important to select appropriate tsunami equations
depending on the situation and purpose of the simulation. Section 6.1 is an overview
of various tsunami equations and introduces some results of the simulations.
Section 6.2 derives the 2-D tsunami equations from the 3-D equation of motion by
assuming long-wavelength wave propagation. We explain the linear long-wave
equations, nonlinear long-wave equations, and linear dispersive equations.
Section 6.3 illustrates the finite difference methods for numerically simulating the
tsunami propagation across realistic bathymetry.

Keywords Long-wave approximation · Nonlinear long-wave equations · Linear
dispersive equations · Nonlinear dispersive equations · Finite difference method

6.1 Nonlinear and Dispersive Tsunami

Assuming that the tsunami wavelength is greater than the sea depth, we approximate
the 3-D equation of motion using 2-D tsunami equations. There are various kinds of
approximations (e.g., Madsen and Sørensen 1992; Imamura 1996). We usually use
different types of 2-D tsunami equations depending on the purpose and situation. In
general, if we use more approximations, the equations become simpler, and the
simulation cost becomes lower. The optimum balance between the cost and the
approximations depends on the problem we work on. The techniques for solving
those equations have been developed based on fluid dynamics. For example, Shi
et al. (2012) presented a nonlinear Boussinesq model to calculate dispersive waves
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including wave breaking and inundation. This book cannot treat all the equations but
introduces four basic tsunami equations to obtain a perspective and practical
methods for numerical simulation. The equations may be classified as shown in
Fig. 6.1 according to the wavelength and height.

First, we consider the tsunami height. When a tsunami propagates in deep ocean,
the tsunami height is much smaller than the sea depth. As tsunami approaches coast,
the sea depth becomes shallow, but as long as the tsunami height is much smaller
than the sea depth, the linear equations can be used, and the superposition principle is
valid. In this case, we can use the linear long-wave equations and linear dispersive
equations in order to simulate tsunami propagation. When the tsunami height is not
much smaller than the sea depth, the nonlinear effects of tsunami become important.
Then, the superposition principle is invalid. In order to simulate nonlinear phenom-
ena, the nonlinear long-wave equations and nonlinear dispersive equations are used.

Next, we consider the tsunami wavelength. As shown in the phase velocity of
water waves (Chap. 3: Propagation of Tsunami and Seismic Waves), the tsunami
propagation velocity generally depends on the wavelength (Eq. (3.56)). In order to
reproduce frequency-dependent tsunami propagation, we should use nonlinear/lin-
ear dispersive tsunami equations. On the other hand, as long as the wavelength is
much greater than the sea depth, the tsunami velocity does not show frequency
dependence. When the tsunami wavelength is much longer than the sea depth, we
can use nonlinear/linear long-wave equations that do not show the dispersion.

Fig. 6.1 A classification of four tsunami equations (linear long-wave equations, nonlinear long-
wave equations, linear dispersive equations, and nonlinear dispersive equations). Linear dispersive
equations appropriately reproduce tsunami propagation across a deep ocean. Nonlinear long-wave
equations can reproduce tsunamis approaching coasts
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During the 2011 Tohoku-Oki earthquake, many higher-quality tsunami wave-
forms compared to past tsunamis were recorded. These records reliably revealed the
earthquake fault kinematics and tsunami source model (e.g., Koketsu et al. 2011;
Fujii et al. 2011; Saito et al. 2011). By using a reliable source model and various
tsunami equations together with high-quality tsunami records, we show some
examples of tsunami propagation simulations.

6.1.1 Nonlinear Waves

6.1.1.1 Energy Absorption

When the tsunami amplitude is not small enough compared to the sea depth, the
tsunami shows nonlinear behavior. This behavior is well represented by nonlinear
long-wave equation. One of the important nonlinear effects is energy absorption due
to bottom friction. This energy absorption is modeled using the nondimensional
bottom friction coefficient Cf. Figure 6.2a shows the tsunami waveforms for 8 days
(192 h) after the 2011 Tohoku-Oki earthquake occurred. Following the very high
leading tsunami, small-amplitude tsunamis continuously arrived at stations KPG1,
51425, 46411, and 32412 (station locations are shown in Fig. 6.2b). Figure 6.2c
plots the squared-wave amplitude, which is proportional to tsunami energy density
(Eq. (3.93)):

E x; y; tð Þ ¼ ρ0g0 ηj j2

The squared amplitude is plotted on a logarithmic scale in Fig. 6.2c. The tsunami
energy monotonously decreased as the elapsed time increased. Even 7 days after the
earthquake, the tsunami energy was significantly larger than the background energy
level (compare with the energy before the Tohoku-Oki earthquake). Munk (1963)
may be the first to point out that the tsunami energy in the ocean decays in a way
similar to sound waves in a closed room. Van Dorn (1984, 1987) confirmed Munk’s
hypothesis by analyzing the records of many tsunamis across the Pacific Ocean and
other oceans. It is interesting to note that such long-lasting waves or wave energy
after an earthquake are also recognized in seismic waves, which are referred to as
coda waves. Coda waves have been extensively studied in seismology and has provided
seismologists with important information about the scattering and energy absorption
mechanism in the earth’s crust (e.g., Sato et al. 2012). A surprising feature of the
coda is that the coda amplitude does not depend on the hypocentral distance but only
on the elapsed time. This characteristic seems to be common between seismic waves
and tsunami. For example, we cannot identify which station is the closest to the
earthquake hypocenter using only the tsunami data with an elapsed time between
96 and 144 h in Fig. 6.2c. In order to reproduce the tsunami coda energy, Saito et al.
(2013) conducted numerical simulations by adjusting the bottom friction coeffi-
cient Cf. In Fig. 6.2d, the gray symbol indicates the average temporal decay of the
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squared tsunami amplitude in the Pacific Ocean after the Tohoku-Oki earthquake. If
we do not consider the bottom friction (Cf ¼ 0), the simulation (blue dots) over-
estimates the coda energy (gray dots). Larger Cf friction coefficients cause the
energy decay to occur more rapidly (black dots). If the friction coefficient is set as
Cf ¼ 10�5, the tsunami energy decay is reproduced well for 6 days following the
Tohoku-Oki earthquake (Fig. 6.2d).

The nonlinear effects caused by the advection and the bottom friction are more
dominant in shallower seas near coasts. Figure 6.3a shows the observed tsunami
waveforms near coasts for the 2011 Tohoku-Oki earthquake (gray) and those
calculated by the simulation including energy absorption (red lines by
(a) nonlinear dispersive simulations). The simulated waveforms successfully repro-
duce the observed waveforms. In order to examine the effects of the nonlinearity,
Fig. 6.3b shows the simulated waveforms without the nonlinear terms (red lines by
(b) linear dispersive simulations). The difference appears only in the later waves that
are reflected from the coasts, whereas little difference is recognized in the leading
waves. This suggests that the nonlinear effect occurs near the coasts when the
tsunami is reflected at the coasts.

Fig. 6.2 (a) Band-pass-filtered waveforms with a passband between 30 and 120 min at stations
KPG1 (Japan), 51425 (northwest of Apia, Samoa), 46411 (northwest of San Francisco), and 32412
(southwest of Lima, Peru). The elapsed time is measured from the earthquake origin time. (b) The
station locations. (c) Temporal changes of the squared amplitude at the stations. The time window
of 12 h and the time shift of 3 h are used in smoothing the squared amplitude over time. (d) Squared
amplitude synthesized by numerical tsunami simulations with various nondimensional friction
coefficients Cf (blue and black dots) and the observed averaged squared amplitude. (Saito et al.
2013, copyright by the Seismological Society of America)
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6.1.1.2 Inundation

When a massive amount of water flows onto a coast as a tsunami (tsunami run-up),
the tsunami inundates the inland area. The run-up process is also nonlinear. This is
unique to tsunami, while the dispersion and energy absorption are also recognized in
seismic waves. Tsunami inundation causes devastating damage and leaves geolog-
ical marks near the coast as tsunami deposits. The inundation process is more

Fig. 6.3 Comparisons of the calculated (red) and observed (black) tsunami waveforms for the
station with GPS tsunami gauges (804, 802, 803, 801, and 806). (a) The nonlinear dispersive
equations (NDS) and (b) linear dispersive equations (DSP) were used for the calculation. Gray bars
indicate the data used for the tsunami source estimation. The variance reduction (VR) for each
calculated waveform is listed in each bin. (c) The locations of the GPS tsunami gauges. (Saito et al.
2014, copyright by the American Geophysical Union)
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complicated than tsunami propagation in deep oceans, but it is very important to
understand the run-up mechanism and to reliably assess the inundation area for
anticipated huge earthquakes in order to mitigate disasters near coasts. At the same
time, by analyzing the tsunami deposits, we can reproduce large historical tsunamis
that occurred when no seismographs were available (e.g., Minoura et al. 2001). This
is referred to as paleoseismology. This is one of the advantages of tsunami analysis
compared to seismogram analysis. Figure 6.4 shows the simulated inundation area of

Fig. 6.4 Computed flow depths on Ishinomaki and Sendai Plains using the 2011 Tohoku-Oki
earthquake model. Locations of sandy deposits of the A.D. 869 (red circles) and 2011 tsunamis
(blue circles) are also shown. Triangles indicate the locations of 2011 tsunami height measurements.
Black solid lines indicate the 2011 inundation limit, and dashed lines indicated the shoreline in
A.D. 869. Orange lines represent artificially elevated roads in 2011. Ground with an elevation of
more than 10 m is defined as “upland” and colored gold. (Namegaya and Satake 2014, copyright by
the American Geophysical Union)
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the 2011 Tohoku-Oki earthquake together with the distribution of tsunami deposit
from the 869 Jogan earthquake (Namegaya and Satake 2014). By comparing the
location of tsunami deposit and tsunami flow depth (height above ground), they
estimated that the 869 Jogan earthquake had a rupture length of at least 200 km and a
moment magnitude larger than 8.6. Note that the maximum magnitude was not
delimited by this analysis. It is very important to investigate huge historical tsunami
events, because huge earthquakes can occur repeatedly in the future, even though not
always by the same rupture process.

To simulate the inundation correctly, high-resolution and reliable bathymetry/
topography data and the bottom friction distribution data are necessary. Moreover,
the distribution of buildings should be taken into account when we simulate with a
spatial resolution of a few meters. Since high-resolution tsunami simulations have
high computing costs, it was difficult to conduct an inundation simulation during the
short time between the occurrence of a huge earthquake and the inundation of the
nearby coasts. However, Oishi et al. (2015) developed a high-performance simula-
tion code on a supercomputer and showed that the inundation can be successfully
simulated in a few minutes after the tsunami source is set (~5 min is at least
necessary by setting the tsunami source after the earthquake occurs). Recently,
new tsunami simulation code has been extensively developed. For example,
JAGURS (e.g., Baba et al. 2016), a tsunami simulation code (linear/nonlinear
long-wave/Boussinesq equations with/without the effects of elastic deformation of
the Earth due to tsunamis) is openly available on the Internet (https://github.com/
jagurs-admin/jagurs, accessed 2017-08-24) (Fig. 6.5).

Fig. 6.5 An example of a tsunami simulation (JAGURS code) in the Nankai subduction zone,
southwestern Japan. (Courtesy of T. Baba)
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6.1.2 Dispersive Waves

It is well known from fluid dynamics that the dispersive wave develops when a
tsunami propagates a long distance in a deep ocean. Actually, a dispersive tsunami
was observed at a station located far from the source (~6200 km) during the 2011
Tohoku-Oki earthquake (Kirby et al. 2013). On the other hand, recent tsunami
observations detected dispersive waves even at stations that were not so far from
the source (e.g., Inazu and Saito 2014). Although moderate-sized earthquake
faulting usually does not reach the sea bottom and earthquake faults are buried in
the subsurface, huge earthquake faulting often reaches the sea bottom. When the
rupture reaches the sea bottom, the sea-bottom displacement distribution becomes
steep. This is characterized by a rich short-wavelength component in its
wavenumber spectrum, which then generates a short-wavelength tsunami. Actually,
the Tohoku-Oki earthquake excited a steep initial tsunami height distribution due to
a large slip near the trench (e.g., Suzuki et al. 2011; Satake et al. 2013). Figure 6.6a

Fig. 6.6 Tsunami height distribution at the elapsed time of 60 min simulated with (a) dispersive
and (b) non-dispersive tsunami equations. The location of the station 21418 is indicated by a red
triangle. Sea-surface height changes at the station simulated by (c) dispersive (red line) and (d)
non-dispersive tsunami equations (red line) are plotted together with the observed sea-surface
height change (gray line). (Saito et al. 2014, copyright by the American Geophysical Union)
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shows the simulated tsunami at the elapsed time of 60 min after the earthquake
occurred, which was calculated using the dispersive tsunami equations. Dispersive
waves propagate eastward in the deep Pacific Ocean. We recognize these to be
dispersive waves by comparing them with the simulation results of the nonlinear
long-wave equations (Fig. 6.6b). Figure 6.6c and d shows the tsunami waveform
observed at station 21418 (red triangles in Fig. 6.12a and b). Even near station
21418, which is just ~400 km from the source, dispersive waves were clearly
recorded in the 2011 Tohoku-Oki earthquake.

