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Axis Formation and Its Evolution  
in Ray- Finned Fish
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Abstract In teleost embryos, the formation of the body axes is controlled by both 
maternal and zygotic factors. During oogenesis, the formation of the oocyte’s ani-
mal–vegetal polarity is maternally controlled. A mature oocyte contains a set of 
factors (dorsal determinants) involved in dorsal determination at the vegetal pole. 
After fertilization, a parallel array of microtubules forms briefly at the yolk’s vegetal 
pole to transport the dorsal determinants to the prospective dorsal side. The dorsal 
determinants activate Wnt/β-catenin signaling and induce expression of dorsal- 
specific genes required for forming the dorsal organizer. The molecules expressed 
in the dorsal organizer antagonize the signaling of ventralizing or posteriorizing 
factors such as Bmps and Wnts, thereby establishing the signaling gradients that are 
subsequently required to properly form the dorsoventral (DV) and anteroposterior 
(AP) axes. Genetic analyses of zebrafish mutants have identified the maternal and 
zygotic genes that control formation of the body axes. Comparative studies of 
zebrafish, the primitive ray-finned fish bichir, the basal vertebrate lamprey, and the 
amphibian Xenopus indicate that bichir embryogenesis is a good model for under-
standing the evolution of DV axis formation. This chapter focuses on the genetic 
control of DV and AP axis formation, and its evolution in ray-finned fish.
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32.1  Introduction

In vertebrate embryogenesis, the dorsoventral (DV), anteroposterior (AP), and other 
body axes are formed through an intricate developmental process involving signal-
ing, transcriptional regulation, organelle transport, and cell differentiation and 
movement. The molecular mechanisms that form these axes have been relatively 
well studied in zebrafish and other model animals. A zebrafish oocyte has clear 
animal–vegetal (AV) polarity in which the blastodisc and the yolk are located at the 
animal (A) and vegetal (V) poles, respectively, but there is no apparent DV axis until 
the early gastrula stage, at around 6 hours postfertilization (hpf), when the embryo’s 
dorsal side is marked by the embryonic shield (the dorsal organizer structure). 
However, the program that forms the DV axis is thought to be initiated soon after 
fertilization. Recent studies have revealed that oocyte AV polarity is linked to the 
formation of the embryonic DV axis. Dorsal determinants, which are deposited at 
the vegetal pole of the egg during oogenesis, are thought to be transferred after fer-
tilization to the dorsal blastomeres, where they induce the dorsal-specific genes that 
establish the dorsal organizer. The organizer factors interact with ventralizing and 
posteriorizing signals to establish the embryonic DV and AP axes. In this chapter, 
we first describe the molecular mechanisms in zebrafish by which (1) oocyte AV 
polarity is established and linked to the embryo’s DV axis; (2) the dorsal organizer 
is formed; and (3) interactions between the organizer factors and ventralizing fac-
tors determine the DV and AP body axes. Next, we compare the developmental 
processes of zebrafish with those of other vertebrate species—including bichir, lam-
prey, and Xenopus—and discuss the evolution of the germ layer and DV axis forma-
tion in ray-finned fish.

32.2  Embryonic Development of Zebrafish

Zebrafish sperm enters the oocyte at the animal pole. After fertilization, the chorion 
is detached from the egg surface, and cytoplasmic materials in the yolk are trans-
ported toward the animal pole to form the blastodisc. After the first blastodisc cleav-
age at 45 minutes postfertilization (mpf), synchronous cleavages occur every 15 min 
until the midblastula transition (MBT) at the 512-cell stage, at around 3 hpf (Kimmel 
et al. 1995). Zygotic gene expression is initiated at the MBT. Cell differentiation 
and morphogenetic processes start concomitantly, including (1)  formation of the 
enveloping layer (EVL), which is an epithelial cell sheet covering the blastoderm; 
(2) formation of the yolk syncytial layer (YSL), which occurs when marginal blas-
tomeres (connected to the yolk) collapse and release their nuclei into the yolk; and 
(3) epiboly, in which the blastomeres and EVL move to the vegetal pole to cover the 
yolk; this event starts slightly later than the MBT (Kimmel et al. 1995). Although 
the YSL is an extraembryonic structure, it is important in forming the germ layer. 
Transplanting the YSL to the animal pole of the blastoderm ectopically induces the 
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endoderm and mesoderm (Mizuno et  al. 1996; Ober and Schulte-Merker 1999; 
Rodaway et al. 1999), and depletion of RNAs from the yolk inhibits mesoderm and 
endoderm formation (Chen and Kimelman 2000), indicating that the YSL functions 
to induce the endoderm and mesoderm (Sakaguchi et al. 2002). The YSL attaches to 
the EVL, possibly through E-cadherin, and takes the EVL and the blastoderm to the 
vegetal pole during epiboly (Shimizu et  al. 2005b; Solnica-Krezel and Driever 
1994).

During gastrulation, the embryonic structure is further established with a series 
of cell movements: involution/ingression of the mesendoderm, convergent exten-
sion, and migration of the axial mesoderm, in addition to epiboly (Solnica-Krezel 
and Sepich 2012). Mesoderm convergence and extension bring more cells to the 
dorsal side to form the dorsal thick (axial) mesendoderm. The axial mesendoderm 
elongates in the AP axis to become the prechordal plate and notochord. Various 
signaling pathways, including the Wnt/PCP (planar cell polarity) pathway, are 
involved in convergent extension [see review by Solnica-Krezel and Sepich (2012)]. 
Signaling molecules generated from the embryo’s dorsal and ventral regions act in 
coordination with gastrulation movements to establish the DV and AP axes.

32.3  Establishment of Oocyte Animal–Vegetal Polarity 
During Oogenesis in Zebrafish

Mature zebrafish oocytes contain dorsal determinants at the vegetal pole (see Sect. 
32.4.2). Thus, the formation of AV polarity in oocytes is important for forming the 
embryonic DV and AP axes. A zebrafish oocyte develops through four stages until 
it is mature and competent for fertilization (Lessman 2009; Marlow 2010; Nagahama 
and Yamashita 2008). Oocyte AV polarity begins to form during stage I with the 
appearance of the Balbiani body (Fig. 32.1a), which is composed of a variety of 
messenger RNAs (mRNAs), proteins, and organelles, including mitochondria. The 
Balbiani body initially localizes adjacent to the nucleus on the future vegetal pole 
side and then moves to the vegetal pole and releases its contents (e.g., mRNAs) to 
the vegetal cortex (Bontems et al. 2009; Marlow and Mullins 2008). In Xenopus and 
zebrafish oocytes, some germline-specific transcripts are transported via the 
Balbiani body to the vegetal pole (Wilk et al. 2005; Kloc et al. 1996, 2001; Kloc and 
Etkin 1995; Kosaka et al. 2007).

