
Chapter 11
Test Coverage
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and Yuta Yamato

Abstract Verification is a process to prove the correctness of the design of a
system referring the design information to requirements specification, and test is a
process to prove that a system in its actual embodiment in either prototype or real
product performs up to the description of the specification. Whatever functions,
performance, or dependability may have been conceived, designed, and built into a
system, one can be certain that the actual product exhibits such properties only to
the extent that the design has been verified and the product has been tested. In
reality, comprehensive coverage of verification and test over ramified combination
of functionalities, use cases, and operational conditions becomes increasingly more
difficult as systems become more complex. The verification and test are thus very
important for assuring system’s quality. This chapter addresses some of the key
issues of verification and test of electronic systems that use VLSIs as essential
components with an emphasis on dependability. Section 11.1 is an overview of the
issues and discusses the metrics of verification and test coverage. Section 11.2
addresses two topics: detection of errors in logic design and formal verification, the
latter being a method to verify logic design by mathematical reasoning. Sec-
tion 11.3 introduces the use of Built-in Self-Test (BIST) method to monitor circuit
delays in a VLSI precisely enough to be able to predict failures due to device
degradation in operation. Section 11.4 proposes a way to accurately measure the
delays in the presence of temperature and voltage variation experienced in the field.
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11.1 Verification and Test Coverage

Koichiro Takayama, Fujitsu Ltd.

Coverage metrics are widely used in the verification and validation of both hard-
ware and software to show the progress as well as the goal of the verification and
validation process.

Some of the dependable design techniques described in this book are applied to
logic circuits in a system. In order to achieve the intended dependability of the
system, it is necessary to make sure that the circuits operate correctly.

The objective of the verification is to make a design bug free, but as far as we
know, there are no coverage metrics to satisfy this objective such that by achieving
100% coverage it guarantees the design works perfectly.

In this article, topics of coverage metrics in verification and test are described.

11.1.1 Verification Coverage Metrics

In this section, coverage metrics for logic verification are described.
Coverage metrics provide aspects to express if the logic in the design under

verification (DUV) is activated in logic simulation or not.
Coverage metrics are categorized into three as follows;

(1) Code coverage

This is one of the most basic metrics to show which parts of the source code of the
DUV written in a hardware description language are covered. Most of the logic
simulators can measure the coverage automatically during simulation of the DUV.
Major code coverage metrics are as follows.

• Line coverage: the fraction of lines of source code which are executed.
• Condition coverage: the fraction of subexpressions of Boolean expressions

which are evaluated to true and false.
• FSM coverage: the fraction of the states of a finite state machine (FSM) which

are visited.

Code coverage does not guarantee that the DUV is totally correct since code
coverage neither uncovers unimplemented features, nor measures concurrent or
temporal behaviors of the DUV.
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(2) Functional coverage based on the design implementation

This metric is manually derived by a designer by focusing on the implementation-
dependent features of the DUV, for example, if the read or write operation took
place when a FIFO is empty or full, it is checked whether a pipeline is stalled, or a
request is acknowledged within five cycles. It depends very much on the designer’s
experience and attention how high the resulting verification coverage will be.

(3) Functional coverage based on the design specification

This metric is manually derived from the specification of the DUV by a designer.
The derived behavior is concurrent or temporal but independent of the imple-
mentation. In many cases, the metric is written in SystemVerilog Assertions
(SVA) [1] or PSL [2]. When the derived behavior is too difficult to write in SVA or
PSL, a coverage model is written in a hardware description language and the
coverage metrics [1] and/or [2] are applied to the model. The coverage will again
depend pretty much on the designer’s skills.

11.1.1.1 Coverage Metrics with High Correlation to Design Bugs

As described above, coverage metrics are used to define the verification goal.
Importantly, it should be noted that more design bugs can be found by achieving
100% of a coverage metric and using better metric. From this point of view, it may
be useful to make a new metric by analyzing the design bugs experienced in the
past.

In this section, we illustrate an example of metric relating to a bug of incorrect
priority of the branch condition. In Fig. 11.1, code A shows a code fragment with
an incorrect order of the branch conditions while code B shows the correct one
where the condition C should have a higher priority than condition B.

When a set of four vectors (condition A, condition B, condition C) = (true, false,
false), (false, true, false), (false, false, true), (false, false, false) is applied to code A
and code B, the line coverage for both code is 100%, but the bug is uncovered.

A vector (false, true, true) can uncover the bug. And, in order to verify the
priority of all of the combinations of two conditions among three, a set of vector

if ( conditionA ) 
statementA ; 
else if ( conditionB ) 
statementB ; 
else if ( conditionC ) 
statementC ; 
else statementD ; 

 if ( conditionA ) 
statementA ; 
else if ( conditionC ) 
statementC ; 
else if ( conditionB ) 
statementB ; 
else statemetnD ; 

(a) codeA : incorrect design  (b) codeB : correct design 

Fig. 11.1 Example of a design bug
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(condition A, condition B, condition C) = (true, true, false), (true, false, true),
(false, true, true), (false, false, true), (false, false, false) is required.

As described in this section, if a pattern in the structure of the source code
(design implementation) can be identified by analyzing the bug, a coverage metric
can be derived which contributes to the design quality effectively.

11.1.1.2 Cooperation of Logic Simulation and Formal Verification

Formal verification is a technique to prove mathematically whether a design sat-
isfies a property (specification). If a design does not satisfy a property, a coun-
terexample, i.e., an input vector sequence which violates the property, is generated.

If the negation of a coverage metric can be written in a set of properties, by
formally verifying the properties against the DUV, part of the coverage space can
be eliminated when corresponding property is proved to be redundant, or an input
vector sequence for a corner case can be generated as a counterexample. Such
cooperation between logic simulation and formal verification has been widely used.

11.1.2 Test Coverage

In this section, issues in manufacturing test to validate dependability of the com-
puter system are discussed. The major causes of malfunction of the system in the
field are timing errors by aging and occasional soft error by radiation events such as
collision of cosmic rays or alpha particles.

11.1.2.1 Test Coverage for Soft-Error Resilience

Soft-error resilience is one of the main topics of dependability described in Chap. 3.
Many existing designs have adopted various techniques in order to recover from the
intermittent 1-bit error, for example, error control coding (ECC) for data path, triple
modular redundancy for control logic, soft-error tolerant flip-flops, hardware
instruction retry. In order to validate the soft-error resilience circuitry after fabri-
cation, the hardware might have a feature to inject a pseudo 1-bit error. It is another
coverage problem what additional logic is required to validate soft-error resiliency
efficiently.

11.1.2.2 Test Coverage for Timing Error

Recent high-performance computing systems consist of more than tens of thou-
sands processors. In order to reduce timing errors caused by aging in field, they
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require appropriate timing optimization for critical paths at design phase and
manufacturing test to validate critical paths while keeping a high signal active ratio.

Figure 11.2 shows an example of chip test flow from the view of timing error.

• At design phase, timing is optimized by taking signal integrity and power noise
into account. Circuit simulation considering parasitic elements is useful to assess
signal integrity affected by cross-talk, ringing, etc.

• At prototyping phase, engineering sample has been tested to extract paths with
low margins.