For a tsunami caused by an earthquake, the tsunami wavelength usually depends
on the fault-strike direction. The wavelength is longer for a tsunami propagating
along the fault strike than along the fault dip. Considering that the dispersive wave
appears when the tsunami wavelength is not much longer than the sea depth, a
tsunami propagating along the fault-dip direction more easily shows dispersion than
a tsunami propagating along the fault-strike direction. This character of the disper-
sive tsunami can be used to determine the earthquake strike direction. Two earth-
quakes of M7.1 and M7.4 occurred off the Pacific coast of Japan (Fig. 6.7c and d).
The earthquakes were both intraplate events in the Philippine Sea Plate and were

Fig. 6.7 Comparison of the tsunami propagation for the foreshock (M 7.1, 10:07 UTC) and the
main shock (M 7.4, 14:57 UTC). Tsunami waveforms were recorded and calculated at the offshore
tsunami observation point MPG1 for (a) the foreshock and (b) the main shock. Snapshots of the
tsunami simulation were taken at an elapsed time of 30 min for (c) the foreshock and (d) the main
shock. Triangles indicate the location of MPG1. Rectangles indicate the source region of the
foreshock and the main shock. (Saito et al. 2010, copyright by the American Geophysical Union)

6.1 Nonlinear and Dispersive Tsunami 213



characterized by reverse faults. However, because the focal areas were outside the
inland seismic network, it was difficult to determine the fault plane by seismogram
analysis or aftershock distributions. Although the fault direction information was
lost in the far-field seismograms, the short-wavelength dispersive tsunami contains
the earthquake fault information. Figure 6.7a and c shows that a dispersive wave was
not clearly recognized at the station located westward from the earthquake fault for
the foreshock because the fault strike lays in the east-west direction. On the other
hand, the dispersive waves are clearly recognized for the main shock (Fig. 6.7b and
d). This is because the fault strike ran in the NW-SE direction. By analyzing this
directional dependence based on the dispersive tsunami equations, Saito et al. (2010)
determined the fault directions of the two earthquakes and concluded that the
directions of the foreshock and the main shock were different.

6.2 Tsunami Equations Derived from Equations of Motion

This section illustrates the derivation of the 2-D tsunami equations (linear/nonlinear
and dispersive/non-dispersive equations) from the 3-D equation of motion (e.g.,
Japan Society of Civil Engineers 1994). This outline of the derivation will be helpful
when a new type of tsunami equations is being proposed.

6.2.1 Integration with Respect to Sea Depth: 3-D to 2-D
Equations

In order to describe tsunami propagation, we usually use the equations describing the
velocity and the sea-surface height in the 2-D horizontal space (x, y). The 2-D
equations are referred to as 2-D tsunami equations or just tsunami equations in this
book. In the derivation of the tsunami equations, the elasticity of the media is
neglected; incompressible fluid over a rigid seafloor is assumed. Gravity works as
the restoring force of the tsunami. The tsunami equations are obtained by an
integration of the 3-D equation of motion along the vertical direction from the sea
bottom to the sea surface.

We use the Cartesian coordinates shown in Fig. 6.8, where the x- and y-axes lie in
the horizontal plane and the z-axis is taken as positive in the upward direction. The
3-D equation of motion in an incompressible sea is given by

Dvx x; tð Þ
Dt

¼ � 1
ρ0

∂p x; tð Þ
∂x

, ð6:1Þ
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Dvy x; tð Þ
Dt

¼ � 1
ρ0

∂p x; tð Þ
∂y

, ð6:2Þ

Dvz x; tð Þ
Dt

¼ � 1
ρ0

∂p x; tð Þ
∂z

� g0, ð6:3Þ

where vx, vy, vz are the velocities of the water particle, p is the pressure, ρ0 is the water
density, and g0 is the gravitational acceleration. The total time derivative D/Dt is
represented by the partial time derivative as

D

Dt
¼ ∂

∂t
þ vx

∂
∂x

þ vy
∂
∂y

þ vz
∂
∂z

: ð6:4Þ

Assuming that the seawater is incompressible, the conservation of mass gives the
conservation of the water volume as

∂vx
∂x

þ ∂vy
∂y

þ ∂vz
∂z

¼ 0: ð6:5Þ

The motion and the shape at a boundary cannot be independent of each other in a
continuum medium when wave breaking is not included. We consider a kinematic
boundary condition, which defines the relation between the motion and the shape of
the boundary. When the sea surface at a time t is given by z ¼ η(x, y, t) as shown in
Fig. 6.9, a function f(x, y, z, t) is introduced as

f x; y; z; tð Þ ¼ z� η x; y; tð Þ: ð6:6Þ

The function:

f x; y; z; tð Þ ¼ 0 ð6:7Þ

Fig. 6.8 Coordinates used
in deriving tsunami
equations

6.2 Tsunami Equations Derived from Equations of Motion 215



represents a surface in 3-D space. A particle is located at the surface satisfies
f(x, y, z, t) ¼ 0 for any time t. We consider that a particle on the surface located at

(x, y, z) at time t moves to xþ v0xΔt; yþ v0yΔt; zþ v0zΔt
� �

after the time Δt with the

velocity v0x ; v
0
y ; v

0
z

� �
at the boundary (Fig. 6.9). At time t + Δt, the particle is also

located on the surface. Then, the function should satisfy

f xþ v0xΔt; yþ v0yΔt; zþ v0zΔt; t þ Δt
� �

¼ 0: ð6:8Þ

By taking the Taylor series and setting Δt at an infinitesimally small value, we
obtain

∂ f x; y; z; tð Þ
∂t

þ v0x
∂ f x; y; z; tð Þ

∂x
þ v0y

∂ f x; y; z; tð Þ
∂y

þ v0z
∂ f x; y; z; tð Þ

∂z
¼ 0: ð6:9Þ

Substituting Eq. (6.6) into Eq. (6.9), we obtain

v0z ¼
∂η x; y; tð Þ

∂t
þ v0x

∂η x; y; tð Þ
∂x

þ v0y
∂η x; y; tð Þ

∂y
, ð6:10Þ

or

vz ¼ ∂η x; y; tð Þ
∂t

þ vx
∂η x; y; tð Þ

∂x
þ vy

∂η x; y; tð Þ
∂y

on z ¼ η x; y; tð Þ: ð6:11Þ

This is a kinematic boundary condition at the sea surface z ¼ η(x, y, t). This
governs the relation between the motion at the surface (vx, vy, vz) and the shape at
the surface η. In a similar way, we obtain the kinematic boundary condition at the sea
bottom z ¼ � h(x, y) as

vz ¼ �vx
∂h x; yð Þ

∂x
� vy

∂h x; yð Þ
∂y

on z ¼ �h x; yð Þ: ð6:12Þ

Fig. 6.9 A boundary for the
coordinates (x, y, z)
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Moreover, on the sea surface z ¼ η(x, y, t), the pressure is constant and should
satisfy

p x; tð Þ ¼ 0 on z ¼ η x; y; tð Þ: ð6:13Þ

This is a boundary condition with respect to force on the moving boundary z ¼
η(x, y, t). This is referred to as a dynamic boundary condition. Equations (6.1), (6.2),
(6.3), (6.5), (6.11), (6.12), and (6.13) govern the propagation of water waves or
tsunamis. We derive the 2-D tsunami equations from these equations.

We are going to describe the fluid motion in 2-D (x, y) space. We do not directly
use the horizontal velocity vx(x, y, z, t) or vy(x, y, z, t), but the horizontal velocity is
integrated from the sea bottom z ¼ � h(x, y) to the sea surface z ¼ η(x, y, t), for
example, as

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz: ð6:14Þ

Also, instead of ∂vx/∂ x, we use the partial derivative of Eq. (6.14) as

∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz: ð6:15Þ

Because an independent variable x is also included in the integration range
through η(x, y, t) or �h(x, y), we carefully differentiate Eq. (6.15) as

∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz

¼ lim
δx!0

1
δx

Z η xþδx;y;tð Þ

�h xþδx;yð Þ
vx xþ δx; y; z; tð Þdz�

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz

" #
:

ð6:16Þ

The first term on the right-hand side is expanded using Taylor series with respect
to x as

Z η xþδx;y;tð Þ

�h xþδx;yð Þ
vx xþ δx; y; z; tð Þdz

�
Z ηþ∂η=∂x δx

�h�∂h=∂x δx
vx x; y; z; tð Þ þ ∂vx

∂x
δx

� �
dz

�
Z �h

�h�∂h=∂x δx
vx x; y; z; tð Þdzþ

Z η

�h
vx x; y; z; tð Þ þ ∂vx

∂x
δx

� �
dzþ

Z ηþ∂η=∂x δx

η
vx x; y; z; tð Þdz

� ∂h
∂x

δx vx x; y;�h; tð Þ þ
Z η

�h
vx x; y; z; tð Þdzþ

Z η

�h

∂vx
∂x

δx dzþ ∂η
∂x

δx vx x; y; η; tð Þ,
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where we omit the higher terms of δx but keep only the first order. Using Eq. (6.16),
we represent Eq. (6.15) as

∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz ¼

Z η

�h

∂vx x; y; z; tð Þ
∂x

dz

þ vx x; y; η; tð Þ∂η x; yð Þ
∂x

þ vx x; y;�h; tð Þ ∂h x; yð Þ
∂x

:

ð6:17Þ

This derivative rule is also known as Leibnitz’ rule. By using Leibnitz’ rule, we
obtain

Z η x;y;tð Þ

�h x;yð Þ

∂vx
∂x

dz ¼ ∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz

� vx x; y; η; tð Þ∂η
∂x

� vx x; y;�h; tð Þ∂h
∂x

:

ð6:18Þ

By integrating the conservation of the volume — � v ¼ 0. (Eq. (6.5)) from the sea
bottom to the sea surface:

0 ¼
Z η

�h

∂vx
∂x

dzþ
Z η

�h

∂vy
∂y

dzþ vz x; y; ηð Þ � vz x; y;�hð Þ: ð6:19Þ

Using Eq. (6.18) and a similar equation for vy, Eq. (6.19) is rewritten as

0 ¼ ∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz� vx x; y; η; tð Þ∂η

∂x
� vx x; y;�h; tð Þ∂h

∂x

þ ∂
∂y

Z η x;y;tð Þ

�h x;yð Þ
vy x; y; z; tð Þdz� vy x; y; η; tð Þ∂η

∂y
� vy x; y;�h; tð Þ∂h

∂y

þvz x; y; ηð Þ � vz x; y;�hð Þ

¼ ∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdzþ ∂

∂y

Z η x;y;tð Þ

�h x;yð Þ
vy x; y; z; tð Þdz

þvz x; y; ηð Þ � vx x; y; η; tð Þ∂η
∂x

� vy x; y; η; tð Þ∂η
∂y

�vz x; y;�hð Þ � vx x; y;�h; tð Þ∂h
∂x

� vy x; y;�h; tð Þ∂h
∂y

:

ð6:20Þ

Using the kinematic boundary condition at the surface (Eq. (6.11)) and the bottom
(Eq. (6.12)), Eq. (6.20) gives the conservation of the volume in the 2-D (x� y space)
form as
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∂η
∂t

þ ∂
∂x

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdzþ ∂

∂y

Z η x;y;tð Þ

�h x;yð Þ
vy x; y; z; tð Þdz ¼ 0: ð6:21Þ

Similarly, integrating Eq. (6.5) from the sea bottom to the depth z as

Z z

�h

∂vz
∂z

dz ¼ �
Z z

�h

∂vx
∂x

dz�
Z z

�h

∂vy
∂y

dz,

and using Leibnitz’ rule, we calculate

vz zð Þ � vz �hð Þ ¼ � ∂
∂x

Z z

�h
vxdzþ vx �hð Þ∂h

∂x
� ∂
∂y

Z z

�h
vydzþ vy �hð Þ∂h

∂y
:

Using the boundary condition at the bottom (Eq. (6.12)), we represent the vertical
velocity vz(x, y, z, t) at a depth of z by using the horizontal velocities as

vz x; y; z; tð Þ ¼ � ∂
∂x

Z z

�h x;yð Þ
vx x; y; z; tð Þdz� ∂

∂y

Z z

�h x;yð Þ
vy x; y; z; tð Þdz: ð6:22Þ

Let us interpret this equation visually. We consider a 1-D case for the interpre-
tation as

vz x; z; tð Þ ¼ � ∂
∂x

Z z

�h xð Þ
vx x; z0; tð Þdz0 ¼ � ∂

∂x
F x; z; tð Þ ð6:220Þ

where the function F(x, z) is defined as

F x; z; tð Þ ¼
Z z

�h xð Þ
vx x; z0; tð Þdz0:

The function F(x, z, t) indicates the total water volume flowing along the x-axis
across the line from the sea bottom z ¼ � h(x) to z as shown in the bold gray vector
in Fig. 6.10. We approximately represent Eq. (6.220) in a finite difference form or an
integration form as

F x; z; tð Þ ¼ vz x; z; tð ÞΔxþ F xþ Δx; z; tð Þ:

This represents the conservation of water volume for a region from x ¼ x to x + Δx
and z ¼ � h(x) to z ¼ z (a region shown in white in Fig. 6.10). The incoming water
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volume per unit time is given by F(x, z, t). The outlaying water volume in the
horizontal direction is F(x + Δx, z, t), and in the vertical direction, it is vz(x, z, t)Δx.
This equation shows that the incoming and outlaying water volumes are equal. We
may consider Eq. (6.21) as a special case of Eq. (6.22) by setting z ¼ η.