Genetic studies with a maternal mutant have revealed that formation of the 
Balbiani body is controlled by Bucky ball, a protein that lacks obvious sequence 
similarities to other proteins (Bontems et  al. 2009; Marlow and Mullins 2008). 
Oocytes with a bucky ball mutation fail to form the Balbiani body, to localize germ-
line mRNAs to the vegetal pole, and to establish AV polarity (Bontems et al. 2009; 
Marlow and Mullins 2008). In these bucky ball–mutant oocytes, mRNAs that nor-
mally localize to the vegetal pole localize radially instead (Bontems et  al. 2009; 
Dosch et al. 2004; Nojima et al. 2010). The vegetal pole localization of the  transcripts 
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Fig. 32.1 Maternally controlled formation of the oocyte animal–vegetal (AV) axis and embryonic 
dorsoventral (DV) axis in zebrafish. (a) Formation of the oocyte AV axis. In the stage I oocyte, 
messenger RNAs (mRNAs) involved in dorsal determination and germ cell development are tran-
scribed in the nucleus and deposited in the Balbiani body (Bb); these include glutamate receptor 
interacting protein  2a (grip2a), syntabulin (sybu), wnt8a, and daz-like (dazl) mRNAs. During 
oocyte maturation, mRNAs are transferred from the Balbiani body to the vegetal cortex. (b) 
Microtubule-dependent dorsal determination. Sperm entry activates Ca2+ signaling, which travels 
from the animal pole to the vegetal pole, where it induces microtubule formation. The microtu-
bules are bundled to form an array at around 20 minutes postfertilization. (c) Dorsal determinants 
(DDs) or vesicles containing DDs are transported through the vegetal microtubule array. At the 
early cleavage stage, an unknown mechanism transports DDs (or vesicular DDs) to prospective 
dorsal blastomeres, where they activate canonical Wnt signaling, which causes β-catenin to accu-
mulate at the blastula stage (Figure modified from Hibi et al. 2002; Langdon and Mullins 2011; 
Nojima et al. 2010)
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for glutamate receptor interacting protein 2a (Grip2a) and Syntabulin, which are 
reported to be involved in dorsal determination, is dependent on Bucky ball (Nojima 
et al. 2010; Ge et al. 2014); wnt8a transcripts, which are probably involved in dorsal 
determination (Sect. 3.2), are also transferred from the Balbiani body to the vegetal 
pole (Lu et al. 2011). These data suggest that the localization of mRNAs to the veg-
etal pole, which depends on the Balbiani body, may be indispensable in dorsal 
determination. Study of another maternal mutant, magellan, has revealed that 
microtubule–actin crosslinking factor  1a (Macf1a) regulates oocyte AV polarity, 
possibly through microtubule-dependent transport of Balbiani body components 
(Gupta et al. 2010).

32.4  Microtubule-Dependent Dorsal Determination 
in Zebrafish

32.4.1  Microtubule Array Formation

An array of parallel microtubules forms at the vegetal pole of the zebrafish embryo 
at around 20  mpf (Jesuthasan and Stahle 1997) (Fig.  32.1b). Disruption of the 
microtubules by nocodazole treatment, cold temperatures, or ultraviolet irradiation 
at this point causes a loss of the dorsal organizer and ventralization of the embryo 
(Jesuthasan and Stahle 1997). Removal of the vegetal yolk mass at the early one-cell 
stage also severely ventralizes the embryo (Mizuno et al. 1999; Ober and Schulte- 
Merker 1999). These data have established the hypothesis that dorsal determinants 
initially localize to the vegetal pole and are then transported along the vegetal 
microtubules to the prospective dorsal side, where they activate the genetic 
program(s) that induce dorsal tissue.

The relevance of the vegetal microtubule array in dorsal determination was ini-
tially proposed for Xenopus embryogenesis. After fertilization, the Xenopus egg 
cortex rotates relative to the sperm entry point during the first cell cycle (cortical 
rotation). Microtubules initially appear to be randomly oriented at the vegetal cor-
tex. However, during cortical rotation, the cortical microtubules become aligned 
with the plus ends toward the prospective dorsal side (Olson et al. 2015). During 
this process, organelles are transported along the microtubule array. Inhibition of 
microtubule formation disrupts dorsal tissue formation (Elinson and Rowning 1988; 
Houliston and Elinson 1991; Rowning et  al. 1997), supporting the microtubule 
array’s role in transporting dorsal determinants (or organelles containing the dorsal 
determinants) in Xenopus embryos. In Xenopus, sperm entry is proposed to control 
the orientation of vegetal microtubules by providing nascent microtubules originat-
ing from the sperm-derived centrosome (aster) (Houliston and Elinson 1991; 
Schroeder and Gard 1992).

In zebrafish, the micropyle is located at the animal pole region of the chorion, 
and the sperm can enter only into the animal pole of the egg. No microtubules are 
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seen in the area between the pronucleus (its associated centrosome) and the vegetal 
cortex. Therefore, the sperm entry provides little, if any, information regarding the 
bias of vegetal microtubule orientation. Nevertheless, the plus ends of the vegetal 
microtubules that form at around 20–30 mpf are oriented to the prospective dorsal 
side (within 30° of the embryonic shield) (Tran et al. 2012) (Fig. 32.1b). Vegetal 
microtubule formation depends on Ca2+ signaling, which is potentially activated by 
sperm entry (Tran et  al. 2012) (Fig.  32.1b). Vesicular structures (called cortical 
granules) are transported along the dorsal-oriented microtubules to the prospective 
dorsal side (Tran et al. 2012). Some mRNAs that localize to the vegetal pole, such 
as wnt8a mRNA, are translocated slightly to the prospective dorsal side. Although 
it is not clear how the vegetal microtubules are oriented to the prospective dorsal 
side, these data suggest that microtubule-dependent transport and a cortical rota-
tion–like movement take place in zebrafish. These events are likely to be involved 
in dorsal determination in zebrafish, as in Xenopus (Fig. 32.1c). However, the veg-
etal microtubules do not reach the blastodisc (Tran et al. 2012), implying that the 
vegetal microtubule-dependent mechanism only provides a bias in positioning the 
dorsal determinants at the vegetal pole, and that other mechanism(s) translocate the 
dorsal determinants to the dorsal blastomeres.

32.4.2  Mechanisms That Control Microtubule Array 
Formation and Transport of Dorsal Determinants

Studies of maternal effect mutations in zebrafish that affect the initial dorsal deter-
mination have identified molecules that function in microtubule-dependent dorsal 
determination (Table 32.1, Fig. 32.1b). The hecate mutants are deficient in genes 
that encode Grip2a, an adaptor protein that contains multiple PDZ domains (Ge 
et  al. 2014), and whose mRNA localizes to the vegetal pole. The hecate mutant 
embryos fail to bundle microtubules at the vegetal pole and do not form a parallel 
microtubule array, implying that Grip2a is involved in bundling the vegetal micro-
tubules (Ge et  al. 2014). Embryos with the maternal effect mutant brom bones, 
which are deficient in the gene encoding polypyrimidine tract binding protein 1a 
(Ptbp1a, also known as hnRNPI), are also severely ventralized. Embryos with a 
brom bones mutation do not activate inositol 1,4,5-triphosphate (IP3)-mediated Ca2+ 
release, do not undergo exocytosis of the cortical granules, and do not form a veg-
etal microtubule array (Mei et al. 2009), suggesting that Ptbp1a is involved in pro-
cessing the pre-RNA for IP3–Ca2+ signaling components. It has been suggested that 
the persistent cortical granules in the vegetal cortex of brom bones mutants second-
arily affect the formation of the vegetal microtubule array (Mei et  al. 2009). 
However, it is also possible that the IP3-dependent activation of Ca2+ signaling plays 
a role in formation of the vegetal microtubule array. In any case, these data provide 
genetic evidence that the parallel microtubule array plays a pivotal role in dorsal 
determination. Embryos of the maternal effect mutant tokkaebi also show 
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ventralization but do not display abnormalities in formation of the vegetal microtu-
bule array (Nojima et al. 2004). The tokkaebi locus encodes Syntabulin, which is a 
linker for the kinesin motor protein and is involved in microtubule-dependent trans-
port of organelles in neurons (Cai et  al. 2005; Su et  al. 2004). Since syntabulin 
mRNA is localized to the vegetal pole, Syntabulin protein is also localized to the 
vegetal pole until the vegetal microtubules form, after which Syntabulin is translo-
cated from the vegetal pole in a microtubule-dependent manner and is degraded at 
the two-cell stage (Nojima et al. 2010). These data suggest that Syntabulin assists in 
transporting the dorsal determinants—or the organelles (e.g., vesicles) containing 
the dorsal determinants—along the vegetal microtubules and in releasing them from 
the vegetal microtubules after the two-cell stage. It was recently reported that mater-
nal effect mutants of kif5Ba, which encodes a heavy chain of Kinesin-1, showed 
abnormal formation of the vegetal microtubules (random orientation or nonbun-
dled), aberrant localization of Syntabulin and wnt8a mRNA, and ventralized 

Table 32.1 Zebrafish maternal effect mutants and the role of the mutant loci in axis formation