• Timing is further optimized for the extracted paths.
• Manufacturing test is applied to eliminate chips with low margins caused by

manufacturing variability.

There are two problems in the flow as follows.

(1) At the design phase, static timing analysis (STA) is applied. When the latest
device technology is used, calibration of the model parameters has to be done
carefully.

(2) Test pattern for critical paths extracted by STA should be generated with high
signal active ratio to validate signal integrity and power noise effect.

11.1.3 Summary

In this article, we described the following challenges of coverage metrics:

• How a verification coverage metric can be addressed by taking the character-
istics of design bug into account.

• How a test coverage metric can be addressed by taking signal integrity and
power noise effect into account.

Design phase

Prototyping

Manufacturing test phase

Production System test Shipment

Test pattern
generation

Failed paths list

Timing optimization

Timing optimization

Margin test
(power, temperature,

frequecy)

Fig. 11.2 Example flow of a chip test
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11.2 Design Errors and Formal Verification

Masahiro Fujita, The University of Tokyo
Takeshi Matsumoto, Ishikawa National College of Technology
Kosuke Oshima, Hitachi, Ltd.
Satoshi Jo, The University of Tokyo

11.2.1 Logic Design Debugging

Logic design verification and debugging is one of the most time-consuming tasks in
VLSI design processes. Once incorrect behaviors are detected through simulation
and/or formal verification process, the design must be logically debugged. Incorrect
behaviors are represented in the form of counterexamples which are generated from
simulation/formal verification. Counterexamples are the input/output patterns,
where output patterns are different from the correct expected patterns inferred from
the specification. In this section, we deal with logic debugging processes mostly
targeting gate-level designs by analyzing counterexamples. We show through
experiments that even with small numbers of counterexamples, complete logic
debugging is feasible, which shows practical effectiveness of the proposed
approach. Also, in order to make the proposed method powerful enough for
practical designs in terms of logic debugging, we introduce a “necessary condition”
for the selection of signals in Sect. 11.2.4.3, when correcting the logical bugs. This
necessary condition takes a very important role to filter out non-useful signals for
the selection and significantly improves the performance of the logical debugging.

Once counterexamples in the verification processes are generated, logic
debugging processes must start. Logic design debugging consists of two phases.
The first phase is to locate suspicious portions of the design by analyzing the
internal behaviors of the buggy design with its counterexamples. The second phase
is to actually correct those suspicious portions by replacing them with appropriate
new circuits.

Path tracing and its generalization with SAT (satisfiability checking)-based
formulation are the common and widely used approaches for the first phase. They
can locate suspicious portions assuming that those may be replaced with new
circuits whose inputs are possibly all primary inputs of the target circuit. These
techniques are very briefly reviewed in Sect. 11.2.2. For details, please see [3].

We present a formulation based on LUT (Lookup Table) for the second phase of
the logic debugging process. As a LUT can represent any logic functions with the
given set of input variables, correction is guaranteed to succeed as long as the input
variables of the LUTs are appropriately selected. We present the correction method
as well as heuristic methods for selecting input variables of LUTs in Sect. 11.2.3.

The last subsection gives future perspectives on logic design debugging.
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11.2.2 Identification of Buggy Portions of Designs

In general, a counterexample is an example run of the target buggy design, where
some of the output values are different from the expected values inferred from the
specification, that is, they are incorrect. The first phase of the logical debugging is
to locate the cause of the bugs by analyzing a given set of counterexamples. It is
realized by locating the suspicious internal signals, whose values are the cause of
the wrong output values.

This analysis can be realized by tracing who are in charge of the incorrect output
values, which is called “path tracing” in general. By tracing the functional
dependencies in the logic circuits, the set of internal gates which determine the
values of such outputs can be generated. They should include the root cause of the
bugs in the sense that by modifying the functionality of those gates, the incorrect
output values can become correct.

Path tracing methods are generalized using SAT-based formulation, called
SAT-based diagnosis, in [3]. Please note that the methods such as path tracing and
the ones in [3] examine the designs only with counterexamples given and do not
refer to specifications. Also they guarantee correctability if the set of gates identified
can be replaced with some appropriate logic functions with possibly all primary
inputs. That is, we may need to identify the appropriate sets of inputs of the gates,
which could be very different from the current sets of inputs, for correction. This is
a critical issue for the correction part of debugging as shown below.

11.2.3 Correction of Buggy Portions

11.2.3.1 Basic Idea

In this paper, we focus on debugging gate-level designs. We assume existence of a
specification in terms of golden models in RTL or in gate level. Our method tries to
let a given circuit under debugging behave equivalently to the specification through
modifications inside the circuit. That is, we need to identify the appropriate different
functions for some of the internal gates for corrections. To achieve this, we
introduce some amount of programmability with LUTs and MUXs in the circuit
under debugging and find a way to program the introduced programmable circuits
for the purpose of formulating the debugging processes mathematically. Please note
that after identifying such appropriate functions for internal gates, those gates are
assumed to be completely replaced with new gates corresponding to those func-
tions. That is, programmability is introduced only for mathematical modeling and is
nothing to do with actual implementations.

The basic idea of our proposed debugging methods is to correct a circuit under
debugging by finding another logic function with the same set of inputs for each
gate that is identified as a bug location, in such a way that the entire circuit becomes
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equivalent to its specification. In other words, our method tries to replace each of
the original (possibly) buggy gates with a different logic gate having the same input
variables. So the new gate to be used for replacement may have to realize com-
plicated logic functions with the same inputs and cannot be implemented with a
single gate, but with a set of simple gates, such as NAND, NOR, etc. As described
in the following, we utilize an existing method proposed by Jo et al. [4, 5] to
efficiently derive logic functions of programmable circuits. There are, however,
bugs which cannot be corrected if the input variables of the gates remain the same.
In such cases, we need to add an additional input variable to LUTs or MUXs. When
the number of variables in a circuit is very large, it is not practical to check all the
variables one by one. To quickly find variables which cannot improve the chance of
getting a correct logic when they are connected to LUTs or MUXs, we introduce a
necessary condition that should be satisfied by each variable in order to improve the
chance of correction. We also propose an efficient selection method based on that
condition.

11.2.3.2 Base Algorithm: Finding a Configuration of LUTs
Using Boolean SAT Solvers

For easiness of explanation, in this paper we assume the number of outputs for the
target buggy circuit is one. That is, one logic function in terms of primary inputs
can represent the logic function for the entire circuit. This makes the notations much
simpler, and also extension for multiple outputs is straightforward.

As there is only one output in the design, a specification can be written as one
logic function with the set of primary inputs as inputs to the function. For a given
specification, SPECðxÞ and an implementation with programmable circuits,
IMPLðx, vÞ, where x denotes the set of primary input variables and v denotes the set
of variables to configure programmable circuits inside, the problem is to find a set
of appropriate values for v satisfying that SPEC and IMPL are logically equivalent,
which can be described as QBF (Quantified Boolean Formula) problem as follows:
∃v ⋅ ∀x ⋅ SPECðxÞ= IMPLðx, vÞ. That is, with appropriate values for v, regardless
of input values (values of x), the circuits must be equivalent to the specification, i.e.,
the output values are the same which can be formulated as the equivalence of the
two logic functions for the specification and the implementation. There are two
nested quantifiers in the formula above, that is, existential quantifiers are followed
by universal quantifiers, which are called two-level QBF in general. Normal SAT
formulae have only existential quantifiers and no universal ones.