Integrating the equation of motion for the vertical velocity (Eq. (6.3)) from the sea
surface (z¼ η(x, y, t)) to the depth z and using the dynamic boundary condition at the
surface (p(x, y, η, t) ¼ 0), we obtain the pressure at depth z as

p x; y; z; tð Þ ¼ ρ0g0 η x; y; tð Þ � z½ � � ρ0

Z z

η x;y;tð Þ

Dvz x; y; z; tð Þ
Dt

dz: ð6:23Þ

Integrating the equation of motion of the x component (Eq. (6.1)) from the sea
bottom to the sea surface gives

Z η

�h

∂vx
∂t

dzþ
Z η

�h
vx
∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

dzþ
Z η

�h
vz
∂vx
∂z

dzþ 1
ρ0

Z η

�h

∂p
∂x

dz ¼ 0:

ð6:24Þ

Substituting Eq. (6.22) and Eq. (6.23) for vz and p, respectively, in Eq. (6.24) and
using Leibnitz’ rule with respect to the time derivative, we calculate

Fig. 6.10 Volume conservation in a region from x ¼ x0 to x0 + Δx and z ¼ � h(x) to z0 (the region
shown in white). The water volume coming into the region per unit time is given by

F x0; z0; tð Þ ¼
Z z0

�h x0ð Þ
vx x; z0; tð Þdz0. The outlaying water volume in the horizontal direction is F

(x0 + Δx, z0, t), and in the vertical direction, it is vz(x0, z0, t)Δx. The incoming and outlaying water
volumes are equal as F(x0, z0, t) ¼ vz(x0, z0, t)Δx + F(x0 + Δx, z0, t)
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0 ¼ ∂
∂t

Z η

�h
vxdz� ∂η

∂t
vx ηð Þ þ

Z η

�h
vx
∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

dz

�
Z η

�h

∂vx
∂z

∂
∂x

Z z

�h
vx x; y; z0; tð Þdz0 þ ∂

∂y

Z z

�h
vy x; y; z0; tð Þdz0

� �
dz

þ
Z η

�h

∂
∂x

g0 η x; y; tð Þ � z½ � �
Z z

�h

Dvz x; y; z0; tð Þ
Dt

dz0
� �

dz

¼ ∂
∂t

Z η

�h
vxdz� ∂η

∂t
vx ηð Þ þ

Z η

�h
vx
∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

dz

�
Z η

�h

∂vx
∂z

Z z

�h

∂vx x; y; z0; tð Þ
∂x

dz0 þ
Z z

�h

∂vy x; y; z0; tð Þ
∂y

dz0 þ vx �hð Þ∂h
∂x

þ vy �hð Þ∂h
∂y

� �
dz

þg0

Z η

�h
dz

∂η x; y; tð Þ
∂x

�
Z η

�h
dz

∂
∂x

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0

¼ ∂
∂t

Z η

�h
vxdz� ∂η

∂t
vx ηð Þ þ

Z η

�h
vx
∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

dz

�
Z η

�h

∂vx
∂z

Z z

�h

∂vx x; y; z0; tð Þ
∂x

dz0 þ
Z z

�h

∂vy x; y; z0; tð Þ
∂y

dz0 þ vx �hð Þ∂h
∂x

þ vy �hð Þ∂h
∂y

� �
dz

þg0

Z η

�h
dz

∂η x; y; tð Þ
∂x

� ∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 � ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0

¼ ∂
∂t

Z η

�h
vxdz� ∂η

∂t
vx ηð Þ þ

Z η

�h
vx
∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

dz

�
Z η

�h

∂vx
∂z

Z z

�h

∂vx x; y; z0; tð Þ
∂x

dz0 þ
Z z

�h

∂vy x; y; z0; tð Þ
∂y

dz0 þ vx �hð Þ∂h
∂x

þ vy �hð Þ∂h
∂y

� �
dz

þg0 ηþ hð Þ∂η x; y; tð Þ
∂x

� ∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 � ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0:

ð6:25Þ

Note that one of the terms in Eq. (6.25) is calculated with partial integration as

Z η

�h
dz

∂vx
∂z

Z z

�h

∂vx x; y; z0; tð Þ
∂x

dz0

¼ vx

Z z

�h

∂vx x; y; z0; tð Þ
∂x

dz0
� � η

z¼�h

�
Z η

�h
dzvx

∂
∂z

Z z

�h

∂vx x; y; z0; tð Þ
∂x

dz0

¼ vx ηð Þ
Z η

�h

∂vx x; y; z0; tð Þ
∂x

dz0 �
Z η

�h
dz vx

∂vx x; y; z; tð Þ
∂x

:

ð6:26Þ

Similarly, we calculate

Z η

�h
dz

∂vx
∂z

Z z

�h

∂vy x; y; z0; tð Þ
∂y

dz0 ¼ vx ηð Þ
Z η

�h

∂vy x; y; z0; tð Þ
∂y

dz0 �
Z η

�h
dz vx

∂vy
∂y

:

ð6:27Þ
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Substituting Eqs. (6.26) and (6.27) into Eq. (6.25), we obtain

∂
∂t

Z η

�h
vxdz� vx ηð Þ∂η

∂t
þ
Z η

�h
vx
∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

dz� vx ηð Þ
Z η

�h

∂vx
∂x

dz

þ
Z η

�h
vx
∂vx
∂x

dz� vx ηð Þ
Z η

�h

∂vy
∂y

dzþ
Z η

�h
vx
∂vy
∂y

dz

þ vx �hð Þ∂h
∂x

vx ηð Þ � vx �hð Þ½ �

þ vy �hð Þ∂h
∂y

vx ηð Þ � vx �hð Þ½ � þ g0 ηþ hð Þ∂η x; y; tð Þ
∂x

� ∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 � ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0 ¼ 0:

ð6:28Þ

This is rewritten as

0 ¼ ∂
∂t

Z η

�h
vxdz� vx ηð Þ∂η

∂t
þ
Z η

�h
2vx

∂vx
∂x

dzþ
Z η

�h
vy
∂vx
∂y

þ vx
∂vy
∂y

� 	
dz

�vx ηð Þ ∂
∂x

Z η

�h
vxdz� vx ηð Þ∂η

∂x
� vx �hð Þ∂h

∂x

� �

�vx ηð Þ ∂
∂y

Z η

�h
vydz� vy ηð Þ∂η

∂y
� vy �hð Þ∂h

∂y

� �

�vx �hð Þ∂h
∂x

vx ηð Þ � vx �hð Þ½ �

�vy �hð Þ∂h
∂y

vx ηð Þ � vx �hð Þ½ � þ g0 ηþ hð Þ∂η x; y; tð Þ
∂x

� ∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 � ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0

¼ ∂
∂t

Z η

�h
vxdz� vx ηð Þ∂η

∂t
þ
Z η

�h

∂
∂x

vxð Þ2dzþ
Z η

�h

∂
∂y

vxvy

 �

dz

�vx ηð Þ ∂
∂x

Z η

�h
vxdzþ ∂

∂y

Z η

�h
vydz

� 	
þ vx ηð Þð Þ2 ∂η

∂x

þvx ηð Þvx �hð Þ∂h
∂x

þ vx ηð Þvy ηð Þ∂η
∂y

þ vx ηð Þvy �hð Þ∂h
∂y

�vx �hð Þ∂h
∂x

vx ηð Þ � vx �hð Þ½ �

�vy �hð Þ∂h
∂y

vx ηð Þ � vx �hð Þ½ � þ g0 ηþ hð Þ∂η x; y; tð Þ
∂x

� ∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 � ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0:

ð6:29Þ
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Using the volume conservation (Eq. (6.21)), Eq. (6.29) becomes

∂
∂t

Z η

�h
vxdzþ

Z η

�h

∂
∂x

vxð Þ2dzþ vx ηð Þð Þ2 ∂η
∂x

þ vx �hð Þð Þ2 ∂h
∂x

þ
Z η

�h

∂
∂y

vxvy

 �

dz

þvx ηð Þvy ηð Þ∂η
∂y

þ vx �hð Þvy �hð Þ∂h
∂y

þ g0 ηþ hð Þ∂η x; y; tð Þ
∂x

�
∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 � ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0 ¼ 0

:

ð6:30Þ
Using Leibnitz’ rule again, we obtain

∂
∂t

Z η

�h
vxdzþ ∂

∂x

Z η

�h
vxð Þ2dzþ ∂

∂y

Z η

�h
vxvy

 �

dzþ g0 ηþ hð Þ∂η
∂x

¼ ∂
∂x

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 þ ∂h
∂x

Z η

�h

Dvz x; y; z0; tð Þ
Dt

dz0:
ð6:31Þ

This equation describes the time evolution of
Z η

�h
vxdz.

We also obtain an equation with respect to the velocity in the y direction as

∂
∂t

Z η

�h
vydzþ ∂

∂x

Z η

�h
vxvy

 �

dzþ ∂
∂y

Z η

�h
vy

 �2

dzþ g0 ηþ hð Þ∂η
∂y

¼ ∂
∂y

Z η

�h
dz

Z z

η

Dvz x; y; z0; tð Þ
Dt

dz0 þ ∂h
∂y

Z η

�h
dz0

Dvz x; y; z0; tð Þ
Dt

:

ð6:32Þ

Equations (6.31) and (6.32) are considered to be the equations of motion with respect
to the horizontal flow integrated over the sea depth (�h � z � η) given by

Z η x;y;tð Þ

�h x;yð Þ
vx x; y; z; tð Þdz and

Z η x;y;tð Þ

�h x;yð Þ
vy x; y; z; tð Þdz:

The equations of motion (6.31) and (6.32) and the conservation of the volume
(Eq. (6.21)) play an important role in the tsunami propagation in the 2-D form.