Gene Mutant Gene product
Role in axis 
formation Other function

(A) Regulation of oocyte animal–vegetal axis
bucky ball bucky 

ball
Cytoplasmic, no known 
homologues

Balbiani body 
formation

Germ cell 
development

macf1a magellan Microtubule–actin 
crosslinking factor 1a

Microtubule- 
dependent transport 
of Balbiani body

(B) Regulation of embryonic dorsoventral axis
ptbp1a brom 

bones
Polypyrimidine tract binding 
protein 1a

Formation of 
vegetal microtubule 
array

IP3-dependent 
Ca2+ release

grip2a hecate Glutamate receptor 
interacting protein 2a, 
PDZ-containing adaptor

Bundling of vegetal 
microtubules

Germ cell 
development in 
Xenopusa

syntabulinb tokkaebi Syntaxin-interacting, linker 
for kinesin-1 motor protein

Microtubule- 
dependent transport

Axonal transport, 
germ cell 
development

β-catenin 2 ichabod One of the two β-catenin 
genes in fish, downstream 
from the canonical Wnt 
pathway

Regulation of 
dorsal-specific 
genes

kif5Ba kif5Ba Heavy chain of kinesin-1 Bundling of vegetal 
microtubules

Microtubule- 
dependent 
transport

IP3 inositol 1,4,5-triphosphate
aKnocking down Xenopus Grip2.1 (XGRIP2.1) reduces the number of primordial germ cells 
(Tarbashevich et al. 2007)
bSyntabulin is involved in microtubule-dependent axonal transport of synaptic vesicles and mito-
chondria in cultured rat neurons (Cai et al. 2005; Su et al. 2004). Syntabulin is also involved in 
dorsal axis formation; syntabulin messenger RNA localizes to the germ plasm and is expressed 
later in primordial germ cells in Xenopus (Colozza and De Robertis 2014)
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phenotypes (Campbell et al. 2015), suggesting that Kinesin-1 plays an important 
role in the vegetal microtubule formation and the subsequent microtubule- dependent 
dorsal determination.

32.4.3  Dorsal Determinants

The canonical Wnt pathway, which results in β-catenin accumulation, is believed to 
play an essential role in dorsal determination in Xenopus and zebrafish embryos. In 
these animals, activating the canonical Wnt pathway elicits ectopic formation or 
expansion of the dorsal organizer, whereas its inhibition impairs dorsal axis forma-
tion (Hibi et  al. 2002). Furthermore, the maternal effect mutant ichabod, which 
lacks the expression of maternal β-catenin 2, fails to establish dorsal tissues (Kelly 
et al. 2000). In zebrafish, β-catenin accumulation is detected in the nuclei of dorsal 
blastomeres by the 128-cell stage, and in the dorsal blastoderm and dorsal YSL of 
midblastula-stage embryos (Dougan et al. 2003; Schneider et al. 1996). These data 
suggest that dorsal determinants activate the canonical Wnt pathway to induce 
dorsal- specific genes. It was initially thought that Wnt molecules may not be directly 
involved in dorsal determination, since inhibition of Wnt molecules by either domi-
nant negative Wnt1/8 or a secreted Frizzled-related protein, Frzb1, did not suppress 
dorsal axis formation in Xenopus embryos (Tao et al. 2005; Hoppler et al. 1996; 
Leyns et al. 1997; Wang et al. 1997). However, maternal Wnt11 was shown to acti-
vate the canonical Wnt pathway, and the Wnt11/5a complex has been suggested to 
be a dorsal determinant in Xenopus (Cha et al. 2008; Cha et al. 2009). Neither wnt11 
nor wnt5a can activate the canonical Wnt pathway and induce dorsal-specific genes 
in zebrafish (Lu et al. 2011; Nojima et al. 2010). In zebrafish, wnt8a mRNA local-
izes to the egg’s vegetal pole (Lu et  al. 2011) and then is translocated from the 
vegetal pole in a microtubule-dependent manner. Expression of a dominant negative 
Wnt8a abolishes the expression of the dorsal-specific gene chordin (Lu et al. 2011; 
Ge et al. 2014; Tran et al. 2012), suggesting that wnt8a mRNA is a dorsal determi-
nant. Many vegetal mRNAs and proteins are translocated by the movement accom-
panying cortical rotation. It is not clear whether it is the wnt8a mRNA or Wnt8a 
protein that acts as a dorsal determinant. It also remains to be elucidated how Wnt8a 
is transported to the dorsal blastoderm. Before the 128-cell stage, wnt8a mRNA is 
not detected in dorsal blastomeres, yet Wnt8a protein may be translated and trans-
ported to the dorsal blastomeres before that stage. Genetic analyses of maternal 
wnt8a mutants and detailed localization analyses of wnt8a mRNA or Wnt8a protein 
should provide compelling evidence for the role of Wnt8a in dorsal determination. 
In any case, Wnt8a may play a major role in activating the canonical Wnt pathway 
(Fig. 32.1c).
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32.5  Program for Forming the Dorsal Organizer 
in Zebrafish

32.5.1  Wnt Signaling and Dharma

The canonical Wnt pathway induces dorsal-specific genes by binding a complex of 
Tcf/Lef family protein and β-catenin to their promoter/enhancer regions at the 
MBT; this process is controlled by both positive and negative regulators. Caveolin-1 
is reported to inhibit the nuclear translocation of β-catenin, and Tob1a inhibits the 
formation of the Tcf/Lef and β-catenin complex (Mo et al. 2010; Xiong et al. 2006).

The dorsal-specific gene dharma (also known as nieuwkoid) encodes a 
homeodomain- containing transcriptional repressor, which harbors an Engrailed 
homology 1 (Eh1) repressor motif (Koos and Ho 1998; Yamanaka et al. 1998), The 
dharma-defective mutant bozozok exhibits various degrees of defects in the dorso-
anterior tissues, including defects in organizer formation (Fekany et al. 1999; Koos 
and Ho 1999). At the MBT, dharma is expressed in the dorsal blastoderm; thereaf-
ter, its expression is confined to the dorsal YSL at the early gastrula stage (Koos and 
Ho 1998; Yamanaka et  al. 1998). The canonical Wnt pathway induces dharma 
expression. The dharma promoter/enhancer contains many Tcf/Lef-binding sites 
involved in dorsal-specific dharma expression (Leung et al. 2003b; Ryu et al. 2001; 
Shimizu et al. 2000), indicating that dharma is a direct target of the maternal canon-
ical Wnt pathway (Fig.  32.2a). Dharma represses the ventral expression of the 
homeobox genes vox, vent, and ved (Kawahara et al. 2000a, b; Imai et al. 2001; 
Shimizu et al. 2002). The expression of vox, vent, and ved is positively regulated by 
the maternal factor Runx2b type2 (Runx2bt2) (Flores et al. 2008). Vox, Vent, and 
Ved are also transcriptional repressors, which repress dorsal organizer genes such as 
goosecoid and chordin (Shimizu et al. 2002; Imai et al. 2001; Melby et al. 2000). 
Hence, the Dharma-mediated repression of vox, vent, and ved releases the expres-
sion of dorsal organizer genes in the dorsal blastomeres. Vox, Vend, and Ved also 
repress dharma expression. Thus, the mutual repression of vox/vent/ved and dharma 
refines the dorsal organizer domain (Kawahara et  al. 2000a, b; Imai et  al. 2001; 
Shimizu et al. 2002). The SoxB1 transcription factors Sox3 and Sox19b also restrict 
dharma expression (Shih et  al. 2010). Dharma not only represses vox/vent/ved 
expression but also directly represses the gene expression of the ventralizing factors 
Bmp2b and Wnt8a (Erter et al. 2001; Leung et al. 2003a). The Dharma-mediated 
inhibition of Bmp and Wnt signals may contribute to Dharma’s non-cell- autonomous 
role in forming dorsal and anterior tissues (Koos and Ho 1998; Yamanaka et  al. 
1998). The stability of the Dharma protein is regulated by protein degradation medi-
ated by the E3 ubiquitin ligase Lnx2b (Ro and Dawid 2009). The regulation of 
dharma expression and its role in DV axis formation are summarized in Fig. 32.2a.
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Fig. 32.2 Molecular mechanisms controlling dorsoventral (DV) axis formation in zebrafish. 
(a) Control of DV axis formation at the midblastula transition (left panel) and at the late blastula to 
early gastrula stages (right panel). Expression of the ventralizing factors Bmp2b/4/7, Vox/Vent/Ved, 
and Wnt3a/8a is regulated by the maternal factors Gdf6a/Pou5f3, Runx2b, and Kzp, respectively. 
Expression of the dorsalizing factors Dharma and Ndr1 is regulated by maternal Wnt signaling. The 
mutual repressive interaction between Dharma and Vox/Vent/Ved defines the DV axis. Dharma 
releases the expression of dorsal organizer genes by suppressing Vox/Vent/Ved-mediated repression 
of these genes. (b) Regulation of DV axis formation at the gastrula stage. Dorsalizing and ventral-
izing signals are marked by blue lines and red lines, respectively; maternal factors are indicated by 
gray letters. (c) Regulation of Chordin and Bmps. Chordin has four cysteine-rich (CR) domains. 
Tolloid and Bmp1—which have proteinase, CUB, and epidermal growth factor–like domains (E)—
cleave Chordin protein. Sizzled, which has a CR domain similar to that of Frizzled, binds Bmp1 and 
inhibits Bmp1-dependent (and possibly Tolloid-dependent) Chordin degradation. Crossveinless 2 
(CV2) contains CR domains and a von Willebrand factor domain (vWFd). The cleaved form of CV2 
suppresses Chordin-mediated Bmp inhibition and thus displays pro-Bmp activity. Twisted gastrula-
tion (Tsg) binds Chordin and Bmps, and promotes Bmp signaling. Tsg enhances Tolloid-dependent 
Chordin degradation (Langdon and Mullins 2011; Muraoka et al. 2006; Shimizu et al. 2000)
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32.5.2  Nodal-Related Genes