In [4], Jo et al. proposed to apply CEGAR (Counterexample-Guided Abstraction
Refinement)-based QBF solving method to the circuit rectification problem. Here,
we explain the method using 2-input LUT for simplicity although LUT having any
numbers of inputs can be processed in a similar way. A 2-input LUT logic can be
represented by introducing four variables, v00, v01, v10, v11, each of which corre-
sponds to the value of one row of the truth table. Those four variables are multi-
plexed with the two inputs of the original gate as control variables, as shown in
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Fig. 11.3. In the figure, a two-input AND gate is replaced with a two-input LUT.
The inputs, t1, t2, of the AND gate becomes the control inputs to the multiplexer.
With these control inputs, the output is selected from the four values,
v00, v01, v10, v11. If we introduce M of 2-input LUTs, the circuit has 4 ×M more
variables than the variables existed in the original circuit. We represent those
variables as vij or simply v which represents a vector of vij. v variables are treated as
pseudo primary inputs as they are programmed (assigned appropriate values) before
utilizing the circuit. t variables in the figure correspond to intermediate variables in
the circuit. They appear in the CNF of the circuits for SAT/QBF solvers.

If the logic function at the output of the circuit is represented as fIðv, xÞ where x
is an input variable vector and v is a program variable vector, after replacements
with LUTs, the QBF formula to be solved becomes ∃v ⋅ ∀x ⋅ fIðv, xÞ= fSðxÞ, where
fS is the logic function that represents the specification to be implemented. Under
appropriate programming of LUTs (assigning appropriate values to v), the circuit
behaves exactly the same as specification for all input value combinations.

Although this can simply be solved by any QBF solvers theoretically, only small
circuits or small numbers of LUTs can be successfully processed [4]. Instead of
doing that way, we here like to solve given QBF problems by repeatedly applying
normal SAT solvers using the ideas shown in [6, 7].

Basically, we solve the QBF problem only with normal SAT solvers in the
following way. Instead of checking all value combinations on the universally
quantified variables, we just pick up some small numbers of value combinations
and assign them to the universally quantified variables. This would generate SAT
formulae which are just necessary conditions for the original QBF formulae. Please
note that here we are dealing with only two-level QBF, and so if universally
quantified variables get assigned actual values (0 or 1), the resulting formulae
simply become SAT formulae. The overall flow of the proposed method is shown
in Fig. 11.4. For example, if we assign two combinations of values for x variables,
say a1 and a2, the resulting SAT formula to be solved becomes like:
∃v ⋅ ðfIðv, a1Þ= fSða1ÞÞ∧ ðfIðv, a2Þ= fSða2ÞÞ. Then, we can just apply any SAT
solvers to them. If there is no solution, we can conclude that the original QBF
formulae do not have solution neither. If there is a solution found, we need to make
sure that it is a real solution for the original QBF formula. Because, we have a
solution candidate vassigns (these are the solution found by SAT solvers) for v, we
simply make sure the following: ∀x ⋅ fIðvassigns, xÞ= fSðxÞ. This can be solved by
either usual SAT solvers or combinational equivalence checkers. In the latter case,

Fig. 11.3 LUT is represented
with multiplexed four
variables as truth table values
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circuits with tens of millions of gates may be processed, as there have been con-
ducted significant amount of researches for combinational equivalence checkers
which utilize not only state-of-the-art SAT techniques but also various analysis
methods on circuit topology. If they are actually equivalent, then the current
solution is a real solution of the original QBF formula. But if they are not equiv-
alent, a counterexample, say xsol, is generated and is added to the conditions for the
next iteration: ∃v ⋅ ðfIðv, a1Þ= fSða1ÞÞ∧ ðfIðv, a2Þ= fSða2ÞÞ∧ ðfIðv, xsolÞ= fSðxsolÞÞ.
This solving process is repeated until we have a real solution or we prove the
nonexistence of solution. In the left side of Fig. 11.4, as an example, the con-
junction of the two cases where inputs/output values are ð0, 1, 0Þ ̸1 and ð1, 1, 0Þ ̸0
is checked if satisfiable. If satisfiable, this gives possible solutions for LUTs. Then
using those solutions for LUTs, the circuit is programmed and is checked to be
equivalent with the specification. As we are using SAT solvers, usually
nonequivalence can be made sure by checking if the formula for nonequivalence is
unsatisfiable.

Satisfiability problem for QBF in general belongs to P-Space complete. In
general, QBF satisfiability can be solved by repeatedly applying SAT solvers,
which was first discussed under FPGA synthesis in [8] and in program synthesis in

Generate necessary conditions 
as the conjunction of formulae 
with a set of value assignments 
to the universally quantified variables
(value assignments of primary inputs)

Solve by 
normal SAT 

solver

Existentially quantified variables are 
replaced with the solution
Generate formula for the non-
equivalence between specification 
and implementation 

Solve by 
normal SAT 

solver
No solution exits

A solution found

Circuit under debug
LUT

LUT

LUT
LUT

Circuit under debug
LUT

LUT

LUT
LUT

0

0

0

1

1

1

1

0

Conjunction

Circuit under debug
LUT

LUT

LUT
LUT

Specification

x1

x3

x2

Non-equivalence

x1

x3

x2

SAT

Non-equivalent
(with new counter example)

UNSAT

Equivalent

Fig. 11.4 Overall flow of the rectification method in [4]
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[9]. The techniques shown in [6, 7] give a general framework on how to deal with
QBF only with SAT solvers. These ideas have also been applied to so-called partial
logic synthesis in [5].

11.2.3.3 Proposed Method to Correct Gate-Level Circuits

Overall Flow

Figure 11.5 shows an overall flow of our proposed correction method. Given

• a specification,
• an implementation circuit that has bugs, and
• a set of candidate locations of the bugs,

The method starts with replacing each logic gate corresponding to a candidate bug
location with a LUT. Each inserted LUT has the same set of input variables as its
original gate. Then, by applying the method in [4, 5], we try to find a configuration
of the set of LUTs so that the specification and the implementation become logi-
cally equivalent. Once such a configuration is found, it immediately means we get a
logic function for correction. Then, another implementation will be created based
on the corrected logic function, which may require re-synthesis or synthesis for
ECO (Engineering Change Order). Although the method to compute a configura-
tion of LUTs for correction in [4, 5] is relatively more efficient than most of the
other methods, it can solve up to hundreds of LUTs within a practical runtime.
Therefore, it is not practical to replace all of the gates in the given circuit with

Start

Replace each gate, which is 
identified as a (possible) bug 

location, with a LUT

Any correction 
found ?