6.2.1.1 Normalization

It is quite useful to use nondimensional variables in representing the equations
because they give essential dimensional values that govern tsunami phenomena. In
order to use nondimensional variables, we introduce the characteristic horizontal
length L0, the sea depth H0, and the sea-surface height η0. All these values are
constant. Then, the variables in the equations are represented by nondimensional
values such as �x, �t, and �vx:
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x ¼ L0�x, y ¼ L0�y, z ¼ H0�z, t ¼ L0ffiffiffiffiffiffiffiffiffiffi
g0H0

p �t,

η ¼ η0η, vx ¼
ffiffiffiffiffiffiffiffiffiffi
g0H0

p η0
H0

�vx, vy ¼
ffiffiffiffiffiffiffiffiffiffi
g0H0

p η0
H0

�vy, vz ¼
ffiffiffiffiffiffiffiffiffiffi
g0H0

p η0
L0

�vz

p ¼ ρ0g0H0�p, h ¼ H0
�h:

ð6:33Þ

We rewrote Eqs. (6.21) and (6.22) by using the nondimensional variables (e.g.,
�x, �y, and �t) defined in Eq. (6.33) as

∂η


�x; �y; �t

�
∂�t

¼ � ∂
∂�x

Z Eη

��h
�vx


�x; �y; �z; �t

�
d�z� ∂

∂�y

Z Eη

��h
�vy


�x; �y; �z; �t

�
d�z, ð6:34Þ

and

�vz


�x; �y; �z; �t

� ¼ � ∂
∂�x

Z �z

��h
�vxd�z� ∂

∂�y

Z �z

��h
�vyd�z, ð6:35Þ

where we introduced the following two nondimensional parameters:

σ ¼ H0

L0
and E ¼ η0

H0
: ð6:36Þ

Then, the total time derivative for vz is rewritten using normalized variables as

Dvz x; y; z; tð Þ
Dt

¼ ∂vz
∂t

þ vx
∂vz
∂x

þ vy
∂vz
∂y

þ vz
∂vz
∂z

¼ g0σ
2E

Dvz


�x; �y; �z; �t

�
D�t

, ð6:37Þ

where we define

Dvz


�x; �y; �z; �t

�
D�t

¼ ∂vz
∂�t

þ E vx
∂vz
∂�x

þ vy
∂vz
∂�y

þ vz
∂vz
∂�z

� 	
:

From Eqs. (6.31) and (6.32), the normalized equations of motion for the inte-
grated horizontal flows are

∂
∂�t

Z Eη

��h
�vx


�x; �y; �z; �t

�
d�zþ E

∂
∂�x

Z Eη

��h



�vx
�2
d�zþ E

∂
∂�y

Z Eη

��h
�vx�vyd�zþ



Eηþ �h

�∂η
∂�x

¼ σ2
∂
∂�x

Z Eη

��h
d�z

Z �z

Eη
d�z0

D�vz


�x; �y; �z0; �t

�
D�t

þ σ2
∂�h
∂�x

Z Eη

��h
d�z

0 D�vz


�x; �y; �z0; �t

�
D�t

,

ð6:38Þ

and
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∂
∂�t

Z Eη

��h
�vy


�x; �y; �z; �t

�
d�zþ E

∂
∂�x

Z Eη

��h

�vx�vyd�zþ E
∂
∂�y

Z Eη

��h



�vx
�2
d�zþ 
Eηþ �h

�∂η
∂�y

¼ σ2
∂
∂�y

Z Eη

��h
d�z

Z �z

Eη
d�z0

D�vz


�x; �y; �z0; �t

�
D�t

þ σ2
∂�h
∂�y

Z Eη

��h
d�z0

D�vz


�x; �y; �z0; �t

�
D�t

: ð6:39Þ

It should be noted that we did not use any approximations in deriving these
equations from the original governing equations (Eqs. (6.1)–(6.5), (6.11), (6.12),
and (6.13)).

6.2.2 Long-Wave Approximations

We will consider the case when the horizontal scale L0 is much longer than the order
of the sea depth H0, i.e., σ � 1 for tsunami propagation. This is a long-wave
approximation.

We assume that the flow is irrotational or the rotation of the velocity vector is
zero:

∂vz
∂y

� ∂vy
∂z

¼ 0,
∂vx
∂z

� ∂vz
∂x

¼ 0,
∂vy
∂x

� ∂vx
∂y

¼ 0: ð6:40Þ

From the first and the second equations in (6.40), we obtain

∂�vy
∂�z

¼ σ2
∂�vz
∂�y

,
∂�vx
∂�z

¼ σ2
∂�vz
∂�x

: ð6:41Þ

These equations indicate that the vertical variation of the horizontal velocity is on the
order of σ2, (O(σ2)).

The average horizontal velocity over depth is introduced as

�v avx


�x; �y; �t

� ¼ 1

Eηþ �h

Z Eη

��h
�vx


�x; �y; �z; �t

�
d�z, ð6:42Þ

and

�v avy


�x; �y; �t

� ¼ 1

Eηþ �h

Z Eη

��h
�vy


�x; �y; �z; �t

�
d�z: ð6:43Þ

Considering that the vertical variation of the horizontal velocity is on the order of σ2

(Eq. (6.41)), we set the horizontal velocity as the sum of the average horizontal
velocity and its fluctuation as
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�vx


�x; �y; �z; �t

� ¼ �v avx


�x; �y; �t

�þ σ2�v0x


�x; �y; �z; �t

�
, ð6:44Þ

and

�vy


�x; �y; �z; �t

� ¼ �v avy


�x; �y; �t

�þ σ2�v0y


�x; �y; �z; �t

�
: ð6:45Þ

The horizontal fluctuation averaged over depth becomes zero as

Z Eη

�h
�vx

0
�x; �y; �z; �t�d�z ¼ 0, ð6:46Þ

and

Z Eη

�h
�vy

0
�x; �y; �z; �t�d�z ¼ 0: ð6:47Þ

Substituting Eqs. (6.44) and (6.45) into Eqs. (6.34) and (6.35), we obtain

∂η
∂�t

þ ∂
∂�x



Eηþ �h

�
�v avx


�x; �y; �t

� �þ ∂
∂�y



Eηþ �h

�
�v avy


�x; �y; �t

�h i
¼ 0, ð6:48Þ

and

�vz


�x; �y; �z; �t

� ¼ � ∂
∂�x



�zþ �h

�
�v avx


�x; �y; �t

� �� σ2
∂
∂�x

Z �z

��h
�vx

0
�x; �y; �z0; �t�d�z0

� ∂
∂�y



�zþ �h

�
�v avy


�x; �y; �t

�h i
� σ2

∂
∂�y

Z �z

��h
�vy

0
�x; �y; �z0; �t�d�z0: ð6:49Þ

Also, substituting Eqs. (6.44) and (6.45) into Eqs. (6.38) and (6.39), we obtain

∂
∂�t



Eηþ �h

�
�v avx


�x; �y; �t

� �þ E
∂
∂�x



Eηþ �h

�

�v avx
�2h i

þ Eσ4
∂
∂�x

Z Eη

��h



�vx

0�2d�z
þ E

∂
∂�y



Eηþ �h

�
�v avx �v avy

h i
þ Eσ4

∂
∂�y

Z Eη

��h
�vx

0�vy0d�zþ


Eηþ �h

�∂η
∂�x

¼ σ2
∂
∂�x

Z Eη

��h
d�z

Z �z

Eη
d�z0

D�vz


�x; �y; �z0; �t

�
D�t

þ σ2
∂�h
∂�x

Z Eη

��h
d�z0

D�vz


�x; �y; �z0; �t

�
D�t

:

ð6:50Þ

and
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∂
∂�t



Eηþ �h

�
�v avy


�x; �y; �t

�h i
þ E

∂
∂�x



Eηþ �h

�
�v avx �v avy

h i
þ Eσ4

∂
∂�x

Z Eη

��h
�vx

0�vy0d�z

þ E
∂
∂�y



Eηþ �h

�

�v avy
�2h i

þ Eσ4
∂
∂�y

Z Eη

��h



�vy

0�2d�zþ 
Eηþ �h
�∂η
∂�y

¼ σ2
∂
∂�y

Z Eη

��h
d�z

Z �z
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The common parts of
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appear in (6.50) and (6.51). Using Eqs. (6.37b) and (6.49), we calculate these as
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and
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Then, these parts are approximately given by
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and
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Substituting Eqs. (6.54) and (6.55) into Eqs. (6.50) and (6.51), we obtain
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and
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The equations of the average horizontal velocities (Eqs. (6.56) and (6.57)) and the
conservation of the water volume (Eq. (6.48)) constitute the 2-D tsunami equations.
The equations can be further approximated according to the situation.

6.2.2.1 Linear Long-Wave Equations

When the tsunami height η0 is much smaller than the sea depth H0, that is, E ¼ η0/
H0 � 1 (see Eq. (6.36)), and the tsunami wavelength is much longer than the sea
depth σ ¼ H0/L0 � 1 (see Eq. (6.36)), we obtain the linear long-wave equations by
setting E ¼ 0 and σ ¼ 0 in Eqs. (6.48), (6.56), and (6.57) and noting that �h is
independent of time as

∂η
∂�t

þ ∂
∂�x

�h�v avx


�x; �y; �t

� �þ ∂
∂�y

�h�v avy


�x; �y; �t

�h i
¼ 0, ð6:58Þ

∂
∂�t

�v avx


�x; �y; �t

� �þ ∂η
∂�x

¼ 0, ð6:59Þ

and
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∂
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�v avy


�x; �y; �t

�h i
þ ∂η

∂�y
¼ 0: ð6:60Þ

By using the values of physical dimensions (Eq. (6.33)), we rewrite Eqs. (6.58),
(6.59), and (6.60) as

∂η x; y; tð Þ
∂t

þ ∂
∂x

hv avx x; y; tð Þ �þ ∂
∂y

hv avy x; y; tð Þ
h i

¼ 0, ð6:61Þ

∂v avx x; y; tð Þ
∂t

þ g0
∂η
∂x

¼ 0, ð6:62Þ

and

∂v avy x; y; tð Þ
∂t

þ g0
∂η
∂y

¼ 0: ð6:63Þ

where

v avx x; y; tð Þ ¼ 1
ηþ h

Z η

�h
vx x; y; z; tð Þdz and v avy x; y; tð Þ ¼ 1

ηþ h

Z η

�h
vy x; y; z; tð Þdz:

ð6:64Þ

This system of Eqs. (6.61)–(6.63), referred to as linear long-wave equations, is
the simplest form for representing tsunami propagation. They are often used in
calculating the propagation process for tsunami source estimation because these
are linear equations with respect to the tsunami height η and are suitable for the
superposition of the waves from each element of the source (e.g., Satake et al. 2013).

When the sea depth is constant, h ¼ h0, by differentiating Eq. (6.61) with respect
to time and substituting Eqs. (6.62) and (6.63) into it, we rewrite the equations as the
wave equation

∂2η x; y; tð Þ
∂t2

¼ c0ð Þ2 ∂2η

∂x2
þ ∂2η

∂y2

 !

where the phase velocity c0 is given by c0 ¼
ffiffiffiffiffiffiffiffiffi
g0h0

p
.

6.2.2.2 Nonlinear Long-Wave Equations

When the tsunami wavelength is much longer than the sea depth σ ¼ H0/L0 � 1, but
the tsunami height is not much smaller than the sea depth, we only set σ ¼ 0 and do
not set E ¼ 0. We calculate by setting σ ¼ 0 in Eqs. (6.56) and (6.57) as follows:
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These equations are rewritten with the values of the physical dimensions as
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and

∂
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The volume conservation Eq. (6.48) is given by
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∂x

ηþ hð Þv avx
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h i
¼ 0: ð6:68Þ

By calculating Eqs. (6.66) and (6.67) with Eq. (6.68), we obtain

∂v avx
∂t

þ v avx
∂v avx
∂x

þ v avy
∂v avx
∂y

þ g0
∂η
∂x

¼ 0, ð6:69Þ

and

∂v avy
∂t

þ v avx
∂v avy
∂x

þ v avy
∂v avy
∂y

þ g0
∂η
∂y

¼ 0: ð6:70Þ

Equations (6.68), (6.69), and (6.70) are referred to as nonlinear long-wave
equations. This system of equations is not linear due to the term
∂=∂xi ηþ hð Þv avi

 �
in Eq. (6.68) and the term v avj ∂v

av
i =∂x j (advection term) in
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Eqs. (6.69) and (6.70). When the sea depth h is constant h¼ h0, the phase velocity is
approximately given by (Appendix 2B)

c �
ffiffiffiffiffiffiffiffiffi
g0h0

p
1þ 3

2
η

h0

� 	
: ð6:71Þ

This indicates that a tsunami propagates faster when the tsunami height is higher,
which causes the tsunami shape to become deformed with increasing travel distance
(see Fig. 2.19).

The nonlinear long-wave equations are usually used in evaluating tsunami prop-
agation in very shallow seas and near the coast by incorporating bottom friction.
If an appropriate moving boundary condition between the sea and land is included,
these equations can be used to calculate the inundation process (e.g., Oishi et al.
2015; Baba et al. 2016).