The Nodal-related gene ndr1 (also known as squint) is also thought to be a target of 
the maternal canonical Wnt pathway (Shimizu et al. 2000; Kelly et al. 2000). The 
dorsal expression of dharma and ndr1 is lost in ichabod mutants, which are defec-
tive in β-catenin 2; β-catenin rescues the expression of these two genes (Kelly et al. 
2000), supporting the idea that dharma and ndr1 function downstream from the 
maternal Wnt pathway. Ndr1 functions with another Nodal-related gene, ndr2 
(known as cyclops), to form the endoderm and the dorsal mesoderm (Dougan et al. 
2003; Erter et al. 1998; Rebagliati et al. 1998a, b; Sampath et al. 1998; Feldman 
et al. 1998; Schier and Talbot 2005). A combined deficiency of dharma and ndr1 
(zygotic combined mutations) severely reduces the dorsoanterior tissues (Shimizu 
et al. 2000; Sirotkin et al. 2000), revealing that dharma and ndr1 play major roles in 
forming the dorsal organizer and the dorsoanterior tissues (Fig. 32.2a). In addition 
to this zygotic Ndr1 function, a role has also been proposed for maternal ndr1 tran-
scripts in dorsal determination. Maternally deposited ndr1 mRNA is distributed to 
the two prospective dorsal blastomeres at the four-cell stage; morpholino-mediated 
ndr1 knockdown causes severe ventralization (Gore et  al. 2005), suggesting that 
maternal Ndr1 functions in dorsal determination. However, arguing against this role 
of Ndr1, dorsal axis formation is not severely defective in maternal effect ndr1 
mutants that cannot generate the Ndr1 protein (Erter et  al. 2001; Feldman et  al. 
1998; Heisenberg and Nusslein-Volhard 1997; Amsterdam et  al. 2004). It was 
recently suggested that a noncoding function of ndr1 RNA might activate the 
 maternal canonical Wnt pathway, although the mechanism remains elusive (Lim 
et al. 2012).

32.5.3  Fgf Signaling

The fibroblast growth factors (Fgf) fgf3, fgf8, and fgf24—which are expressed in the 
dorsal marginal blastomeres in the blastula period—control dorsal axis formation 
by repressing bmp gene expression (Furthauer et  al. 1997, 2004). In ichabod 
mutants, β-catenin-dependent expression of the organizer genes depends on Fgf 
signaling. Fgf signaling is also involved in Ndr1-dependent chordin expression and 
in maintaining dharma expression (Maegawa et al. 2006) (Fig. 32.2a). Therefore, 
the fgf genes function in dorsal axis formation downstream from the maternal 
canonical Wnt pathway. The Fgf signaling in dorsal axis formation is negatively 
regulated by Sef, Sprouty2, and Dusp6 (Mkp3, a mitogen-activated protein kinase 
[MAPK] phosphatase), which function as feedback regulators (Furthauer et  al. 
2002, 2004; Tsang et al. 2002, 2004). Precise control of the Fgf signaling gradient 
should contribute to the regulation of Bmp signaling along the DV axis. Fgf signal-
ing, together with Wnt and retinoic acid signaling, also controls the posteriorization 
of embryos (Koshida et al. 1998, 2002; Shimizu et al. 2005a, 2006; Kudoh et al. 
2002, 2004) (Fig. 32.3c, d).
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Fig. 32.3 Fate determination according to dorsoventral (DV) and anteroposterior (AP) positional 
information in zebrafish. (a) Wnt signaling controls the fates of the ventrolateral versus axial 
mesendoderm. Wnts and Vox/Vent/Ved are involved in forming the ventrolateral mesoderm. Dkk1, 
Dharma, and Goosecoid control the formation of axial mesendoderm tissue by inhibiting Wnts and 
Vox/Vent/Ved. (b) A Bmp signal gradient controls cell fates on the DV axis. Strong Bmp activity 
is required for formation of the ventral mesoderm and epidermis. Bmp inhibition is required for 
neuroectoderm formation. (c) Control of AP axis formation in the neuroectoderm. The posterior 
region of the neuroectoderm, which receives Wnt and fibroblast growth factor (Fgf) signaling from 
the nonaxial mesoderm, is fated to become posterior neural tissue such as the spinal cord or hind-
brain. The anterior (animal pole) region of the neuroectoderm, which does not receive posterior- 
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32.6  Interactions Between the Dorsal Organizer 
and Ventralizing/Caudalizing Factors in Zebrafish

32.6.1  Goosecoid

The Wnt target genes (e.g., dharma, ndr1, and fgfs) cooperatively regulate the expres-
sion of dorsal organizer genes such as goosecoid, chordin, and dickkopf1 (dkk1) 
(Hashimoto et al. 2000; Maegawa et al. 2006; Shimizu et al. 2000; Sirotkin et al. 
2000) (Fig. 32.2a). The expression of goosecoid and dkk1 depends on both Dharma 
and Nodal signaling (Hashimoto et al. 2000; Shimizu et al. 2000). However, chordin 
expression depends more on Dharma than on Nodal signaling, as chordin expression 
is relatively well maintained in Nodal signal–deficient embryos, such as the maternal 
zygotic one-eyed pinhead (oep) mutant (Gritsman et al. 1999; Shimizu et al. 2000). 
Goosecoid is a homeodomain-containing transcription factor, which harbors an Eh1 
repressor motif and exhibits sequence similarity to Dharma (Cho et al. 1991; Stachel 
et al. 1993). Goosecoid can inhibit Bmp signaling even in the absence of the secreted 
Bmp inhibitors Chordin, Noggin1, and Follistatin-like 1b (Dixon Fox and Bruce 
2009) (Fig. 32.2a). Thus, it is possible that Goosecoid directly binds bmp gene pro-
moters/enhancers to negatively regulate their expression in dorsal blastomeres, like 
Dharma. Although the goosecoid gene exists in most, if not all, vertebrate genomes, 
dharma is found only in teleost genomes. It is conceivable that goosecoid was dupli-
cated during teleost-specific whole-genome duplication (WGD), and that the expres-
sion and function of the two genes were diversified during teleost evolution: dharma 
came to be expressed earlier, goosecoid came to function at a later stage, and the 
expression of goosecoid came to depend on dharma. This hypothesis could explain 
the variable expressivity and penetrance of the bozozok mutants (Fekany et al. 1999) 
because dharma may partly function redundantly with goosecoid.