Look for a configuration of 
LUTs for correction by 

applying the methods in [2,7]

Correct succeeded

Refine locations or 
connections of LUTs

Yes

No

Modify the implementation 
based on the correction

There may be time-out

Fig. 11.5 An overall correction flow
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LUTs, and the number of LUTs inserted into the implementation influence a lot on
the runtime for correction. In order to obtain candidate locations of bugs, existing
methods such as [3] can be utilized. In this work, we employ a simple heuristic,
which is similar to the path tracing method that all gates in logic cones of erroneous
primary outputs are replaced with LUTs when they are within a depth of N level
from the primary outputs. Figure 11.6 shows an example of such introduction of
LUTs. In this figure N =2. In the experiments described in Sect. 11.4, N is set to 5.
This number is determined through experiments. If the number is larger, there are
more chances for the success of corrections. On the other hand, if the number is
smaller, we can expect faster processing time.

There can be cases where any correction cannot be found for a given imple-
mentation with LUTs. There can be varieties of reasons on the failure. It may be due
to the wrong selection of the target gates to be replaced, the inputs to LUTs are not
sufficient, or other reasons. In this section, we assume that bugs (or portions that are
implemented differently from designers’ intention or specification) really exist
within the given candidate locations. And, we may need to add more variables to
the inputs of the LUTs to increase the chances of corrections, which are discussed
in the next subsection.

Adding Variables to LUT Inputs

As mentioned above, there are bugs that cannot be corrected with LUTs having the
same set of input variables as their original gates, if so-called “missing wire” bugs
in Abadir’s model [10] are happening. Figure 11.7 shows a simple example. In this
example, the logic function of an implementation generates A∧B∧C, while its
specification is A∨B∨C ∨D. With a LUT whose inputs are A,B,C that replaces
the original AND gate in the incorrect implementation, we cannot get any con-
figuration of its truth table for correction, since D is essential to the correct logic
function. In general, assuming that bugs really exist within the gates that are
replaced with LUTs, the reason why we cannot obtain any correction is due to the
lack of variables that should be connected to appropriate LUTs. Therefore, what we

LUT

LUT

LUT

N=2

Fig. 11.6 An example of LUT insertions
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need to do in the refinement phase in Fig. 11.5 is adding extra variables to LUT
inputs and try to find a correction again. If we inappropriately add a set of variables
to input of some LUTs, however, it simply results in no solution in the next iteration
of the loop in Fig. 11.5. The number of ways to add extra variables to input of
LUTs is large, which cannot be checked one by one in practice. In our method, we
try to correct the implementation with adding as small numbers of variables as
possible. First, all possible ways to add one variable to LUTs are tried. If no
correction can be found, then the method looks for correction with two additional
variables to one or two LUTs. Basically, we continue this process until we find
corrections.

Using MUXs to Examine Multiple Additional Variables

As discussed above, the method looks for any correction with adding variables to
the inputs of LUTs. Even if only one variable is added to the input of some LUT,
we need to iterate the loop in Fig. 11.5 many times until any correction is found or
there is a proof of no solution. For a large circuit, the number of iterations may be
too large even for the case of adding one variable to a LUT. To make this process
more efficient, we introduce a multiplexer and connect multiple variables, which are
candidates to be added to a LUT, to its inputs. The output of the MUX and the
additional input of the LUT are connected as shown in Fig. 11.8. Then, we can
select which variable to be added to the LUT by appropriately assigning values to
the control variables of the MUX.

A
B
C Z

LUT
A
B
C

Z’

Z

A
B
C

Z’

There is no 
D signal

D

A
B
C
D

Fig. 11.7 An example bug
that cannot be corrected with
LUTs having the same inputs

Fig. 11.8 Additional input
variables to a LUT
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Figure 11.8 shows how multiplexers work for examining candidate variables
that may need to be added to the inputs of the LUT in order to get a correction.
The LUT in the example originally has three inputs, A,B, and C, which means this
LUT is supposed to be replaced with some 3-input logic gate for corrections.
Assume that we want to examine which variable to be added as an input of the
LUT, using the MUX in the example, we can examine four additional candidate
variables, D,E,F, and G at one iteration. Here, we need to treat the control vari-
ables as program variables, that is, same as the ones in the LUTs. If any correction
is found, the corresponding values of the control variables identify a variable for
addition. That is, if it becomes an input of the LUT connected to the MUX, the
implementation can be equivalent to its specification. Otherwise, all variables
connected to inputs of the LUT cannot make the incorrect implementation equiv-
alent to its specification. A straightforward way to realize something similar is to
introduce LUTs having larger numbers of inputs rather than using MUX. This is
definitely more powerful in terms of the numbers of function which can be realized
at the output of the LUTs. In the example shown in Fig. 11.8, instead of using a
MUX, a LUT having seven inputs may be used, and that LUT can provide much
more different functions for possible corrections. The problem, however, is the
number of required program variables. If we use a MUX in the example, we need
24 + 2= 18 variables. If we use a seven-input LUT, however, we need 27 = 128
variables, which needs significantly more time to process.

Even when MUXs are used to examine multiple variables at the same time, we
should be aware of the increase of the number of program variables. As can be seen
in [4, 5], the number of program variables increases runtime for finding a correc-
tion, which corresponds to the runtime spent for each iteration of the loop in
Fig. 11.5. Please note that one iteration in Fig. 11.5 may include many iterations in
Fig. 11.4. In the experiments, we show a case study with varieties of numbers of
inputs to MUX.

Filtering Out Variables Based on Necessary Condition

When a variable is added to an input of a LUT, it may not be an appropriate
variable to correct the target bug. Even with the more efficient method using MUXs
described above, we should not try to examine a variable which cannot correct the
bug. In this subsection, we propose a method for filtering out such non-useful
variables from the set of candidate variables that can be connected to inputs of
LUTs utilizing necessary conditions on the correctability.

Necessary Condition for the Variables to Be Added

For simplicity, the following discussion assumes that there is one LUT added to an
implementation circuit. It can be easily extended to the cases of a set of multiple
LUTs, where each LUT does not have any other LUTs in its fan-in cone (i.e., an
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LUT depends on other LUTs). However, we here omit such cases. When no cor-
rection is found, which corresponds to taking “NO” branch in Fig. 11.5, we cannot
correct an implementation under debugging with the current LUT, which is the only
LUT added, with its current input variables. The reason why there is no correction
(i.e., no configuration of LUTs works correctly) is that the LUT outputs the same
value for different two input values to the LUT. This happens when “No solution” is
reached in Fig. 11.4. Figure 11.9 explains the situation. In the figure, xi is an input
pattern added in one of the previous iterations of the process shown in Fig. 11.4,
and xj is the pattern that is added as a result of the last iteration. Then, there can be
situations where the following two conditions are satisfied.

1. For a pair of primary input patterns xi and xj, the input values to the LUT linðxiÞ
and linðxjÞ are the same, where lin represents a logic function that determines an
input value to the LUT for a given primary input pattern. Therefore, the output
values from the LUT are also the same, that is, loutðxiÞ= loutðxjÞ.

2. In order to make the implementation equivalent to the specification for both xi
and xj, that is, fIðxiÞ= fSðxiÞ∧ fIðxjÞ= fSðxjÞ, loutðxiÞ and loutðxjÞ must be different,
where fS, fI denote logic functions of primary outputs of the specification and the
implementation, respectively.