6.2.2.3 Linear Dispersive Equations

When the tsunami height is much smaller than the sea depth E ¼ η0/H0 � 1 but the
tsunami wavelength is not much longer than the sea depth, we assume dispersive
equations by setting E ¼ 0 but not σ ¼ 0 in Eqs. (6.48), (6.56), and (6.57):
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and
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These equations are rewritten with the values of the physical dimensions (6.33) as
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and
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ð6:77Þ

When the tsunami wavelength is much longer than the horizontal scale of the
bathymetry fluctuation, we neglect the spatial derivative of the sea depth on the
right-hand side of Eqs. (6.76) and (6.77) as
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and
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We often use Eqs. (6.75), (6.78), and (6.79) when a tsunami propagates in deep
ocean. When the sea depth h is constant, h ¼ h0, and a plane wave η ¼ exp [i
(kx�ωt)] propagating in the x-direction is substituted into Eqs. (6.75) and (6.78), we
obtain the relation between the wavenumber k and the angular frequency ω (disper-
sion relation) as

ω2 ¼ g0h0k
2 1þ h20k

2

3

� 	�1

: ð6:80Þ
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Then, the phase velocity c ¼ ω/k is given by

c ¼ ω

k
¼ c0 1þ h20k

2

3

� 	�1
2

ð6:81Þ

where c0 ¼
ffiffiffiffiffiffiffiffiffi
g0h0

p
is the phase velocity of the wave calculated by the linear long-

wave equations (Eqs. (6.61)–(6.63)). Equation (6.81) indicates that the phase veloc-
ity decreases as the wavenumber k increases, indicating that shorter-wavelength
tsunamis propagate more slowly.

6.3 Numerical Simulations: Finite Difference Method

Numerical simulations are very powerful for the investigation of tsunami propaga-
tion with realistic bathymetry. This section illustrates various finite difference
methods for numerically calculating tsunami propagation. Section 6.3.1 explains
the fundamental framework of the numerical simulation by taking the linear long-
wave equations as an example. Section 6.3.2 explains nonlinear long-wave equa-
tions. A moving boundary condition and energy dissipation are also incorporated in
the simulation. These are often used for numerically simulating tsunami inundation
into coastal areas. Section 6.3.3 shows an implicit scheme for stably solving the
linear dispersive equations, which are suitable for calculating short-wavelength
tsunamis in deep oceans. Section 6.3.4 illustrates a two-step method using explicit
and implicit schemes for solving the nonlinear dispersive equations. In all these
numerical schemes, we consider two-dimensional Cartesian coordinates (x, y) in the
horizontal plane for the propagation of tsunami height η(x, y, t) and horizontal
velocity, v avx x; y; tð Þ and v avy x; y; tð Þ, on the x- and y- axes.

6.3.1 Linear Long-Wave Equations: Simplest Equations

There are different kinds of finite difference numerical schemes according to the
tsunami equations. First, taking the simplest tsunami equation, the linear long-wave
equations, as an example, we illustrate a basic procedure for performing the numer-
ical simulation.

When the wavelength λ is much longer than the sea depth h (λ � h), and the
sea-surface height η is much smaller than the sea depth (η � h), the tsunami is well
represented by the linear long-wave equations (Eqs. (6.61)–(6.63)):
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∂η x; y; tð Þ
∂t

þ ∂
∂x

hv avx x; y; tð Þ �þ ∂
∂y

hv avy x; y; tð Þ
h i

¼ 0, ð6:61Þ

∂v avx x; y; tð Þ
∂t

þ g0
∂η
∂x

¼ 0, ð6:62Þ

and

∂v avy x; y; tð Þ
∂t

þ g0
∂η
∂y

¼ 0: ð6:63Þ

We numerically solve the system of the equations with a finite difference scheme.
A cell and grids are distributed in the 2-D horizontal space (x, y) as shown in
Fig. 6.11. The variables of η, v avx , and v avy are defined at different grid points. The
grid distribution is referred to as a staggered grid.

The center of the (i, j)th cell is located at x ¼ xi ¼ Δx/2 + (i� 1) Δx, y¼ yj ¼ Δy/
2 + (j� 1)Δy, where Δx and Δy represent the side lengths of the cell on the x- and y-
axes, respectively. The i and j are integer. Also, Δx andΔy represent the grid spacing
on the x- and y- axes, respectively. The tsunami height, ηij ¼ η(xi, yj, t), and sea
depth, hij ¼ h(xi, yj), are given at a grid point located at the center of the cell (xi, yi).
The horizontal velocity in the x component v avx, ij ¼ v avx xi þ Δx=2; y j; t


 �
is given at

the grid point on the boundary between the cells of (i, j) and (i + 1, j). Similarly, the

Fig. 6.11 Cell and grids used in the finite difference scheme. The center of the (i, j)th cell is located
at x ¼ xi ¼ Δx/2 + (i � 1) Δx, y ¼ yj ¼ Δy/2 + (j � 1) Δy, where Δx and Δy are the grid spacing on
the x- and y- axes, respectively
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horizontal particle velocity v avy, ij ¼ v avy xi; y j þ Δy=2; t

 �

is given at the grid point on
the boundary between the cells of (i, j) and (i, j + 1). We define the sea-surface height
η k
ij ¼ η xi; y j; kΔt


 �
at the time of t ¼ kΔt (k is integer, k ¼ 0, 1, . . .), while we define

the horizontal velocities vkþ1=2
x, ij ¼ v avx xi þ Δx=2; y j; k � 1=2ð ÞΔt
 �

and vkþ1=2
y, ij ¼ v avx

xi; y j þ Δy=2; k � 1=2ð ÞΔt
 �
at the time of t ¼ (k � 1/2)Δt.

Equation (6.61) is discretized at the grid point (xi, yj) with the adjacent grid points
as

ηkþ1
ij � η k

ij

Δt
þ
hiþ1

2 jv
kþ1

2
x, ij � hi�1

2, j
v
kþ1

2
x, i�1 j

Δx
þ
hi jþ1

2
v
kþ1

2
y, ij � hi j�1

2
v
kþ1

2
y, i j�1

Δy
¼ 0: ð6:82Þ

Equation (6.62) is discretized at the grid point (xi + Δx/2, yj) as

vkþ1=2
x, ij � vk�1=2

x, ij

Δt
þ g0

η k
iþ1 j � η k

ij

Δx
¼ 0, ð6:83Þ

and Eq. (6.63) is discretized at the grid point (xi, yj + Δy/2) as

vkþ1=2
y, ij � vk�1=2

y, ij

Δt
þ g0

η k
i jþ1 � η k

ij

Δy
¼ 0: ð6:84Þ

The grid points given by non-integer values are given by an interpolation. For
example, the value of hi + 1/2 j is given by

hiþ1
2 j ¼

1
2

hij þ hiþ1 j


 �
: ð6:85Þ

We rewrite Eqs. (6.82)–(6.84) as

ηkþ1
ij ¼ η k

ij �
Δt
Δx

hiþ1
2 jv

kþ1
2

x, ij � hi�1
2 jv

kþ1
2

x, i�1 j

� �
� Δt
Δy

hi jþ1
2
v
kþ1

2
y, ij � hi j�1

2
v
kþ1

2
y, i j�1

� �
, ð6:86Þ

vkþ1=2
x, ij ¼ vk�1=2

x, ij � g0
Δt
Δx

η k
iþ1 j � η k

ij

� �
, ð6:87Þ

and

vkþ1=2
y, ij ¼ vk�1=2

y, ij � g0
Δt
Δy

η k
i jþ1 � η k

ij

� �
: ð6:88Þ
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Figure 6.12 indicates a flowchart for calculating the finite difference equations
(Eqs. (6.86)–(6.88)). The finite difference calculation starts with the tsunami height
distribution at the time of t ¼ 0 or the initial tsunami height distribution,
η0ij ¼ η xi; y j; 0


 �
. Although sometimes the initial tsunami height distribution is

assumed to be identical to the vertical displacement at the sea bottom, this assump-
tion can be inappropriate when a small tsunami source in deep ocean. The previous
chapter (Chap. 5) discussed how the initial tsunami height distribution
η0ij ¼ η xi; y j; 0


 �
is given by the tsunami generation theory. Considering k ¼ 0 in

Eqs. (6.87) and (6.88), we then calculate the vertically averaged horizontal velocities
v1=2x, ij and v

1=2
y, ij by substitutingη

0
ij ¼ η xi; y j; 0


 �
and v�1=2

x, ij ¼ v�1=2
y, ij ¼ 0on the right-hand

side of Eqs. (6.87) and (6.88). Note that the analytical solution of the linear
incompressible tsunami generation theory (Saito 2013) and the numerical simula-
tions of seismic-tsunami waves with a sloping bathymetry (Lotto et al. 2017) support
that the initial horizontal velocity distribution should be zero, v�1=2

x, ij ¼ v�1=2
y, ij ¼ 0. By

using these calculated values of v1=2x, ij and v
1=2
y, ij , we calculate the tsunami height at the

time of t ¼ Δt, η1ij ¼ η xi; y j;Δt

 �

considering k ¼ 0 in Eq. (6.86). Using a similar
procedure for k ¼ 1 in Eqs. (6.87) and (6.88) and successively in Eq. (6.86), we can
calculate the tsunami height at the time of t¼ 2Δt from the tsunami height at the time
of t ¼ Δt. Taking this procedure in sequence, we obtain the tsunami height for the
time of t ¼ 0, Δt, 2Δt, . . . .

We need to set the boundary condition between land and sea. The simplest
boundary condition is that the horizontal velocity (vx, vy) at the grid point between
the land and the sea is zero. When the cell located at (xi, yj) is considered to be land,
hij < 0, the horizontal velocities at the grid points attached to this cell are zero:

vx, i�1j ¼ 0, vx, ij ¼ 0, vy, ij�1 ¼ 0, vy, ij ¼ 0whenhij < 0: ð6:89Þ

Fig. 6.12 Flowchart of the
finite difference simulation
using the linear long-wave
equations
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Figure 6.13 shows an example. The horizontal velocities between the land and sea
are set at zero.

The tsunami is reflected at the edge boundaries of the simulation regions. The
reflected waves are artificial waves that we do not want to have in the simulations.
There are various ways to damp the artificial waves, including open-boundary
condition (e.g., Hwang et al. 1972) and the perfectly matching layer method (e.g.,
Maeda et al. 2016). The simplest method is to set an absorbing buffer region (e.g.,
Cerjan et al. 1985). The method is explained in 4.3 Seismic Wave Simulation.

6.3.2 Nonlinear Long-Wave Equations: Inundation

When the tsunami wavelength is much longer than the sea depth, λ � h0, but the
tsunami height is not much smaller than the sea depth, the tsunami propagation is
well described by the nonlinear long-wave equations as

∂η x; y; tð Þ
∂t

þ ∂
∂x

hþ ηð Þv avx
 �þ ∂

∂y
hþ ηð Þv avy

h i
¼ 0, ð6:68Þ

∂v avx x; y; tð Þ
∂t

þ v avx
∂v avx
∂x

þ v avy
∂v avx
∂y

þ g0
∂η
∂x

¼ 0, ð6:69Þ

and

∂v avy x; y; tð Þ
∂t

þ v avx
∂v avy
∂x

þ v avy
∂v avy
∂y

þ g0
∂η
∂x

¼ 0: ð6:70Þ

Fig. 6.13 An example of
the boundary condition
between sea and land. When
the cell located at (xi, yj)
has a negative sea depth as
hij < 0, the cell is considered
to be land. The horizontal
velocities between the land
and sea are set at zero
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In actual tsunami propagation, the horizontal velocities of v avx and v avy may decrease
due to the friction at the sea bottom and small-scale turbulence in the sea. The
dissipation would increase with increasing horizontal velocity. We include this
dissipation mechanism phenomenologically into Eqs. (6.69) and (6.70) as

∂v avx
∂t

þ v avx
∂v avx
∂x

þ v avy
∂v avx
∂y

þ g0
∂η
∂x

¼ �C f

v avx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v avx

 �2 þ v avy

� �2r
hþ η

, ð6:90Þ

and

∂v avy
∂t

þ v avx
∂v avy
∂x

þ v avy
∂v avy
∂y

þ g0
∂η
∂x

¼ �C f

v avy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v avx

 �2 þ v avy

� �2r
hþ η

, ð6:91Þ

where Cf is referred to as the nondimensional bottom friction coefficient.
If Cf is constant, the horizontal velocity decreases proportionally to the square of

the horizontal velocity and inversely proportional to the total sea depth (sum of the
sea depth and the tsunami height). In many tsunami applications, the Cf is
represented as a function of sea depth as

C f ¼ g0n
2
0

hþ ηð Þ1=3
, ð6:92Þ

where n0 is referred to as Manning’s roughness parameter. The value of n0 can
depend on the condition of the sea bottom. The value of n0 ¼ 0.03 [m-1/3 s] is often
used in tsunami simulations (e.g., Satake 1995).