32.6.2  Chordin and Other Bmp Antagonists Regulate Bmp 
Signaling

Chordin, which is a secreted Bmp inhibitor containing four cysteine-rich domains, 
binds Bmp dimers, thereby inhibiting Bmp’s binding to its receptors (Piccolo et al. 
1996; Sasai et  al. 1994; De Robertis 2009). Among the known Bmp inhibitors, 

Fig.  32.3 (continued) izing signals, becomes anterior neural tissues such as the forebrain and 
midbrain. (d) Molecular mechanisms controlling AP axis formation during early neural develop-
ment. Wnts and Fgfs from the nonaxial mesoderm regulate the expression of the caudal-related 
homeodomain proteins Cdx1a and Cdx4, which induce the posterior hox genes that determine the 
fate of the posterior spinal cord. Retinoic acid (RA), generated by the anterior paraxial mesoderm, 
controls expression of the anterior hox genes required for fate determination of the hindbrain (pos-
terior from rhombomere 2) and the anterior spinal cord. Posteriorizing signals (Wnt, Fgf, and RA) 
must be inhibited to induce anterior neural tissues

32 Axis Formation and Its Evolution in Ray-Finned Fish



722

Chordin functions nonredundantly in DV axis formation (Dal-Pra et  al. 2006; 
Hammerschmidt et al. 1996; Schulte-Merker et al. 1997). The genes encoding the 
Bmp inhibitors Noggin1 and Follistatin-like 1b are also expressed in the dorsal 
organizer region at the blastula and early gastrula stages (Dal-Pra et  al. 2006; 
Furthauer et al. 1999). These genes function redundantly with Chordin: knocking 
the genes down separately does not cause ventralization, but knockdown of the two 
genes along with chordin results in strong ventralization (Dal-Pra et  al. 2006; 
Furthauer et al. 1999). Compared with Noggin1 and Follistatin-like 1b, Chordin has 
unique features: (1) chordin is expressed more broadly than other Bmp inhibitor 
genes and is negatively controlled by Bmp signaling (Miller-Bertoglio et al. 1997; 
Schulte-Merker et al. 1997); and (2) the stability of the Chordin protein is precisely 
regulated by a mechanism involving Tolloid/Bmp1 family proteinase, Sizzled, 
Twisted gastrulation, and other proteins (Blader et al. 1997; Connors et al. 1999, 
2006; Jasuja et al. 2006; Little and Mullins 2004; Muraoka et al. 2006; Xie and 
Fisher 2005; Yabe et al. 2003) (Fig. 32.2b, c). These features make it likely that 
Chordin is a nonredundant factor that regulates Bmp signaling and DV axis 
formation.

In addition to Chordin, Crossveinless 2 (CV2)—a Chordin family protein that 
has von Willebrand factor C domains and is expressed ventrally—also modulates 
Bmp activity. Noncleaved CV2 functions as a Bmp inhibitor, but the cleaved form 
binds both Bmp and Chordin and suppresses Chordin-mediated Bmp inhibition 
(pro-Bmp activity) (Rentzsch et al. 2006; Zhang et al. 2010). The expression of the 
bmp genes bmp2b, bmp4, and bmp7a is regulated by the maternal factors Gdf6a 
(also known as Radar, a Bmp-related cytokine), Pou5f3 (also known as Pou2 or 
Spiel ohne grenzen, an Oct3/4 orthologue or paralogue) (Reim and Brand 2006; 
Sidi et  al. 2003), and the zygotic SoxB1 transcription factors Sox2/3/19a/19b 
(Okuda et al. 2010) (Fig. 32.2a). bmp gene expression is also self-regulated by Bmp 
signaling (De Robertis 2009). Interactions between Chordin, the Chordin regula-
tors, ventrally expressed Bmps (Bmp2b, Bmp4, and Bmp7a), and dorsally expressed 
Bmps (Bmp2b and Admp) define a clear Bmp signaling gradient that is required for 
cell differentiation along the DV axis (Fig. 32.3b). The control of Bmp signaling is 
beyond the scope of this chapter; for excellent reviews on the regulation of Bmp 
signaling in zebrafish axis formation, see Langdon and Mullins (2011) and Bier and 
De Robertis (2015).

32.6.3  Role of Wnt Inhibition in Forming the DV and AP Axes

Although maternal canonical Wnt signaling is involved in initiating dorsal axis for-
mation, zygotic canonical Wnt signaling negatively regulates dorsal axis formation 
and positively regulates formation of posterior tissues. The mechanism by which 
maternal and zygotic Wnt signals regulate a different set of genes and exhibit oppo-
site functions in axis formation has not been defined. During gastrulation, wnt8a 
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and wnt3a are expressed throughout the blastoderm margin except in the most dor-
sal region, which corresponds to the embryonic shield; this expression persists in 
the tailbud at the end of gastrulation (Kelly et al. 1995; Lekven et al. 2001; Shimizu 
et al. 2005a). The expression of wnt8a is at least partly regulated by the maternal 
transcription factor Kzp (Kaiso zinc finger–containing protein) (Yao et  al. 2010) 
(Fig. 32.2a). The zebrafish wnt8a gene has two open reading frames (ORFs), which 
are located tandemly in the zebrafish genome and can function as a bicistronic tran-
script (Lekven et al. 2001). Inhibition of both wnt8a ORFs reduces the ventrolateral 
mesoderm and tail structure, and enlarges the head structure (Lekven et al. 2001). 
Wnt3a functions redundantly with Wnt8a. Inhibition of both Wnt3a and the Wnt8a 
ORFs causes more severe phenotypes than inhibition of Wnt8a alone: the ventrolat-
eral mesoderm is reduced, while the axial mesoderm expands, and the tail structure 
is lost, while the head structure expands (Shimcizu et al. 2005a; Thorpe et al. 2005). 
Inhibition of β-catenins 1 and 2 expands chordin expression and causes severe dor-
salization (Varga et al. 2007). These data suggest that zygotic (gastrula) canonical 
Wnt signaling plays two roles in axis formation: (1) it controls the fate of the axial 
versus ventrolateral mesoderm for the DV axis, since Wnt induces the ventrolateral 
mesoderm; and (2)  it functions as a posteriorizing signal for the AP axis 
(Fig. 32.3a, c). The ventral expression of vox, vent, and ved is regulated by Wnt8a/
Wnt3a signaling, and wnt8a and wnt3a expression is regulated by Vox/Vent/Ved 
(Ramel and Lekven 2004; Shimizu et al. 2005a). The cross-regulation between Wnt 
signaling and Vox/Vent/Ved may refine the fate determination of axial versus ven-
trolateral mesoderm tissue; Dharma restricts the axial mesoderm by repressing 
these ventralizing signals (Figs. 32.2a and 32.3a). For posteriorization, the caudal- 
related genes cdx1a and cdx4 function downstream from Wnt signaling; inhibition 
of Cdx1a and Cdx4 severely truncates the posterior, as with inhibition of Wnt8a/
Wnt3a (Shimizu et al. 2005a) (Fig. 32.3d). The loss of Cdx1a/Cdx4 also leads to 
ectopic formation of hindbrain tissue (Shimizu et al. 2006; Skromne et al. 2007), 
indicating that Cdx1a and Cdx4 function downstream from Wnt8a/3a to control 
posterior tissue formation and repress anterior tissues (Fig. 32.3d). The Sp1 family 
transcription factors Sp5a and Sp5l also function downstream from Wnt signaling, 
for both the DV and AP axes (Thorpe et al. 2005; Weidinger et al. 2005). Further 
studies are necessary to reveal the relationships between Sp5/5l and Vox/Vent/Ved, 
or Sp5/Sp5l and Cdx1a/Cdx4, for DV and AP axis formation (Table 32.2).