Note that fSðxiÞ can be a different value from that of fSðxjÞ. With the conditions,
there is no way to have an LUT configuration that satisfies the specification for both
xi and xj at the same time. In this case, it cannot make an LUT configuration for
both xi and xj if we add a variable v to the LUT that has the same value for xi and xj
(vðxiÞ= vðxjÞ), since loutðxiÞ and loutðxjÞ are still the same. This is because the output
of the LUT can be represented as loutðlinðxÞ, vðxÞÞ for a primary input pattern x and
linðxiÞ= linðxjÞ∧ vðxiÞ= vðxjÞ implies lout are equivalent for xi and xj for any con-
figuration of the LUT.

The observation above suggests that we must not add a variable to the LUT input
if it has the same value for xi and xj. It gives us a necessary condition that the added
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variable to a LUT must have different values for xi and xj. If this necessary con-
dition is satisfied, there is a LUT configuration where loutðxiÞ≠ loutðxjÞ is satisfied,
which is a requirement to make fS = fI for both xi and xj. Note that fS = fI may not be
satisfied even lout is different for the two patterns.

Figure 11.10 shows how to make the output of the LUT different by adding a
variable that satisfies the necessary condition. Here, we denote the added variable to
the LUT as AðxÞ, where x is the primary input variables. An LUT configuration with
its input linðxÞ and AðxÞ is represented by l′outðxÞ, which is rewritten as
l′outðxÞ=PĀðlinÞ * Ā+PAðlinÞ *A, where PĀðlinÞ and PAðlinÞ represent truth table
values for lin when A=0 and A=1, respectively. This is nothing but Shannon’s
expansion of l′out. If the added variable AðxÞ that satisfies the necessary condition
takes 1 for xi and 0 for xj, we can make a LUT configuration satisfying
l′outðxiÞ≠ l′outðxjÞ by setting the two truth tables PA ̄ and PA appropriately. For the
case of xi =0 and xj =1, a LUT configuration can be obtained in a similar way.

Based on the discussion above, we can filter out variables from candidates when
they have the same value for both xi and xj. Now, we show an example of such
filtering. Figure 11.11a is the specification which is Z =A∨B∨C ∨D. Here, we
assume that this is one of the specifications and there are other outputs in the target
circuit. Now, assume that a wrong implementation is generated as shown in
Fig. 11.11b. Here the output only depends only on C and D, which is clearly
wrong. For the input values where all of inputs are 0, this implementation looks
correct as it generate the same output value, 0, as the specification. Please note that
the implementation has more gates in the circuit in order to realize the other outputs
which are not shown in the figure.

Then, we find a counterexample, which is A=0,B=1,C=0,D=0 as shown in
Fig. 11.12a. For these values, the correct output value is 1, but the value of the
output in the implementation is 0 as seen from Fig. 11.12b. Our debugging method
first replaces the suspicious gate, the OR gate, with a LUT as shown in Fig. 11.12c.
Unfortunately, there is no configuration for the LUT which makes the implemen-
tation correct, and so we need to add a variable to the LUT. Now, we have two
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candidates for the variable, t1 and t2 as shown in Fig. 11.12d. The necessary
condition discussed above requires that the value of the variable must be different
between the two cases, A=0,B=0,C=0,D=0 and A=0,B=1,C=0,D=0.
From this condition, the variable t1 is eliminated and the variable t2 is selected.

An Improved Flow with Filtering Variables

Figure 11.13 shows an improved flow with filtering variables based on the nec-
essary condition discussed above. When no correction is found for all the input
patterns so far, the method searches for a set of variables that can be added to an
LUT input. During this search, variables which do not satisfy the necessary con-
dition are filtered out. This consists of the following two steps:

1. Find an input pattern xi that is added in one of the previous iterations and has the
same input values of an LUT as those of the lastly added pattern xj.

2. Find a variable having different values for xi and xj.

As a result, the method tries to add a variable satisfying the necessary condition
to some LUT input. Then, with the added LUT input, the method looks for another
correction v by applying CEGAR-based method in [4, 5].

If this filtering method is applied with the method using MUXs to examine
multiple variables simultaneously that is described above, the filtering method
needs to pick up N variables, where N is the total number of input variables to
MUXs.
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11.2.4 Experimental Results

11.2.4.1 Experimental Setup

Three sets of experiments are conducted in order to evaluate our debugging
methods proposed in this paper. We use the following circuits for the experiments:
ISCAS85 benchmark circuits, an industrial on-chip network circuit (“Industrial”),
and an ARM Cortex microprocessor (“ARM processor”). While ISCAS85 circuits
are combinational ones, the last two circuits are sequential ones. All are in
gate-level designs. Table 11.1 shows the characteristics of these circuits. In order to
apply our method, sequential circuits need to be time-frame expanded. The numbers
of expanded time-frames (i.e., clock cycles for examinations) are shown in the
second column for Industrial and ARM processor.

We use PicoSAT [11] as a SAT solver. In order to convert the netlists written in
Verilog into SAT formulae, we use ABC [12] and AIGER [13]. All experiments
reported in this section are run on a computer with Intel Core 2 Duo 3.33 GHz CPU
and 4 GB Memory.

11.2.4.2 Simultaneous Examination on Multiple Variables
Using Multiplexers

First, we perform an experiment with our method that introduces multiplexers
(MUXs) into a circuit under debugging so that multiple extra variables are con-
nected to LUTS through MUXs. In this experiment, we identify the erroneous
primary outputs through simulation, and replace all gates in their logic cones within
the depth of 5 levels from the erroneous primary outputs with LUTs. Then, we

Table 11.1 Characteristics
of circuits

# of
expansion

Inputs Outputs Gates

ISCAS85 benchmarks

c499 202 41 32
c880 383 60 26
c1355 546 41 32
c1908 880 33 25
c2670 1193 233 140
c3540 1669 50 22
c5315 2307 178 123
c7552 3512 207 108
Others

Industrial 3 1201 1216 8289
ARM
processor

1 895 923 4666
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insert a N-input MUX to the circuit, and its output is connected to all LUTs. We
randomly choose sets of variables out of all primary inputs of the circuit to be
debugged, and they are connected to the inputs of MUXs.

If no solution for correction can be found, we replace all the input variables to
MUXs with another set of variables that are not examined yet and execute the
method again. In this experiment, the runtime is limited within 5 hours.

The results are shown in Table 11.2. N, the number of inputs to MUX, varies
from 1 to 256. N =1 means no MUX, in other words, a variable is directly added to
an input of all LUTs. “Change inputs” represents the number of variable sets that
are examined for correction. If this number is M, N ×M variables are examined in
total. As can be seen in the table, we need to run the method in [4, 5] only a few
times when the number of MUX inputs is 64 or 256. “Time” shows the total
runtime. We can see that the runtime for 256-input MUX is the shortest in both
circuits. Also, it is notable that we cannot find a correction within 5 hours without
MUX, since a lot of iterations are performed in order to check many variables one
by one.

11.2.4.3 Candidate Variable Filtering Using the Necessary Condition

Next, we experiment our method to search for candidate variables that can be added
to LUT inputs for a correction of the circuits. The method is based on the necessary
condition discussed in Sect. 11.3.3. In this experiment, only an incorrect gate is
replaced with an LUT. The candidates of variables are all variables in the circuit
under debugging. For this experiment, we need to record the values of internal
variables for all input patterns. For this purpose, we use Icarus Verilog simulator
[14].