By using the grid points shown in Fig. 6.11, we represent Eqs. (6.68), (6.90), and
(6.91) in the finite difference form. We also use a numerical technique referred to as
an upwind scheme to realize a stable calculation of the advection terms in Eqs. (6.90)
and (6.91). The finite difference forms are given as follows. By introducing the total
sea depth from the sea bottom to the sea surface as

d k
ij ¼ η k

ij þ hij ð6:93Þ

we represent Eqs. (6.68), (6.90), and (6.91) as

ηkþ1
ij � η k

i j

Δt
þ
d k
iþ1

2 jv
kþ1

2
x, ij � d k

i�1
2 jv

kþ1
2

x, i�1 j

Δx
þ
d k
i jþ1

2
v
kþ1

2
y, ij � d k

i, j�1
2
v
kþ1

2
y, i j�1

Δy
¼ 0, ð6:94Þ
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vkþ1=2
x, ij � vk�1=2

x, ij

Δt
þ vk�1=2

x, ij

λ11v
k�1=2
x, iþ1 j þ λ21v

k�1=2
x, ij þ λ31v

k�1=2
x, i�1 j

Δx

þ vk�1=2
y, iþ1=2 j�1=2

μ11v
k�1=2
x, i jþ1 þ μ21v

k�1=2
x, ij þ μ31v
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iþ1 j � η k

i j

Δx
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vkþ1=2
x, i j þ vk�1=2

x, i j
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ð6:95Þ

vkþ1=2
y, ij � vk�1=2

y, ij

Δt
þ vk�1=2

x, i�1=2 jþ1=2

λ12v
k�1=2
y, iþ1 j þ λ22v

k�1=2
y, ij þ λ32v

k�1=2
y, i�1 j

Δx

þ vk�1=2
y, ij

μ12v
k�1=2
y, i jþ1 þ μ22v
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η k
i jþ1 � η k

ij

Δx
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vkþ1=2
y, ij þ vk�1=2

y, ij
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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x, i�1=2 jþ1=2
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y, ij

� �2r
d k

i jþ 1
2

:

ð6:96Þ

We used an upwind scheme for the finite difference from of the advection terms.
The coefficients λij and μij for the upwind scheme are chosen depending on the
direction of the velocity as

λ11 ¼ 0, λ21 ¼ 1, λ31 ¼ �1 for v
k� 1

2
x, ij 	 0

λ11 ¼ 1, λ21 ¼ �1, λ31 ¼ 0 for v
k� 1

2
x, ij < 0

μ11 ¼ 0, μ21 ¼ 1, μ31 ¼ �1 for v
k� 1

2

y, iþ1
2 j� 1

2

	 0

μ11 ¼ 1, μ21 ¼ �1, μ31 ¼ 0 for v
k� 1

2

y, iþ1
2 j� 1

2

< 0

λ12 ¼ 0, λ22 ¼ 1, λ32 ¼ �1 for v
k� 1

2

x, i�1
2 jþ 1

2

	 0

λ12 ¼ 1, λ22 ¼ �1, λ32 ¼ 0 for v
k� 1

2

x, i�1
2 jþ 1

2

< 0

μ12 ¼ 0, μ22 ¼ 1, μ32 ¼ �1 for v
k� 1

2
y, ij 	 0

μ12 ¼ 1, μ22 ¼ �1, μ32 ¼ 0 for v
k� 1

2
y, ij < 0:

ð6:97Þ

Equations (6.94), (6.95), and (6.96) are then rewritten as follows.
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ð6:98Þ

vkþ1=2
x, ij ¼ 1
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ð6:99Þ

and
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ijΔt=2
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ð6:100Þ

where Qk
i, j and Rk

i, j are defined as

Qk
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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x, i�1=2 jþ1=2
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þ vk�1=2
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� �2r
d k
i jþ1=2

:

ð6:101Þ

The finite difference forms of Eqs. (6.98), (6.99), and (6.100) numerically describe
the tsunami propagation.

6.3.2.1 Inundation: Moving Boundary Between Land and Sea

In order to simulate tsunami inundation, we consider that the boundary between dry
area and wet area varies with time (e.g., Iwasaki and Mano 1979; Saito et al. 2014).
As shown in Fig. 6.14, we consider the boundary in 1-D space (x-axis), for
simplicity. The extension to 2-D space (x-y coordinates) is straightforward.
Depending on the sign of the total depth di (or the water column height) at the cell
located at xi, we assign each cell as wet or dry. If di> 0, the cell is assigned to be wet.
If di� 0, the cell is assigned to be dry.
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In the example shown in Fig. 6.14, a wet cell is located at x ¼ xi and a dry cell is
located at x¼ xi + 1 next to the wet cell. Inundation occurs from the wet cell to the dry
cell for each time step only if the sea-surface height ηi at the wet cell is higher than
the topography height of the dry cell at x ¼ xi + 1.The topography height of the dry
cell at x ¼ xi + 1 is given by �hi + 1 (because hi + 1 represents the sea depth). The
condition of inundation is then represented as ηi > � hi + 1. In that case, the water
flows from the wet cell at xi into the dry cell at xi + 1 with the velocity of vx, i. For the
sake of calculation, we reset the total depth as di + 1¼ 0; when the total depth is
negative, di + 1� 0. By using a total sea depth of zero, di + 1¼ 0, or, in other words, by
setting a virtual sea-surface height at the dry cell ηi + 1 ¼ � hi + 1, we calculate the
horizontal flow based on Eq. (6.99) as

vkþ1=2
x, i ¼ 1

1þ Qk
i Δt=2

1� Qk
i Δt
2

� 	
vk�1=2
x, i � g0Δt

Δx
η k
iþ1 � η k

i


 ��
þ Δt
Δx

vk�1=2
x, i vk�1=2

x, i � vk�1=2
x, i�1

� ��
ð6:102Þ

where

Qk
i ¼ C f

vk�1=2
x, i

��� ���
d k
iþ1=2

: ð6:103Þ

When the water flows into the dry cell (vkþ1=2
x, i > 0), the dry cell then turns into a

wet cell.

Fig. 6.14 A boundary
between dry and wet cells. If
the water column height at xi
is positive di> 0, the cell is
assigned to be wet. If di�
0, the cell is assigned to
be dry
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If the sea-surface height ηi at the wet cell is smaller than the topographical height
of the dry cell ηi < � hi + 1, the water does not flow into the dry cell. In this case, the
velocity is set at zero, vx, i ¼ 0.

We numerically solve the finite difference equations Eqs. (6.98), (6.99), and
(6.100) based on the flowchart shown in Fig. 6.15. Before starting the time step
iteration with respect to k, the initial condition of d0ij is set as d

0
ij ¼ η0ij þ hijwhere η

0
ij is

the initial tsunami height distribution. In the loop of the time step increment with
respect to k ¼ 0, the (i, j)th cell located at (x, y) ¼ (xi, yj) is judged as to whether the
cell is wet or dry according to the value of the water column height d0ij. We consider
that when d0ij is larger than the very small positive value E (e.g.,¼ 0.01 m), the cell is
wet. Otherwise, when d0ij < E, the cell is dry. We then set d0ij ¼ 0; in other words, we
set the tsunami height η0ij ¼ �hij at the dry sells to use Eqs. (6.99) and (6.100) at the
boundary between the dry and wet cells. For the grids of wet cells, the horizontal
velocities are calculated based on Eqs. (6.99) and (6.100). Then, the tsunami height
η1ij at the time step of k ¼ 0 is calculated based on Eq. (6.98). At the end of the loop,
the water column height d1ij is updated as d1ij ¼ η1ij þ hij. We then go back to the
beginning of the loop. We set k ¼ 1 and judge whether each cell is wet or dry
according to the value of d1ij. Using a similar procedure, we calculate η2ij. By iterating
the loop for k, we obtain the time evolution of the tsunami height distribution as η3ij,
η4ij, . . . .

Fig. 6.15 Flowchart for
tsunami inundation
simulation based on the
nonlinear long-wave
equations
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6.3.3 Linear Dispersive Equations: Deep Ocean

Ocean-bottom pressure gauges enable us to observe tsunamis outside bays and
harbors. These gauges have greatly contributed to fundamental tsunami research
and to the development of early warning systems. The linear dispersive equations
(or linear Boussinesq equation (e.g., Peregrine 1972)) are suitable for simulating
tsunami records observed in the deep ocean where the sea depth is not much
shallower than the tsunami wavelength.

When the tsunami height is much smaller than the sea depth η � h0 but the
tsunami wavelength is not much longer than the sea depth, the tsunami propagation
is well described by the linear dispersive equations ((6.75), (6.78), and (6.79)) as

∂η
∂t

þ ∂
∂x

hv avx x; y; tð Þ �þ ∂
∂y

hv avy x; y; tð Þ
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¼ 0, ð6:75Þ
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and
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� �� 	
: ð6:79Þ

The equations are written with a finite difference form with the grid points shown
in Fig. 6.11 as
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þ g0

η k
iþ1 j � η k

ij

Δx

¼
hiþ1

2 j

3Δt
1

Δxð Þ2 hiþ3
2 j
vkþ1=2
x, iþ1 j � 2hiþ1

2 jv
kþ1=2
x, ij þ hi�1

2, j
vkþ1=2
x, i�1 j

� �"

� 1

Δxð Þ2 hiþ3
2 jv

kþ1=2
x, iþ1 j � 2hiþ1

2 jv
kþ1=2
x, ij þ hi�1

2, j
vkþ1=2
x, i�1 j

� �

þ 1
ΔxΔy

hiþ1 jþ1
2
vkþ1=2
y, iþ1 j � hi jþ1

2
vkþ1=2
y, ij � hiþ1 j�1

2
vkþ1=2
y, iþ1 j�1 þ hi j�1

2
vkþ1=2
y, i j�1

� ��
,

� 1
ΔxΔy

hiþ1 jþ1
2
vk�1=2
y, iþ1 j � hi jþ1

2
vk�1=2
y, ij � hiþ1, j�1

2
vk�1=2
y, iþ1 j�1 þ hi j�1

2
vk�1=2
y, i j�1

� ��
,

ð6:105Þ

and
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vkþ1=2
y, ij � vk�1=2

y, ij

Δt
þ g0

η k
i jþ1 � η k

ij

Δy

¼
hi jþ1

2

3Δt
1

ΔxΔy
hiþ1

2 jþ1v
kþ1=2
x, i jþ1 � hi�1

2 jþ1v
kþ1=2
x, i�1 jþ1 � hiþ1

2 jv
kþ1=2
x, ij þ hi�1

2 jv
kþ1=2
x, i�1 j

� ��

� 1
ΔxΔy

hiþ1
2 jþ1v

k�1=2
x, i jþ1 � hi�1

2 jþ1v
k�1=2
x, i�1 jþ1 � hiþ1

2 jv
k�1=2
x, ij þ hi�1

2 jv
k�1=2
x, i�1 j

� �
þ 1

Δyð Þ2 hi jþ3
2
vkþ1=2
y, i jþ1 � 2hi jþ1

2
vkþ1=2
y, ij þ hi j�1

2
vkþ1=2
y, i j�1

� �

� 1

Δyð Þ2 hi jþ3
2
vk�1=2
y, i jþ1 � 2hi jþ1

2
vk�1=2
y, ij þ hi j�1

2
vk�1=2
y, i j�1

� �#
:

ð6:106Þ

We rewrite these equations so that the quantities at the next time step (i.e., k + 1) are
on the left-hand side and the quantities at the previous time step (i.e., k) are on the
right-hand side as follows:

ηkþ1
ij ¼ η k

ij �
Δt
Δx

hiþ1
2, j
vkþ1=2
x, i, j � hi�1

2, j
vkþ1=2
x, i�1, j

� �
� Δt
Δy

hi, jþ1
2
vkþ1=2
y, i, j � hi, j�1

2
vkþ1=2
y, i, j�1

� �
,

ð6:107Þ

� hiþ1=2 jhiþ3=2 j

3 Δxð Þ2 vkþ1=2
x, iþ1 j þ 1þ hiþ1=2 j


 �2
3 Δxð Þ2

 !
vkþ1=2
x, ij � hiþ1=2 jhi�1=2 j

3 Δxð Þ2 vkþ1=2
x, i�1 j

� hiþ1=2 jhiþ1 jþ1=2

3ΔxΔy
vkþ1=2
y, iþ1 j þ

hiþ1=2 jhi jþ1=2

3ΔxΔy
vkþ1=2
y, ij

þ hiþ1=2 jhiþ1 j�1=2

3ΔxΔy
vkþ1=2
y, iþ1 j�1 �

hiþ1=2 jhi j�1=2

3ΔxΔy
vkþ1=2
y, i j�1

¼ � hiþ1=2 jhiþ3=2 j

3 Δxð Þ2 vk�1=2
x, iþ1 j þ 1þ hiþ1=2 j


 �2
3 Δxð Þ2

 !
vk�1=2
x, ij � hiþ1=2 jhi�1=2 j

3 Δxð Þ2 vk�1=2
x, i�1 j

� hiþ1=2 jhiþ1 jþ1=2

3ΔxΔy
vk�1=2
y, iþ1 j þ

hiþ1=2 jhi jþ1=2

3ΔxΔy
vk�1=2
y, ij

þ hiþ1=2 jhiþ1 j�1=2

3ΔxΔy
vk�1=2
y, iþ1 j�1 �

hiþ1=2 jhi j�1=2

3ΔxΔy
vk�1=2
y, i j�1

þ g0
Δt
Δx

η k
iþ1 j � η k

ij

� �
,

ð6:108Þ

and

6.3 Numerical Simulations: Finite Difference Method 245



� hiþ1=2 jhi jþ3=2

3 Δyð Þ2 vkþ1=2
y, i jþ1 þ 1þ hi jþ1=2


 �2
3 Δyð Þ2

 !
vkþ1=2
y, ij � hi jþ1=2hi j�1=2

3 Δyð Þ2 vkþ1=2
y, i j�1

� hi jþ1=2hiþ1=2 jþ1

3ΔxΔy
vkþ1=2
x, i jþ1 þ

hi jþ1=2hi�1=2 jþ1

3ΔxΔy
vkþ1=2
x, i�1 jþ1

þ hi jþ1=2hiþ1=2 j

3ΔxΔy
vkþ1=2
x, iþ1 j�1 �

hi jþ1=2hi�1=2 j

3ΔxΔy
vkþ1=2
x, i�1 j

¼ � hiþ1=2 jhi jþ3=2

3 Δyð Þ2 vk�1=2
y, i jþ1 þ 1þ hi jþ1=2


 �2
3 Δyð Þ2

 !
vk�1=2
y, i, j � hi jþ1=2hi j�1=2

3 Δyð Þ2 vk�1=2
y, i j�1

� hi jþ1=2hiþ1=2 jþ1

3ΔxΔy
vk�1=2
x, i jþ1 þ

hi jþ1=2hi�1=2 jþ1

3ΔxΔy
vk�1=2
x, i�1 jþ1

þ hi jþ1=2hiþ1=2 j

3ΔxΔy
vk�1=2
x, iþ1 j�1 �

hi jþ1=2hi�1=2 j

3ΔxΔy
vk�1=2
x, i�1 j

þ g0
Δt
Δy

η k
i jþ1 � η k

ij

� �
:

ð6:109Þ

These finite difference representations have different forms from those of the linear
long-wave equations or nonlinear long-wave equations. In the cases of linear long-
wave equations and nonlinear long-wave equations, a (single) term at the next time
step is represented using the values at the previous time step. In contrast, the left-
hand side of Eq. (6.108) has seven terms represented by the seven values of the time
step of k + 1/2, vkþ1=2

x, iþ1 j, v
kþ1=2
x, ij , vkþ1=2

x, i�1 j, v
kþ1=2
y, iþ1 j, v

kþ1=2
y, ij , vkþ1=2

y, i�1 j, and v
kþ1=2
y, i j�1. We cannot

straightforwardly calculate these seven values just by substituting the values of the
previous time steps. In order to calculate the quantities of the next time step, we need
to solve the systems of the equations with respect to the unknown seven values at the
next time step. To numerically solve the systems of the equations, we can use the
Jacobi method or the Gauss-Seidel method. This scheme is referred to as an implicit
scheme, while the schemes used in the linear long-wave equations and the nonlinear
long-wave equations are referred to as explicit scheme.

6.3.3.1 Solving the Finite Difference Equations by the Jacobi Method

Here we explain the Jacobi method. Consider the simulation region represented by
nx 
 ny cells in the (x, y) space. The cell and the grid points are located as shown in
Fig. 6.11. We would like to obtain the unknown horizontal velocities of vkþ1=2

x, ij and

vkþ1=2
y, ij (i ¼ 1, . . ., nx and j ¼ 1, . . ., ny) that satisfy Eqs. (6.108) and (6.109). At the
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boundaries of the simulation region, the horizontal velocities are fixed in the
simulation. For example, we set

vkx, 1 j ¼ 0 for j ¼ 1, . . . , ny
vkx,nx j ¼ 0for j ¼ 1, . . . , ny
vky, i 1 ¼ 0 for i ¼ 1, . . . , nx
vky, i ny ¼ 0for i ¼ 1, . . . , nx

ð6:110Þ

as the boundary conditions of the horizontal velocities. Thus, the number of vari-
ables to be calculated is (nx � 2) 
 (ny � 2) for vkþ1=2

x, ij and (nx � 2) 
 (ny � 2) for

vkþ1=2
y, ij in Eqs. (6.108) and (6.109). The total number of unknown variables is thus
2
 (nx� 2)
 (ny� 2). Since i¼ 2, . . ., nx� 1 and j¼ 2, . . ., ny� 1 for Eq. (6.108),
the number of equations in Eq. (6.108) is (nx � 2) 
 (ny � 2). Similarly, the number
of equations in Eq. (6.109) is (nx� 2)
 (ny� 2). Thus,we have 2
 (nx� 2)
 (ny� 2)
equations for Eqs. (6.108) and (6.109) for solving 2 
 (nx � 2) 
 (ny � 2) unknown
variables of vkþ1=2

x, i, j and vkþ1=2
y, i, j .

We here set the unknown variables of vkþ1=2
x, ij and vkþ1=2

y, ij at the time step k + 1/2
with xi as

x1 ¼ vkþ1=2
x, 2 2 , x2 ¼ vkþ1=2

x, 3 2 , . . . , xnx�2 ¼ vkþ1=2
x,nx�1 2 . . . ,

x nx�2ð Þ ny�2ð Þ ¼ vkþ1=2
x,nx�1 ny�1, x nx�2ð Þ ny�2ð Þþ1 ¼ vkþ1=2

y, 2 2 , . . . ,

x2 nx�2ð Þ ny�2ð Þ ¼ vkþ1=2
y,nx�1 ny�1

ð6:111Þ

The column vector xi has 2 
 (nx � 2) 
 (ny � 2) elements. Then, setting
N ¼ 2 
 (nx � 2) 
 (ny � 2), we rewrite Eqs. (6.108) and (6.109) in the matrix
form as

a11 a12 � � � a1N
a21 a22 � � � a2N
⋮ ⋮ ⋮
aN1 aN2 � � � aNN

0
BB@

1
CCA

x1
x2
⋮
xN

0
BB@

1
CCA ¼

b1
b2
⋮
bN

0
BB@

1
CCA,

or
aij x j ¼ bi:

ð6:112Þ

The coefficient of aij in Eq. (6.112) is given by the sea depth hij and the grid spacing
Δx and Δy. These are independent of the time step k. The vector bi is given by the
dependent variables vk�1=2

x, ij , vk�1=2
y, ij , and η k

ij at the previous time steps of k and k� 1/2.
The vector bi changes according to the time step k.

Equation (6.112) shows that the finite difference form (Eqs. (6.108) and (6.109))
has the form of the simultaneous equation with respect to the unknown values of xj.
The matrix aij is a square matrix of size N ¼ 2 
 (nx � 2) 
 (ny � 2). Considering,
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for example, the simulation region represented by nx ¼ 1000 and ny ¼ 1000, the
matrix aij is ~2
 106 in size. This may be too large to numerically treat as an array in
a simulation code.

The Jacobi method is a simple but effective method to numerically solve simul-
taneous equations with respect to the unknown variables, xi, in particular, for a
matrix of large size aij in Eq. (6.112). In the Jacobi method, we assume the variable xi
at the calculation of the lth iteration to be x lð Þ

i . Using these values of x lð Þ
i , we calculate

the variable xi at the calculation of (l + 1)th based on Eq. (6.112) as

x lþ1ð Þ
1 ¼ b1 � a12x

lð Þ
2 � a13x

lð Þ
3 � � � � a1Nx

lð Þ
N

� �
=a11

x lþ1ð Þ
2 ¼ b2 � a21x

lð Þ
1 � a23x

lð Þ
3 � � � � a2Nx

lð Þ
N

� �
=a22

x lþ1ð Þ
N ¼ bN � aN1x

lð Þ
1 � aN2x

lð Þ
2 � � � � aNN�1x

lð Þ
N�1

� �
=aNN

ð6:113Þ

This calculation is iteratively done until the variables x lð Þ
i converge, as x lð Þ

i ! xi. This
method is also suitable for parallel computing.

6.3.3.2 Flow of Solving Linear Dispersive Equations

We numerically solve the linear dispersive equations as shown in Fig. 6.16. The
finite difference calculation starts with the tsunami height distribution at the time of
t¼ 0 or the initial tsunami height distribution, η0ij ¼ η xi; y j; 0


 �
. Considering k¼ 0 in

Eqs. (6.108) and (6.109), we then calculate the vertically averaged horizontal

Fig. 6.16 Flowchart of the
finite difference simulation
using the linear dispersive
equations
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velocities v1=2x, ij andv
1=2
y, ij by the Jacobi method substituting η0ij ¼ η xi; y j; 0


 �
and v�1=2

x, i, j

¼ v�1=2
y, i, j ¼ 0 on the right-hand side of Eqs. (6.108) and (6.109). By using these

calculated values of v1=2x, ij andv1=2y, ij , we calculate the tsunami height at the time of
t ¼ Δt, η1ij ¼ η xi; y j;Δt


 �
considering k ¼ 0 in Eq. (6.107). Similarly, we calculate

the tsunami height at the time of t ¼ 2Δt from the tsunami height at the time of
t¼Δt. Taking this procedure iteratively, we obtain the tsunami height for the time of
t ¼ 0, Δt, 2Δt, . . . .

In solving the finite difference form of the linear dispersive equations, we solve
the simultaneous equations (Eqs. (6.108) and (6.109)) for each time step by the
iterative method (Jacobi method). This generally takes more computational time than
solving the explicit schemes of the linear and nonlinear long-wave equations.

6.3.4 Nonlinear Dispersive Equations

We have shown the numerical scheme for solving the nonlinear long-wave equations
that are suitable for nearshore tsunamis (Sect. 6.3.2) and the scheme for solving the
linear dispersive equations that are suitable for reproducing offshore short-
wavelength tsunamis (Sect. 6.3.3). The following equations include both the
nonlinear and dispersion effects. We referred to the following equations as nonlinear
dispersive equations in this textbook:

∂η
∂t

þ ∂
∂x

dv avx
 �þ ∂

∂�y
dv avy

h i
¼ 0, ð6:114Þ

∂v avx
∂t

þ v avx
∂v avx
∂x

þ v avy
∂v avx
∂y

þ g0
∂η
∂x

¼ h

3
∂
∂t

∂
∂x

∂
∂x

hv avx

 �þ ∂

∂y
hv avy

� �� 	
� C f

v avx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v avx

 �2 þ v avy

� �2r
d

,

ð6:115Þ

∂v avy
∂t

þ v avx
∂v avy
∂x

þ v avy
∂v avy
∂y

þ g0
∂η
∂y

¼ h

3
∂
∂t

∂
∂y

∂
∂x

hv avx

 �þ ∂

∂y
hv avy

� �� 	
� C f

v avy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v avx

 �2 þ v avy

� �2r
hþ η

,

ð6:116Þ

and

d x; y; tð Þ ¼ h x; yð Þ þ η x; y; tð Þ: ð6:117Þ

We rewrite these equations in the finite difference form as follows.
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ηkþ1
ij ¼ η k

ij �
Δt
Δx

d k
iþ1

2 jv
kþ1

2
x, ij � d k

i�1
2 jv

kþ1
2

x, i�1 j

� �
� Δt
Δy

d k
i jþ1

2
v
kþ1

2
y, ij � d k

i, j�1
2
v
kþ1

2
y, i j�1

� �
, ð6:118Þ

vkþ1=2
x, ij � vk�1=2

x, ij

Δt
¼ �g0

∂η
∂x

� v avx
∂v avx
∂x

� v avy
∂v avx
∂y

� C f

v avx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv avx Þ2 þ ðv avy Þ2

q
d

2
4

3
5
ij

þ h

3
∂
∂t

∂
∂x

∂
∂x

hv avx

 �þ ∂

∂y
hv avy

� �� 	� �
i, j
,

ð6:119Þ

and

vkþ1=2
y, ij � vk�1=2

y, ij

Δt
¼ �g0

∂η
∂y

� v avx
∂v avy
∂x

� v avy
∂v avy
∂y

� C f

v avy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv avx Þ2 þ ðv avy Þ2

q
d

2
4

3
5
ij

þ h

3
∂
∂t

∂
∂y

∂
∂x

hv avx

 �þ ∂

∂y
hv avy

� �� 	� �
ij

,

ð6:120Þ

where the bracket [� � �]ij represents the finite difference form at the grid point of
vkþ1=2
x, ij in Eq. (6.115) and vkþ1=2

y, ij in Eq. (6.116).
We numerically calculate these finite difference forms by a two-step method. By

introducing a new parameter v∗x , we divide Eq. (6.119) into two equations as

v∗x � vk�1=2
x, ij

Δt
¼ �g0

∂η
∂x

� v avx
∂v avx
∂x

� v avy
∂v avx
∂y

� C f

v avx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv avx Þ2 þ ðv avy Þ2

q
d

2
4

3
5
ij

,

ð6:121Þ

and

vkþ1=2
x, ij � v∗x

Δt
¼ h

3
∂
∂t

∂
∂x

∂
∂x

hv avx

 �þ ∂

∂y
hv avy

� �� 	� �
ij

: ð6:122Þ

If we add Eqs. (6.121) and (6.122), we obtain Eq. (6.119). Note that Eq. (6.121) has
the same form as that of the nonlinear long-wave equations. Equation (6.121), hence,
can be calculated using the explicit scheme used in Eq. (6.99). On the other hand,
Eq. (6.122) has the same form as that of the linear dispersive equations. Equation
(6.122) can be calculated using the implicit scheme used in Eq. (6.108). This also
holds for Eq. (6.120) for the time evolution of vkþ1=2

y, ij .
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6.3.4.1 Flow of Solving Nonlinear Dispersive Equations

By combining the explicit scheme used in the calculation of the nonlinear long-wave
equations and the implicit scheme used in the calculation of the linear dispersive
equations, we can solve the nonlinear dispersive equations as shown in Fig. 6.17.

Before starting the time step iteration with respect to k, the initial condition ofd0ij is
set as d0ij ¼ η0ij þ hij, where η

0
ij is the initial tsunami height distribution.

In the loop of the time step increment with respect to k, each cell is judged as to
whether it is wet or dry according to the value of the water column height d k

ij . We
consider that when d k

ij is larger than the very small positive value E (e.g.,¼ 0.01 m),
the cell is wet (sea). Otherwise, when d k

ij < E, the cell is dry, and we set d k
i, j ¼ 0; in

Fig. 6.17 Flowchart of the
finite difference simulation
using the nonlinear
dispersive equations
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other words, we set the tsunami height η k
ij ¼ �hij in the dry cell to use Eq. (6.121) at

the boundary between the land and sea. For the grids of wet cells, the horizontal
velocities are calculated based on Eqs. (6.121) and (6.122).

Considering k ¼ 0 in Eq. (6.121), we calculate the horizontal velocities v∗x ,
substituting η0ij ¼ η xi; y j; 0


 �
and v�1=2

x, ij ¼ v�1=2
y, ij ¼ 0. Similarly, the value of v∗y is also

calculated. By using the values of v∗x and v∗y together with η0i, ¼ η xi; y j; 0

 �

and

v�1=2
x, ij ¼ v�1=2

y, ij ¼ 0, we then calculate the horizontal velocities v1=2x, ij and v1=2y, ij by the
Jacobi method based on Eq. (6.122) and the corresponding equation with respect to
v1=2y, ij . By substituting v

1=2
x, ij and v

1=2
y, ij into Eq. (6.118), we calculate the tsunami height at

the time of t¼Δt, η1ij ¼ η xi; y j;Δt

 �

. Using a similar procedure, we can calculate the
tsunami height at the time of t ¼ 2Δt from the tsunami height at the time of t ¼ Δt.
Taking this procedure iteratively, we obtain the tsunami height for the time of t ¼ 0,
Δt, 2Δt, . . . .

The nonlinear dispersive equations can describe both nonlinear effects near coasts
and dispersive waves in deep oceans simultaneously. We need to use the implicit
scheme (iterative calculation in each time step) in the simulation with higher-
resolution sea-bottom bathymetry data. If we simulate tsunamis only for deep
oceans, we do not need to use such high-resolution bathymetry data compared to
simulations in shallow seas or near coasts, because the tsunami wavelength becomes
longer in deep oceans. On the other hand, in order to correctly reproduce tsunamis
near coasts, the bathymetry and topography data need to be highly resolved with
small grid spacing. This requires a large number of grid points to represent the
bathymetry and topography appropriately. The implicit scheme has much higher
computational costs because of the increase in the grid points of the simulation. As a
result, the nonlinear dispersive equation simulations usually have much higher
computational costs than the nonlinear long-wave equations and dispersive equa-
tions for deep oceans.
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Chapter 7
Epilogue

Abstract This chapter summarizes tsunami generation and propagation. Also, we
mention topics that we did not fully treat in this book but that are important for
tsunami studies. The physics underlying tsunami has not yet been fully elucidated.
Continuing this challenging research is important both for the advancement of
natural science and for disaster prevention.

Keywords Tsunami propagation · Tsunami generation · Earth science · Disaster
mitigation and prevention

7.1 Tsunami Propagation

Chapter 3 illustrated the mechanisms and features of tsunami propagation. By
comparing the propagation of tsunami with that of seismic waves, we showed the
features of tsunami propagation. With gravity as a restoring force, tsunami propa-
gates by oscillating all or a major part of the sea layer. On the other hand, seismic
waves propagate due to the elasticity of the earth medium. As a result, the propaga-
tion speeds and particle motions are considerably different between tsunami and
seismic waves. Since seismic waves can contaminate tsunami signals at or near the
tsunami source, it is also important to understand the behavior of seismic waves in
order to correctly analyze the tsunami data inside an earthquake focal region.

Tsunami propagating across deep oceans is well described by linear theory. We
usually suppose that the tsunami wavelength is much longer than the sea depth and
that the tsunami velocity is independent of the wavelength. The propagation process
is reproduced by linear long-wave theory. However, when the tsunami wavelength is
not much greater than the sea depth, the tsunami becomes dispersive. We hence
expect dispersive tsunami to be observed in association with small earthquakes
whose source size may not be much larger than the sea depth. However, we should
note that dispersive tsunamis have been observed not only in association with small
earthquakes but also with large earthquakes (e.g., Fig. 6.6). This occurs when the
earthquake fault reaches the sea bottom, which causes a steep sea-bottom
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deformation. The steep sea-bottom deformation then becomes a source of short-
wavelength tsunamis. By analyzing such short-wavelength and dispersive tsunami
carefully, we can estimate the high-resolution tsunami source. This would not be
realized using only classical tide gauge records. Ocean-bottom pressure gauges that
are now widely deployed in deep oceans have played a very important role in the
development of dispersive tsunami analyses.

Offshore tsunami observations and reliable tsunami source estimation have
enabled us to predict tsunami arrival times very accurately. As a result, we recog-
nized the non-negligible contribution of the elasticity of the earth medium to tsunami
propagation. We do not fully explain this point in this book. When a tsunami
propagates across the Pacific Ocean, assuming fluid dynamics without considering
the elasticity of the earth predicts the tsunami arrival slightly earlier than the
observed arrival (e.g., Ward 1980; Inazu and Saito 2013; Tsai et al. 2013). By taking
into account the contributions of seawater density stratification, the elasticity of the
fluid and solid earth medium, and the gravitational potential change, we can repro-
duce the tsunami arrival time more accurately (e.g., Watada et al. 2014; Allgeyer and
Cummins 2014; Baba et al. 2017). By using accurate tsunami velocity estimation,
we can estimate the tsunami source location more precisely even if only far-field
tsunami records are available (Yoshimoto et al. 2016).

Near coasts, tsunami shows a nonlinear nature. The important nonlinear features
include energy dissipation and inundation. Chapter 6 describes simple methods for
incorporating these features into numerical simulations. Nonlinear tsunami simula-
tions can reproduce energy dissipation and inundation. In this book, the
nondimensional bottom friction coefficient Cf was used to represent the energy
dissipation phenomenologically. The physical mechanisms of energy dissipation
were not treated in this book. Readers may learn the mechanisms in the textbooks
of fluid dynamics (e.g., Landau and Lifshitz 1987). The energy dissipation is caused
by the energy shift from large eddies to small eddies. The process is described by
using the stochastic models of the velocity fluctuation in turbulent flow.

The inundation process is conspicuously complicated but is very significant. This
book treated the inundation only by a simple numerical method in the 2-D tsunami
simulation in Chap. 6. For the case when a tsunami inundates a coast with a constant
slope, the analytical solution for the tsunami height was derived using simple
geometry by Carrier et al. (2003). Synolakis (1991) theoretically investigated the
run-up height using nonlinear and linear theories together with laboratory experi-
ments. These solutions give us a fundamental basis for the inundation process. The
numerical simulations have also been extensively developed and widely applied to
field observations. Tsunami deposits are highly important for reconstructing past
huge earthquakes (e.g., Namegaya and Satake 2014; Ioki and Tanioka 2016). It is
critical to understand the mechanisms by which tsunami deposits are formed during
tsunami inundation.
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7.2 Tsunami Generation

This book considers the process in which the sea-bottom displacement causes the
initial tsunami height distribution to be the generation process. Since the initial
tsunami height distribution is excited even without gravity, the generation process
is basically independent of gravity. Hence, the mechanisms of the generation and
propagation are essentially different. This idea resulted directly from the analytical
solution of the linear tsunami generation theory (Chap. 5). The solution (Eq. 5.34)
indicates that the generation process and the propagation process are represented by
different terms in the analytical solution.

If we focus only on the generation process, seismology and elastic dynamics play
more important roles than fluid dynamics. Chapter 4 illustrates the earthquake source
or fault characteristics. Kinematic earthquake fault motions are mainly treated in this
book. Using the kinematic fault models in seismic wave simulations, we obtain a
realistic tsunami source model that can be used in tsunami propagation simulations.
This method enables us to simulate both the seismic waves and tsunami simulta-
neously (Fig. 4.22). This was developed for the records obtained inside the focal area
where the seismic waves and tsunami coexist.

It should be noted that this book prescribes an earthquake fault at the seismic
wave simulations in Chap. 4: Earthquakes. This is kinematic fault modeling. On the
other hand, in earthquake physics, dynamic fault modeling has been developed in
which the earthquake fault motion is simulated by using the equations of motion and
the frictional constitutive law (e.g., Aki and Richards 2002; Fukuyama 2009). Geist
and Dmowska (1999) showed kinematically prescribed uniform slip on a fault
underestimates the tsunami height compared to nonuniform slip derived by mechan-
ical fault modeling when the seismic moments of the two cases are the same.
Although we did not fully illustrate these mechanical and dynamic approaches,
they are important for understanding earthquake rupture process. Dynamic rupture
simulations can provide deep understanding of the differences between the mecha-
nisms of standard earthquakes and tsunami earthquakes (e.g., Ma and Hirakawa
2013; Kozdon and Dunham 2014; Lotto et al. 2017).

7.3 Earth Science and Disaster Prevention

A tsunami is a disastrous event. The 2011 Tohoku-Oki earthquake tsunami killed
more than 15,000 people, and more than 2500 people are still missing, and also
caused the Fukushima Daiichi Nuclear Power Station accident (e.g., Satake 2014).
This devastating disaster was due to the overestimation of our earthquake disaster
prevention capabilities such as anticipated earthquake scenarios, rapid earthquake
magnitude estimation, and tsunami prediction. This was mainly a result of our
inadequate knowledge regarding huge (MW ~ 9) earthquakes and tsunamis.
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After the Tohoku-Oki earthquake, we constructed a wide and dense seafloor
observation network and huge coastal levees in order to prevent disasters due to
future huge earthquakes. The hardware was promptly built in the 10 years following
the earthquake. However, this is not sufficient for disaster prevention. We must make
a persistent effort to better understand huge earthquakes and tsunamis. Our progress
in understanding nature and further developing earth science might seem to occur
much more slowly than the rapid growth of hardware in our society. Nevertheless,
carefully observing and humbly learning about nature can help us live in harmony
with nature and prevent us from overestimating our capability.
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