The dorsal organizer expresses the Wnt inhibitor Dkk1 (Glinka et  al. 1998), 
which binds the Wnt lipoprotein receptor proteins 5 and 6 (LRP5/6) and Kremen, 
and downregulates Wnt signaling (Davidson et al. 2002; Mao et al. 2002). Zebrafish 
have two dkk1 genes (Untergasser et al. 2011). Initially, dkk1b is expressed in the 
dorsal marginal blastoderm and the dorsal YSL at the blastula stage, and then in the 
prechordal plate at the gastrula stage (Hashimoto et al. 2000; Shinya et al. 2000). 
Canonical Wnt signaling also controls dkk1b, thus functioning as a negative feed-
back regulator (Shinya et  al. 2000). In the blastoderm margin, dkk1b expression 
may be regulated by Wnt8a and Wnt3a (Hashimoto et al. 2000; Shinya et al. 2000). 
Thus, the Wnt8a/Wnt3–Dkk1 system is part of a reaction–diffusion mechanism that 
forms a Wnt signal gradient; a similar role has been proposed for Dkk in hair follicle 
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Table 32.2 Molecular players in dorsoventral and anteroposterior axis formation in zebrafish

Molecule Nature of molecule Role in axis formation

Admp Secreted protein Ventralization, a Bmp family member
Bmp2b/4/7 Secreted protein Ventralizing factor
Caveolin-1 Transmembrane protein Inhibition of nuclear translocation of 

β-catenin
Chordin Secreted protein Inhibition of Bmp signaling
Cdx1a/4 Transcription factor Posteriorization
CV2 Secreted protein Inhibition and promotion of Bmp signaling
Dharma Transcriptional repressor Repression of ventral genes
Dickkopf1 Secreted protein Inhibition of Wnt signaling
Dusp6 Cytoplasmic protein Inhibition of Fgf signaling, a MAPK 

phosphatase
Eomesa Transcription factor Endoderm formation
Fgf3/Fgf8/Fgf24 Secreted protein Dorsalization, posteriorization, and 

mesoderm formation
Follistatin-like 1b Secreted protein Inhibition of Bmp signaling
Gdf6a Secreted protein Ventralization (maternal factor for bmp 

expression)
Goosecoid Transcriptional repressor Repression of ventral genes
Kremen1 Transmembrane protein Dkk-mediated inhibition of Wnt signaling
Kzp Transcription factor Regulation of wnt3a/8a expression
Lnx2b Ubiquitin ligase Degradation of Dharma
LRP5/6 Transmembrane protein Coreceptor for Wnt signaling
Ndr1/2 Secreted protein Nodal-related molecules, organizer and 

mesendoderm induction
Noggin1 Secreted protein Inhibition of Bmp signaling
One-eyed pinhead Membrane-attached protein 

(GPI anchored)
Coreceptor for Nodal-related molecules

Pou5f3 Transcription factor Ventralization (maternal factor for bmp 
expression)

Retinoic acid Signaling molecule Posteriorization
Runx2bt2 Transcription factor Maternal regulator for vox/vent/ved 

expression
Sef Transmembrane protein Inhibition of Fgf signaling
Sizzled Secreted protein Inhibition of Tolloid/Bmp1 family protein 

(stabilization of Chordin)
Smad1/5 Signaling and transcription 

factor
Mediator of Bmp signaling

Sox2/3/19a/19b Transcription factor Ventralization (promotes bmp expression 
and represses dharma)

Sp5a/5l Transcription factor Mediator of Wnt signaling
Sprouty2 Cytoplasmic protein Inhibition of Fgf signaling
Tbx16 Transcription factor Paraxial mesoderm formation

(continued)
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formation (Sick et al. 2006). This mechanism may be similar to that in the Nodal–
Lefty (Nodal inhibitor) system for mesoderm and endoderm differentiation (Muller 
et al. 2012; Schier 2009). As nonaxial mesendoderm expressing Wnt8a and Wnt3a 
is suggested to provide posteriorizing signals (Koshida et al. 1998; Woo and Fraser 
1997), Dkk1b may generate a high Wnt signal area near the margin and a low Wnt 
signal area in the animal pole (Fig. 32.3c, d). This Wnt signaling gradient is required 
to establish AP embryonic polarity. At the late gastrula stage, Dkk1b from the pre-
chordal plate may ensure the anterior neural fate. Since Dkk1b can rescue the for-
mation of not only the anterior neuroectoderm but also the axial mesoderm in 
dharma-deficient bozozok embryos, Dkk1 may also be involved in axial mesendo-
derm formation (Hashimoto et al. 2000) (Fig. 32.3a). Although genetic analysis has 
revealed that Dkk1 is essential for head development in the mouse (Mukhopadhyay 
et al. 2001), the role of Dkk1 in formation of the AP axis in zebrafish has not been 
genetically proven. Combination knockouts of dkk family members expressed in 
zebrafish gastrula embryos (dkk1a, dkk1b, and dkk3) (Lu et al. 2011) should reveal 
the role of Dkk family proteins in body axis formation.

32.6.4  Nodal/Bmp/Fgf/Wnt Signaling Interactions for DV 
and AP Axis Formation

Zygotic Nodal, Bmp, Fgf, and Wnt signaling cooperatively regulate axis formation. 
DV patterning along the AP axis is reported to be temporally coordinated: inhibition 
of Bmp signaling at the onset of gastrulation controls the formation of the anterior 
neuroectoderm, whereas at a later stage it regulates the formation of the posterior 

Table 32.2 (continued)

Molecule Nature of molecule Role in axis formation

Tcf/Lef family Transcription factor Involved in the canonical Wnt pathway, 
interacting with β-catenin

Tob1a Transcription factor Inhibition of formation of Tcf/Lef and 
β-catenin complex

Tolloid/Bmp1 
family

Secreted protein, 
metalloprotease

Degradation of Chordin (promotion of 
Bmp signaling)

Vox/Vent/Ved Transcriptional repressor Repression of dorsal genes and mediator of 
Bmp signaling

Wnt3a Secreted protein Posteriorization and axial mesoderm 
formation

Wnt8a Secreted protein Maternal: dorsal determination
Zygotic: posteriorization and axial 
mesoderm formation

Molecules involved in dorsoventral and anteroposterior axis formation are listed alphabetically. 
Molecules listed in Table 32.1 are not described in this table
Fgf  fibroblast growth factor, GPI  glycophosphatidylinositol, MAPK  mitogen-activated protein 
kinase
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neuroectoderm (Tucker et al. 2008). In this process, Bmp-mediated DV patterning 
is temporally coordinated with the posteriorizing signals Fgf, Wnt, and retinoic acid 
(Hashiguchi and Mullins 2013). Fgf negatively regulates Bmp signaling by phos-
phorylating Smad1/5, which are Bmp signal transducers; this mechanism is involved 
in coordination of Bmp and Fgf signaling, at least in part (Hashiguchi and Mullins 
2013).

The ventral blastoderm margin is proposed to function as the tail organizer inde-
pendently of the dorsal organizer. The activation of Nodal/Bmp/Wnt signaling mim-
ics tail organizer activity (Agathon et  al. 2003). The dorsal organizer, the tail 
organizer, and the entire blastoderm margin are proposed to function as an organiz-
ing center, which depends on the ratio of Nodal/Bmp activity: Nodal is high on the 
dorsal side, and Bmp is high on the ventral side (Fauny et  al. 2009). Moreover, 
Nodal and Bmp alone are sufficient to organize uncommitted naïve cells of the blas-
tula animal pole into a well-organized embryo, both in vivo and in vitro (Xu et al. 
2014). These data suggest that Nodal and Bmp signaling are minimal requirements 
for providing embryonic cells with DV and AP axis information, and that Nodal/
Bmp activity gradients play a pivotal role in axis formation. Although genetic evi-
dence may be required to prove that endogenous Nodal and Bmp levels are suffi-
cient to generate the embryonic axis, the data imply that Nodal and Bmp signaling 
function as hubs in the program for DV and AP axis formation. Other signaling 
pathways and transcription factors that control the expression of Nodal/Bmp mole-
cules and inhibitors function downstream from (and possibly in parallel with) 
Nodal/Bmp signaling in axis formation, as discussed earlier. Mathematical model-
ing will help to explain the intricate programs that shape the DV and AP axes.