The results are shown in Table 11.3. In this experiment, there is no MUX
inserted for the examination of multiple variables at once. Instead each variable is
examined one by one. From the table, we can see only small numbers of iterations
are required until getting corrections. Comparing to the results in Table 11.2 with

Table 11.2 Experimental results of simultaneous examination of candidate variables using
MUXs

Inputs of MUX Change inputs Time (s)

Industrial 1 (no MUXs) – Timeout (−)
16 15 5281
64 4 12794
256 1 211

ARM processor 1 (no MUXs) – Timeout (−)
16 8 11204
64 2 8857
256 1 5909
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N =1, where any correction is not obtained within 5 h, the proposed filtering
method based on the necessary condition makes the execution time much shorter. It
implies that a large number of variables examined in the results shown in
Table 11.2 do not satisfy the necessary condition. That is, the necessary condition
works very well as filtering.

11.2.4.4 Applying Both Multiple Variable Examination
and Candidate Filtering

In the previous experiments, we evaluate our proposed methods for finding vari-
ables which can rectify circuits when added to LUT input. That is, simultaneous
examination of multiple candidate variables using MUXs and filtering candidate
variables based on necessary condition are applied. In this section, we see the
effects of applying both of the methods at the same time. For this experiment, we
use ISCAS85 circuits and Industrial circuit.

For the experiment, one gate in each ISCAS circuit is replaced with a LUT, and
one of its inputs is removed from the LUT. As a result, we realize cases where a
potentially buggy gate is replaced with a LUT, but it lacks one input for rectification
because we intentionally remove it. The gate replaced with a LUT and a variable to
be removed are randomly chosen, and we make five instances for each ISCAS
circuit. For Industrial circuit, we replace one of the buggy gates with a LUT. This
replaced LUT needs one more input for rectification (without intentionally
removing one of its original input) as the original circuit is buggy.

We apply the following three methods for each instance.

• (PI) Examining all primary input variables one by one until one can rectify the
circuit.

• (Filtering) Examining only primary input and internal variables one by one
which satisfies the necessary condition discussed in Sect. 11.3.3.

• (Filtering + MUX) Examining multiple variables which satisfy the necessary
condition using MUX.

The results are shown in Table 11.4. In the table, # of var, Rectified, and # of
examined represent the total number of candidate variables, (the number of suc-
cessfully rectified)/(the total number of instances), and the average number of
examined variables in successfully rectified cases, respectively. When # of exam-
ined is N/A, it means that none of the experiment instances can be rectified by the
corresponding method. Ratio means the ratio of the number of examined variables

Table 11.3 Experimental
results of filtering candidate
variables based on the
necessary condition

Changed inputs Time (s)

Industrial 29 524
ARM processor 24 293
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with filtering to the total number of variables. Runtime in the table is the average
runtime of the experimented instances.

From the table, we can see the following.

• When we want to rectify circuits utilizing programmability of LUT and one
additional input to LUT, we need to add some internal variables (not primary
input variables) to the LUT.

• When applying the filtering method to filter out variables not satisfying the
necessary condition, we can reduce the numbers of examined candidates to
10–30% of the total variables.

• Examining multiple candidates simultaneously using MUXs reduces the runtime
significantly.

Table 11.4 Experimental results of applying both of our proposed method

Circuit # of
var

Method Rectified # of examined
(ratio)

Runtime
(s)

c499 243 PI 0/5 N/A 46.4
Filtering 5/5 88.6 (36%) 48.3
Filtering + MUX 5/5 88.6 (36%) 2.3

c880 443 PI 1/5 61.0 (14%) 80.8
Filtering 5/5 54.2 (12%) 57.0
Filtering + MUX 5/5 54.2 (12%) 2.6

c1355 587 PI 0/5 N/A 60.6
Filtering 5/5 155.8 (27%) 227.7
Filtering + MUX 5/5 155.8 (27%) 3.3

c1908 911 PI 2/5 34.0 (4.0%) 69.2

Filtering 5/5 194.2 (21%) 284.5
Filtering + MUX 5/5 194.2 (21%) 3.9

c2670 1194 PI 0/5 N/A 708.1
Filtering 5/5 142.2 (12%) 83.2
Filtering + MUX 5/5 142.2 (12%) 4.7

c3540 1670 PI 0/5 N/A 154.9
Filtering 5/5 503.8 (30%) 915.9
Filtering + MUX 5/5 503.8 (30%) 7.8

c5315 2476 PI 0/5 N/A 915.5
Filtering 5/5 324.6 (13%) 268.1
Filtering + MUX 5/5 324.6 (13%) 8.8

c7552 3604 PI 0/5 N/A 1484.3
Filtering 5/5 1016.0 (28%) 3990.1
Filtering + MUX 5/5 1016.0 (28%) 15.9

Industrial 3209 PI 0/1 N/A Time out
Filtering 1/1 100 (3.1%) 972.3
Filtering + MUX 1/1 100 (3.1%) 172.5
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11.2.5 Summary and Future Works

In this paper, we have proposed debugging methods for gate-level circuits applying
partial synthesis techniques shown in [4, 5]. In the methods, possible bug locations,
which may be given from bug locating methods, are replaced with LUTs, and a
configuration of LUTs that makes an implementation under debugging and its
specification equivalent is searched. To deal with the missing input variables to
LUTs, we have also proposed methods to examine variables for LUT inputs in
trial-and-error manner. Using MUXs, multiple variables are examined simultane-
ously, which largely reduces the number of iterations of the process. In addition, we
have introduced a necessary condition that variables added to LUT inputs must be
satisfied, so that variables not satisfying the condition can be removed quickly from
the candidates. Through the experiments with ARM processor design, on-chip
network controller taken from industry, and benchmark circuits, both of our pro-
posals can significantly speed-up the process to get a correction (i.e., an appropriate
configuration of LUTs to make an incorrect implementation correct).

We have also discussed about possible extensions of our proposed method in
order to introduce sub-circuits having relatively larger numbers of inputs, such as
12 inputs to the buggy locations of the design under debugging. For such large
numbers of inputs, it is not practical to represent the entire sub-circuit with a single
12-input LUT. Instead, we have discussed about the introduction of decomposition
of such sub-circuits with sets of LUTs having much smaller numbers of inputs.
Definitely, this is a very preliminary discussion and much of following works are
expected.

As a future work, we plan to develop a method to reduce the candidate variables
based on the necessary condition discussed in this paper for the cases where LUTs
are dependent with each other. In such cases, the necessary condition may need to
be refined to deal with dependency.

11.3 High-Quality Delay Testing for In-field Self-test

Michiko Inoue, Nara Institute of Science and Technology

Tomokazu Yoneda, Nara Institute of Science and Technology

11.3.1 Statistical Delay Quality Level SDQL

Built-In Self-Test (BIST) is an embedded component in a circuit that can apply
self-test to the circuit itself. Since it is embedded in a circuit, it can be used to apply
in-field test and contribute to improve the reliability of the circuit. BIST for
high-quality delay test that detects small delay defects is effective not only to
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improve test quality of production test but also to efficiently and less costly realize
failure prediction in field. This subsection introduces a method to improve test
quality while reducing test data volume and test application time for BIST to be
used in field. Failure prediction method by delay measurement using in-field BIST
has been proposed [15]. To practically realize BIST in field, it is required to provide
high-quality delay test under strict constraints on test data volume and test appli-
cation time.

Statistical Delay Quality Level (SDQL) is proposed to evaluate delay test quality
for small delay defects [16]. Intuitively, SDQL represents an amount of delay
defects that can escape from detection by a given test set. Therefore, smaller SDQL
means better test quality. For a given circuit, SDQL of a test set represents a total
amount of delay defects that have to be detected but cannot be detected by the test
set. Figure 11.14 shows a concept of SDQL. In Fig. 11.14a, there are two paths that
pass through a delay fault f , where the lengths of the paths are 3 ns and 5 ns,
respectively. If the path with length of 3 ns is sensitized by some test pattern (by
propagating a transition through the path) with test clock of 6 ns, f is detected if the
delay defect size exceeds 3 ns, while a delay defect exceeding 1 ns is detected if a
different test pattern sensitizes the path with length of 5 ns. That is detectable delay
defect size depends on test patterns. Suppose that the smallest detectable delay
defect for f is 1 ns, that is, delay defect less than 1 ns is timing redundant and does
not need to be detected. If the smallest detectable delay defect for f by a given test
set is 3 ns, delay defect whose size is between 1 and 3 ns is escaped from the test.
SDQL is a total amount of such test escapes over the all faults by considering a
delay defect distribution (Fig. 11.14b).

f

test clock 6ns

TdetTmgn
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f(t) delay defect distribution

timing 
redundant

SDQL = f (t)dt
Tmgn
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Fig. 11.14 Statistical delay quality level (SDQL)
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11.3.2 In-field Test Using BIST

Failure prediction method using in-field BIST has been proposed [15], where
in-field delay measurement is implemented by controlling BIST circuitry from
on-chip DART controller (Fig. 11.15). Delay test is applied several times using
different test clock frequencies, and actual delay is narrowed down between PASS
and FAIL test clock frequencies.

BIST generates one deterministic and multiple pseudo-random test patterns from
one seed, and therefore, frequent re-seedings can achieve high test quality with
short test application time. However, frequent re-seedings require more test data
volume, and test data such as seeds and the corresponding expected signatures
should be stored in on-chip memory. In-field test has several constraints on on-chip
memory and test application time, and therefore, small number of seeds with high
delay test quality is required for accurate in-field delay measurement.

11.3.3 Seed Selection for High-Quality Delay Test

Test pattern selection [17] and seed selection [18] for high delay test quality based
on SDQL have been proposed. Figure 11.16 shows a flow of seed selection [18]. In
this method, first, given test patterns are translated into seeds. Then seeds are sorted
in the order so that SDQL is decreased (improved) as early as possible. The ordered
seeds can be used to minimize the number of seeds under a constraint on test
quality, or to maximize test quality (minimize SDQL) under a constraint on the
number of seeds. Seeds are selected in the obtained order while a selected seed set
satisfies a given constraint.

Seed ordering can be done by selecting test patterns one by one by repeatedly
obtaining SDQL using timing-aware fault simulation. However, it is unpractical
since timing-aware fault simulation is too time consuming. Seed ordering [18] is
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Fig. 11.15 In-field built-in
self-test
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accelerated by using lengths of sensitized paths (Tdet in Fig. 11.14b) instead of
actual SDQL values. In the proposed method, first lengths of sensitized paths for all
the faults are obtained for each seed. Then seeds are selected one by one based on
the obtained lengths of sensitized paths. Timing-aware fault simulation is required
for once as a preprocessing in the first step, and it can order a given test pattern set
in a reasonable time.

Experiments have been conducted for several ITC’99 benchmark circuits.
Synopsys TetraMAX ATPG with Small Delay Defect Test mode [19] is used for
timing-aware test generation and fault simulation. Table 11.5 shows the charac-
teristics of the circuits and the results of test pattern generation and seed transfor-
mation and ordering. The columns “# test patterns”, “# seeds” show the number of
test pattern generated by TetraMAX, and the number of seeds transformed from the
test patterns. Test patterns generated by timing-aware ATPG and n-detect test
patterns targeting transition faults are preliminarily compared, and timing-aware
ATPG is adopted to obtain better SDQL with a smaller number of seeds. The
columns “FC (%)”, “SDQL”, and “TGT (m)” show transition fault coverage,
SDQL, and test generation time for the test patterns, respectively, and “ordering
time (m)” show processing time for seed ordering. The results show that the pro-
posed method efficiently orders the seeds.

Figure 11.17 shows the effectiveness of the proposed method. The figure
compares SDQL transitions among the proposed seed ordering, random ordering,
and an original ATPG order. The proposed seed ordering achieves less (better)
SDQL with a smaller number of seeds. Tables 11.6 and 11.7 show some examples

ordering

seeds seeds

seeds

seed transformation

Test Patterns

seed selection under 
test quality constraint

seed selection under 
resource constraint

Fig. 11.16 Seed selection for
high-quality delay test

Table 11.5 Circuit characteristics, results of test generation, seed transformation, and ordering

Circuit # gates # faults # FFs # scan
chains

# test
patterns

#
seeds

FC
(%)

SDQL TGT
(m)

Ordering
time (m)

b15 8,985 17,329 417 8 727 700 82.0 2498.0 1.89 0.6

b17 27,766 65,218 1,317 26 1,375 1,319 86.2 7841.8 9.18 2.3

b18 79,400 172,403 3,020 80 3,293 3,129 79.7 33986.1 43.82 19.7

b19 152,599 353,301 6,042 120 6,131 5,850 79.0 70768.2 115.39 74.9
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of seed selection under SDQL constraints and seed count constraints, respectively.
The number of seeds and SDQL are reduced by ordering seeds using the proposed
method, especially when SDQL constraints are relatively large or seed count
constraints are relatively small. These cases correspond to requirements of small
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Fig. 11.17 SDQL transition

Table 11.6 The number of selected seeds under SDQL constraints

Circuit b15 b17 b18 b19

SDQL constraint 2,500 3,500 8,000 10,000 35,000 45,000 70,000 90,000
Proposed 116 17 266 81 525 85 1,875 146
Random 473 83 780 288 1,516 249 4,541 542
ATPG 597 88 816 328 2,049 707 5,139 1,486
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test data volume or short test application time. That is, the proposed seed ordering
can be effectively used in in-field BIST environments.

There are some variations of the proposed method. A simplified version just
targets transition fault coverage, where time-consuming fault simulation is not
required and ordering can be done more efficiently. The proposed ordering method
can be extended to handle mixed-mode BIST where one deterministic test pattern
and multiple pseudo-random test patterns are generated from one seed. In an
extended version of the proposed method, the longest sensitized paths are evaluated
for each test pattern set generated from the same seed. These variations including
the original version can give an adequate solution to meet several requirements such
as test data volume (seed count), test quality (SDQL), and processing time.