32.7  Evolution of Axis Formation in Ray-Finned Fish 
(Actinopterygii)

32.7.1  Bichir Provides a Good Model for Evolutionary 
Developmental Biology (Evo–Devo) Studies

Although the mechanisms controlling axis formation in zebrafish are relatively well 
understood, the degree to which these mechanisms are conserved among fish—and 
whether these mechanisms are also shared by other vertebrate species—is not clear. 
Ancient jawless fish (Agnatha) that existed about 600 million years ago were the 
ancestors of all vertebrates (Blair and Hedges 2005). The extant jawless fish are in 
the class Cyclostomata, which includes lampreys and hagfish; other vertebrates 
(Gnathostomata) are derived from an ancient lineage of jawed fish that diverged 
from the Agnatha. The extant jawed fish are categorized into two groups: cartilagi-
nous fish (Chondrichthyes) and bony fish (Osteichthyes); the bony fish are further 
classified into two subgroups: lobe-finned fish (Sarcopterygii—e.g., coelacanths, 
lungfish, and tetrapods) and ray-finned fish (Actinopterygii). The ray-finned fish 
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include several taxa: Polypteriformes (bichirs and reedfish), Chondrostei (sturgeons 
and paddlefishes), Lepisosteiformes (gars), Amiiformes (Amia calva), and Teleostei 
(teleosts, Fig. 32.4). Most extant fish, including zebrafish and medaka model fish, 
are teleosts. Early embryogenesis is similar in various teleosts, but teleost embryo-
genesis is quite different from that of nonteleost fish (Bolker 1993a, b; Cooper and 
Virta 2007). This difference may be rooted in the WGD that is proposed to have 
taken place in the teleosts (Amores et al. 1998; Jaillon et al. 2004). The teleost- 
specific WGD may have generated gene variations that contribute to teleost-specific 
developmental processes (Kuraku et al. 2009).

Thus, to understand the evolution of fish embryogenesis, it is important to study the 
development of nonteleost fish. Bichirs (order: Polypteriformes, family; Polypteridae), 
which live in African rivers and lakes, have been used in recent studies of develop-
mental biology (Takeuchi et al. 2009a). The bichir lineage diverged from ray-finned 
fish about 400 million years ago, soon after bony fish diverged into lobe-finned and 
ray-finned fish (Inoue et al. 2003). Thus, bichirs are considered to be one of the most 
primitive ray-finned fish. Furthermore, bichirs did not undergo teleost-specific 
WGD. Therefore, comparative analysis of zebrafish and bichir development should 
provide insights into the evolution of mechanisms for embryonic axis formation.

32.7.2  Morphogenetic Processes of Bichir Embryos

A teleost embryo undergoes meroblastic cleavages, whereas a bichir embryo under-
goes holoblastic cleavages, like the Xenopus embryo, cleaving from the animal to 
the vegetal pole. In Xenopus, the first cleavage furrow demarcates the DV axis. 
When one of the two blastomeres is labeled at the two-cell stage, the interface 
between the labeled and unlabeled halves coincides with the midsagittal plane 
(Klein 1987). In contrast, the first cleavage plane in zebrafish is not related to either 
the DV axis or the left–right (LR) axis, and the blastomeres are intermingled during 
the blastula and gastrula stages (Kimmel and Law 1985; Kimmel and Warga 1987), 
indicating that Xenopus and zebrafish use distinct developmental strategies for 
cleaving and mixing the blastomeres. In bichir embryos, injection of rhodamine 
dextran into one of the two blastomeres at the two-cell stage marks cells in either the 
left or right half of the embryo (Fig. 32.5a) (Takeuchi et al. 2009a). Therefore, the 
first cleavage plane in bichir embryos demarcates the DV axis, and the blastomeres 
are not intermingled as they are in Xenopus embryos. Holoblastic cleavage is asso-
ciated with formation of embryonic cavities (the blastocoel and archenteron) and 
absence of the EVL and YSL. Bichir embryos have a blastocoel and an archenteron, 
and no EVL or YSL (Fig. 32.5), suggesting they have inherited an amphibian-type 
morphogenetic process. The embryonic structure of bichirs is also similar to that of 
the agnathan lamprey (Takeuchi et al. 2009b). It is tempting to speculate that the 
morphogenetic process of the bichir embryo may be similar to that of ancestral fish; 
the EVL and YSL might have evolved in the ray-finned fish lineage after the bichir 
had diverged from the ray-finned fish.

32 Axis Formation and Its Evolution in Ray-Finned Fish



Fig. 32.4 Vertebrate phylogenic tree and cleavage patterns. Basal chordate embryos undergo 
holoblastic cleavages. As the common ancestor of vertebrates evolutionarily acquired a massive 
yolk (indicated by the yellow color in the embryos), their cleavage patterns were highly diversified. 
The holoblastic cleavage pattern is retained in various vertebrate lineages (indicated by red lines). 
The transition from a holoblastic to a meroblastic cleavage pattern occurred independently several 
times in the vertebrate lineages (yellow circles). Bichirs (Polypteriformes)—the most primitive 
ray-finned fish (Actinopterygii)—undergo holoblastic cleavages, as do amphibians. Bichirs 
diverged from all other ray-finned fish about 400 million years ago (Mya) during the Devonian 
period, before the teleost-specific (TS) whole-genome duplication (WGD) and soon after an ances-
tral bony fish diverged into ray-finned and lobe-finned fish (Sarcopterygii)

Fig.  32.5 (continued) midline region, fluorescent image). Dotted lines indicate the midline. (b) 
Germ layer patterning in the bichir and lamprey during gastrulation. Bichir and lamprey embryos 
have a blastocoel and an archenteron but no enveloping layer (EVL) or yolk syncytial layer (YSL). 
Both the mesoderm (red) and endoderm (green) are formed in the marginal zone of the bichir embryo 
and in the conical eminence of the lamprey embryo during early gastrulation. In the bichir embryo, 
the vegetal cell mass (VCM) is an extraembryonic structure, which does not contribute to the endo-
derm. The archenterons are marked by asterisks. (c) Evolution of endoderm and mesoderm induction 
in vertebrates. In the vertebrate ancestor, vegetal cells might have induced the endoderm (green 
arrow) and mesoderm (pink arrow) in the embryo; the bichir VCM retains this activity. With the 
holoblastic-to-meroblastic transition, this activity was retained in the YSL of teleost embryos. The 
activity was incorporated into the endoderm cells of amphibian embryos as the vegetal cells became 
the endoderm. In amniote embryos, the activity was retained in the visceral endoderm or the hypo-
blast, which are extraembryonic structures



Fig. 32.5 Early bichir and lamprey embryogenesis. (a) In bichirs, as in amphibians, the first cleavage 
plane of the embryo demarcates the dorsoventral (DV) axis. However, there is no correlation between 
the first cleavage and the body axes in teleost embryos. In bichirs, rhodamine injection into one of the 
blastomeres of a two-cell-stage embryo (left panel) results in fluorescence mostly in either the left or 
right half of the embryo at the tailbud stage (middle left panel: bright-field image; middle right panel: 
merged images from bright-field and fluorescent images; right panel: high-magnification view of the 
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32.7.3  Molecular Mechanisms Controlling Bichir Embryonic 
Development

It is thought that a cytoplasmic fusion of vegetal blastomeres during the evolution 
of ray-finned fish brought about the teleost YSL (Figs. 32.4 and 32.5). The zebrafish 
YSL and the Xenopus vegetal endoderm are strikingly similar in their ability to 
induce the mesoderm and endoderm. However, the cellular identity of the teleost 
YSL is distinct from that of the Xenopus vegetal endoderm. The Xenopus vegetal 
endoderm expresses endodermal markers and gives rise to endoderm tissues such as 
the pancreas, liver, and gut, whereas the teleost YSL is an extraembryonic tissue that 
does not express endoderm markers. Bichir embryos, like Xenopus embryos, have 
vegetal blastomeres, which raises the question of whether the vegetal blastomeres in 
bichir embryos are endoderm cells.