11.4 Temperature-and-Voltage-Variation-Aware Test

Tomokazu Yoneda, Nara Institute of Science and Technology

Yuta Yamato, Nara Institute of Science and Technology

11.4.1 Thermal-Uniformity-Aware Test

In advanced technologies, temperature-induced delay variations during the test are
as much as those caused by on-chip process variations [20]. Temperature difference
within a chip can be as high as 50 °C and typical time intervals for temperature
changes over time are very short time of milliseconds. Besides, the execution of
online self-test may last for a long time [21]. For example, the extremely thorough
test patterns that specifically target aging [22] may take several seconds to com-
plete. This indicates that, for accurate aging prediction, we need to embed a lot of
temperature sensors into several locations within a chip to collect spatially and
temporally temperature profile during. However, this is not the cost-effective
solution since it incurs a lot of overhead. Even if we could accept the overhead, it
requires (1) a lot of data to be stored in the memory and (2) a complex procedure to
eliminate the temperature-induced delay variations from the measured delay values

Table 11.7 SDQL of selected seeds under seed count constraints

Circuit b15 b17 b18 b19

# seeds constraint 100 200 500 1,000 500 1,500 500 1,500
Proposed 2,550 2,369 7,474 7,193 35,149 32,950 76,420 70,643
Random 3,443 3,044 8,826 7,566 40,555 35,047 90,964 78,917
ATPG 3,387 3,064 9,177 7,612 50,756 37,493 110,546 89,716
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for aging analysis. Therefore, we need a cost-effective solution to eliminate the
temperature-induced delay variations for accurate aging prediction.

Yoneda et al. proposed a test pattern optimization method to reduce the spatial
and temporal temperature-induced delay variations. The proposed method consists
of the following two steps: (1) X-filling [23] and (2) test pattern ordering [24] as
shown in Fig. 11.18.

11.4.1.1 X-filling for Spatial-Thermal-Uniformity

The proposed method starts with a test sequence including unspecified bits (X’s)
generated by a commercial ATPG. As the first step, the thermal-uniformity-aware
X-filling technique [23] is performed to obtain a test sequence of test patterns with
fully specified bits. For each test pattern i together with the test response of i − 1,
the Xs are specified so as to minimize the spatial temperature variance during scan
shift operation while preserving the power consumption at relatively low level.
Figure 11.19 shows the temperature profile for ITC’99 benchmark b17 after Step 1.
In this example, the circuit was divided into 16 blocks based on the layout and each
line on the graph represents the temperature profile of a block. Compared to the
temperature profiles of the test patterns with minimum transition fill (conventional
low power patterns) in Fig. 11.20, the spatial temperature variation is reduced
significantly. However, temporal temperature variations (around 20 °C in this
example) are still remaining.

11.4.1.2 Test Pattern Ordering for Temporal Thermal Uniformity

The proposed test pattern ordering technique [24] determines an order of the fully
specified test patterns so that the temporal temperature variance is minimized while
preserving the spatial temperature variance achieved in the first step. The main idea
is to adopt a sub-sequence-based ordering strategy. The method divides the test
pattern sequence into several sub-sequences based on thermal simulation, and

Fig. 11.18 Test pattern optimization flow
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orders the heating and cooling sub-sequences in an interleaving manner to reduce
the temporal temperature variation. The spatial thermal-uniformity achieved in the
first step is valid only for the current response-pattern pair which is simultaneously
shifted during a test in the current order. Therefore, the sub-sequence-based
ordering itself can preserve the spatial-thermal-uniformity without any consideration

Fig. 11.19 Temperature variation in test patterns with thermal-uniformity-aware X-filling

Fig. 11.20 Temperature variation in test patterns with minimum transition fill
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if the length of sub-sequences is long enough, and allow us to minimize the tem-
poral temperature variance as shown in Fig. 11.21. Experimental results show that
the proposed test pattern optimization method obtained 73% and 95% reductions in
spatial and temporal temperature variation, respectively, on average for several
ITC’99 benchmarks.

11.4.2 Fast IR-Drop Estimation for Test Pattern Validation

In addition to temperature, voltage is another main contributor to delay variation.
Excessive voltage drop causes severe yield loss problems during delay test. Gen-
erally, delay testing is performed using scan design, a typical design for testability
(DFT) technique. During scan testing, circuits operate with high switching activity
since it causes state transitions which cannot occur during functional operation. In
case that instantaneous switching activity is high, large current flows along power
distribution network in a short period of time. This results in voltage decrease at
power supply port of cell instances due to resistance of metal wires (IR-drop). Since
IR-drop increases signal transition delay at cell instances, if cumulative delay
increase on a sensitized path exceeds the specified timing margin, timing failure
occurs. In such case, even functionally good chips may also fail the test and will not
be shipped, i.e., yield loss. Therefore, test patterns that can cause excessive IR-drop
should be identified and removed or modified before test application [25].

Fig. 11.21 Temperature variation in test patterns after thermal-uniformity-aware test pattern
ordering
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Figure 11.22 shows variation in delay increase of sensitized paths depending on
the amount of IR-drop. It can be seen that paths running through the instances with
high IR-drop suffers from higher delay increase. Based on this observation, it is
necessary to compute the amount of IR-drop for every cell instance for each pattern
to accurately evaluate test patterns. Though this is generally realized by precise
circuit-level simulation, it usually takes long computation time and thus may be
impractical for large industrial designs. On the other hand, evaluation using esti-
mated power dissipation or signal switching count is much more scalable and
widely used. However, since the length of sensitized paths differs depending on
patterns even their power dissipations are similar, it can be difficult to directly
evaluate the risk of IR-drop-induced timing failures.

To accurately evaluate test patterns in a realistic amount of time, the authors in
[26] have proposed a fast pattern-dependent per-cell IR-drop estimation method.
The basic idea is to reduce the number of time-consuming IR-drop analyses during
entire analysis. General flow and the way to reduce the number of IR-drop analyses
are described in the following subsections.

11.4.2.1 General Flow

Figure 11.23 shows a comparison between typical IR-drop analysis flow that per-
forms IR-drop analysis for all patterns and the proposed flow. Differently, from the
typical flow, the method first selects a few representative patterns as targets of
IR-drop analysis. IR-drop analyses are performed only for the selected patterns.
Then, fast IR-drop estimation function is derived for each cell instance using
analyzed IR-drop and corresponding power profile. After that, IR-drop for the
remaining patterns is computed using the functions.

Fig. 11.22 Variation in path
delay increase due to IR-drop
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11.4.2.2 Reducing Number of IR-Drop Analysis

The idea of reducing the number of IR-drop analyses is based on high correlation
between circuit’s average power dissipation over a clock cycle and IR-drop for
each cell. As can be seen in Fig. 11.24, by focusing on individual cell instance,

Fig. 11.23 Comparison between typical flow and proposed flow

Fig. 11.24 Correlation between global cycle average power and individual cell instance
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cycle average power and IR-drop has an almost linear correlation. The proposed
method derives IR-drop estimation function for each cell by linear regression using
a few IR-drop analysis results of representative patterns. For the remaining patterns,
IR-drop for each cell instance can be computed using its cycle average power. Since
the estimation functions are linear function, the computation effort is significantly
reduced compared to IR-drop analysis.

Experimental results have shown that the proposed method achieves more than
20X speed-up to 6 mV error on average compared to typical flow.
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