However, recent histological analyses of bichir and lamprey embryos, using 
molecular markers, has revealed that the vegetal blastomeres in bichirs and lam-
preys are extraembryonic nutritive cells that do not express endoderm markers 
(Takeuchi et al. 2009b). The endoderm and mesoderm form in the equatorial (mar-
ginal) zone (the conical eminence in lampreys). The Nodal-related gene ndr1, which 
is expressed in the zebrafish YSL, is also expressed in the equatorial zone of bichir 
embryos (Takeuchi et al. 2009b). Although bichir and lamprey embryos are mor-
phologically similar to Xenopus embryos, the localization of the mesoderm and 
endoderm in bichir and lamprey embryos is similar to that in zebrafish (teleost) 
embryos (Fig. 32.5).

The T-box transcription factor Tbx16/VegT is required for endoderm formation 
and for vegetal cell induction of the mesoderm in Xenopus. Tbx16/VegT mRNA is 
maternally deposited at the vegetal pole of the Xenopus egg (Zhang et al. 1998). In 
contrast to Xenopus, bichirs do not express tbx16 maternally or in vegetal blasto-
meres (Takeuchi et al. 2009b). There is no tbx16 homologue in the lamprey genome. 
The mRNA of Eomesodermin homologue  a (Eomesa, Eomes, Tbr2)—another 
T-box transcription factor involved in endoderm formation—is maternally depos-
ited and zygotically expressed in the prospective endoderm in zebrafish (Bjornson 
et  al. 2005). As with zebrafish, eomes transcripts are maternally deposited and 
zygotically expressed in the endoderm region in bichir and lamprey embryos 
(Takeuchi et al. 2009b). These data suggest that although bichirs and lampreys fol-
low the amphibian-type morphogenetic process, they use the teleost-type mecha-
nism for germ layer formation. The lamprey and bichir lineages are phylogenetically 
distant but use similar mechanisms for embryonic morphogenesis and germ layer 
formation. This developmental strategy—amphibian-type (holoblastic) morpho-
genesis and teleost-type germ layer formation—might have been used by the com-
mon ancestors of the vertebrates (the stem lineage). As maternal tbx16/VegT 
expression is common to at least some amphibians, Tbx16/VegT-dependent differ-
entiation of the endoderm of the vegetal cells might have evolved in the amphibian 
lineage (Takeuchi et al. 2009b).
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32.7.4  Bichir DV Axis Formation

Injection of Xenopus β-catenin mRNA into both blastomeres of a two-cell-stage 
bichir embryo can induce a secondary axis, as in Xenopus (Takeuchi et al. 2009a) 
(Fig. 32.6). This observation indicates that the maternal canonical Wnt pathway also 
plays a key role in dorsal determination in the bichir embryo. What molecule(s) 
function downstream from the Wnt pathway to control the expression of dorsal- 
specific genes in bichirs? Nodal-related genes are regulated by the Wnt pathway in 
both Xenopus and zebrafish (Sect. 32.5.2). In bichir embryos, ndr1 is expressed in 
the dorsal equatorial zone (Takeuchi et al. 2009b), suggesting that ndr1 may also be 
involved in inducing the dorsal organizer, as proposed for zebrafish. The transcrip-
tional repressor Dharma functions downstream from the Wnt pathway to induce 
dorsal tissues in zebrafish (Leung et al. 2003b; Ryu et al. 2001; Shimizu et al. 2000), 
whereas the transcriptional activator Siamois and its paralog Twin mediate this pro-
cess in Xenopus (Ishibashi et al. 2008; Kessler 1997; Laurent et al. 1997; Lemaire 
et al. 1995). Injection of the mRNA of the bichir Siamois-related transcription acti-
vator into Xenopus embryos can induce a secondary axis (Masaki Takeuchi, unpub-
lished data). These data suggest that bichirs use the amphibian-type mechanism—at 
least in part—for Wnt signal–mediated induction of dorsal tissues. Although 
siamois- related genes have not been identified in lampreys or other nonbichir fish, 
the presence of the siamois-related gene in bichirs suggests that common ancestors 
of the bony fish might have used Siamois-related transcription factor(s) for dorsal 
axis formation (Fig. 32.6). During teleost evolution, the siamois-related gene was 
lost, and dharma might have evolved (or diverged from goosecoid) in the teleost 
lineage (Leung et al. 2003b; Ryu et al. 2001; Shimizu et al. 2000).

32.8  Perspectives

Although we understand many aspects of the molecular mechanisms that control 
axis formation in zebrafish, there are many unanswered questions, including how 
the oocyte AV polarity is initially established during oogenesis, how the vegetal 
pole mRNAs are transferred through the Balbiani body to the vegetal pole, what 
initiates the formation of the vegetal microtubules, how the vegetal microtubules are 
oriented to the prospective dorsal side, and how patterning signals (Wnt, Bmp, 
Nodal, Fgf, etc.) are coordinated to control axis formation.

Many loss-of-function studies of zygotic genes have used antisense morpholi-
nos. Recent genome-editing techniques, such as the CRISPR/Cas9 and TALEN sys-
tems, can generate mutants of genes of interest, which will allow us to determine the 
function of genes whose mutants were not isolated by forward genetic screening. 
Germline replacement with the genetic mutants will enable us to understand the role 
of maternal factors (Ciruna et  al. 2002). It has been reported that antisense 
morpholino- mediated knockdown and genetic knockout (mutation) often lead to 
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different phenotypes (Kok et al. 2015; Stainier et al. 2015). Although genetic com-
pensation (upregulation of genes that compensate for loss of target genes) may 
explain such discrepancies (Rossi et  al. 2015), we may need to reevaluate data 
obtained from antisense morpholino experiments.

In dorsal determination, regulation of microtubule formation and microtubule- 
dependent transport play essential roles. Visualization of the components involved 
in dorsal determination, along with time-lapse analysis, will reveal the molecular 
dynamics associated with DV axis formation. Mathematical modeling with precise 
transcriptome (single-cell transcriptome) data should help us understand the intri-
cate processes that coordinate multiple signals.

Fig. 32.6 Axis formation in bichirs and its evolution in vertebrates. A siamois-related gene might 
have mediated the canonical Wnt pathway to induce the dorsal axis in the common ancestor of the 
bony fish. During evolution, the siamois-related gene was retained in the amphibian and bichir 
genomes, but it was lost in the amniote and teleost genomes. In contrast, dharma evolved to func-
tion as a Wnt target for dorsal axis formation in teleosts
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There are also questions with respect to evolution, including to what degree the 
axis formation mechanisms are conserved among fish; whether the bichir-type 
developmental mechanism (amphibian-type morphogenetic process, teleost-type 
germ layer formation, and amphibian-type dorsal axis formation) is used by 
Cyclostomata (lamprey and hagfish), cartilaginous fish, lobe-finned fish, and nonte-
leost ray-finned fish; and how stem lineage axis formation is adapted for the amni-
ote lineage. Sequencing with next- and third-generation sequencers enables us to 
reveal the genome sequences and transcriptomes of nonmodel animals, and whole- 
genome sequencing of bichir is in progress. Genome-editing techniques also allow 
us to study gene function in these animals. In the future, we will be able to discuss 
the details of the molecular mechanisms that form the body axes in many different 
vertebrate species, and find the blueprint for the evolution of axis formation in 
vertebrates.

Note We have recently reported that maternal wnt8a is dispensable for the initial dorsal determi-
nation but cooperates with zygotic wnt8a for ventrolateral and posterior tissue formation. Maternal 
wnt6a is an alternative dorsal determinant candidate (Hino et al. Dev Biol 434(1), 96–107, 2018). 
The data suggest that Wnt8a, Wnt6a, and possibly other Wnts that are expressed maternally may 
cooperate to activate the canonical Wnt pathway for the dorsal axis formation.
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